Hochschild Cohomology

- A associative algebra
- Define $C^p(A) := \text{Hom}(A^\otimes p, A)$
- $c \in C^p(A)$

Vertical compositions "\(D_i\)" i.e. $C \circ i \circ D$
Gerstenhaber product COD

"Signed sum over insertions of D into C"

\[C \odot D := \sum_{i=1}^{p} (-1)^{(i-1)(q-1)} C_{o_i} D \]

Gerstenhaber bracket

\[[C,D] := COD - (-1)^{(p-1)(q-1)} DOC \]

FACT $C(A)$ is a graded Lie algebra with $[-,-]$
Associativity Criterion

Any \(m \in C^\infty(A) \) defines a product \(\cdot_m \)

Fact \[[m, m] = 0 \iff \cdot_m \text{ associative} \]

Proof: \[[m, m](x, y, z) = \]

\[m \left(m \left(m(x, y), z \right) - m(x, m(y, z)) \right) \]

\[= (x \cdot y) \cdot z - x \cdot (y \cdot z) \]

\[= 0 \]

\[\iff \cdot \text{ associative}. \]
Differential on $\mathcal{C}(A)$

Given $\mu \in \mathcal{C}^2(A) = \text{Hom}(A \otimes A, A)$ with $[\mu, \mu] = 0$

ie $\ast \mu$ associative

Define: $d_\mu : \mathcal{C}^p \to \mathcal{C}^{p+1}$

$d_\mu (\mathcal{C}) := [\mathcal{C}, \mu]$

Fact: $d^2 = 0$

Proof: graded Jacobi, as
Proof of $d^2 = 0$

\[C \in C^p(A) \]

\[d_\mu \circ d_\nu (c) := d_\mu \left[c, \mu \right] \]

\[:= \left[\left[c, \mu \right], \mu \right] \]

\[= \left[\left[\mu, \mu \right], c \right] + (-1)^{p-1} \left[\left[\mu, c \right], \mu \right] \]

(from graded Jacobi)

\[= 0 - (-1)^{p-1} (-1)^{p-1} \left[\left[c \mu \right], \mu \right] \]

(from graded AS)

\[= -\left[\left[c \mu \right], \mu \right] \]

Hence \(d^2 C = \left[\left[c \mu \right], \mu \right] = 0 \) as required.