
An Adaptive Markov Chain Monte Carlo

Algorithm-Regime Change Algorithm

Kai Yang∗

Department of Statistics, University of Toronto

Supported by University of Toronto Excellence Award (UTEA-NSE)

Supervisors: Jeffrey S. Rosenthal & Radu Craiu

August 14, 2011

∗Email: kai.b.yang@utoronto.ca

1

Contents

1 Introduction 4

1.1 The Metropolis-Hastings Algorithm . 5

1.2 The Proposed Regime Change Algorithm . 5

1.3 Background on Parallel Tempering MCMC . 6

1.4 Independent Metropolis Sampler . 7

2 The Expectation-Maximization (EM) Algorithm 7

2.1 The General EM Algorithm . 7

2.2 The EM Algorithm for the Gaussian Mixture Model 8

2.3 Simulation Studies: Regime Change Algorithm via EM 9

2.3.1 A One Dimensional Target Distribution 10

2.3.2 A Two Dimensional Target Distribution 11

2.3.3 A Ten Dimensional Target Distribution 11

2.4 Draw Backs of the EM Algorithm . 13

3 Dirichlet Process Mixture (DPM) Models 14

3.1 An Introduction to the DPM Models . 15

3.2 Proposed Algorithm: Sequential Updating and Greedy Search (SUGS) 17

3.3 Normal Mixture and Conjugate Prior . 18

3.3.1 The Univariate Case . 19

3.3.2 The Multivariate Case . 22

3.4 Simulation Studies: Regime Change Algorithm via DPM 24

3.4.1 A Two Dimensional Target Distribution 24

3.4.2 A Ten Dimensional Target Distribution 26

3.5 Inference at a Higher Level - an Empirical Bayesian Approach 28

3.5.1 Bayesian Inference for Prior DP Precision Parameter α 29

3.5.2 Empirical Bayesian Inference for Other Hyperparameters 30

3.5.3 The Maximum Likelihood Estimator Approach 30

4 Discussion 32

Appendices 34

A R Code for Parallel Tempering and IM Sampler 34

B R Code of EM Algorithm for Gaussian Mixture Model 37

2

C R Code of DPM for Gaussian Mixture Model 39

D R Code of Bayesian Inference for Prior DP Precision Parameter 45

References 46

3

Adaptive MCMC algorithms have been one of the most active areas of research in recent

years. In this paper we study one kind of adaptive MCMC algorithm called Regime Change

Algorithm (RCA). We will start by an introduction to RCA in chapter 1. In chapter 2,

we give an account for the EM algorithm and discuss its performance in conjunction with

RCA algorithms. In chapter 3, we explore the possibility of density estimation via Dirichlet

Process Mixture Models, which is an alternative to the EM algorithm. Its performance with

the RCA is also studied in that chapter. Chapter 4 ends this survey with some discussions

and future research directions.

1 Introduction

The class of adaptive MCMC (AMCMC) has gained attraction in recent years. The idea

behind AMCMC is to simultaneously run the sampling chain and use the samples obtained

to continuously modify the transition kernel used in the algorithm. Since the transition

kernel depends on samples from the whole past, the Markovian property of the chain is lost.

To ensure ergodicity of the Markov chain {Xn} (i.e. P (Xn ∈ A) → π(A) where π is the

invariant distribution), the adaptive MCMC algorithm has to satisfy Diminishing Adaptation

and Containment conditions (Roberts and Rosenthal, 2007, Theorem 13). All the AMCMC

samplers proposed so far in the literature assume that the same kind of transition kernel is

used throughout the simulation. However, advantages can be obtained if we allow for regime

changes during the simulation process, which gives rise to the proposed Regime Change

Algorithm. For instance, it is known that one is well-advised to consider a random walk

Metropolis (RWM) in situations in which little is known about the geography of the target

distribution. But independent Metropolis (IM) algorithms, when well-tuned, can have a

superior performance compared to RWM algorithms (Mengersen and Tweedie, 1996), giving

samples with much smaller dependence structure much more quickly. To account for these

possible benefits, we propose a generic MCMC algorithm in which one starts the initialization

period using a Random Walk Metropolis sampler that slowly gives way to an independent

Metropolis sampler. The rate of regime change must be coordinated to match the closeness

between target density π and the proposal density used in the adaptive IM. A good candidate

that serves this purpose is the IM sampler acceptance rate. Also since a good approximation

of π cannot generally be obtained on the whole state space, we consider adapting only inside

a compact subset, K, of the state space, S, while outside K we use a transition kernel that

remains fixed throughout the simulation.

4

1.1 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is a Markov

chain Monte Carlo method for obtaining a sequence of random samples from a probability

distribution for which direct sampling is difficult. Suppose we wish to obtain samples from

our target distribution π. Then given Xn, the state of the Markov chain at time n, a

proposed value Yn+1 is generated from some pre-specified proposal density q(Xn, y), and is

then accepted with probability α(x, y) where

α(x, y) =

{
min

{π(y)
π(x)

q(y,x)
q(x,y)

, 1
}

if π(x)q(x, y) 6= 0,

1 if π(x)q(x, y) = 0.

If the proposed value is accepted, we set Xn+1 = Yn+1; otherwise, we set Xn+1 = Xn. We

can prove such choice of acceptance probability α(x, y) ensures that the Markov chain {Xn}
is reversible with respect to the target density π(x), so that the target density is stationary

for the chain (Roberts and Rosenthal, 2004, Proposition 1). Under ergodicity condition, the

Markov chain will sample approximately from the target distribution after a certain number

of iterations.

1.2 The Proposed Regime Change Algorithm

Let P̃ be the transition kernel of the Regime Change Algorithm (RCA), we have

P̃γ(x,A) = 1K(x)[λγPγ(x,A) + (1− λγ)Qγ(x,A)] + 1Kc(x)R(x,A)

γ is the adaptation parameter, P and Q are transition kernels of RWM and IM respectively,

and R is the fixed transition kernel used on Kc = S − K. Ideally, we would like to have

λγ → 0 as the proposal distribution used for Qγ, qγ, approaches π on K. A possible choice

from our simulation results for λγ is the rejection rate for the IM sampler since it is very

easy to estimate by proposing using the IM sampler and it is also a very good indicator of

the closeness between the target density and the proposal density.

We first go through an initialization process where we run the RWM algorithm only.

Then we fit a Gaussian mixture model using the EM algorithm to the obtained samples

after discarding the burn-in samples, which will serve as the proposal distribution of the

IM sampler later. We make λγ the rejection rate of the IM sampler which we compute

as we go. We also refine the Gaussian mixture models as we get more and more samples

during the simulation process. Since with enough number of components, a mixture of

normal distributions can theoretically approximate any target distribution arbitrarily well,

5

we can expect that when we have more and more samples, the proposal distribution is going

to resemble the target distribution better and better where we can have λγ → 0 as our

simulation process goes on.

1.3 Background on Parallel Tempering MCMC

It is well-known that the efficiency of the adaptive algorithm depends significantly on the

quality of the initialization samples (e.g., Giordani and Kohn, 2010). Usual RWM algorithm

does not work well for the multi-dimensional multi-modal distributions, which are natural

objects we study in MCMC. A remedy for the quality of initial samples is the parallel

tempering MCMC (or the Metropolis-Coupled MCMC). So instead of using standard RMW

sampler on the space K to explore the target density, which could get trapped in one of the

local modes, we use parallel tempering MCMC for the transition kernel P .

Suppose we run m parallel tempering MCMC, one RWM chain for each temperature

τ . The m chains have m different target density, which is flatter when the temperature

τ is higher. When the target density is flatter, it is much easier for the Random Walk

Metropolis chain to go between different modes. So the idea of parallel tempering is to

have the higher temperature chains to drive the mixing of the lower temperature chains.

More specifically, chain τ has target density πτ (x) = cτ (π(x))1/τ for τ = 1, 2, . . . ,m. We

couple the m chains together to create a new Markov chain where the state at time n is

Xn = (Xn,1, Xn,2, . . . , Xn,m), and {Xn,τ} is the chain at temperature τ . The state space of the

parallel tempering MCMC is Km where the stationary distribution is π̄ = π1×π2× . . .×πm,

i.e. π̄(X1 ∈ S1, X2 ∈ S2, . . . , Xm ∈ Sm) = π1(S1)π2(S2) . . . πm(Sm). We sequentially update

the chain at temperature τ (for each 1 ≤ τ ≤ m), by proposing Yn,τ ∼ N(Xn−1,τ , σ
2), where

σ2 is some proposal scaling for the RWM, and accepting with probability min
(

1, πτ (Yn,τ)

πτ (Xn−1,τ)

)
.

Then we choose temperatures τ and τ ′ at random, and propose to swap the values Xn,τ and

Xn,τ ′ , accepting this with probability min
(

1,
πτ (Xn,τ ′)πτ ′ (Xn,τ)

πτ ′ (Xn,τ ′)πτ (Xn,τ)

)
. Some simple algebra shows

us:

min

(
1,
πτ (Xn,τ ′)πτ ′(Xn,τ)

πτ (Xn,τ)πτ ′(Xn,τ ′)

)
= min

(
1,
cτπ(Xn,τ ′)1/τ cτ ′π(Xn,τ)1/τ

′

cτπ(Xn,τ)1/τ cτ ′π(Xn,τ ′)1/τ ′

)
= min

(
1,
π(Xn,τ ′)1/τπ(Xn,τ)1/τ

′

π(Xn,τ)1/τπ(Xn,τ ′)1/τ ′

)
Hence the normalizing constant is not necessary in the computation for acceptance prob-

ability. It is not hard to show such construction makes the chain {Xn} ergodic with invariant

distribution π̄. Then if we only look at the first component of the chain, we obtain samples

from the desired target distribution π.

6

1.4 Independent Metropolis Sampler

After the initialization process, by some standard density estimation method, we obtain a

Gaussian mixture density qγ that is close to the target density, which we will continue to

refine as the simulation process goes on. qγ serves as the proposal distribution of the IM

sampler for the RCA. In other words, at time n, we propose Yn i.i.d. from qγ (normal mixture

distributions are easy to simulate in R), with acceptance probability:

min

(
1,
π(Yn)qγ(Xn−1)

π(Xn−1)qγ(Yn)

)
This is essentially a special case of the Metropolis-Hastings algorithm, from which the proof

of ergodicity of the IM sampler follows. We estimate the rejection rate by r = REJ
PRO

. where

REJ is the number of rejections and PRO is the total number of proposals. We take the

adaptation parameter, λγ in section 1.1 to be r for the following reason: Suppose the proposal

distribution is the same as the target distribution. Then all proposals will be accepted, with

rejection rate 0. With such proposal density, we should completely switch to the IM sampler.

However, if the rejection rate is not 0, we still need parallel tempering chain to explore the

target distribution, where a new mode might appear. The IM sampler rejection rate is an

indicator of closeness between the target density and proposal density. When the rejection

rate is high, the RCA consists of more parallel tempering MCMC to discover possible new

modes. When the rejection rate is low, the RCA consists of more IM sampler, which gives

samples of smaller dependence structure.

R code for parallel tempering and IM sampler is provided in the appendix section.

2 The Expectation-Maximization (EM) Algorithm

A substantial part of RCA is to estimate the target density with a Gaussian mixture model

using samples obtained in the past. Such density estimation has to be reliable and reasonably

fast for the algorithm to work. The EM algorithm is a common method people use to

obtain maximum likelihood estimators for the Gaussian mixture models. In this section, we

introduce the EM algorithm and discuss its performance with RCA.

2.1 The General EM Algorithm

Consider a model for the observed data x, which is a matrix of n independent observations

of dimension d that is accompanied by a vector of unobserved latent variables z of n compo-

nents. A model with parameters θ describes the joint distribution of x and z, as P (x, z|θ).

7

We want to estimate model parameters θ by maximum likelihood, which means finding the

θ that maximizes

P (x|θ) =

∫
P (x, z|θ)dz

suppose that we can easily find the θ that maximizes P (x, z|θ), for any known x and z. Then

we can use this capability in an iterative algorithm called the EM algorithm for maximizing

P (x|θ). The general EM algorithm alternates these steps:

E Step: Using the current value of the parameter, θ, find the distribution, Q, for the latent

variables z, given the observed x:

Q(z) = P (z|x, θ)

M Step: Maximize the expected value of log P (x, z|θ) with respect to θ, where the expecta-

tion is with respect to the distribution Q found in the E step:

θ = argmaxθEQ[logP (x, z|θ)]

To see why this iterative algorithm can maximize the log likelihood of the data set at

least locally, consider the following function F of the distribution Q over the latent variables

z and the parameters θ:

F (Q, θ) = EQ[logP (x, z|θ)]− EQ[logQ(z)]

= logP (x|θ) + EQ[logP (z|x, θ)]− EQ[logQ(z)]

= logP (x|θ)− EQ[log(Q(z)/P (z|x, θ))]

The final term above is the Kullback-Leibler (KL) divergence between the distribution Q(z)

and the distribution P (z|x, θ). One can show that this divergence is always non-negative,

and is zero only when Q(z) = P (z|x, θ). The E step maximizes F (Q, θ) with respect to

Q, which is a consequence of KL divergence being minimized when Q(z) = P (z|x, θ). The

M step maximizes F (Q, θ) with respect to θ since EQ[logQ(z)] does not depend on θ. The

maximum of F (Q, θ) occurs at a θ that maximizes P (x|θ) because if instead P (x|θ∗) > P (x|θ)
for some θ∗, then F (Q∗, θ∗) > F (Q, θ) with Q∗(z) = P (z|x, θ∗).

2.2 The EM Algorithm for the Gaussian Mixture Model

In the case where the model is a mixture of Gaussian distributions. The latent variables are

discrete, specifying which component of the mixture model the data point is coming from.

8

Hence distribution Q can be completely specified by what is called responsibilities in ma-

chine learning language. The responsibilities are the conditional probability of the observed

sample from each of the K components of the normal mixture model, conditioning on the

modal parameters θ. In the Gaussian Mixture Model case, θ = (π̃, µ̃, Σ̃) is a triple where π̃ is

the mixing proportions of the mixture, µ̃ is a list of mean vectors of each of the multidimen-

sional Gaussian component, and Σ̃ is a list of covariance matrices of the components. Some

simple algebra shows that the general EM algorithm described in section 2.1 can be greatly

simplified in the context of Gaussian mixture model, which maximizes the log likelihood of

the data set as proven in the previous section. More specifically, the algorithm alternates in

between the E steps and the M steps as follows:

E Step: Using the current values of the parameters, compute the responsibilities of com-

ponents for data items, by applying Bayes’ Rule:

rik = P (data point i come from component k |xi) =
πkN(xi|µk,Σk)∑
k′ πk′N(xi|µk′ ,Σk′)

M Step: Using the current responsibilities, re-estimate the parameters, using weighted

averages, with weights given by the responsibilities:

πk =
1

n

∑
i

rik

µk =

∑
i xirik∑
i rik

Σk =

∑
i rik(xi − µk)(xi − µk)T∑

i rik

We start with some initial guess at the parameter values (perhaps random), or perhaps

with some initial guess at the responsibilities (in which case we start with an M step). We

continue alternating E and M steps until there is little change. See R code in the appendix

section of this paper.

2.3 Simulation Studies: Regime Change Algorithm via EM

We first go through an initialization process where we run the parallel tempering chain only.

Then we fit a Gaussian mixture model using the EM algorithm to the obtained samples

after discarding the burn-in samples, which will serve as the proposal distribution of the IM

sampler. We make λγ the rejection rate of the IM sampler which we compute as we go.

RCA ensures that λγ portion of the sample comes from parallel tempering chain and the

9

rest comes from the IM sampler. We also keep refining the Gaussian mixture models as we

get more and more samples during the simulation process. R code for the simulation is in

the appendix section.

2.3.1 A One Dimensional Target Distribution

Consider the one dimensional target density, π(x) = 1
4
N(x| − 3.1, 1.52) + 3

4
N(x|10.2, 1.72).

By the RCA algorithm, we first run 5 parallel tempering chains for 5500 iterations, with

burn-in sample of size 500. Then we fit a Gaussian Mixture Model with 2 components to

the obtained samples, which will serve as the proposal distribution of the IM sampler. One

issue with the EM algorithm is the need to pre-determine the number of components to fit

to the data set. In this example we fit two components since we know the number of modes

of the target distribution. In general, this is a more difficult problem which motivates the

discussion of Dirichlet Process Mixture (DPM) models in the next section.

We estimate the target density using EM algorithm with the initial 5000 samples from

the parallel tempering RWM without burn-in samples. See figure 1.

Figure 1: Left is a plot of the target density. Right is a plot of the proposal density used by
the IM sampler via EM algorithm.

We use the fitted proposal distribution to obtain another 5000 samples from the IM

sampler and compare the samples. See figure 2.

A few advantages of RCA are clear from the simulation results. When well tuned, IM

sampler gives samples of much smaller dependence structure, in this case only 2-dependent

samples. Also a well tuned IM sampler is fast and reliable. Such well-estimated proposal

density gives acceptance rate of 0.9414 for the IM sampler. The quality of the well tuned

samples is shown by the acf plots and the trace plots in figure 3.

10

Figure 2: Left is the histogram of the initial samples obtained by the parallel tempering
RWM. Right is the histogram of the IM samples.

2.3.2 A Two Dimensional Target Distribution

Let us consider the following target distribution:

π(x) =
5

16
N
(

(5, 7),

[
2 −1

−1 1

])
+

5

16
N
(

(−5,−1),

[
3 0

0 4

])
+

1

8
N
(

(−1, 9),

[
0.5 1.2

1.2 4.5

])
+

1

4
N
(

(1, 2),

[
1 0

0 1

])
We go through an initialization process to obtain a sample of size 5000. Then we use EM

algorithm to fit a Gaussian Mixture Model (of 4 components) to the obtained sample. The

fitted IM proposal is shown in Figure 4.

Then we use the fitted proposal distribution to obtain another 5000 samples from the IM

sampler and compare the samples, acf’s and trace plots. (See figure 5− 7.) The acceptance

rate of IM sampler is 0.913, giving almost i.i.d. samples from the target distribution.

2.3.3 A Ten Dimensional Target Distribution

As an illustration, we consider sampling from a ten-dimensional normal mixture model π(x)

that has six modes.

π(x) =
6∑
i=1

piN(x|µi,Σi)

where (p1, p2, . . . , p6) = (0.21, 0.20, 0.08, 0.18, 0.08, 0.25)

µ1 = (4.39,−13.92,−5.52, 19.27, 16.45,−1.71, 8.85,−2.05, 10.51,−7.96)T

µ2 = (−14.54, 15.54, 17.70,−17.00, 4.84, 16.03,−11.71,−16.07, 13.03,−15.27)T

µ3 = (2.45, 17.01, 10.14, 14.57, 8.47, 6.12, 6.50, 2.47,−8.08,−8.28)T

11

Figure 3: Left is a comparison of the acf’s between initial samples and the well-tuned IM
samples. Right is a comparison of the trace plots.

µ4 = (13.75, 14.73,−14.87,−12.54,−1.52,−5.16, 8.68,−4.70, 2.19,−0.52)T

µ5 = (7.52,−8.98, 16.65, 11.32, 19.41,−7.43, 2.15, 10.52,−2.98,−5.46)T

µ6 = (−11.30,−15.25,−14.66, 19.95,−17.58,−1.60, 17.78, 4.22,−14.18)T

Covariance matrices are diagonal matrices:

Σ1 = diag(3.09, 5.28, 7.75, 7.84, 4.34, 7.05, 6.69, 2.67, 8.48, 5.94)

Σ2 = diag(5.29, 7.17, 1.35, 3.26, 5.59, 1.25, 8.73, 5.13, 9.37, 3.53)

Σ3 = diag(7.97, 1.34, 8.54, 4.10, 6.19, 9.82, 7.18, 6.82, 9.62, 2.75)

Σ4 = diag(7.48, 9.08, 1.91, 5.95, 4.03, 2.14, 3.38, 6.64, 4.72, 1.87)

Σ5 = diag(3.36, 6.70, 8.04, 3.04, 1.42, 7.98, 1.40, 7.96, 9.29, 6.58)

Σ6 = diag(3.48, 5.19, 2.62, 1.81, 1.40, 2.75, 7.82, 5.23, 1.50, 7.42)

We use the built-in function in R to obtain an i.i.d. sample of size 10000. Compare the

i.i.d. samples with the initial 10000 samples obtained from parallel tempering chains in nine

2 dimensional projections. (See figure 8.)

Fitting the 30000 initial parallel tempering samples to a Gaussian mixture model with 6

components. Then we used the fitted Gaussian mixture model as the proposal distribution

for the IM sampler to obtain a sample of size 10000 from the IM sampler. The IM sampler

acceptance rate is 0.6507. Also as we obtain more and more samples, the fitted Gaussian

mixture model will be closer and closer to the target density, giving higher and higher IM

acceptance rate. See figure 9 for a comparison between the 10000 samples obtained from the

parallel tempering and from the tuned IM sampler. The acf’s and trace plots of these two

samples are given in figure 10 and 11.

12

Figure 4: Left is a contour plot of the target density. Right is a contour plot of the IM
proposal density.

2.4 Draw Backs of the EM Algorithm

Despite the promising results that are shown above, the EM algorithm has its own intrinsic

draw backs, which will lead to the discussion of the Dirichlet Process Mixture Model.

First of all, the maximum likelihood estimator of the Gaussian Mixture Model of any

data set is a mixture with one component of covariance matrix 0 and mean to be one of

the data point. Since such component might not have mixing proportion 0, the global

maximum likelihood of the data set is infinity. When we are running the EM algorithm,

we hope the log likelihood converges to a local maximum instead of the global maximum.

However, this is not always the case, more severe when we use more Gaussian components.

Once the log likelihood function start to converge to the global maximum, it will produce a

component covariance matrix that is nearly singular. The EM algorithm fails when Gaussian

likelihood can no longer be computed because of the singularity of the covariance matrix.

When we fit more than 10 Gaussian components to the data set using EM algorithm, it

is so easy to converge to the global maximum that it happens almost every time. This is

highly undesirable because in the MCMC context we expect to work with multi-modal target

distributions.

The second draw back is the computation speed of EM, which is relatively slow among

the standard density estimation techniques. As the sample accumulates, such computation

becomes even more and more difficult. For example, to fit 70000 data points to a 10 dimen-

sional Gaussian mixture with 6 components will take a few days on a standard laptop. One

possible solution to this is the On-line EM algorithm (Craiu, 2011), in which we update the

13

Figure 5: Left is a sample of size 5000 obtained from the initial parallel tempering MCMC.
Right is a sample of size 5000 obtained from the tuned IM sampler.

parameters based on each data point in turn. This avoids increasing computational burden

as samples accumulate. However, some simulation results suggest that the quality of this

density estimation method is far from satisfaction.

The third draw back is that EM requires to pre-determine the number of Gaussian com-

ponents to use. In the MCMC context, people usually have no or very little idea about the

target density (which is why people are doing MCMC to know more about them), it is highly

unrealistic to assume the number of modes of the target distribution without knowing the

target quite well. This imposes another challenge on the EM algorithm. Thus we look for an

alternative for the EM algorithm to solve these problems which we will discuss in the next

chapter.

3 Dirichlet Process Mixture (DPM) Models

Dirichlet Process Mixture (DPM) is a mixture model to cluster a data set into different

components without specifying the number of components to use. This Bayesian density

estimation approach resolves the three major problems associated with the EM algorithm,

i.e. infinite global maximum likelihood, heavy computation burden, and necessity to pre-

determine the number of modes of the target density. With a proper conjugate prior dis-

tribution, posterior computations could be pretty fast. In this chapter, we account for the

possibility of using DPM instead of EM to approximate the target density in the MCMC

context. Its performance in conjunction with the RCA algorithms will also be discussed. R

code for simulation studies on DPM is provided in the appendix section.

14

Figure 6: Left is a plot of the acf’s of the initial samples. Right is a plot of the acf’s of the
IM samples.

3.1 An Introduction to the DPM Models

Let y = {y1, y2, . . . , yn} be the data set. Our goal is to fit the data set to a Bayesian

mixture model. Assume that the density of y has the form
∑K

h=1 ρhf(y|θh) where ρh are the

mixing proportions and θh parameterizes the simple component distributions that are i.i.d.

following some distribution p0. ρh follows symmetric Dirichlet distribution with parameter

α, with density

Γ(α)

Γ(α/K)K

K∏
h=1

ρ
(α/K)−1
h

where ρh ≥ 0 and
∑

h ρh = 1. K is the number of components. We can express this model

using class indicators γi that identifies the mixture component of each observation yi. Denote

Θ = {θ1, θ2, . . . , θK} and F is the c.d.f. of the component distribution.

yi|γi,Θ ∼ F (yi|θγi)

γi|ρ1, ρ2, . . . , ρK ∼ Discrete(ρ1, ρ2, . . . , ρK)

θh ∼ p0

ρ1, ρ2, . . . , ρK ∼ Dirichlet(α/K, α/K, . . . , α/K)

15

Figure 7: Left are the trace plots of the initial samples. Right are the trace plots of the IM
samples.

The class indicators take values in {1, 2, . . . ,K}. The mixing proportions ρh can be eliminated

by integrating with respect to their Dirichlet prior and the resulting law of succession follows:

P (γi = h|γ1, γ2, . . . , γi−1) =

∑i−1
j=1 I(γj=h) + α/K

α + i− 1

For density estimation, there is often reason to believe that the approximation to the

real density will get arbitrarily close to the target as K goes to infinity. Actually as K

goes to infinity, the behavior of limiting conditional prior distribution of γi given γ(i−1) =

(γ1, . . . , γi−1) is reasonable. It follows multinomial distribution with probability function:

πih = P (γi = h|γ(i−1)) =

{ ∑i−1
j=1 I(γj=h)
α+i−1

, h = 1, 2, . . . , ki−1

α
α+i−1

, h = ki−1 + 1.
(1)

where α > 0 is the parameter of the Dirichlet distribution controlling sparseness and ki−1 =

max{γh}i−1
h=1 is the number of clusters after i−1 observations have been sequentially classified.

As α increases, there is an increasing tendency to allocate observations to new clusters instead

of clusters occupied by previous subjects. Also this prior favors allocation of observation i

to clusters having large numbers of subjects.

16

Figure 8: Left is a plot of the 10000 i.i.d. samples in nine 2D projections. Right is a plot of
the 10000 parallel tempering chain samples in nine 2D projections.

3.2 Proposed Algorithm: Sequential Updating and Greedy Search

(SUGS)

By the result of Dunson and Wang (2010), one can obtain the conditional posterior probabil-

ity of allocating observation i to cluster h given y(i) = (y1, . . . , yi) and the cluster assignments

for γ(i−1) = (γ1, . . . , γi−1):

P (γi = h|y(i), γ(i−1)) =
πihLih(yi)∑ki−1+1

l=1 πilLil(yi)
, h = 1, . . . , ki−1 + 1 (2)

where πih = P (γi = h|γ(i−1)) is the conditional prior probability as in (1) and

Lih(yi) =

∫
f(yi|θh)π(θh|y(i−1), γ(i−1))dθh

is the conditional likelihood of yi given allocation to cluster h and the cluster allocation for ob-

servations 1, . . . , i−1. f(yi|θh) is the likelihood of yi given parameters θh and π(θh|y(i−1), γ(i−1))

is the posterior distribution of θh given y(i−1) and γ(i−1). Notice that Lih(·) is exactly the

posterior predictive distribution for new data yi conditioning on observations in cluster h

up to index i− 1. Under conjugate prior assumption, for each cluster, both posterior distri-

bution of θh and posterior predictive distribution Lih(·) will be analytically tractable. This

gives rise to the following sequential updating scheme:

(i) As i = 1, let γ1 = 1. Hence k1 = 1. Compute the posterior distribution π(θ1|y1, γ1)

for θ1, the parameters for the first component distribution.

17

Figure 9: Left is a plot of the 10000 parallel tempering samples in nine 2D projections. Right
is a plot of the 10000 tuned IM samples in nine 2D projections.

(ii) Then i = 2, compute the probability P (γ2 = h|y(2), γ(1)) for h = 1 and 2 according

to (1). To determine the clustering probability we also need L21(y2) and L22(y2). L21(y2)

can be computed using π(θ1|y1, γ1). L22(y2) involves allocation to a new cluster. Hence the

posterior predictive distribution should be computed using prior distribution for θ2. Then

we choose γ2 to maximize the conditional probability of γ2 = h given y(2), γ(1).

(iii) If γ2 = 1, then k2 remains 1. If γ2 = 2, then k2 = 2. According to the label of

observation 2 we update the posterior distribution of component 1 or 2 correspondingly.

(iv) In general, for i = 3, . . . , n,

(a)Choose γi to maximize the conditional probability of γi = h given y(i) and γ(i−1)

(b)Update π(θγi |y(i−1), γ(i−1)) using the observation yi. If yi belongs to a new cluster,

then we update the prior distribution p0 with yi.

3.3 Normal Mixture and Conjugate Prior

We restrict ourselves to normal mixture models. The component distributions are multivari-

ate normal distributions. Simulation results suggest that non-conjugate prior distributions

p0 imposes significant amount of calculation burden so we avoid them here. We set p0 as the

Normal-Scaled-Inverse-χ2 distribution for the one dimension case. For multivariate cases,

we set p0 as the Normal-Inverse-Wishart distribution.

18

Figure 10: Left is a plot of the acf of 10000 parallel tempering samples in 9 projections.
Right is a plot of the acf of 10000 tuned IM samples in 9 projections.

3.3.1 The Univariate Case

When yi’s are one dimensional, we aim to model them with a univariate Gaussian mixture.

In this case, the prior distribution p0 for θh = (µh, σ
2
h) is a two-dimensional distribution

called Normal-Scaled-Inverse-χ2 distribution where the marginal distribution of σ2
h is scaled-

inverse-χ2 distribution and the condition distribution of µh given σ2
h is normal. It can be

parameterized with the following specification:

µh|σ2
h ∼ N(µ0, σ

2
h/κ0)

σ2
h ∼ Inv-χ2(ν0, σ

2
0)

which corresponds to the joint prior probability density function:

p0(µh, σ
2
h) =

√
κ0(σ2

0ν0/2)ν0/2√
2πΓ(ν0/2)

σ−1
h (σ2

h)
−(ν0/2+1)exp(− 1

2σ2
h

[ν0σ
2
0 + κ0(µ0 − µh)2])

This is labeled as the Normal-Scaled-Inverse-χ2 distribution, denoted as

N − Inv − χ2(µ0, σ
2
0/κ0; ν0, σ

2
0). Its four parameters can be identified as the location and

scale of µh and the degrees of freedom and scale of σ2
h, respectively. Let y = (y1, . . . , yn)

be the observations. Multiplying the prior density by the normal likelihood yields the joint

posterior density:

π(µh, σ
2
h|y) ∝ σ−1

h (σ2
h)
−(ν0/2+1)exp(− 1

2σ2
h
[ν0σ

2
0 + κ0(µ0 − µh)2])

×(σ2
h)
−(n/2)exp(− 1

2σ2
h
[(n− 1)s2 + n(ȳ − µh)2])

19

Figure 11: Left is a trace plot of 10000 parallel tempering samples in 9 projections. Right is
a trace plot of 10000 tuned IM samples in 9 projections.

= N − Inv − χ2(µn, σ
2
n/κn; νn, σ

2
n)

where ȳ = 1
n

∑
i yi and s2 = 1

n−1

∑
i(yi − ȳ)2. After some algebra we can show that:

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ (3)

κn = κ0 + n (4)

νn = ν0 + n (5)

νnσ
2
n = ν0σ

2
0 + (n− 1)s2 +

κ0n

κ0 + n
(ȳ − µ0)2 (6)

The prior mean for (µh, σ
2
h) is (µ0,

ν0σ2
0

ν0−2
) if ν0 > 2. The posterior mean for (µh, σ

2
h) is

(µn,
νnσ2

n

νn−2
) if νn > 2.

Now we give a derivation of the normalizing constant,
∫
f(y|θh)p0(θh)dθh, of the posterior

distribution of θh = (µh, σ
2
h). By an application of the Baye’s rule,

π(θh|y) =
f(y|θh)p0(θh)∫
f(y|θh)p0(θh)dθh

Thus, ∫
f(y|θh)p0(θh)dθh =

f(y|θh)p0(θh)

π(θh|y)

20

=

∏n
l=1(1√

2πσh
exp(− 1

2σ2
h
(yl − µh)2))

√
κ0(σ2

0ν0/2)ν0/2√
2πΓ(ν0/2)

σ−1
h (σ2

h)
−(ν0/2+1)exp(− 1

2σ2
h
[ν0σ

2
0 + κ0(µ0 − µh)2])

√
κn(σ2

nνn/2)νn/2√
2πΓ(νn/2)

σ−1
h (σ2

h)
−(νn/2+1)exp(− 1

2σ2
h
[νnσ2

n + κn(µn − µh)2])

Simplify the above formula we have,∫
f(y|θh)p0(θh)dθh =

Γ(νn/2)
√
κ0(σ2

0ν0/2)ν0/2

(
√

2π)nΓ(ν0/2)
√
κn(σ2

nνn/2)νn/2
(7)

In order to compute the conditional posterior probability of allocating observation i to

cluster h given y(i) and the cluster assignments γ(i−1), we need to be able to compute the

integral: Lih(yi) =
∫
f(yi|θh)π(θh|y(i−1), γ(i−1))dθh. Under the conjugate prior assumptions,

the integral is the ratio between the normalizing constant of the posterior distribution of θh

up to i − 1 and the normalizing constant of the posterior distribution of θh up to i, which

is analytically tractable. To be more specific, we give an explicit formula for Lih(yi) here

under the conjugate prior assumption. Suppose according to the cluster assignments γ(i−1),

data set y = {y1, y2, . . . , yn} is assigned to cluster h. θh|y, yi ∼ N − Inv−χ2(µ, σ2/κ; ν, σ2).

µ =
κ0

κ0 + n+ 1
µ0 +

n+ 1

κ0 + n+ 1
ȳ

κ = κ0 + n+ 1

ν = ν0 + n+ 1

νσ2 = ν0σ
2
0 + ns2 +

κ0(n+ 1)

κ0 + n+ 1
(ȳ − µ0)2

where ȳ = y1+y2+...+yn+yi
n+1

and s2 = 1
n
(
∑n

l=1(yl − ȳ)2 + (yi − ȳ)2)

By an application of formula (7), we can derive a formula for Lih(yi):

Lih(yi) =

∫
f(yi|θh)π(θh|y(i−1), γ(i−1))dθh

=

∫
f(yi|θh)π(θh|y)dθh

=

∫
f(yi|θh)

f(y|θh)p0(θh)∫
f(y|θh)p0(θh)dθh

dθh

=

∫
f(y, yi|θh)p0(θh)dθh∫
f(y|θh)p0(θh)dθh

=

Γ(ν/2)
√
κ0(σ2

0ν0/2)ν0/2

(
√

2π)n+1Γ(ν0/2)
√
κ(σ2ν/2)ν/2

Γ(νn/2)
√
κ0(σ2

0ν0/2)ν0/2

(
√

2π)nΓ(ν0/2)
√
κn(σ2

nνn/2)νn/2

21

=

√
κn(σ2

nνn/2)νn/2Γ(ν/2)√
2π
√
κ(σ2ν/2)ν/2Γ(νn/2)

=

√
κn(σ2

nνn/2)(ν0+n)/2Γ((ν0 + n+ 1)/2)√
2π
√
κ(σ2ν/2)(ν0+n+1)/2Γ((ν0 + n)/2)

=

√
κn

2πκ
(
σ2
nνn
σ2ν

)(
ν0+n

2
) 1

(σ2ν/2)1/2

Γ(ν0+n+1
2

)

Γ(ν0+n
2

)

where Γ(·) is the Gamma function.

3.3.2 The Multivariate Case

When yi’s are d dimensional, we aim to model them with a multivariate Gaussian mix-

ture. In this case, we need to generalize the prior distribution p0, Normal-Scaled-Inverse-χ2

distribution in the one dimensional case, to be Normal-Inverse-Wishart distribution. The

conjugate prior for θh = (µh,Σh), the Normal-Inverse-Wishart distribution is parameterized

in terms of hyperparameters (µ0,Λ0/κ0; ν0,Λ0):

µh|Σh ∼ N(µ0,Σh/κ0)

Σh ∼ Inv-Wishartν0(Λ
−1
0)

We denote the prior distribution as N − Inv −Wishart(µ0,Λ0/κ0; ν0,Λ0). θh = (µh,Σh)

follows the joint density function:

p0(µh,Σh) =
κ
d/2
0 |Λ0|ν0/2

2
(ν0+1)d

2 π
d(d+1)

4

∏d
i=1 Γ(ν0+1−i

2
)
|Σh|−(

ν0+d
2

+1)exp(−1

2
tr(Λ0Σ−1

h)−κ0

2
(µh−µ0)TΣ−1

h (µh−µ0))

µ0 can be identified as the prior mean of µh. κ0 is the number of prior measurements on the

Σh scale. The parameters ν0 and Λ0 describe the degrees of freedom and the scale matrix

for the inverse-Wishart distribution on Σh. Multiplying the prior density by the normal

likelihood results in the posterior density in the same family.

(µh,Σh|y) ∼ N − Inv −Wishart(µn,Λn/κn; νn,Λn)

We have:

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ

κn = κ0 + n

22

νn = ν0 + n

Λn = Λ0 + S +
κ0n

κ0 + n
(ȳ − µ0)(ȳ − µ0)T

where S is the sum of squares matrix about the sample mean,

S =
n∑
i=1

(yi − ȳ)(yi − ȳ)T

The prior mean for (µh,Σh) is (µ0,
Λ0

ν0−(d+1)
) if ν0 > d+1. The posterior mean for (µh,Σh)

is (µn,
Λn

νn−(d+1)
) if νn > d+ 1.

Now we give a derivation of the normalizing constant,
∫
f(y|θh)p0(θh)dθh, of the posterior

distribution, π(θh|y), of θh = (µh,Σh) in the multivariate case. By an application of the

Baye’s rule, ∫
f(y|θh)p0(θh)dθh =

f(y|θh)p0(θh)

π(θh|y)

=

∏n
i=1[(2π)−

d
2 |Σh|−

1
2 exp(−1

2
(yi − µh)TΣ−1

h (yi − µh))]p0(θh)

κ
d/2
n |Λn|νn/2

2
(νn+1)d

2 π
d(d+1)

4
∏d
i=1 Γ(νn+1−i

2
)
|Σh|−(νn+d

2
+1)exp(−1

2
tr(ΛnΣ−1

h)− κn
2

(µh − µn)TΣ−1
h (µh − µn))

Simplify the above formula we have,

∫
f(y|θh)p0(θh)dθh =

κ
d/2
0 |Λ0|ν0/2

∏d
i=1 Γ(νn+1−i

2
)

πnd/2κ
d/2
n |Λn|νn/2

∏d
i=1 Γ(ν0+1−i

2
)

(8)

Now we give an explicit formula for Lih(yi) here under the conjugate prior assumption

in the multivariate case. This is just an generalization of the one dimensional case. Suppose

according to the cluster assignments γ(i−1), data set y = {y1, y2, . . . , yn} is assigned to

cluster h. Assume the new data point yi is clustered into component h, we have θh|y, yi ∼
N − Inv −Wishart(µ,Λ/κ; ν,Λ).

We have:

µ =
κ0

κ0 + n+ 1
µ0 +

n+ 1

κ0 + n+ 1
ȳ

κ = κ0 + n+ 1

ν = ν0 + n+ 1

23

Λ = Λ0 + S +
κ0(n+ 1)

κ0 + n+ 1
(ȳ − µ0)(ȳ − µ0)T

where ȳ = y1+y2+...+yn+yi
n+1

and S is the sum of squares matrix about the sample mean,

S =
n∑
l=1

(yl − ȳ)(yl − ȳ)T + (yi − ȳ)(yi − ȳ)T

By an application of formula (8), we can derive a formula for Lih(yi) in the multivariate

case:

Lih(yi) =

∫
f(yi|θh)π(θh|y(i−1), γ(i−1))dθh

=

∫
f(y, yi|θh)p0(θh)dθh∫
f(y|θh)p0(θh)dθh

=

κ
d/2
0 |Λ0|ν0/2

∏d
i=1 Γ(ν+1−i

2
)

π(n+1)d/2κd/2|Λ|ν/2
∏d
i=1 Γ(

ν0+1−i
2

)

κ
d/2
0 |Λ0|ν0/2

∏d
i=1 Γ(νn+1−i

2
)

πnd/2κ
d/2
n |Λn|νn/2

∏d
i=1 Γ(

ν0+1−i
2

)

=
κ
d/2
n |Λn|νn/2

∏d
i=1 Γ(ν+1−i

2
)

πd/2κd/2|Λ|ν/2
∏d

i=1 Γ(νn+1−i
2

)

=
1

πd/2
(
κn
κ

)d/2
1

|Λ|1/2
(
|Λn|
|Λ|

)
ν0+n

2

d∏
i=1

(
Γ(ν0+n+2−i

2
)

Γ(ν0+n+1−i
2

)
)

3.4 Simulation Studies: Regime Change Algorithm via DPM

We run SUGS to partition the observations. After we obtain the partition, compute sample

mean, variance and proportion for each cluster to obtain the Gaussian mixture. Previous

SUGS study shows that the clustering results are sensitive to the selection of prior hyper-

parameters. Some more careful studies should be devoted to how the prior distribution

should be selected.

3.4.1 A Two Dimensional Target Distribution

In this section, let us consider the following target distribution:

π(x) =
5

16
N
(

(5, 7),

[
2 −1

−1 1

])
+

5

16
N
(

(−5,−1),

[
3 0

0 4

])
+

1

8
N
(

(−1, 9),

[
0.5 1.2

1.2 4.5

])
+

1

4
N
(

(1, 2),

[
1 0

0 1

])
We first run the parallel tempering MCMC to obtain a sample of size 5000 from the

target distribution. Then we run SUGS to partition the sample into clusters. We note

24

−10 −5 0 5 10

−
10

−
5

0
5

10
15

x

y

Figure 12: The clustering results for the 5000 samples from the target distribution in section
5.1. Five different colors stand for five different clusters.

the prior hyper-parameters for the clustering algorithm in this case are: α = 0.1, µ0 =

(0, 0),Λ0 = I, κ0 = 0.01, ν0 = 4. From previous simulation results, as the generalization of

the 1-dimensional SUGS, α represents the initial tendency to create a new cluster, the larger

the value α is, more clusters will be created. However, creating more clusters does not mean

we will end up with more useful clusters. Simulation results show that increasing the value

of α only often tends to create a lot of degenerated components with only one data point.

µ0 is the initial belief of where the mean of the component distribution should be. κ0 shows

how certain one is about the initial guess of the component mean, µ0. The larger the κ0

value, the less influence there will be for the data set on the posterior mean of the compo-

nents. Both Λ0 and ν0 contribute to the initial guess of the component covariance matrix

Σ, whereas ν0 also represents how certain one is about the initial guess of the component

covariance matrix. The larger value ν0 takes, the harder for the posterior covariance matrix

for the component distribution to differ from the prior.

Running SUGS algorithm, we obtain 5 clusters for the samples from the target distribu-

tion. See Figure 12 for the results. To compare how close the target distribution and the

proposal distribution are, we look at mathematica 3-D plot (Figure 13) and a contour plot

produced by R. (See Figure 14.)

Finally we run the IM sampler using the proposal distribution we obtained from SUGS.

25

Figure 13: Left is a 3-D Mathematica plot of the target density. Right is a 3-D plot of the
proposal density used by the IM sampler via SUGS.

Figure 14: Left is a 2-D contour plot of the target density produced by R. Right is a 2-D
contour plot of the proposal density used by the IM sampler via SUGS.

The acceptance probability for the IM sampler is 0.7782. IM sampler gives 2 − dependent
samples demonstrated by the auto-correlation function of the IM samples. Acf’s are shown

in Figure 15. And the trace plots of the x and y coordinate respectively are given in Figure

16.

3.4.2 A Ten Dimensional Target Distribution

Consider the target distribution π(x) in section 2.3.3. Now instead of fitting a Gaussian

mixture model to the initial samples, we use DPM model to cluster all the initial samples.

We obtain a sample of size 10000 from the target distribution using parallel tempering

MCMC. Then we cluster these 10000 data points by DPM. We take prior hyperparameters

26

Figure 15: The ACF of the x and y coordinate respectively of the samples obtained from
the IM sampler.

Figure 16: The trace plots of the x and y coordinate respectively of the samples obtained
from the IM sampler.

27

to be the following: α = 0.1, µ0 = (0.37, 1.52, 1.57, 5.92, 5.01, 1.04, 5.37,−0.93, 3.91,−8.61)T ,

Λ0 = 20I, κ0 = 0.01 and ν0 = 12. DPM produced 32 components for the 10000 data

points. Correspondingly, we form a 32-component Gaussian mixture proposal density for

the IM sampler. We estimate the mean and covariance matrices by empirical estimates.

Some components will have a covariance matrix that is almost singular. In such cases,

we replace the empirical estimate with the identity matrix to avoid calculation problems.

With estimates from the initial 10000 parallel tempering chain samples, the IM sampler has

acceptance rate 0.3151. For a comparison between the initial 10000 parallel tempering chain

samples and 10000 tuned IM samples, see figure 17− 19.

●●●●●●●
●

●●
●●

●

● ●●●
●●●

●

●●●●●●●

●● ●

●●

●●●●●●●

●●●●●●●●●●●

●

●●●

●

●●●●

●●●
●

●●

●

●

●●●●●●●

●●

●●●●●●●●●●●●●●
●●●●

●●●
●

●●
●●

● ●●
●●●●●●●

●

●●
●

●

●●●●● ●●●●●●

●

● ●●●

●

●●●●●●●

●

●●●
●●●

●●●●●●
●

●
●● ●●

●●

●●●

●●●●●●●●● ●

●●●●●●●

●
●

●

●●●●

●●●

●●●●
●

●
●

●

●●● ●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●●
●

●●●●●● ●●●●●●

●●
●●

●●●●●● ●
●●●●

● ●●●

●●●

●●●●●

●●●

●●●●●

●●
●●●● ●

●●●●
●●●●●●●●●●●●

●

●

●

●●●●

●
●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

● ●
●

●●

●●
●

●

●●●

●●

●●●●

●

●●●

●●●●●

●●●●●●●●● ●

●●●●●

●●●●●●●●●
●●●●●●

●●●●

● ●●●●●

●●

●●●●●● ●●●●●

●

●

●●●●● ●●●●●●●●
●● ●

●●
●

●●● ●
●●

●●●
●●●

●

●●

●●●●●

●●●●●●●●●●●

●

●●

●●● ●●●●

●

●●●

●●●

●

●●●
●

●●●

● ●●●●●●●●●●●●●●●●●

●

●●
●●

●

●

●●●
●●●●

●
●

●

●●●●●●●●●

●●

●●●●

●
●

●
●●●●

●●●
● ●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●●● ●

●
●●●

●●●●●●●●●●●●●●●●

●●

●
●●●

●●●

●● ●

●

●●●

●
●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●

●

●

●

●●

●

●●●
●●●●●●●

●●

●

●●

●

●●●

●●●●●●●●●●●●●●●●●● ●●

●

●

●●●●●●

●

●●

●

●

●●

●●●●●●●●●
● ●
●●●

●
●●●●

●●

●●●
●●●● ● ●

●
●●

●
●●

●

●●●●●●●
● ●●●●

●●

●●●●

●●
●●

●●●
●●

●●●●●●

●
●●

●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●

●●●●

●●●●

●●

●● ●●●

●●●●●
●●●●●●●●●●●●

●●●●●

●●●●
●

●
●●

●

●●
●●

●

●

●

●

●
●

●

●
●

●●

●●● ●●●●●●●●

●

●
●●●

●
●●●●

●●

●

●●●●●●●●●●●●●●●● ●●●●

●

●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●●
● ●●

●●●●●●●●●●●●

●●

●●

●●

●●●●
●●

●●
●●

●●

●

●●● ●

●

●●

●●●●●

●●
●

●●●●●●●

●
●●

● ● ●

●

●●
●

●●●●●●●●

●●

●●

●●●●●●●●●●●●

●

●●●●●

●●●●

●●

●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●
●

●●●

●

●●●●●●
●●●

●
●

●●

●●●

●

●

● ●●●

●

●●

●●●●●
●

●
●●●●●

●●

●

●●●●

●●●

●●

●●●●●

● ●

●

●●
●●●●●●●●●●●●●●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●
●●

●●●●

●

●●●

●●●●●
●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●

●

●
●

●●●

●

●

●●●

●●

●
●●●●

●●

●●●●

●

●

●●

●

●●●●●

●●
●●●●●●●●●●

●●

●●●

●●●●●●

●

●
●●

●
●●

●
●●

●●●

●
●● ●●●

●●●
●

●●●
●

●●
●●●●●●●●

●
●●●●

●●●
●

●●

●●●

●

●●●●●●

●
●●●●●

●●●●●●

●●
●

●

●

●
●●●●●

●

●●●●

●●●

●●
●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●

●●●●

●●

●

●●

●●●

●●

●

●●●

● ●●

●●●●●●●●●●●●●● ●

●●

●

●

●

●●●●●

●

●

●●
●●●●●●●●●●

●●●
●
●●●●

●●●●●●●

●●
●●●●

●●●●●●●●●●●

●●

●●●●●●●●
●●●●●

●●●

●●●

● ●●

●

●●
●●●●●●●

●
●●

●●●● ●

●

●●
●●●●●●●●●

● ●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●

●

●●

●●

●●●
●

●●● ●

●●●●●●●●●●●●
●●

●●●●●●

●●●●
●●●●

●●

●●●●
●

●●●●●

●●●●●●●

●●●

●

●

●

●
●●●

●
●●

●●●

●

●●

●

●●● ●●

●●●●●●●

●●

●
●●●●●

●●
●

●●
●●●

●●●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●

●●●●●

● ●●
●●●

●●●●●

●●

●●

●

●

●●●

●

●●●●●
●
●●

●
●●●●●●●●●●●●

●●●●●●●●●
●●

●●●

●

●●●●●

●

●

●●●●●●

●●

●●
●●

●

●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●● ●

●

● ●●

●

●

●●●

●●●●●●●

●●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●● ●●●●●●●●

●●●●●

●●

●●

●

●●●

●

●● ●●●

●●
●●
●

●●●●

●●

●●

●

●

●●●●

●
●●●●●●●

●

●

●●●●
●●●●

●●

●●●●●
●●●●●●●●●●●●●●●●●●●●● ●●●

●●
●●●●●●●●●

●●●●

●●

●●●●●●

●●●●

●●●●●●●●●●●●
● ●●●●● ●

●

●●●●●●

●●●
●●●

●

●

●●●●●

●

●
●

●

●

●

●●
●●●●

●
●

●

●●●●●●

●●● ●●●

●●●●

●

●●●●●

●●●●●●●

●

●●
●●●●●●●●●●●

●

●

●●
●

●

●

●● ●

●

●

●●●●●●●●●●●●●●

●●●●
●●●
●●

● ●
●●●●● ●●

●●

●● ●●●

●
●

●●

●

●●

●

●●●●

●●●

●●●

●●
●●●

●●●●●● ●

●●●

●●●●●●

●

●● ●●●●●

●

●●● ●●●

●

●

●●●●●●

●●

●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●
●●●●●●●●●●●●● ●

●●
●●

●
●●●

●
●●

●●
●

●

●●●●●

●●
●
●●

●●

●●●●●●
●●

●

●●●

●●●●

●●

●●●●●●●● ●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●●●

●●●●●

●

●●●●●●●

●

●

●● ●
●

●●●●
●●●

●

●

●●●●

●●●●

●●●●●

●●●

●●

●●

●

●●●● ●

●

●●●
●

●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●
●

●

●
●

●●
●●

●●●●● ●●●●●

●

●●●●●●●

●● ●

●
●●●●●● ●●●

●

●

●

●●●●●●
●●●●

●●●●●●●●●●●●●

●●● ●

●

●●

●●● ●

●

●● ●
●

●

●●●

●

●

●

●

●●●●●

●●●●

●●

●●
●●

●●●●

●●●●●●●●●●

●●●●●

●
●

●

●

●

●●

●●
●
●●
●●

●●
● ●●

●

●●●●

●●●●

●

●●● ●●●

●●●

●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●

●●●●

●●
●●●●●●●

●●●●●●●

●

●●

●
●●

●

●
●●●

●● ●●●●

●
●

●●●●●●●●

●

●●●

●

●●
●

●●●●●●●●

●●●

●● ●●
●

●

●●●●● ●●●●●●●●

●
●●●● ●

●●●●
●●●●●●

●●●●

●●●●●●●●●●

●●●●●●●
●●

●

●

●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●

●
● ●●●

●
●

●

●●
●

●

●●●●

●

●●

●

●●

●

●

●●●●
●●●●●●●●

●●●

●● ●●

●●●●●●●●●●●●●●●●●●

●●●●●●●

●

●

●●●●

●●●●●

●●●

●●

●●●

●
●●●● ●●

●
●●●●●●●

●●●●●●●●●

●

●●

●●●
●

●

●

●●

●● ●

●●● ●

●●

●

●●
●

●

●

●●●

●●●●●●

●●●

●
●●

●●
●●

●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●

●●●●●

●●●●●
●●

●●

●●●

●●
●●●●

●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●

●

●●●
●

●●●●●●●

●●

●●●●●

●● ●

●

● ●

●

●●●

●
●●●●●●●● ●

●●●

●

●● ●●
●

●

●

●

●●●

●●●●●●

●

●●●●

●

●●●

●●

●

●

●●

●●●
●●

●
●●●

●

●●●●
●

●

●●●●●●●●●●●●●●●

●●●●●●

●●●● ●●●

●●●

●●●●●●●●●●●●
●●

●●●●

●●●●●●

●●●●●●

●●

●●●

●
●●

●●● ●●
●●

● ●●●●

●

●●●●●

● ●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●

●

●●●

●●

●●

● ●

●●●●●●●● ●

●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●

●

●●●●●●●●●●●●● ●●

●●
●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●● ●●
●●●●

●●●●●●●

●●●

●

●●●● ●●

●●

●●●

●●●

●●
●●

●●●●

●●●●●

●

●

●●●●●●●●●●●

●●●●●

●●

●●●●●●●●●

●

● ●●●●●●
●
●

●●●●

●●

●●●●

●
●●

●●

●

●

●
●●●●●●●●●●●●●● ●●●●

●●●●● ●●
●●●●●●●●●●

●
●

●

●●

●●

●●●●●●●

●

●

●
●●

●
●●●●●●●●●●●●● ●●●

●●●●●●●●

●

●

●●●
●●●●●●

●
●●●

●●●●

●

●●●●●
●

●

●●

●

●
●●

●●

●
●●

●●●●●●●

●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●
●●●●●

●

●●●●●

●●●●●●●●●●●●●●●●

●
●

●●●

●

●●●

●●●

●●●●●

●●●●●●●●

●●

●

●●●●

●

●●●●

●●●
●●●●●●●●●●

●●●●●●● ●

●●●●●●●●

●
●●●●●
●

●

●●

●●●●

●● ●●

●●● ●●●
●●●●

●●●

●●

●●

●●
●●●●●

●

●●

● ●●

●

●●●●●●

●●

●●
●●

●●
● ●
●●

●

●●●●●●●●●●●●●●●●●●
●

●●●●●●
●●

●●

●

●●●●●●●●●●

●
●

●●●●
●

●

●●
●

●●● ●●●●●

●

●●

●●
● ●

●●●●●●

●●●●●

●●

●●●

●

●● ●

●

●●

●●● ●●●
●

●●●

●●
●●●●●

●●

●●

●●●●●●

●● ●●
●●

●
●●●●●

●●●●●●●●●

●●

●●

●

●●●

●●●●●●●●●●●●●●●

●

●

●

●●●●●●

●

●

●

●●
●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●

●●●●● ●●

●

●●

●●●●●

●●●

●●●
●
●● ●●●●

●●

●●

●●●●

●
●●●●●●●●●●

●

●

●●●

●●

●●●●●●●●●●

●●●●●

●

●●●●●●●●●
●●

●●

●

●●

●●

●●●●●

●●●●

●

●

●

●●
●●●●●●●●●●●●●●●●●●●

●●●
●●●●●

●

●

●●●●●●●

●●
●

●●● ●●●●●●●●●●●●
●

●●
●●●

●●●

●●● ●

●

●●●●●●●● ●

●

●●●

●●

●

●

●●●

●●●●●●

●●●●●●
●●●

●●

●●
●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●

●

●●●●●●●
●●●●●●

●

●

●●●
●●

●

●●●

●●
●●●●●●●● ●●●●●●

●●●●●●●●●●●●
●●

●●●● ●●●

●●●●●●

●
●●●●●

●●

●
●●

●●●

●●

●

●●

●
●●●●●●●●●

●
●

●●●●●●●●●●●●●●
●●●●●

●●●

●●

●●

●

●●

●

●●●

●●●●●

●●●
●●●

●

●●

●●

●●
● ●●

●

●●●●●●●●●

●●●●

●

●●

●●

●●
●●

●●●●●●●●
●●●●●●

●●●
●●

●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

● ●●●●
●●●●
●●●●

●
●●

●

●●

●

●●●

●●●●●●●●
●

●

●
●●●

●●●●●●

●●●

●

●●●●●●●●●●●●●●●●●●●●

●●●

●
●●●

●

●
●●●●●●

●

●●
●

●●●●

●●●●

●

●●●●●
●

●

●● ●●●●●
●

●● ●

●
●●●

●●●

●
●

●
●●

●●

●
●●●●●●

●●

●●●

●●●●●●●●●

●●●●

●●

●●●●●●

●●●●●●●●●●
●●●●●● ●

●●●●●●●

●●

●●●●●●●●●●●●●●● ●●●

●●

●

●●●●●●●●●●●

●●●●●

●●●●

●●●●●

●● ●●

●● ●● ●●●●●●●

●

●●

●

●●
●

●

●●
●●●●

●

●●

●

●●●●

●●

●

●

●

●

●●●
●

●
●●● ●●

●●●●
●●●

●●●●●●

●●●●●●●●

●

●

●

●●

●●

●●●●●●●●●

●

●●

●
●●

●●●●●●● ●●●

●●

●●

●

●

●

●● ●●●
●

●●●

● ●

●●●●●●

●●●●

●●

●●
●

●●●●

●●●

●●●●●●● ●●●
●●●●

●●●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●●

●

● ●

●

●●●

●
●●

●●●●

●●

●●

●●●

●

●
●●●●●●

●●
●

●

●

●●

●

●●●●
●● ●●

●

●●●●●

●●●●●●●

●

●

●●●●●

●●●

●●

●

●

●
●●
●

●

●●●●● ●

●

●●●
●
●

●●

●

●
●●●●

●●●●●●●

●●

● ●●●●

●
●●●

●

●
● ●●

●● ●●●●●●●

●

●●●●●●●●●
●●●●●●●●●●●

●

●

●●●●●●●
●●●

●

●●●

●
●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●
●●●●●●●

●●

●●●●

●●●●●

●●● ●

●

●
●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●● ●

●
●● ●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●

●
●

●●●

●
●●

●●●●●●
●

●

●●

●●

●●●
●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●

●●●●●

●

●●●●●●●●●●●●

●●
●●●●●●●

●●

●

●●●

●●●●●●●●●●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●
●

●

●●●

●●

●●●●●● ●

●●●● ●●●●●

●

● ●

●●

●

●●●

●

●●
●● ●●

●●●●●●●●●●●● ●

●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●
●●●●●●

●

●
●

●●●

●

●
●●●●●●●

●●

●●●●●

●●

●

●●

●

●●
●●●

●

●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●

● ●●●●●

●
●●●

●●●●●●●●

●

●
●● ●

●●●●●

●

●●●●●●●●●●●●●

●
●●●●●●●●

●

●●
●

●●

●●

●●●

●●●●●●●●●●

●

●●

●●

●●

●●●●●

●
●●●●

●●●

●●

●●●

●

●
●

●●●●●●●●●●●●●●

●●

●●●●●●

●●

●

●●

●● ●

●

●

●●

●● ●
●

●●
●●

●
●●●●●●●●●●●●●●●●●●●

●●

●
●

●

●●●●●●●●●●●●●●●

● ●●
●●●●●●

●●

●●●

●●

●●
●●

●●●●

●●●●●●●

●

●●

●●●●

●

●

●

●

●

●●

●

●●●●

●●●●

●●●
●●●●●●●●●●

●●●●●

●

●●●

●

●●●●●●●●●●●●
●●●● ●●●

●●

●

●

●
●●●●

●●●
●

●

●●

●
●●●

●●●●●●●●●●●●●●●●●●●

●

●
●●●

●●
●●●●●

●●●●●●●●●●●●

●●●●●●

●

●● ●●

●●● ●

●●
●

●●●●●●●●●●

●

●●●●

●●

●●●●

●●●●●

●●●

●●●●●

●●

●●●●●●

●● ●●●●●

●

●●
●●

●

●

●
●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●

●●

●

●●● ●●●

●● ●●●●

●

●
●

●

●●●●

●
●●

●

●●●

●●

●

●●●●●

●●●

●

●●●●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●● ●●

●●●●

●

●●●●●●
●●

●

●●●● ●

●●●●●●●●●●●

●●●●●●●●

●

●

●
●●●●

●

●●●●●●●●●●●●●●●●●●●●
●●

●●●●● ●●●

●●

●●
●●

●

●

●

●●

●

●

●

●

●
●●

●●
●

●●●
●●●●●●●●●●●
●●●

●●●

●●●

●●●●●

●●●●●●

●

●
●●●●●●●●●

●●
●

●●●●●●●

●●

●
●●

●●

●●●●●●●●●●●●●●●

●●●●

●●●

●●●●●●
●●

●●●●●

●

●●●●●●●●●●●●●●

●●●●●●

●●●●●

●

● ●●●●●●●

●●●

●●●●●●●●●

●●●●

●

●

●●●●●

●

●●●
●● ●

●●●●●● ● ●●●

●

●
●●●

●●●

●
●●●●●

●● ●●

●●

●

●●●●●●●●●●
●●●

●●

●●

●●

●●

●●●●

●

●

●●●●●●●●

●

●●

●
●●●

●●●

●●● ●●

●●●●●

●●
●●●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●
●●●●●

●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●
●●●●

●

●
●●●●

●●●●●●●

●●●
●●

●

●●●● ●
●●●●●●●●●

●

●●●●●

●

●

●●●●

●●●●

●●

●●●

●●

●●●●●●●●● ●●●

●

●●
●●

●

●●

●●

●●●
●●

●
●●

●

●
●

●●

●

●●●●●
●

●●●

●●● ●●●●●●

●●●●●●

●●●●●

●●●●●

●●

●●●●

●●●
●

●●●●
●●

●

●
●●●●

●●

●●●

●
●

●
●●●

●●

●●

●

●●

● ●
●●●●●●●

●●●

●●●●

●

●

●
● ●●●●●●●●●

●

●●

●

●●

●

●

●
●●

●●●●●●

●●●●●

●●
●●

●●

●

●

●

● ●●

●
●

●●●
● ●●●

●●

● ●●

●●

●●●●●●●●●●●●● ●●●

●●●●

●
●
●

●●
●

●●

●●●●
●●
●●

●●

●

●●

●●
●

●●●●●●●

●
●

●

●

●

●●●● ●●●●●●●●●●

●●

●
●

●●
●●

●●●
●●

●●●●

●

●

●●●●

●

●
●

●●

●●●●●●
●

●

●●

●

●
●●● ●

●●
● ●● ●●●

●

● ●

●●●●

●●

●●●
●

●●

●

●

●

●●●●●●●●●●●●●●●
●●●

●

●●●

●●

●

●●●

●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●

●

●●●●

●●●

●●●

●●

●

●

●

●●

●●●●●

●●
●●●●

●●

●
●●●●●●●●●●●●●●●

●

●

●●●●●●
●

●
●●●

●

●

●●●●●●

●

●●●●

●●●●

●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●

●●
●●●●

●●●●

●●●●●

●●

●

●●●
●●●●●●●●●●●●●●●●●
●●●●

●

●●●●●
●●●●●●●●

●●●●●●●●●

●
●●●●

● ●

●

●

●●

●
●

●

●

●

●●●●●●

●●●●●●●
●●●●●

●

●

●●●●●●
●●●

●●●

●

●●
●●

●●●●●●●●●●●●●
●●●●● ●●●●●●

●●●●●
●●

●
●

●●
●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●

●

●●●
●●●●

●●●●●●●

●●

●●●●●●●●●●

●●

●●●●●●

●

●●●●

●●

●●●●
● ●●
●●

●●
●

●

●●●

●●

●●

●●●●

●●●

●

●●●●●●●●●

●●●
●●

●
●

●●●

●

●●

●

●●

●●

●

● ●●●●●●●
●

●● ●●●

●●●●●●●●●

●

●●●●●● ●
●●●

●●●
●●●

●

●
●

●

●●●●●

●
●● ●●●●●●●

●●

●

●●

●
●

●●●●

●
●

●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●

●●●●●●
●●●●●●●●●●●

●●●●●

●
●

●●●●

●●●●●●●

●●●
●●●●●●●●●●●●

●●●●●●●●●●

●

●

●●
●●

●●●●●●●

●●

●●●●●●●●●●●●●

●●●

●
●●●●●●

●

●
●

●●●●●●●

●●●●●

●●●●●●●●●●
●●●

●●●●●●●●●
●

●●
●●●●●

●
●●

●●●●●●●●●

●●●

●●●●●

●●●●

●

●

●●●●●●

●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●

●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●
●●●●●

●● ●

●●●●●●

●●

●●●●

●● ●●●●●●●●●●●

● ● ●●●

●

●●●●●●●

●●●●●
●

●● ●●●●●

●

●●●●

●●●

●●●
●●●●●●● ●

●

●●●●

●●●●●●●●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●
●●●

●

●

●●

●

●●●

●●●●●●●●●●●●●

●
●●

●

●

●●

●●●●
●●●●●●●●●●●●●● ●●●●●●

●

●●●●●●●

●●●●●●●●●●●
●●●●●

●

●●●

●●●●●●●

● ●

●●

● ●
●●

●●●●

●

●

●●●●

●●

●

●●
●

●●●

●●●●●

●● ●
●

●●●●●●●●●●
●

●

●●●●●

●● ●

●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●● ●●

●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●● ●●●

●●●

●●

●

●●●

●●

●

●●
●●

●●●●●●
●

● ●
●●

●●●●●

●

●●●●●●●● ●●●●●●●●

●●

●

●

●●

●
●●

●●●

●

●

●
●●●●●

●●

● ●

●

●
●●
●●

●●●●●●

●

●●●●

●● ●

●

●

●

●●●

●●●●●

●●●●
●●

●●

●●
●●●●

●●●

●●● ●●●●●●
●

●●

●●●●●●●●●
●●●●●●●●●●●●●●●●

●● ●●●● ●●

●●●●

●●●●●

●●●●●●●●●●●●●●●●●●

●

●

●●●●●

●●

●●
●●

●●●● ●●●●●●●●●●

●

●

● ●
●●●

●●●●●●●●●●●●●
●
●●

●●●●●

●●●●●●●

●

●●

●●●●

●
●

●●●

●●●●

●

●
●●

●

●●●●

●

●

●

●

●●

●●●●

●
●●

●
●●●

●
●●

●●

●
●●●●●

●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●● ●●

●

●●
●●●●
●

●

●

●
●●●●●●

●

●●●
●●●●●

●●●

●●

●●●●●
●●●●●

●
●●●

●

●

●

●●●●

●●●●●●●●

●●

●●
●●●●●●●●

●

● ●
●

●●●

●●

●●●

●

●●

●●●●
●●

●●

●

●

●●

●

●●●●●
●●●

●●●●

●

●●●●●●●●●●●

−20 0 10 20

−
20

0
20

imsamples

x1

x2

●●●●●●●●

●

●●●

●●

●●

●

●●●

●●●●●●●●

●●

●●● ●●●●●●●●●●●●●●●●●● ●●●● ●●
●●●

●●●
●●●

●

●

●●●

●
●●●

●●

●●●●●●●
●●●●●●●●●●● ●●●

●

●●

●●●
●●

●●●●●●● ●●●

●

●

●●●●●

●●●●●●

● ● ●

●●

● ●●●●
●●●

●

●●●

●●●
●●●●●●● ●

●●

●
●

●
●

●●●

●●●●●●●●●

●

●●●●●●●
●
●

●

●●●●
●●●

●●●●● ●

●

●

●●●

●●●●●●●●●●●●●●●●●●●●●

●

●●●● ●●●●
●●●●●●

●●●●●●

●● ●●●●●●●● ●●●●●

●

●●●●
●●

●●●●●
●●●

●●●●●

●●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●● ●

●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●

●

●● ●●●● ●

● ●●●

●● ●●●●
●

●●●

●●●●●
●

●●●●●●●●
●

●●●●●

●●●●●●●●●

●●●●●●

●●●●
● ●●●●●

●●
●●●●●●

●●●●●

●●

●●●●●

●●●●●●●●

●●

●●● ●●●
● ●●

●

●●●●●●

●
●●

●●●●●●●●●●●●●●●●

●

●● ●

●●

●
●
●●●

●●● ●●●

● ●●●

●

●●●●

●●●●●●●●●●●●●●

●●●

●

●●
●●

●

●

●●●

●●●● ●

●

●
●●●●●●●●●

●●
●●●

●

●
●

●
●●●●

●●●

● ●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●

●●●●

●

●

●●●

●●●●●●●●●●●●●●●●
●●

●●●●●●● ●

●

●
● ●

●●

●
●

●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●

● ●● ●●
●

●●●
●●●●●●●

●●

●

●● ●●●● ●●●●●●●●●●●●●●●●●● ●●●

●

●●●●●● ● ●●●

●

●●●●●●
●●●●●● ●

●●● ●●●●●
●●

●●●

●●●●
●

●
●

●● ●

●●

● ●●●●●●●●
●●●●

●●

●●●●

●●

●●

●●●●●
●●●●●● ●●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●
●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●

●

●●●

●

●●
●● ●● ●● ●●●

●●
●● ●●●

●●●●
●●

●●● ●●●●
●

●●●●
●●●

●●●●●●●●●●●●●●●●

●●●●● ●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●

●●●●●●●●●●●●
●●●

● ●●●●●
●

●●
●

●
●●

●●

● ●●● ●

●

●●

●●●

●●
●●●●●●●●●●

● ●●

●
●

●

●
●●
● ●

●●
●●●●●

●● ●●

●●●●●●●●●●●●

●
●●●●●

●●●●

●●
●● ●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●

●
●●●

● ●●●●●●●●● ●
●●●

●●
●

●

●

●

●●●●
●●

●●●●●
● ●●●●●

●●●

●

●●

●●

●●●
●

●

●●●●●

●

●●

●●
●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●● ●●●●●●●●●● ●

●●●

●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●

●●●●

●

●

● ●●●
●

●●●● ●●● ●●●●

●●

●●●●● ●●● ●●●●●

●

●●●●●●●●●●●● ●●●●● ●●●●●●●

●

●●

●

●●●
●●

●●●
● ●

●

●
●●

●●●● ●●●●

●●

●●●●

●●●●

●●●●●

●●●

●

●●

●●●
●

●●●●●●● ●●●●●

●●●●●●

●●●

●

●●●●●●● ●●●●● ●●● ●●●●●●●●●● ●●●●
●

●●●●●●●●●●●●●●●

●●●●●●

●
●●●●● ●

●

● ●●●●
●●

●●●●●●●●●●●●●● ●

●● ●●

●

●
●

●●●

●

●

●●

●●●●●

●●●●●

●●●
●●●●● ●●●●●●●●● ●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●

●●●

●

●●
●

●●●●
●●●●● ●

●●●●●●

●●

●●●●●●●●●●●

●
●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●

●●
●●

●●●● ●

●●

●●●●●●●●●●●●●

●●

●●●●●●
●●●●●●●● ●●

●
●●●

●

●●●●●
●●

●●●●●

●●●

●
●

●
●

●●●

●●●
●●●●

●●●
●●●

●●

●●●●●●●
●●

●
●●●●●

●● ●●● ●●●●●● ●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●●●

●

●● ●●●

●●

●●●

●●

●●
●●

●●●

●

●●●●●
●●●

●
●●●●●●●●●●●●

●●●●●●●●●

●
●

●●●

●
●●●●●

●

●

●●
●●●●

●● ●
●●●

●

●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●● ● ●●

●

●
●●●

●●●●●●●

●●
●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●

●

●●●●●●●

●●●●● ●●

●●

●●●● ●●● ●
●●

●●
●●
●●●●●

●●

●●

●
●

●●●●

●
●●

●●●●● ●
● ●●●● ●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●● ●●●●●●
●●●●●●

●●●

●

●●●●●●●●●●●●●

●

●
●●●

●

●
●●●●●●●●●

●●● ●
●

●●●●

●

●
●

●● ●● ●●●●●●● ● ●
●●●●●●

●●● ●●●
●●

●● ●●●●●●

●●●●●●●

●●●
●●●●●●

●●●●●
●

● ●●
● ●● ●● ●● ●●●●●●●●●●●●●●● ●●●●

●●●●●

●

●

●●●●●

●●●●●● ●●● ●●●●●●● ●
●●●● ●●●●●●

●●●●●
●●●●●●

●●●● ●●●

●●●

●●● ●●●●●
●

●●●

●
●●

●

●●●●●●● ●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●

●

●●● ● ●●●
●

●

●

●●●●● ●●●●●

●●

●●●●●● ●●● ●●●●●●●
●●
●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●● ●●●●●●●● ●●●●●●●● ●●

●●

●●
●●●●

●●● ●●
●●●●

●●●● ●●●●●

●●●

●● ●●●

●●●●

●
●

●●●

●●●●●
●●● ●

●●●●●●●●●●●●●●●●●●●●●●●

●● ●
●●●● ● ●●●

●● ●●●●● ●●●●●● ●●●●●

●●

●● ● ●

●●●●●● ●●●

●

●

●●●●●●●●●●●

●●●●●●●●●●●●●

●●●
●

●●●

●●●

●
●

●●

●
●

●

●●● ●●
●

●
●●●●● ●●●●

●●

●●●●

●●●●

●●●●●●●●●●

●●●●●

●●●●●
●●●●●●

●
●● ●●● ●●● ●●●●

●●●●

●

●●●

●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●

●●

●●●●●●●

●●●●●

●●

●

●●

●

●●

● ● ●●●●●
●●●● ●

●

●●●●●●

●●

●

●●● ●●●
●

●●●●●●●●

●●● ●● ●●●●●●●●●

●●●●●●●●

●

●●●●

●●●●●●●●●●● ●

●●●

●●●●●●●●●● ●

●●●●●●

●●

●

●
●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●
●

●●
●

●

●●●●

●

●

●

●

●●●

●●●●●●●●●●●●●
●●●

●●

●●

●●●●●●●●●●●●●●●●●●

●●●●●●
●

● ●

●●●●

●●●●● ●●●
●● ●

●●● ●●●●

●●

●●●●●●●●

●●●●●●●●●

●

●●

●

●●

●● ●●●
●● ●

●●● ● ●

●

●●● ●● ●
●●●

●●●●●● ●●●●●● ●●
●● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●●●●● ●●

●●

●●● ●●

●●●●

●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●

●

●

●

●●●●

●●●●●●●

●●

●●●●●

●●

●

●● ●
●

●●●
●

●●●●●●●●

●●●●
● ●●

●●
●

● ●●

●●●

●●●
●●● ●●●●● ●

●●●

●●

●●

●●

●
●●

●● ●

●●●

●●●
●●●●

●●●●●●●●●●●●●●●

●●
●●●●

●●●●

●●●●●●

●

●●●●●●●●●●●

●● ●●●●
●●●●●● ●●●●●●●●●●●

● ●●

●●●

●●●●
● ●●●● ●

●●●●●

●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●● ●●●

●

●●●

●●

●●●

●

●●●●●●●● ●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●● ●●●●●●●●●●●●●●

●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●

●●●●●●● ●●●

●

●●●●

●●●● ●●●
●●●

●

●

●●
●●●●

●●●

●● ●
● ●●

●●●●●●●●●

●●●●● ●●
●●●●●●●●● ●●

●●●●●●

●● ●●●●

●●

●●●

●

●
●● ●●

●

●●●●●●●●●●●●●●●●
●●●●

●●●●●

●●●●●
●●

●●●●●●● ●●● ●●●●●●
●●●

●

● ● ●●

●●●●●●●●●●●●●●

●

●●

●●●●●●●● ●

●
●●●

●●●●
●

●
●●●●

●●●●

●
●●●●● ●● ●●

●

●
●●

●●●●● ●●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●● ●●●●●

●

●●●●●

●●●●●●●●●●●●●●●●

●●

●●●

●●●● ●●●
●●●●● ●●●●●●●●●● ●●●●● ●

●●●●●●●●●●●●●●●●●

●●●●●●
●

●

●●●●●●
●● ●●●●●●●● ●●

●●●●

●●

●●
●●●

●●

●

●●●● ●●●●● ●●●●●●●●●

●

●●

●
●●

●

●●●●●●

●●

●●●● ●●● ●●● ●●●
●●●●●●●●●●●●●●●●

●●●●●●●●● ●● ●

●●●●●

●●●●● ●
●●●●●● ●

●●

●
●●●

●●●●●● ●●●●

●
●

●●●●●●●●●●● ●●●●●

●

●●

●

●●●

●●●

●●●●

●●●

●●●●●●●●● ●●●●●●●

●

●● ●●●
● ●●●●●●●●●●●●●●●

●●●● ●

●●●

●●●●●●●●●●●●●●●

●

● ●●●●●●●

●

●

●

●●

●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●●●●●

●●

●
●●

●●●●●
●●●

●
●●●●● ●●

●●●●

●●

●●●●

●

●●●●●●●●●●

●

●
●●●

●●●●●●●●●●●● ●●●●●●
●●●●●●

●●●

●●●●●

●●

●●

●
●●●●●●●● ●
●●●●

●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●

●●●●●●●● ●●●●●●

●●●●●●●●●●●●

●

●●

●●●

●●●
●

●●
●

●

●●●●●●●● ●● ●●●●●
●●

●●●●●●●
●●

●●●●●● ●●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●

●●●●

●●

●●●●●●●●●

●●●●●●●● ●●●●●● ●●

●●●

●●

●

●

●● ●
●

●●●●●●●● ●●●●●●

●●●●●●●●●●●●●●
●●●● ●●●

●●●●●●

●

●●●●●

●●

●●●
●●●

●●

●

●●●●●●●●●●●●

● ●

●●●●●●●●●●●●●●
●●●●● ●●

●

●●

●●● ●●●
●●●●●●●●
●●●●●●●

●●

●●

●●●

●● ●●●●●●●●●●
●●●●

●

●

●

●●
●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●
●● ●●●
●

●●●

●●●●●●●●

●

●●●●●

●●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●

●●●

●
●●● ●
●

●●●
●●●

●

●

●

●
●●●● ●●●●

●

●●●●●
● ●●● ●●●●● ●●

●
● ●●●●

●●●

●● ●●
●

●●

●

●●

●●●
●

●●

●●● ●

●●●●●●●●

●●●● ●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●● ●●

●●●●●●●●●●●●●●●

●●●

●● ●

●●●●●●●●●●●●●●●●

●●●●

●●●●●

●●

●●

●
● ●

●

●●

●●●●●

●
●●

● ●●●

●

●●●●●● ●●●
●●●●● ●●● ●

●

●

●●

●

●
●●●

●

●●●●●●●●●

●●●●●●

●●●

●●●●●

●

●

● ●●●●
●●●●

●●●●●

●

●● ●●●●●●●●●●
●●●

●

●

●
●

●

●
●●● ●●●●●●●

●
●

●●●
●

●● ●●●●
●●

●●●●●●● ●●●●●●●●●● ●●●
●

●
●● ●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●●

●●●

●

●● ●●●●●● ●●●●●● ●●●●●

●

●
●●●●

●●
●●●

●

●
●●● ●●●●

●● ●●●

●●●●●

●●●●●●

●

●

● ●●●●●●●● ●●

●

●●●●
●

●

●●●●● ●

●

●●●●●

●●

● ●●●●●

●●●●●●●

●●
●

●●●●

●
●●●●

●
●

●●
●●

●●●●●

●● ●

●●

●●●●●●●●●●●●
●
●●●●●

●● ●

●●●●●●

●●●

●

●●●
● ●

●●●●●●●●●●●●●●●●●●●

●

●●●●
●●●

●●●●●●●

●●

●●●●

●●●●●

●●●

●

●
●

● ●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●● ●●
●●

●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●

●

●●●●

●

●●●●●●●
●● ●●●

●●

●●●
●● ●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●

●

● ●●●●●●●●●●●●
●●

●●●●●●●●●
●

●●●

●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●●●●●●
●

●●●● ●●

●●●●●●

●
●●●●

●●●●●
●●

● ●●● ●●●● ●● ●●
●●●●●●●●●●●●●● ● ●●

●●●●●●●●●

●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●

●●●●●● ●●
●●●●● ●

●

●●●●●●

●●

●●●●● ●●● ●●● ●●
●●●

● ●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●
● ●●●●
●

●●●● ●
●●●●●●●● ●●● ●

●●●●
●

●
●●●●●●●
●●●●●

●
●

●●●●
●●●●

● ●●●●●

●●

●●●
●●●●●●●●●●● ●●●●

●●

●●●●● ●

●●●●

●●● ●●

●●●

● ●

●

●

●●●●●●●●●●●●● ●●

●●●●●●

●● ●●●●● ● ●●
●●●●

●
● ●● ●●●

●●●●●●●●●●●●●●●●●●●

●●
●

●●

●●●●●●●●●●

●●●●
● ● ●●●●●●●●●●

●●●

●●

●●

●●●●●●●●●●●●●

●

●● ●
●●●● ●● ●● ●●● ●●●●●●●● ●

●●●●●●●●●●●●

●●●●●

●

●●●●

●●●●●●●●●●●●●●●●

●●●

●●

●
● ●●●●●●●●●

●

●●

●

●●● ●●●●●●●●●●●●●●●●●●●

●

●

●●
●

●●

●●●●

●

●●●●●●

●●●●●● ●●●●●●

●

●●
●●●●● ●

●●
●

●●●●●●●●●●

●

●●●●●

●

●●●● ●●●●●●●●
●●●●●●● ●●●●
●●

●●
●●●●●

●

●
● ●● ●● ●

●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●

●●

●

●●●
●●●

●● ●●●●

●

●●●

●●●●

●
●●

●

●●●

●●

●

●●●●

● ●●●● ●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●●●●●●●●●
●●●●●
●

●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●

●●
●●●●

●

●●●●
●●

●●● ●●●

●

●
●●●●●●●●●●●

●●●●●●●● ●● ● ●●●●● ●●●●●●●●●●●●●●●●●●●●

●●

●●●●● ●●●
●●

●●

●●
●

●

●●● ●●
●

●
●

●●

●●●

●●●

●●●●●●●●●●●●●●
●●● ●

●● ●●●●●

●●●●●● ●●●●●●●●●●● ●●
●

●●●●●●●

●
● ●●● ●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●

●

●●●●●●● ●

●●●●●●●●●●●●●●

●●●●●●

●
●●●● ●●

●●

●●●●● ●●●

●●●●●

●●●● ●●●●●

●

●●●●●
●●●●●● ● ●●

●●●●

● ●●●●
●●●●

●●●

●

●●●●●●●
●●

●●

●●●●●●●●●●●
●●●

●
●●● ●●

●● ●●●●●

●

●●●●●●●●

●

●●

●

●●●●●● ●

●●

●●
●●●●● ●●

●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●
●●

●●●●●●●●●●●●●● ●●●●●●

●
●●●●

●●●●

●

●●●●●●●●●●●● ●●●●●

●

●●●●

●

●●●
●●●●●●

●

●●●●●

●

●

●

●●● ●●●●●● ●●●●●●●●●●●●●●

●

●●

●

●●●●● ●●●
●

●●●●●
●
●●

●

●●●●

●

●●●●●
●

●●●
●●● ●

●
●●●●●●●●●● ●●●●●●●●●● ●●●

●
●● ●●● ●

●●●●

●● ●

●●●●●●● ●●●
●●

● ●
●● ●●

●●
●●●

●

● ●●●●●●●●●

●

●●●● ● ●

●

●

●●●●●●●●●

●

●●
●

●●

● ●●●● ●●●●●●●●●●●
●●

●●

●● ●
●

●
●

●●

●

●

●●●● ●●●

●●

●

●●●●
●●●

●●●●●●●●●●

●

●●

●●●●
●●● ●●●●● ●●●●

●●●●

●●

●

●●

●●●●●●●●●
●

●
●

●

●

●
●●●● ●

●●●●●●●●●●●●● ●● ●●

●●●

●●

●●●●

●

●

●●●● ●●● ●●

●●●●●●

●

●

●●

●

●

●●●
● ●●

●

●
●

●●● ●●
●

●●●●●●

●●●

●

●● ●●

●

●●●●●●●●●●●●●●●
●●●

●

●●● ●

●

● ●●●
●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●

●

●●●●●●●●●●●●●●●

●

●●●● ●●
●

●●● ●●● ●

●

●●●●●●● ●● ●●●●
●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●● ● ●●
●

● ●●●●●●● ●●●●● ●●●●
●
●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●

●●●●
●●●●●●● ●

●● ●●●●

●

●●●●●●●●●●●●● ●●●●●●●●●

●●●●●

● ●● ●●● ●●●
●

● ●●●●●●

●●●●●●●

●●●●●

●

●

●●●●●●
●●●

●●●● ●●
●●

●●●●●●●●●●●●●●●●●●

●
●●●●●

●●●●●

●
●

●

●

●●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●● ●●●●
●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●

●●●

●
●●●●

●●
●●●●●

●●
●●●●● ●●●

●

●●

●●
●●●

●
●

●
●

● ●●●●●●●●●●●●

●●

●
●

●●

●

●●●
● ●●●●

●

●

●●●●●●●

●

●●

●●●●●●●●●●●●

●
●●●●●●

●
●●●●●●●●●

●

●
●

●

●●●●● ●

●●

●●●●●●●●● ●●● ●

●

●●●●
●
●

●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●●●●●●●

●●●●●●●●●●●

●●●●●

●

● ●●

●●

●●●●●●●
●●●

●●●●●●●●●●●●

●●●●●●●●●●
●

● ●● ●
●

●●●●●●●●●

●●●●●●●●●●●●●

●●●
●

●●●●●●

● ●●●●●●●●● ●●●●●

●●●●●●●●●● ●●●

●●●●●●●●●

●

●●●●●●●
●

●●

●●●●●●●●●

●●● ●●●●●
●●●●

●

●

●●●●●●

●
●●●●●●●●●●●

●●●●●●●●●●●●

●●● ●●●

●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●

●●●●● ●●

●

●●●●●●
●● ●●●●●● ●●●●●●●●●●●

● ● ●●●●

●●●●●●●

●●●

●●

●

●● ●●●

●●

● ●●●●

●●●

●●●
●●

●●

●●●

●●

●●●●●●●●●●●●
●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●
●

●●●

●

●●●

●●●●●●●●●●●●●

●●●●● ●

●

●●●●

●●●●●●●●●●●●●●
●

●●●●●

●

●●●●●●●

●●●●●●●●●●●
●●●●●

●

●●●●●●●●●●
● ●

●●●

●●●
●●●●

●

● ●●●●●●

●

●●●●●● ●●●●●

●

●
●

●

●●●●●●●

●●●● ●
●●●●●

●●

●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●

●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●
●● ●●●

●●

●

●● ●●

●●●●●●

●● ●●●

●●●●●

●

●●●●●●
●● ●●●

●●●●●
●●● ●

●●

●●●●●● ●● ●●●●●●
●● ● ●

●●
●●●●●●●●●●

●
●●●●

●●

●
● ●●

●●●

●●●●●●●●●

●●
●● ●●

●●●●●●●

●●● ●●●●●●

●●● ●
●●●●●●●●

●●●●●●●●●●●●●●●●

●● ●●●●

●●

●●●●
●●●

●●
●●
●●●●●●●●●●●●●●●●● ●●●●●● ●●

●●●●●●●●

●●●●●●●●●●

●● ● ●

●●●

●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●

●
●●

●●●● ●●●●● ●●●●

●●

●●● ●●●●

●

●

●

●●●

●●●●

●

●●

●

●●● ●●●

●●

●

●●●●●
●●

●●●

●●

●●

●●

●●

●

●●●●●●●
● ●

●

●●●●●●

●
●●●

●●●●●●●●
●●

●●●●●
●●●●● ●

●●●

● ●●
●●●●

●●●●●●●●

●● ●●●●●●●●●●●

●
●

●

●●●

●● ●●
●●●● ●●●●●●●● ●●

●●

●

●●●●●●●● ●●●●●

●●●●●●●●●●●

−20 0 10 20

−
20

0
20

imsamples

x1

x3

●●●●●●●●
●

●
●● ●

● ●●●
●●●

●

●●●●●●●

●●
●

●●

●●●●●●
●

●●●●●●●●●●●

●

●●●

●

●
●●●

●●●●

●●●
●

●●●●●●●

●●
●●●●●●●●●●●●●●●●●●

●●●

●
●●

●●

● ●●●●●●●●●

●

●●

●

●

●●●●●

●●●●●●
●

●
●

●●

●

●●●●●●●

●

●●●

●●●

●●●●●●●

●
●●

●●

●●

●●●

●●●●●●●●● ●

●●●●●●●

●
●

●

●●●●

●●●

●●●
●

●
●

●

●

●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●

●●●●●● ●●●●●●

●● ●●

●●●●●● ●●●●●

● ●●
●

●
●●

●●●●
●

●●●

●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●

●

●

●
●●●● ●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●

●
●● ●●

●● ●

●

●●●

●●

●●●●
●

●●●

●●●●●

●●●●●●●●●
●

●●●●●

●●●●●●●●●
●●●●●●

●●●●

● ●●●●●

●●

●●●●●● ●●●●●

●

●

●●●●●

●●●●●●●●

●● ●●● ●
●●

● ●●

●

●●●●●●

●

●●

●●●●●

●●●●●●●●●●●

●

●●

●
●●

●●●●

●

●●●

●●●

●

●●●●
●●●

● ●●●●●●●●●●●●●●●●●

● ●●●●

●

●

●●●

●●●●

●●

●

●●●●●●●●●

●●

●●●
●

●● ●●●●●

●●●

● ●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●●●●

●

●
●●●

●●●●●●●●●●●●●●●●

●●

●●●●

●●●

●

●
●

●

●

●●
●●

●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●

●

●

●

●●

●

●●●

●●●●●●●

●●

●

●●

●

●●●

●●●●●●●●●●●●●●●●●●
●●

●●

●●●●●●

● ●●

●

●
●●

●
●●●●●●●●● ●●●●

●
●●●●

●●

●●●

●●●● ●

● ●

●●

●
●●

●

●●●●●●●
●

●●●●

●●

●●●●

●●
●●

●●●
●●

●●●●●●

●●● ●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●

●●●●

●●●●

●●

●●

●●●

●●●●●●●●●●●●●●●●●
●●●●●

●●●●
●

●●●
●

●
●●●

●

●

●

●

●
●

●

●
●

●●

●●●
●●

●
●

●●●●

●

●
●●●

●
●●●●

●●

●

●●●●●●●●●●●●●●●●
●●●●

●

●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●

●●

●●●●●●●●●●●●

●●

●●

●●

●●●● ●●

●●
●●

●●

●

●●● ●

●

●●

●●●●●

●●●

●●●●●●●

● ●●

● ●
●

●

●●●

●

●●

●●●●●

●●

●●

●●●●●●●●●●●●

●

●●●●● ●●●●

●●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●

●
●●●

●

●●●●●●
●●● ●

●
●●

●●●

●

●

●

●●●

●

●●

●●●●●●

●
●●●●●●●

●

●●

●●
●●●

●

●

●●●●●

● ●

●

●●

●●●●●●●●●●●●●●

●
●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●
●●

●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●● ●●

●●●●

●

●

●

●●●

●

●

●●●

●●

●
●●●●

●●

●●●●

●

●

●●

●●●●●

●

●●●●●●●●●●●●

●●

●●●

●●●●●●

●

●
●●

●

●●

● ●●●●●

●
●

●

●●●

●●●
●

●●●
●

●● ●●●●
●●●●

●
●●●●

●●●

●

●●

●●●

●

●●●●●●

● ●●●●●

●●●●●●

●●
●

●

●

●●●●●●

●

●●●●

●●● ●●●●

●●●●●● ●●●●

●
●●●●●●●●●●●●●●●

●●●●●●

●

●●

●●●

●

●

●

●●●

● ●●

●●●●●●●●●●●●●●
●

●●

●●

●

●●●●●

●

●

●●
●●●●●

●●●●●

●●●●●●●●

●●●●●●●

●● ●●●● ●●●●●●●●●●●

●●

●●●●●●●
●●●●●●

●●●

●●●

●
●●

●

●●
●●
●●●●●

●

●●●●●●
●

●

●●●●●●●●●●●
●

●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●

●

●●
●●

●●●●

●

●●

●

●●●●●●●
●●●●● ●●

●●●●●●

●●●●●●●●

●●●●●●
●

●●●●●

●●
●●●●●

●●●

●

●

●

●●●● ●
●● ●●●

●

●●●

●●●
●●

●●●●●●●

●●

●●●●●● ●●
●●● ●●●

●●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●
●●

●
●●

●●●
●●

●●

●●

●

●

●●●

●

●●●●●
●

●●

●●●●●●●●●●●●●

●●●●●●●●●

●
●●●●

●

●●●●●

●

●

●●

●●●●

●●

●●
●●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

● ●●

●

●
●●●

●●●●●●●
●●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●● ●●●●●●●●

●●●●●

●●

●●

●

●●●

●

●●
●●●

●●●●●

●●●●

●●●● ●

●

●●●●

●●●●●●●●

●

●

●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●

●●●●
●●

●●●●●●

●●●

●

●●●●●●●●●●●●
●

●

●
●
●●

●

●
●●●●●●

●●●●●●

●

●

●●●●
●

●

●●

●

●

●

●●
●●●●

● ●

●

●●●●●●

●
●● ●●●

●●●●

●

●●●●●

●●●●●●●
●

●●
●●●●●●●●●●●

●

●

●●
●

●

●

●
●

●

●

●

●●●●●●●●●●●●●●

●●●●●●●
●●

●

●●●●●● ●●
●●

●● ●●●

●
●●●

●

●●

●

●●●●

●●●

●●●
●●

●●●●●●●●●
●

●●●

●●●●●● ●

●● ●●●●●●

●●●
●●●

●

●

●●●●
●●

●●

●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●

●

●●●

● ●
●

●
● ●●

●●
●●●

●●●●●●● ●●●●●
● ●●

●

●●●

●●●●

●●●●
●●●●●●

●●
●

●●● ●●●

●●●●●

●

●●●●●●●

●

●

●●

●●

●●●●●●●

●

●

●●●●

●●●●

●●●●●●●●

●●

●
●

●

●●●

●

●

●

●●●

●

●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●

● ●

●●●● ●●
●●●

●●●●●●

●●●
●●

●●

●● ●

●

●●●●●● ●●●

● ●

●

●●●●●●
●●●●

●●●●●●●●●●●●●

●●● ●

●

●●

●●●
●

●

●● ●
●

●

●●●

●

●

●

●

●●●●● ●●●●

●●

●●
●
●

●●●●

●●●●●●●●●●

●●●●●

●
●●●

●

●●

●●●●●●●

●

●
●

●●

●

●●●●
●●●●

●

●●●

●●●
●●●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●●●●●●●

●●●●

●●

●●●●●●●
●●●●●●●

●

●●

●
●●

●

●
●●●

●● ●●●●

●

●

●●●●●●
●●

●

●●●

●

●●●

●●●●●●●●

●●●

●● ●●●●

●●
●●●

●●●●●●●●

●●●●●
●

●●●●
●●●●●●

●

●●●
●●●●●●●●●●

●
●●●●●●

●●

●

●

●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●

●
●●●●

●

●●●●

●
●

●

●

●●

●
●
●●●●
●●●●●●●●

●●●

●●

●●

●●●●●●●●●●●●●●●●●●

●●●●●●●

●

●

●●●●●●●●●

●●●

●●

●●
●

● ●●●● ●●

●●●●●●●●

●●●●●●●●●

●

●●

●

●●

●●
●

●●

●● ●

●●●
●

●●
●

●● ●

●

●
●●●

●●●●●●

●●●

●●● ●●●●

●●●●●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●●●●● ●●

●●

●●●

●●
●●●●

●●●●●●●●●●●●●

Figure 17: Left is a plot of the 10000 parallel tempering samples in nine 2D projections.
Right is a plot of the 10000 tuned IM samples in nine 2D projections using DPM.

3.5 Inference at a Higher Level - an Empirical Bayesian Approach

Simulation results show that the efficiency of the SUGS algorithm will largely depend on

the prior hyperparameters. A comprehensive survey of 180 simulations with different prior

hyperparameters show that the clustering results of 1000 data points can differ from one

component to 1000 components. Hence some more careful analysis of how the prior hyper-

parameters should be chosen should be done to ensure that the algorithm will work well.

We adopt an empirical Bayesian approach, allowing data to affect the choice of the prior

hyperparameters.

28

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

im.samples, x1

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

im.samples, x2

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

im.samples, x3

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

im.samples, x4

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

im.samples, x5

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

im.samples, x6

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

im.samples, x7

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

im.samples, x8

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

im.samples, x9

Figure 18: Left is a plot of the acf of 10000 parallel tempering samples in 9 projections.
Right is a plot of the acf of 10000 tuned IM samples in 9 projections using DPM.

3.5.1 Bayesian Inference for Prior DP Precision Parameter α

The DP precision parameter α plays an important role in SUGS because it determines the

prior tendency to create more or fewer clusters. If we specify a fixed α value, then we are

imposing some prior beliefs on how many clusters to create. We use a Bayesian approach to

fix this problem. Following the results by Dunson and Wang (2010), we put a discrete prior

distribution on α. Let α∗ = (α∗1, α
∗
2, . . . , α

∗
T)′, where α∗ is the vector of all possible values

for α and T is the total number of possible values. The prior distribution is specified by

φ
(0)
m = P (α = α∗m) for m = 1, 2, . . . , T . Now define πihm = P (γi = h|α = α∗m, γ

(i−1)). Then

we obtain the following updating rules:

φ(i)
m = P (α = α∗m|γ(i)) =

φ
(i−1)
m πiγim∑T

s=1 φ
(i−1)
s πiγis

for m = 1, 2, . . . , T . Since for any α value, we will always assign the first data point to the

first cluster, we can see that φ
(0)
m = φ

(1)
m for m = 1, 2, . . . , T . Following the notation in (2),

we can obtain the new posterior clustering probabilities under the prior distribution for α

assumed in this section:

P (γi = h|y(i), γ(i−1)) =

∑T
m=1 φ

(i−1)
m πihmLih(yi)∑T

m=1 φ
(i−1)
m

∑ki−1+1
l=1 πilmLil(yi)

29

0 4000 8000

−
20

0
20

im.samples, x1

0 4000 8000

−
20

0
20

im.samples, x2

0 4000 8000

−
20

0
20

im.samples, x3

0 4000 8000

−
20

0
20

im.samples, x4

0 4000 8000

−
20

0
20

im.samples, x5

0 4000 8000

−
10

5
15

im.samples, x6

0 4000 8000

−
10

10

im.samples, x7

0 4000 8000

−
20

0

im.samples, x8

0 4000 8000

−
10

5
15

im.samples, x9

Figure 19: Left is a trace plot of 10000 parallel tempering samples in 9 projections. Right is
a trace plot of 10000 tuned IM samples in 9 projections using DPM.

3.5.2 Empirical Bayesian Inference for Other Hyperparameters

In both the univariate and the multivariate case, the clustering result of SUGS is sensitive

to the other choice of the hyperparameters used in the prior distribution of the component

parameters. In order for the clustering algorithm to work well, we propose an empirical

Bayesian method to determine the prior hyper-parameters. The SUGS algorithm should go

through this initialization process to obtain maximum performance on clustering data points.

Step I. Run a parallel tempering, non-adaptive chain for a number of steps. The goal is to

cover most of the modes of the target distribution.

Step II. Apply a standard non-parametric clustering algorithm to the obtained sample. Use

the gap statistic to determine the number of clusters when applying the standard clustering

algorithm.

Step III. Compute the sample mean for each of the clusters, find the maximum likelihood

estimator of the hyperparameters to maximize the likelihood of the sample means of the

clusters.

3.5.3 The Maximum Likelihood Estimator Approach

In the multivariate case, the conjugate prior for θh = (µh,Σh), the Normal-Inverse-Wishart

distribution is parameterized in terms of hyperparameters (µ0,Λ0/κ0; ν0,Λ0). ν0 is the initial

degrees of freedom, we take it to be d + 2 for the prior mean of the component covariance

matrix to be positive definite, where d is the dimension of the target distribution. The

30

value of ν0 should not be big since a big value of ν0 will strengthen the importance of the

prior belief and reduce the variability of component covariance matrix under the posterior

distribution. κ0 is also taken as a constant in our empirical Bayesian method. The value

for κ0 should also be small since a large value in κ0 will reduce the variability of component

mean under the posterior distribution. In practice, we can just take κ0 to be 1.

We fix the values of ν0 and κ0, treating them as constants. Our goal is to find the MLE for

µ0 and Λ0. First go through an initialization process, obtaining K clusters, denoted as C1 =

{x(1)
1 , x

(1)
2 , . . . , x

(1)
n1 }, C2 = {x(2)

1 , x
(2)
2 , . . . , x

(2)
n2 }, . . . , CK = {x(K)

1 , x
(K)
2 , . . . , x

(K)
nK }. Obtain the

K sample means, µ̂h from these clusters, for h = 1, 2, . . . , K. Under our model assumptions,

µh|Σh ∼ N(µ0,Σh/κ0)

Σh ∼ Inv-Wishartν0(Λ
−1
0)

Identifying the component sample means as the component means, the maximum like-

lihood estimator for the parameter µ0 is µ̂0 = 1
K

∑K
h=1 µ̂h to maximize the likelihood of

the component sample means. Here we derive the MLE for the parameter Λ0 to maximize

the likelihood of the component sample means. Assuming all K components have the same

covariance matrix Σ, the likelihood function

L(µ0,Λ0) = f(µ̂1, µ̂2, . . . , µ̂K |µ0,Λ0)

=

∫
f(µ̂1, µ̂2, . . . , µ̂K |µ0,Λ0,Σ)f(Σ|µ0,Λ0)dΣ

=

∫ K∏
h=1

{
(2π)−d/2 det

(
Σ/κ0

)− 1
2 exp(−κ0

2
(µ̂h − µ0)TΣ−1(µ̂h − µ0))

}
×

[
2ν0d/2πd(d−1)/4

d∏
i=1

Γ(
ν0 + 1− i

2
)
]−1

|Λ0|ν0/2|Σ|−(ν0+d+1)/2exp(−1

2
tr(Λ0Σ−1))dΣ

∝ |Λ0|ν0/2
∫
|Σ|−(ν0+d+1+K)/2exp(−κ0

2

K∑
h=1

(µ̂h − µ0)TΣ−1(µ̂h − µ0)− 1

2
tr(Λ0Σ−1))dΣ

= |Λ0|ν0/2
∫
|Σ|−(ν0+d+1+K)/2exp

{
− 1

2
tr
([
κ0 ·

K∑
h=1

(µ̂h − µ0)(µ̂h − µ0)T + Λ0

]
Σ−1

)}
dΣ

∝ |Λ0|ν0/2

|B + Λ0|
ν0+K

2

where B = κ0 ·
∑K

h=1(µ̂h − µ0)(µ̂h − µ0)T . Substituting the MLE µ̂0 for µ0 and maximizing

the likelihood function L(µ0,Λ0), we obtain the following maximum likelihood estimator for

31

Λ0:

Λ̂0 =
ν0κ0

K

K∑
h=1

(µ̂h − µ̂0)(µ̂h − µ̂0)T

4 Discussion

We have proposed a new generic MCMC algorithm that works well in many cases. In the

simulations we considered, we obtained promising results. The introduction of DPM to

a large extent solved some problems intrinsic to the EM algorithm. However, such new

method also presents some new theoretical challenges. DPM’s sensitivity to the prior hy-

perparameters urges us to find new theoretical justifications for good priors. In this paper,

we have proposed some possible approaches such as MLE. More future research could be

directed to new approaches in finding good priors for hyperparameters such as ν0 and κ0.

Another possible approach is parallel computing. The idea is to run several DPM clustering

algorithms at the same time and form IM proposal density independently. The subsequent

IM transition kernel will be weighted among all the IM proposal densities. The goal is to

increase the weights of the IM kernels with high acceptance rate and decrease the weights

of the kernels with low acceptance rate as the simulation process goes on. Such ideas will

be further explored in future research work.

32

Acknowledgments I cannot possibly overstate my gratitude to my supervisors Jeffrey

Rosenthal and Radu Craiu for their guidance throughout this Summer. This research expe-

rience is substantial to my study at University of Toronto. We were always working together

as a team. When our ideas worked out, we were all excited about them. When our ideas

fail, we encouraged each other. After all, research is an enjoyment from the process of trial

and error. Thanks to my supervisors, I appreciate the essence of research, which brings me

joy.

33

A R Code for Parallel Tempering and IM Sampler

#Function g is used to define the target density at all temperature

#It is used by the parallel tempered MCMC algorithm. It is valid only

#if target density pi has already been defined.

g = function(x, thetemp, maxtemp) {

if ((thetemp<1) || (thetemp>maxtemp))

return(0.0)

else

return(pi(x)^(1/thetemp))

}

#ptmcmc is one of the major functions used by RCA. It is used to sample

#from any target density. It has superior performance over IM sampler when

#little is known about the geography of the target density. However it is

#rather slow when maxtemp, the number of parallel chains is large.

#dim is the dimension of the target density, L specifies the range to start

#the chain when initial value of the chain in unknown. size is the size of

#the sample to obtain, burn is the size of the burn-in sample. maxtemp is

#the number of parallel chains to use. It has better performance when

#maxtemp is larger, but it would simultaneously be much slower when maxtemp

#is large. numofswitch is the number of switching proposals each systematic

#scan. When maxtemp is large, numofswitch should accordingly be larger to

#speed up the mixing. X is the initial position of the chain. notice that

#X should be of length dim*maxtemp. It tells us the position of all parallel

#chains. This function will also automatically adjust proposal scalings.

#It will return the samples from the target density, xlist, without burn-in

#samples. It will also return the last position of the coupled chains, X,

#which can be passed on to the next function call.

ptmcmc=function(dim, L, size, burn, maxtemp, numofswitch, X=runif(dim*maxtemp,-L,L),

scalings = rep(1,maxtemp),adjscaling =FALSE, dotempering = TRUE)

{

#a matrix xlist that keeps track of chain values

xlist = matrix(rep(0,size*maxtemp*dim), ncol=maxtemp*dim)

#numxaccept is a vector that keeps track of the number of acceptance

#for each of the parallel chain.

numxaccept = rep(0,maxtemp)

numtempaccept = 0

for (i in 1:size)

{

for (temp in 1:maxtemp)

{

#temp is the number of chain that we are keeping track of

PROPOSED X[temp] MOVE

proposal value

Y = X[((temp-1)*dim+1):(temp*dim)] + scalings[temp] * rmvnorm(1,rep(0,dim),diag(rep(1,dim)))

34

#the proposal scaling depends on which chain we are moving

U = runif(1) # for accept/reject

A = log(g(Y,temp,maxtemp)) - log(g(X[((temp-1)*dim+1):(temp*dim)],temp,maxtemp)) # for accept/reject

if (log(U) < A)

{

X[((temp-1)*dim+1):(temp*dim)] = Y # accept proposal

numxaccept[temp] = numxaccept[temp] + 1;

}

}

if (dotempering)

{

for (rounds in (1:numofswitch))

{

j = floor(1+runif(1,0,maxtemp)) # uniform on {1,2,...,maxtemp}

k = floor(1+runif(1,0,maxtemp)) # uniform on {1,2,...,maxtemp}

U = runif(1) # for accept/reject

A = log(g(X[((j-1)*dim+1):(j*dim)],k,maxtemp))+

log(g(X[((k-1)*dim+1):(k*dim)],j,maxtemp)) -

log(g(X[((j-1)*dim+1):(j*dim)],j,maxtemp))-

log(g(X[((k-1)*dim+1):(k*dim)],k,maxtemp));

if (log(U) < A)

{

accept proposed swap

tmpval = X[((j-1)*dim+1):(j*dim)];

X[((j-1)*dim+1):(j*dim)] = X[((k-1)*dim+1):(k*dim)];

X[((k-1)*dim+1):(k*dim)] = tmpval;

numtempaccept = numtempaccept + 1;

}

}

}

xlist[i,]=X

if (adjscaling)

{

#every 50 iterations as a batch, we try to update the value

#of the proposal scalings

if ((i%%50)==0)

{

for (temp in 1:maxtemp)

{

accrate = (numxaccept[temp]/i)

#cat("iteration",i,"for chain number",temp,"acceptance rate",accrate,"\n")

if (accrate > 0.5)

{

#acceptance rate too high increase proposal scaling

scalings[temp] = scalings[temp] + 0.2

}

if (accrate < 0.5)

{

#acceptance rate too low decrease proposal scaling

scalings[temp] = max((scalings[temp] - 0.2),0.1)

}

}

35

}

}

}

return(list(xlist=((xlist[(burn+1):size,])[,(1:dim)]),X=xlist[size,]))

}

#Function guess is used by the IM sampler to construct the pdf of our guessed proposal

#distribution. We can construct the density of any Gaussian mixture model

#given the mixing proportion p, list of mean vectors, mu, and list of

#covariance matrices, sigma.

guess=function(x,p,mu,sigma)

{

sum = 0

K=length(p)

for (i in 1:K)

{

sum = sum + p[i]*dmvnorm(x,mu[[i]],sigma[[i]])

}

return(sum)

}

#propose function is used by the IM sampler to propose from our guessed density.

#It can give you samples of any Gaussian mixture model given mu, sigma and

#p as indicated above.

propose=function(MU,SIGMA,P)

{

v=runif(1)

sum = 0

K = length(P)

for (i in (1:K))

{

sum = sum + P[i]

if (sum >= v)

{

#we shall sample from ith component

break

}

}

return(rez=rmvnorm(1,MU[[i]],SIGMA[[i]]))

}

#Function imsampler is the IM sampler that we are using after

#we fit a Gaussian mixture model to the observed samples. Its acceptance

#rate tells us how close our proposal distribution is to the target density

#so it will be our adapatation parameter.

#X.now is the position of the main chain.

#p,mu,sigma are our current guess of the target density via Gaussian

#mixture model.

36

imsampler <- function (dim, size, X.now, p, mu, sigma)

{

#We use IM sampler to sample from the target density

numacc = 0

xlist = matrix(rep(0,size*dim),size,dim)

for (i in 1:size)

{

Y = propose(mu,sigma,p)

A = log(pi(Y))-log(pi(X.now))+log(guess(X.now,p,mu,sigma))-log(guess(Y,p,mu,sigma))

U = runif(1)

if (log(U)<A)

{

accept proposal

X.now = Y

numacc = numacc + 1

}

xlist[i,] = X.now

}

acceptrate = numacc/size

cat("the IM sampler has acceptance rate",acceptrate,"\n")

return(list(imsamples = xlist, accrate = acceptrate))

}

B R Code of EMAlgorithm for Gaussian Mixture Model

EM ALGORITHM FOR SIMPLE D-DIMENSIONAL GAUSSIAN MIXTURE MODEL.

The arguments are the data matrix x but now each data point

is assumed to be D-dimensional. The program will automatically

figure out the dimension of the input by checking number

columns of x, the number of components to use, K, the

number of EM iterations to do,iters,

and a matrix of initial responsibilities

of components for data items (default is a random assignment).

The value returned is a list with elements pi (probabilities of components),

mu is now a list that keeps track of all the mean vectors of the components

sigma now is a list that keeps track of all the covariance matrices

of all the components, and

r, the matrix of responsibilities (which could be passed to another call

of mix.em).

#This EM algorithm will automatically stop when we have 4 indentical log probability

#values consecutively.

We need to assume here we use more than 1 Gaussian component.

mix.em <- function (x, K, iters,

r = matrix(runif(K*nrow(x),0.1,1),nrow(x),K))

37

{

N <- nrow(x)

D <- ncol(x)

checking = rep(1,iters)

if (nrow(r)!=N || ncol(r)!=K)

{ stop("Matrix of responsibilities is the wrong size")

}

Make sure initial responsibilities sum to one.

for (i in 1:N)

{ r[i,] <- r[i,] / sum(r[i,])

}

Do EM iterations, starting with M step, then E step.

#initialize mu and sigma

mu <- list()

sigma <- list()

for (t in 1:iters)

{

cat("\niteration:",t)

cat("\nr:\n")

print(round(r,3))

if ((t>5)&&(checking[t-1]<0) && (checking[t-2]<0) && (checking[t-3]<0) && (checking[t-4]<0) &&

(round(checking[t-1],6) == round(checking[t-2],6)) && (round(checking[t-2],6) == round(checking[t-3],6)) &&

(round(checking[t-3],6) == round(checking[t-4],6)))

{

break

}

rt <- colSums(r)

M step.

pi <- rt / sum(rt)

for (k in 1:K)

{

#initialize the mean vector

init = rep(0,D)

#initialize the covariance matrix

init2 = matrix(0,D,D)

for (n2 in 1:N)

{

init = init + (x[n2,]*r[n2,k])

}

sum0 = sum(r[,k])

init = init/sum0

for (n3 in 1:N)

{

init2 = init2 + ((x[n3,]-init) %*% (t(x[n3,]-init))*r[n3,k])

}

init2 = init2/sum0

38

if (abs(det(init2)) < (10^(-10)))

{

init2 = init2 + diag(rep(epsilon,D))

}

mu[[k]] = init

sigma[[k]] = init2

#add epsilon * I to the covariance matrix to make sure it is not singular

}

compute the log likelihood after each iteration

Assume here we use more than 1 Gaussian component

init3 = dmvnorm(x,mu[[1]],sigma[[1]])

for (k2 in 2:K)

{

init3 = cbind(init3,dmvnorm(x,mu[[k2]],sigma[[k2]]))

}

#print(init3)

#cat("iteration",t,"ncol of init3 is",ncol(init3),"\n")

log.like = sum(log(init3 %*% pi))

cat("\niteration number",t,"log likelihood of the data set",log.like,"\n")

checking[t] = log.like

E step.

for (num2 in 1:N)

{

init.res = rep(0,K)

for (k3 in 1:K)

{

init.res[k3] = pi[k3] * dmvnorm(x[num2,],mu[[k3]],sigma[[k3]])

}

r[num2,] = init.res/sum(init.res)

}

cat("\nupdated r:\n")

print(round(r,3))

}

#cat("\niteration number",t,"log likelihood of the data set",log.like,"\n")

list (p=pi, mu=mu, sigma=sigma, r=r, checking=checking)

}

C R Code of DPM for Gaussian Mixture Model

#DPM in the univariate case.

#We use SUGS to cluster the data points.

#Create a vector that classifies the data points.

size = length(sample)

v0 = rep(0,size)

39

#The mixing proportions naturally follow the symmetric Dirichlet distribution

#with parameter alpha. Here we take alpha to be 0.1. We put

#Normal-inverse-chi-square distribution on the parameter space of the component

#distribution. The prior is N-Inv-Chi^2(1,1/0.1;3,1).

alpha= 0.1

mu0 =1

sigma0sq = 1

kappa0 = 0.1

nu0 = 3

#The function k.index gives us up to index i, the number of Gaussian components

#that are used.

k.index=function(i)

{

return (max(v0[1:i]))

}

#First, we use the first Gaussian component.

v0[1]=1

#Now i is starting from 2.

#pi.ih is a function that will return an array of prior cluster probabilities.

#h goes from 1 to k(i-1)+1.

pi.ih=function(i)

{

max = k.index(i-1)

#create an array

result = rep(-1,(max+1))

for (h in (1:max))

{

result[h] = sum(v0[1:(i-1)]==h)/(alpha+i-1)

}

result[(max+1)] = alpha/(alpha+i-1)

return(result)

}

#L.ih is a function that will return an array of conditional likelihood of yi

#given allocation to cluster h. #h goes from 1 to k(i-1)+1.

L.ih=function(i,yi)

{

max = k.index(i-1)

#create an array

result = rep(NA,(max+1))

#For all the old components. At least one previous data point is

#classified to belong to the component.

for (h in (1:max))

{

init= c()

40

for (g in 1:(i-1))

{

if (v0[g] == h)

{

init = c(init,sample[g])

}

}

post1 = init

n = length(post1)

kappa.n=kappa0+n

nu.n = nu0+n

ybar.n = mean(post1)

if (n==1)

{

ssq.n = 0

}

if (n>1)

{

ssq.n = sd(post1)^2

}

nu.n.sigma.n.sq = nu0*sigma0sq+(n-1)*ssq.n+((kappa0*n)/(kappa0+n))*(ybar.n-mu0)^2

kappa = kappa0 + n +1

nu = nu0 +n+1

combine = c(post1,yi)

ybar = mean(combine)

ssq = sd(combine)^2

nusigmasq = nu0*sigma0sq+n*ssq+((kappa0*(n+1))/(kappa0+n+1))*(ybar-mu0)^2

part1 = sqrt(kappa.n/(2*pi*kappa))

part2 = (nu.n.sigma.n.sq/nusigmasq)^(nu.n/2)

part3 = 1/(sqrt(nusigmasq/2))

if (nu.n%%2==0)

{

initprod = 1

for (mm in (1:(nu.n/2-1)))

{

initprod = initprod*((mm+0.5)/mm)

}

part4 = initprod*0.5*sqrt(pi)

}

if (nu.n%%2==1)

{

initprod = 1

for (mm in (1:((nu.n-1)/2)))

{

initprod = initprod*(mm/(mm-0.5))

}

part4 = initprod/sqrt(pi)

}

result[h] = (part1*part2*part3*part4)

41

}

#for the new component

kappanew = kappa0 + 1

nunew = nu0+1

nusigmasqnew = nu0*sigma0sq + (kappa0/(kappa0+1))*(yi-mu0)^2

numernew = gamma(nunew/2)*sqrt(kappa0)*(sigma0sq*nu0/2)^(nu0/2)

denonew = sqrt(2*pi)*gamma(nu0/2)*sqrt(kappanew)*(nusigmasqnew/2)^(nunew/2)

result[max+1] = numernew/denonew

return(result)

}

comp=function(i,yi)

{

result1 = pi.ih(i)

result2 = L.ih(i,yi)

result = result1 * result2

result = result/sum(result)

index0 = order(-result)[1]

#cat("result is,",result,"\n")

return(index0)

}

#We go through a loop, using comp function to cluster each data point sequentially.

for (i in (2:size))

{

rez = comp(i,sample[i])[1]

v0[i] = rez

}

#DPM in the multivariate case

#All functions in the univariate case remain functioning the same except for L.ih function.

#Code for DPM in the multivariate case is simply replacing the L.ih function in the univariate case by the following.

#Still use the comp function provided in the univariate case to cluster data points.

#gamma function returns the following value: gamma((a+1)/2)/gamma(a/2), a must be an integer.

gammaquo = function(a)

{

#when a is even

if (a%%2==0)

{

initprod = 1

for (mm in (1:(a/2-1)))

{

initprod = initprod*((mm+0.5)/mm)

}

res = initprod*0.5*sqrt(pi)

}

if (a%%2==1)

{

initprod = 1

for (mm in (1:((a-1)/2)))

42

{

initprod = initprod*(mm/(mm-0.5))

}

res = initprod/sqrt(pi)

}

return(res)

}

#L.ih is a function that will return an array of conditional likelihood of yi

#given allocation to cluster h. #h goes from 1 to k(i-1)+1.

L.ih=function(i,yi)

{

max = k.index(i-1)

#create an array

result = rep(NA,(max+1))

#For all the old components. At least one previous data point is

#classified to belong to the component.

for (h in (1:max))

{

init= c()

for (g in 1:(i-1))

{

if (v0[g] == h)

{

init = rbind(init,sample[g,])

}

}

post1 = init

#cat("post1 is",post1,"\n")

#return(post1)

n = nrow(post1)

kappa.n=kappa0+n

nu.n = nu0+n

ybar.n = colMeans(post1)

if (n>1)

{

temp.n = post1[1,]-ybar.n

S.n = temp.n %*% t(temp.n)

for (pp in (2:n))

{

temp.n = post1[pp,]-ybar.n

S.n = S.n + temp.n %*% t(temp.n)

}

}

if (n==1)

43

{

lambda.n = lambda0+(kappa0/(kappa0+1))*((ybar.n-mu0)%*%t((ybar.n-mu0)))

}

if (n>1)

{

lambda.n = lambda0+S.n+(kappa0*n/(kappa0+n))*((ybar.n-mu0)%*%t((ybar.n-mu0)))

}

kappa = kappa0 + n +1

nu = nu0 +n+1

combine = rbind(post1,yi)

ybar = colMeans(combine)

temp = combine[1,]-ybar

S = temp %*% t(temp)

for (pp in (2:(n+1)))

{

temp = combine[pp,]-ybar

S = S + temp %*% t(temp)

}

lambda = lambda0+S+(kappa0*(n+1)/(kappa0+n+1))*((ybar-mu0)%*%t((ybar-mu0)))

part1 = 1/((pi)^(dim0/2))

part2 = (kappa.n/kappa)^(dim0/2)

part3 = 1/(det(lambda)^(1/2))

part4 = (det(lambda.n)/det(lambda))^(nu.n/2)

part5 = 1

for (dd in 1:dim0)

{

part5 = part5*gammaquo((nu.n+1-dd))

}

result[h] = (part1*part2*part3*part4*part5)

}

#for the new component

kappanew = kappa0 + 1

nunew = nu0+1

lambdanew = lambda0+(kappa0/(kappa0+1))*((yi-mu0)%*%t((yi-mu0)))

part1 = (kappa0/(pi*kappanew))^(dim0/2)*(det(lambda0)^(nu0/2))/(det(lambdanew)^(nunew/2))

part2 = 1

for (dd in 1:dim0)

{

part2 = part5*gammaquo((nu0+1-dd))

}

44

result[max+1] = part1*part2

return(result)

}

D R Code of Bayesian Inference for Prior DP Precision

Parameter

#DPM - Bayesian Inference for Prior DP Precision Parameter

#Only the prior belief on alpha is changed. All functions remain the same except for prior clustering

#probabilities pi.ih. In this case, alpha does not take a specific value. Instead we create a vector

#alpha.star that specifies all possible values for alpha.

alpha.star = c(0.01,0.05,0.1,0.2,0.5,1,2,4)

T = length(alpha.star)

#Phi is a matrix that keeps track of the posterior distribution of alpha after each clustering result.

Phi = matrix(NA,sizesample,T)

#initialize phi_m^{(1)}

Phi[1,] = rep(1/T,T)

#The new pi.ih is defined as follows:

#pi.ih is a function that will return an array of prior cluster probabilities.

#h goes from 1 to k(i-1)+1. m is the index of the alpha to use, which goes from

#1 to T.

pi.ihm=function(i)

{

max = k.index(i-1)

matrix0 = matrix(NA,T,(max+1))

for (mm in (1:T))

{

alpha = alpha.star[mm]

#create an array

result = rep(-1,(max+1))

for (h in (1:max))

{

result[h] = sum(v0[1:(i-1)]==h)/(alpha+i-1)

}

result[(max+1)] = alpha/(alpha+i-1)

matrix0[mm,] = result

}

return(matrix0)

}

45

References

[1] Aitkin, M. (2001) Likelihood and Bayesian analysis of mixtures. Statistical Modelling, 1: 287-304.

[2] Craiu, R. Research Talk: Recent Advances in Regional Adaptation for MCMC. – Adapskiii, Utah,

2011. Available on the author’s website, http://www.utstat.toronto.edu/craiu/Talks/index.html

[3] Gelman, A., Carlin, J., Stern, H.,Rubin, D. Bayesian Data Analysis. second edition, Boca Raton,

Florida: Chapman and Hall/CRC, 2004.

[4] Giordani, P., Robert, K. (2010) Adaptive independent Metropolis-Hastings by fast estimation of

mixtures of normals. J. Comput. Graph. Statist., 19, to appear.

[5] Hastings, W. K. (1970) Monte Carlo sampling methods using Markov chains and their applications.

Biometrika, 57, 97-109.

[6] McAuliffe, J., Blei, D., Jordan, M. (2006) Nonparametric empirical Bayes for the Dirichlet process

mixture model. Stat. Comput., 16: 514.

[7] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E. (1953) Equations

of state calculations by fast computing machines. J. Chem. Phys., 21, 1087-1091.

[8] Neal, R. Course notes: Bayesian Methods for Machine Learning, Spring 2011. Available on the author’s

website, http://www.cs.utoronto.ca/ radford/csc2541/

[9] Neal, R. Course notes: Statistical Methods for Machine Learning and Data Mining, Spring 2011.

Available on the author’s website, http://www.utstat.utoronto.ca/ radford/sta414/

[10] Roberts, G. O., Rosenthal, J. S. (2007) Coupling and ergodicity of adaptive Markov chain Monte

Carlo algorithms. J. Appl. Probab., 44 458-475.

[11] Rosenthal, J. S. (2010) Optimal Proposal Distributions and Adaptive MCMC. Chapter for MCMC

Handbook, S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, eds.

[12] Rosenthal, J. S. (2004) General state space Markov chains and MCMC algorithms. Probability Sur-

veys, 1: 20-71.

[13] Rosenthal, J. S. Course notes: Monte Carlo Methods, Spring 2011. Available on the author’s website,

http://www.probability.ca/jeff/teaching/1011/sta3431/

[14] Tibshirani, R., Walther, G., Hastie, T. (2001) Estimating the number of clusters in a data set

via the gap statistic. J. R. Statist. Soc. B, 63, Part 2, 411-423.

[15] Wang, L., Dunson, D. (2010) Fast Bayesian Inference in Dirichlet Process Mixture Models. Journal

of Comp. and Graphical Stats., 1–21.

46

