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Abstract

This paper describes one approach for calculating the cohomology of
a particular complex which arises in knot theory and which is used to
prove the existence of ‘associators’, a key ingredient in the construction
of a universal knot invariant. The approach taken is to show that the
relevant complex can be interpreted, essentially, as the cohomology of the
functor HomCC(K, C), where C is the coalgebra of commutative power
series in a finite number of variables, and the Homs are bi-comodule
morphisms from the ground field K into a cofree bi-comodule resolution
of C. Techniques from homological algebra and Koszul duality theory
are then used to compute this cohomology. The original content of this
article consists only of the interpretation of the knot theory complex as
the complex described above. Otherwise, the paper serves primarily to
provide a description of the relevant homological and Koszul theoretic
tools used.
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1 Knot Theoretic Background

This section will provide some very rudimentary knot theoretic background to
motivate the main content of this paper. The overall goal of the paper is to
exhibit a means to calculate the cohomology of a particular complex which arises
in knot theory and which is used in proving the existence of an associator. To
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describe this complex we begin by defining the following space, for each integer
n > 0:

APn :=
{ - n vertical strands

- trivalent graphs attached to strands

}
mod 4T

Ie, the vector space of diagrams with n vertical strands (usually indicated by
solid lines), with a (possibly empty or disconnected) trivalent graph (indicated
usually by dotted lines), all of whose endpoints are attached to strands. When
more than on endpoint is attached to a particular strand, different orderings
of the endpoints on the strand give different diagrams. Finally, this space is
subject to the relation 4T , which stands for ‘4-term relation’, ie the subspace
generated by the following relation:

− = −

plus similar relations obtained by permuting the strands in each diagram the
same way, or by adding one or more blank vertical strands to either side or in
between the shown strands.

One can then form a sequence:

. . .→ APn−1 → APn → APn+1 → . . . (1)

which will become a complex once we define a differential d (and show that
d2 = 0). To define the differential, we first need to define two operations which
exist on the spaces APn, which are used in defining the differential. They are:

• Blank strand addition: Given a particular diagram in APn, we can add
a blank strand to the left, or to the right, of the diagram (we call the
resulting operations L and R).

• Strand doubling: Given a particular diagram in APn, we can double the
ith strand, and sum over the ways of lifting graph endpoints that ended
on strand i to the two newly-formed strands. We get i operations ∆i, for
i = 1 . . . n. To help clarify this definition, operation ∆3 operates as follows
on the indicated diagram:

∆3 = +

We can now define the differential d as follows:

d := L + Σn
i=1(−1)i∆i + (−1)n+1R (2)

One then verifies that the sequence (1) becomes a complex using this differ-
ential. A key motivator for this paper is the fact that knowing certain parts of
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the cohomology of this complex allows one to prove the existence of associators
(see [2]).

In fact, it turns out that knowing certain parts of the cohomology of a much
simpler but related complex is sufficient. Specifically, one simplifies the spaces
APn by retaining in each diagram only the vertical strands and the endpoints of
trivalent graphs (marked as ‘beads’ which sit at different heights on the strands),
but excising the graphs. One is left with vector spaces Bn, where:

Bn :=
{
•
• •
•

- n vertical strands
- beads placed on strands at different heights

}
where we note that since the trivalent graphs are gone, the 4T relation is no
longer relevant. We get a sequence:

. . .→ Bn−1 → Bn → Bn+1 → . . . (3)

in which the horizontal arrows are the same differentials as in the complex (1).
This makes sense since the definition of d used only the endpoints of graphs,
not their interiors, so d carries over to the bead spaces Bn.

There is a clever trick one can use to recover the cohomology of (1) from the
cohomology of (3), see [2]. The purpose of this paper is to describe a procedure
whereby one can compute the cohomology of the complex (3).

2 Algebraic Model

2.1 An Algebraic Model for Bn

Our plan of attack is to find a way to translate the pictorial complex (3) into
an algebraic complex amenable to the tools of homological algebra. We first
note though that the differential d does not affect the number or height of each
bead, so we can partition the complex (3) into subcomplexes each containing a
fixed number k of beads (at different heights), where k is any positive integer.
The cohomology of the total bead complex will then be the direct sum (over k)
of the cohomologies of the subcomplexes with k beads. Henceforth, the terms
in the bead complex (3) should be understood as spaces Bk

n, of bead diagrams
on n vertical strands and with some fixed by unspecified number k of beads (at
different heights). We will now exhibit an algebraic model for these Bk

n.
We illustrate the procedure with an example. We will model the following

bead diagram by means of the indicated monomial:

• •
• •

←→ x2 ⊗ x1x3 ⊗ 1⊗ x4 ⊗ 1

We now define the space C4 := K[[x1, . . . , x4]], the commutative power series
in 4 variables over the ground field K (which here and throughout is assumed
to have characteristic 0), and note that the monomial on the right sits inside
C⊗5

4 . Thus the procedure can be described as follows:
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• The ith strand is represented by the ith component in the tensor mono-
mial.

• The ith highest bead is represented by the variable xi, located in the
component corresponding to the strand on which the bead rests.

• The presence of two or more beads on a particular strand is represented
by the product of the corresponding variables, situated in the relevant
component of the monomial. These variables must commute, since the
order in which the variables are written does not have any meaning within
the bead diagram (all the relevant information, relating to the height of
the beads, is encoded in the indices).

• A blank strand is indicated by a 1 in the relevant component.

More generally, we will consider the spaces C⊗n
k , where k corresponds to the

number of beads and n to the number of strands. The bead spaces Bk
n will in fact

be the subspaces of C⊗n
k in which each variable xi, i = 1 . . . k appears exactly

once in each monomial. However it will become clear that the differential that
we will define between the spaces C⊗n

k does not change the number or type of
the variables, so that in fact we can proceed to deal with complexes involving
the whole spaces C⊗n

k , and restrict ourselves as needed to the subcomplexes
with exactly one variable of each kind.

We will thus consider sequences:

0→ Ck → C⊗2
k → C⊗3

k → . . . (4)

We still need to explain how to define a differential which models the differential
in our bead complexes.

2.2 An Algebraic Model for the Differential

2.2.1 Preliminaries

We will need a familiarity with the concept of coalgebra, whose definition we
now recall.

Definition 1. Coalgebra

A coalgebra C is a vector space over the field K with maps

• ∆ : C → C ⊗ C and

• ε : C → K

Here ∆ satisfies the following ‘coassociativity’ property:

(∆⊗ id) ∆ = (id⊗∆) ∆

and ∆ and ε together must satisfy the following compatibility requirement:

(ε⊗ id) ∆ = (id⊗ ε) ∆ = id
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Example 1. Coalgebra of Power Series

We make Ck into a coalgebra by defining

∆(1) := 1⊗ 1
∆(xi) := xi ⊗ 1 + 1⊗ xi, ∀i = 1 . . . k

and

ε(1) := 1
ε(xi) := 0, ∀i = 1 . . . k

and extending ∆ and ε to products of the xi multiplicatively. It is readily
verified that Ck with these operations forms a coalgebra.

We can now define operations ∆i, i = 1 . . . n on tensor powers C⊗n
k which

‘replicate’ the strand doubling operation, by defining ∆i to be the coproduct ∆
defined above, acting on the ith tensor component in C⊗n

k . It is again readily
verified that such ∆i do indeed replicate the effect of strand doubling.

In order to find an algebraic description of the differential we still need to
algebraically describe left and right (blank) strand addition. The most obvious
approach would be simply to set

L(c) := 1⊗ c

R(c) := c⊗ 1

This ‘works’ in the sense that it does indeed replicate the effect of the pic-
torial strand addition operations. However, it leaves us in no better position
to compute cohomology than when we simply faced the complex (3) (we have
simply changed the terminology). We will therefore take a more roundabout
approach that will pay off in the end by permitting the use of some powerful
homological algebra tools to compute cohomology.

To this end we need to recall a number of definitions and basic observations
concerning comodules and their resolutions. The reader who is familiar with
these notions can quickly skim section 2.2.2.

2.2.2 Comodules, Their Resolutions, and Hochschild Cohomology

We first recall the notion of comodule over a coalgebra C.

Definition 2. Comodule

A vector space M is a (left-) comodule over a coalgebra C if there is a linear
‘structure’ map

λ : M → C ⊗M
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such that (C ⊗ λ) ◦ λ = (∆⊗M) ◦ λ, and

(ε⊗M) ◦ λ = M.

Note that, here and from now on, we will often use the convention whereby
the identity map idV of a vector space V is denoted V (when no confusion is
likely - e.g., when idV appears as part of a tensor product). Thus, for instance,
in the above (C ⊗ λ) means (idC ⊗ λ).

There is a corresponding definition of right-comodule (with structure map
ρ), and of bi-comodule, which is a left- and right-comodule with compatibility
condition

(C ⊗ ρ) ◦ λ = (λ⊗ C) ◦ ρ

Example 2. Comodule structure on C.

C has a structure of left-, right- or bi-comodule over itself, where the left
and right structure maps are simply the coproduct in C. Compatibility comes
from coassociativity of the coproduct.

Example 3. Trivial Comodule Structure on K

The ground field K has a trivial (left-) comodule structure given by ∆k :=
1⊗ k, for all k ∈ K (and similar right- and bi-comodule structures).

Definition 3. Comodule Homomorphisms

If M and N are left-comodules over a coalgebra C, then a comodule homo-
morphism φ : M → N is a linear map of the underlying vector spaces which
satisfies

(C ⊗ φ) ◦ λM = λN ◦ φ

Similar concepts exist for right- and bi-comodules.

Definition 4. Cofree Comodules

Let V be a vector space, C a coalgebra and M a comodule (left-, right- or
bi-) over C. We define a functor Forget : Comod → Vect which sends any
comodule M to its underlying vector space (here Comod refers to the category
of C comodules (left-, right- or bi-), and Vect refers to the category of vector
spaces over the underlying ground field K).

A cofree comodule generated by V over C is a comodule CoFree(V ) such
that for any comodule M (left-, right- or bi-) over C,

HomC(M,CoFree(V )) ' HomK(Forget(M), V ) (5)

where, on the left, HomC refers to homomorphisms of left-, right- or bi-comodules
as the case may be, and as usual HomK means vector space maps.

A different way of saying this is that CoFree(V ) is a vector space over K,
together with a vector space surjection π : CoFree(V ) → V , such that for
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any comodule M (left-, right- or bi-) over C, and any (vector space) morphism
f : Forget(M) → V , there is a unique lifting f ′ of f , ie a comodule morphism
(of the appropriate type) f ′ : M → CoFree(V ) such that π ◦ f ′ = f .

Exercise 1. Show that for any vector space V, the cofree left-, right- or bi-
comodule generated by V over C is C⊗V , V ⊗C or C⊗V ⊗C, respectively. In
the case of left cofree comodules, the projection π is just εC ⊗V , and f ′ is given
by the composition (C ⊗ f) ◦ λM (and similarly for right cofree comodules). In
the case of cofree bi-comodules, the projection π is just εC ⊗ V ⊗ εC , and f ′ is
given by the composition (C ⊗ f ⊗ C) ◦ (λM ⊗ C) ◦ ρC .

The following specialization of the constructions in Example 1 will be essen-
tial in the sequel.

Example 4. We take the case M = K with the bi-comodule structure set out
in Example 3 and let f : K → V be any vector space map. Then the lifting of
f to a bi-comodule map f ′ : K → C ⊗ V ⊗ C is given by the composition

(C ⊗ f ⊗ C) ◦ (λ⊗ C) ◦ ρ

and thus sends an element k ∈ K to 1⊗ f(k)⊗ 1.

Note that we can identify HomK(K, V ) with V simply by associating any
map f with the value f(1). Taking this observation together with the previous
example, we see that we have the isomorphisms:

HomCC(K, C ⊗ V ⊗ C)→ HomK(K, V )→ V (6)

We refer to the composition of these isomorphisms as α (itself an isomor-
phism). We note that, under α, a map f ′ ∈ HomCC(K, C⊗V ⊗C) gets sent to
(ε⊗V ⊗ ε)◦f ′(1). Conversely, to any v ∈ V the isomorphism α−1 will associate
the bi-comodule morphism which sends 1 ∈ K to 1⊗ v ⊗ 1 ∈ C ⊗ V ⊗ C. The
reader may find it useful to verify these assertions, particularly as they will be
important in what follows.

Before we proceed further, we need to introduce one more concept, that of
cofree resolution.

Definition 5. Cofree Comodule Resolution

A cofree resolution of a comodule M (left-, right- or bi-) over C is an exact
sequence of cofree comodules Mi (left-, right- or bi-) over C and differentials di:

0→ M
d−1=ε−−−−→M0

d0−→M1
d1−→ . . .

There is a standard resolution of C by bi-comodules, known as the cobar
resolution:

Definition 6. Cobar Resolution

This is the sequence:

0→ C → C ⊗ C0 ⊗ C → C ⊗ C1 ⊗ C → C ⊗ C2 ⊗ C → . . . (7)
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Here the zeroth term of the resolution, C ⊗ (K = C0) ⊗ C ' C ⊗ C in a
canonical way. The differentials are given by

dn =
∑

i=0...n

(−1)iC ⊗ · · · ⊗ C ⊗∆⊗ C ⊗ · · · ⊗ C

where the ∆ appears in the ith position in the ith term. From exercise (1) we
know that the C ⊗ Cn ⊗ C are cofree generated by Cn. To show exactness, we
construct a homotopy h : C⊗Cn+1⊗C → C⊗Cn⊗C such that dh+hd = id,
for n ≥ −1.

Specifically, we let

h(c0 ⊗ c1 ⊗ · · · ⊗ cn+1) = ε(c0) c1 ⊗ · · · ⊗ cn+1

Then

dh(c0 ⊗ c1 ⊗ · · · ⊗ cn+1) = ε(c0) d(c1 ⊗ · · · ⊗ cn+1)

while

hd(c0 ⊗ c1 ⊗ · · · ⊗ cn+1) = h(∆(c0) c1 ⊗ · · · ⊗ cn+1)− h(c0 ⊗ d(c1 ⊗ · · · ⊗ cn+1))
= ((ε⊗ C) ◦∆)(c0)⊗ c1 ⊗ · · · ⊗ cn+1 − h(c0 ⊗ d(c1 ⊗ · · · ⊗ cn+1))
= c0 ⊗ c1 ⊗ · · · ⊗ cn+1 − ε(c0)d(c1 ⊗ · · · ⊗ cn+1)

In going from the second to third line we have used the identity (ε⊗id)◦∆ =
id, valid in any coalgebra. It follows that adding dh + hd gives the identity, as
required.

Note that there are analogous cobar resolutions by left- or right- comodules,
in which the term C ⊗ Cn ⊗ C is replaced by C ⊗ Cn or Cn ⊗ C, as the case
may be (and the differentials keep the same form).

We note in passing that, if we took C = Ck, the cobar resolution would
involve the same spaces as the sequence (4), but nonetheless the cobar resolution
cannot be the complex we are looking for as the differentials have the wrong
form (in particular they do not involve left and right ‘strand addition’).

We have almost completed our review of algebraic preliminaries. All we need
now is the concept of Hochschild cohomology of a coalgebra C.

Definition 7. Hochschild Cohomology of a Coalgebra C

The Hochschild cohomology of a coalgebra C is the cohomology that results
from applying the functor HomCC(K, ) to the cobar resolution of C by cofree
bi-comodules. In the case of the coalgebras Ck, we get the sequence:

0→ HomCC(K, Ck)→ HomCC(K, C⊗2
k )→ HomCC(K, C⊗3

k )→ . . . (8)
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The differential in this sequence is induced from the differential on the cobar
complex, via the formula:

df := f ◦ d, ∀f ∈ HomCC(K, C⊗n
k )

2.2.3 Derivation of the Algebraic Complex Differential

We now apply this algebra to show how the differential on the algebraic complex
(4) arises in a natural way. In the following diagram we have displayed two
parallel complexes, the bottom one of which is the algebraic complex (4). The
top row is what we get after applying the isomorphism α−1 (see (6)) with
V = C⊗n

k , C⊗n+1
k , . . . .

HomCC(K, C ⊗ C⊗n
k ⊗ C) HomCC(K, C ⊗ C⊗n+1

k ⊗ C)//// //

C⊗n
k C⊗n+1

k
//// //

OO

α−1

��

α

We have also shown the isomorphism α−1 going up and α going down.
We take the top row to be the Hochschild cohomology of Ck (see (8)) and

we will compute the effect of the composition α◦d◦α−1 on an element c ∈ C⊗n
k .

We will see that through this composition we recover the desired differential for
(4). We have, for c ∈ C⊗n

k :

α ◦ d ◦ α−1(c) = α ◦ d(1⊗ c⊗ 1)

= α(1⊗ 1⊗ c⊗ 1 +
n∑

i=1

(−1)i1⊗∆i(c)⊗ 1 + (−1)n+11⊗ c⊗ 1⊗ 1)

= 1⊗ c +
n∑

i=1

(−1)i∆i(c) + (−1)n+1c⊗ 1

where in going from the first to second line we used the fact that ∆(1) = 1⊗ 1
(see Example 1 re the coalgebra of power series and Example 7 re the cobar
resolution). Moreover, in going from the second to third line, we used the fact
that α = ε◦C⊗n

k ⊗ε and that ε(1) = 1 (again see Example 1 re the latter point).
Thus as promised we see that we recover the differential for the algebraic

complex (4) as to be the composition α−1 ◦ d ◦α. To say this a little differently,
we have shown that the algebraic complex (4) with the desired differential is the
cohomology of the functor HomCC(K, ) applied to the cobar resolution of C⊗n

k

by cofree bi-comodules. This is the real benefit to our rather circuitous method
of defining the differential: we can now use the basic fact from homological
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algebra that the cohomology of a functor applied to a resolution is independent
of the particular resolution chosen. In other words, we are free to pick any other,
simpler resolution of Ck, for which the calculation of cohomology will be easer
(if we can find one). And here we are again fortunate: it turns out that there is
indeed another well-known resolution of the power series coalgebra Ck, which is
much simpler and indeed whose cohomology under the functor HomCC(K, )
has been well studied: it is essentially the De Rham complex.

The fact that all resolutions (of the same type - e.g., by cofree bi-comodules)
give the same cohomology will not be reproduced here: see, for instance, [3],
Theorem 17.1(6), where this is established in the (dual) case of projective (in-
cluding free) resolutions of modules over a ring.

2.3 A Simpler Resolution for Ck

To explain the simpler resolution that we will use, we begin by introducing some
notation for the exterior algebras on finite sets {x1 . . . , xk} of variables.

Definition 8. Exterior Algebra on {x1 . . . , xk}

For k a positive integer, we define

Ak := Λ(x1 . . . , xk)

= K ⊕ Λ1 ⊕ Λ2 ⊕ . . .⊕ Λk

where the Λ refers to the exterior algebra over the ground field K generated by
the indicated symbols, and the superscripts in each Λi indicate the subspaces
of degree i.

We can now define the Koszul resolution for Ck by bi-comodules. To do this
we first define the Koszul resolution of K by left (and right) Ck comodules.

Definition 9. Left (Right) Koszul Complex for Power Series Algebras

The Koszul resolution of K as left Ck comodule is the following:

0→ K → Ck → Ck ⊗ Λ1 → Ck ⊗ Λ2 → . . .

Here the second arrow is the trivial left structure map for K as Ck comodule
(ie, k 7→ 1⊗ k). Subsequent arrows are the differential:

xi1 . . . xil
⊗ a 7→

l∑
s=1

xi1 . . . x̂is . . . xil
⊗ (xis ∧ a)

where xi1 . . . xil
∈ Ck, a ∈ Ak and the hat in x̂is

means that that symbol is
omitted. It is readily verified that this differential squares to 0. It is finally
noted that the above complex is really a direct sum of subcomplexes of fixed
degree n ≥ 0, with K concentrated in degree 0. In other words, we really have
the complexes:
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0→ K → K → 0

0→ 0→ Cn
k → Cn−1

k ⊗ Λ1 → Cn−2
k ⊗ Λ2 → . . .

where the first row is in degree 0 and the second is in degree n > 0.
To show that the complex is exact, we exhibit a contracting homotopy.

Specifically, we define:

h : Ck ⊗ Λn+1 → Ck ⊗ Λn

x⊗ (xi1 ∧ . . . ∧ xin+1) 7→
n+1∑
s=1

(−1)s(x xis
)⊗ (xi1 ∧ . . . ∧ x̂is

∧ . . . ∧ xin+1)

where x ∈ Ck and xi1 ∧ . . . ∧ xin+1 ∈ Λn+1.
It is left to the reader to check that hd + dh = (degx + n + 1) id.
The Koszul resolution of K by cofree right comodules is analogous.

Definition 10. Two-sided Koszul Complex for Power Series Algebras

The Koszul resolution of Ck by cofree bi-comodules is based on the sequence:

0→ Ck → Ck ⊗ Ck → Ck ⊗ Λ1 ⊗ Ck → Ck ⊗ Λ2 ⊗ Ck → . . .

The differential is given by the co-product ∆ in degree −1, and by:

d := dl ⊗ CK + (−1)n+1Ck ⊗ dr

where dl and dr refer to the left and right Koszul differentials, respectively.
Again, one can verify that this differential satisfies d2 = 0.

The fact that the above complex is exact is more involved, and we will skip
it. The reader may refer to [1], Proposition 3.12, from which it follows that
the exactness of the two-sided Koszul complex is equivalent to the exactness of
either one-sided complex. A dual version of this Proposition appears in [4] as
Proposition 19.

2.4 The Cohomology of the Bead Space Complex

Finally, we cite a theorem which gives the cohomology of the functor HomCC(K, )
(also known as Hochschild cohomology) as applied to the two-sided Koszul res-
olution:

Theorem 1. Hochschild Cohomology of Ck

Hn(HomCC(K, Cbi
k )) ' An

k (9)

where Cbi
k refers to the two-sided Koszul resolution of Ck, and An

k is the degree
n subspace of Ak.
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We will again skip the proof, a more general version of which can be found
in [1], Corollary 3.25. A related result is given in [5], Theorem 14(ii), and [4],
Corollary 4, which state that Hn(HomAk

(K, K)) ' Cn
k (where HomAk

refers to
one-sided Ak algebra morphisms, and the first copy of K refers to the one-sided
Koszul resolution of K). This is a dual result, but only a partial dual as it deals
only with one-sided cohomology, not the two-sided version that we use.

With this theorem, we are done, since we know that the degree n cohomology
of the bead complex (3) (with k beads) is the same as that of the subcomplex
of the algebraic complex (4) with k variables (in which each variable appears
exactly once per monomial). This in turn is the subspace of An

k in which each
variable appears exactly once per monomial - hence is 0 if n 6= k, and is isomor-
phic to K if n = k.
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