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Abstract
If an augmented algebra K over Q is filtered by powers of its augmen-

tation ideal I, the associated graded algebra grIK need not in general be
quadratic: although it is generated in degree 1, its relations may not be
generated by homogeneous relations of degree 2. In this paper we give a
criterion which is equivalent to grIK being quadratic. We apply this cri-
terion to the group algebra of the pure virtual braid group (also known as
the quasi-triangular group), and show that the corresponding associated
graded algebra is quadratic.
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1 Introduction

This paper will ultimately be concerned with the pure virtual braid groups
PvBnPvBnPvBn, for all n ∈ N, generated by symbols Rij , 1 ≤ i 6= j ≤ n, with relations
the Reidemeister III moves (or quantum Yang-Baxter relations) and certain
commutativities:

RijRikRjk = RjkRikRij (1)

RijRkl = RklRij , (2)

with i, j, k, l distinct. This group is referred to as the quasi-triangular group
QTrnQTrnQTrn in [BarEnEtRa]. We will also be concerned with the related algebra
pvbn, generated by symbols rij , 1 ≤ i 6= j ≤ n, with relations the ‘6-term’ (or
6T) relations, and related commutativities:

yijk := [rij , rik]+[rij , rjk] + [rik, rjk] = 0, (3)

cklij := [rij , rkl] = 0

with i, j, k, l distinct. This algebra is the universal enveloping algebra of the
quasi-triangular Lie algebra qtrn in [BarEnEtRa].

We will show that PvBn is a ‘quadratic group’, in the sense that if its rational
group ring QPvBn is filtered by powers of the augmentation ideal I, the associ-
ated graded ring grPvBn is a quadratic algebra: i.e., a graded algebra generated
in degree 1, with relations generated by homogeneous relations of degree 2. We
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note that, in different language, this is the statement that PvBn has a universal
finite-type invariant, which takes values in the algebra pvbn.

In [Hutchings], a criterion was given for the quadraticity of the pure braid
group. The proof relied on the geometry of braids embedded in R3. In order to
generalize this criterion to all finitely presented groups, we developed an alge-
braic proof of the criterion. This proof turned out not to rely on the existence of
an underlying group, and applies instead to algebras over Q, filtered by powers
of an augmentation ideal I. Indeed, this criterion arguably lives naturally in an
even broader context, such as perhaps augmented algebras over an operad (or
the related ‘circuit algebras’ of [BN-WKO]), although we do not investigate this
broader context here.

Our criterion may be summarized as follows in the case of an augmented
algebra K with augmentation ideal IK . We denote by grIK = ⊕m≥0ImK /I

m+1
K

the associated graded algebra of K with respect to the filtration by powers
of the augmentation ideal, and by B the ‘blow-up’ algebra B := ⊕m≥0ImK .
We recall that any graded algebra X which is generated in degree 1 has a
‘quadratic approximation’, namely the graded algebra with the same generators
and with ideal of relations generated by the degree 2 relations of X. Let A be
the quadratic approximation of grIK, and A be the quadratic approximation
of B. We will see that the generators of A surject onto to the generators of A,
and that certain canonical spaces of free generators of the relations in A and
A are isomorphic. It thus makes sense to ask whether A and A have the same
syzygies - i.e., relations between relations. We show that grIK is quadratic if
and only if A and A do in fact have the same syzygies. Furthermore, if A is
Koszul, we show that it is sufficient to check this criterion in degree 3.

In Section 1 of this paper we give a precise statement of this criterion (see
Theorem 1). In Section 2 we explain the key step in the proof of the criterion. In
Section 3 we supply details of proofs that were omitted in Section 2. In Section
4 we specialize to PvBn. We present a basis for the quadratic dual algebra
pvb!n, and use this basis to compute the syzygies of pvbn and prove that PvBn
satisfies the quadraticity criterion. It follows that PvBn is quadratic. Although
Koszulness of the algebra pvbn was originally established in [BarEnEtRa], we
give a different proof in Subsection 4.7. Finally, in Section 5 we point out some
possible future avenues of research.

We note that the quadraticity of PvBn was conjectured in [BarEnEtRa]. As
pointed out in section 8.5 of that paper, the quadraticity of PvBn implies that
H∗(PvBn) ∼= pvb!n as algebras.

After this paper was substantially completed, the result was communicated
to Alexander Polishchuk, who pointed out that a theorem somewhat similar to
Theorem 1 was obtained in [PosVish] in the context of the cohomology algebra
of a nilpotent augmented coalgebra, albeit by very different methods. For this
reason we have referred to the criterion in Theorem 1 as the PVH Criterion
(with reference to Positselski, Vishik and Hutchings).
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1.1 Overview of the PVH Criterion

1.1.1 Group Theoretic Background

Since the classic setting of the PVH criterion is that of group rings, we identify
the attributes of group rings which we rely on and will want to see preserved in
our generalized context. We recall the follow basic fact:

Proposition 1 (See [MKS], s. 5.15). If G if given by the short exact sequence

1→ N → FG→ G→ 1

where FG is a free group generated by symbols {gp : p ∈ P} and N is a normal
subgroup of FG generated by the set {rq : q ∈ Q}, then the rational group ring
of G is given by the exact sequence

0→ (N − 1)→ QFG→ QG→ 0

where (N − 1) is the two-sided ideal in QFG generated by {(rq − 1) : q ∈ Q}.
We can clearly restrict the second exact sequence to the exact sequence

0→ (N − 1)→ IFG → IG → 0 (4)

where IFG and IG are the augmentation ideals of QFG and QG respectively.

1.1.2 Generalized Algebraic Setting

By analogy with the above group case, we take K to be an augmented (unital)
algebra over Q with 2-sided augmentation ideal IK , and F to be the free algebra
over Q with the same generating set as K, with 2-sided augmentation ideal IF .
In particular we assume an exact sequence:

0 −→ IK −→ K
ε−→ Q −→ 0

By analogy with the ideal (N − 1) in the group context, we let M ⊆ IF ⊆ F
be a 2-sided ideal such that:

0 −→M −→ F −→ K −→ 0

0 −→M −→ IF −→ IK −→ 0

are exact. It will be important in what follows that IF is a free left and right
F -module.1

We will in fact work with the completions K̂ of K (and F̂ of F ) with respect
to the filtrations by powers of their respective augmentation ideals. Our reason
for doing this is that, by picking a suitable set of generators for K (and F ) and
passing to the completions, we claim that we may arrange that M ⊆ I2F (see
Subsection 3.1), and we will need this in the sequel. Since we always work with
the completions, we will simply denote them K and F , without the hat.

1When F is the group ring kG (with k a commutative ring and G a free group), the fact
that IF is free as a left-, and as a right-, kG module is due to Fox (for a proof, see for instance
[Lam], exercise 1.29). This result can readily be modified to address the case where F is a free
algebra (the only distinction being that one no longer needs to deal with inverses of elements).
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1.1.3 The Associated Graded Algebra and Its Quadratic Approxi-
mation

K is filtered by powers of IK :

. . .
ι
↪→ I3K

ι
↪→ I2K

ι
↪→ IK

ι
↪→ I0K = K (5)

where ι are the inclusions.
We denote grIKgrIKgrIK the associated graded of the above filtration. We have

grIK ∼=
⊕

m I
m
K /ιI

m+1
K . It is clear that grIK is generated as an algebra by its

degree one piece VVV := IK/I
2
K , a vector space over Q.

We recall that a graded algebra L = ⊕p≥0Lp, generated in degree 1 over a
ring with identity L0, may be ‘approximated’ by a quadratic algebra q(L) with
the same generators and with relations generated by the degree 2 relations of
L. Specifically, we denote by TLL

1 the tensor algebra on L1 over the ring L0:
TLL

1 := ⊕p≥0(L1)⊗L0p. Moreover, we denote RL := ker(L1 ⊗L0 L1 → L2) the
kernel of the multiplication map in degree 1+1; and we denote 〈RL〉 the ideal in

TLL
1 generated by RL. Then q(L) := TLL

1

〈RL〉 . We refer to q(L) as the ‘quadratic

approximation’2 of L.
Applying this procedure to grIK, we get the quadratic approximation A :=

q(grIK) of grIK. Thus, if TV is the rational tensor algebra over V (with
tensor products over Q), we let 〈RRR〉 be the two-sided ideal in TV generated
by the vector subspace R ⊆ V ⊗Q V of degree two relations of grIK: i.e.,
R := ker(µ : IK/I

2
K ⊗Q IK/I

2
K → I2K/I

3
K), where µ is the multiplication in

grIK induced from multiplication in IK . Then we define A := TV/〈R〉. We
will denote by Am the m-th graded piece of A.

We use the following notation for the (free generators of the) relations in A:

Rm,j := V ⊗Qj ⊗Q R⊗Q V
⊗Q(m−j−2)

and:

Rm =

m−2⊕
j=1

Rm,j

We have obvious maps ∂A : Rm → V ⊗Qm which are (sums of the) summand-wise
inclusions.

We note that since A has the same generators and the same quadratic re-
lations as grIK, there is always a surjection A � grIK. Quadraticity of
grIK is thus equivalent to the fact that this surjection is an isomorphism
Am ∼= ImK /I

m+1
K , for all m. We will often use this alternative definition of

quadraticity.

1.1.4 The Blow-Up Algebra and the Global Quadratic Approxima-
tion

There is a second graded algebra canonically associated to the pair (K, IK),
referred to as the blow-up algebra BBB. It is defined as B := ⊕m≥0ImK , where

2This terminology is due to Dror Bar-Natan.
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I0K := K. Clearly, B is generated as a K-algebra by its degree 1 piece, IK .
We note that the blow-up algebra B and the associated graded grIK are

related by the fact that grIK = B/ιB = ⊕p≥0Bm/ιBm+1.
Like grIK, B has a canonically associated quadratic approximation, which

we denote AAA, which has the same generators and whose ideal of relations is
generated by the degree 2 relations of B. We often refer to A as the global
quadratic approximation.

More precisely, we start with the tensor algebra TKIK := ⊕m≥0I⊗KmK , where
I⊗0K := K. By analogy with R, we define R := ker(µK : IK ⊗K IK → I2K), and
by analogy with Rm,j and Rm, we define:

RK
m,j := I⊗KjK ⊗K R⊗K I

⊗K(m−j−2)
K

and
RK
m :=

⊕
j

RK
m,j (6)

There is an obvious map ∂K : Rm → I⊗KmK (induced by the inclusion R ↪→
I⊗K2
K ). Then we define Am :=

I
⊗Km
K

∂KRm
, and A := TKIK

〈R〉 = ⊕m≥0Am.

We introduce a ‘contraction’ map µi : I⊗KmK → I⊗Km−1K which is multipli-
cation of components i and i+ 1 in the tensor product. Since we are tensoring
over K, µi = µj for all i, j, so we often refer to the contraction as simply µK .

By construction, ∂K(Rm) ⊆ ker µK . In fact, that inclusion is an equality:

Proposition 2. ∂K(RK
m) = ker µK.

Proof. Deferred to Subsection 3.4.

Thus the maps µK induce maps (which we will denote µA): µA : Ap → Ap−1

for all p ≥ 2, and we also agree to denote by µA the inclusion IK ↪→ K. We get
a sequence:

Ap
µA−→ Ap−1

µA−→ . . .
µA−→ IK (7)

We denote the composition by µpA (for p ≥ 2), and agree that µ1
A = idIK and

µ0
A = idK . Thus the µpA for p ≥ 0 give us a surjection A � B. As with grIK one

may ask whether B is quadratic, i.e. whether the surjection A � B is actually
an isomorphism. We will see below that grIK is quadratic if and only if B is.

1.1.5 Relation Between the Two Quadratic Approximations

We may fit the concepts introduced above into the following picture:
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grIK B

grAK A

⊕p •p /ι•p+1

⊕p •p /µA•p+1

q(−)

��

q(−)

��

oo

oo

where we define grAK := ⊕p≥0Ap/µAA
p+1. The following Proposition says that

this is a commutative diagram:

Proposition 3.
grAK = q(grIK) = A

as graded vector spaces.

The proof of this proposition will follow from Lemma 2 below.
Also, we can fit the sequences (5) and (7) into a commutative diagram:

A3 A2 A1 A0

I3K I2K IK K

µA // µA // µA //

// // ι // // // ι // // // ι //

µ3
A
����

µ2
A
����

µ1
A µ0

A

. . . //

. . . //

such that the ‘associated gradeds’ of each row are grA = q(grIK) = A (for the
top row) and grIK (for the bottom row). In these circumstances we refer to to
the top row as a ‘proto-filtration’ of K.

In Theorem 1 we will see that, if the PVH Criterion is met, then the proto-
filtration (7) coincides with the filtration (5), i.e. the vertical maps are iso-
morphisms. Hence their associated graded algebras coincide, and hence A is
quadratic.

1.1.6 The PVH Criterion

The generators of Ap and Ap are related by an obvious projection F 0 : I⊗KmK �
(IK/I

2
K)⊗Qm = V ⊗Qm, with kernel given by ker F 0 = IK .I

⊗Km
K , as per the

following proposition:

Proposition 4.
I⊗KmK /IK .I

⊗Km
K

∼= V ⊗Qm

Here IK .I
⊗Km
K means I⊗KmK with the left-most component multiplied (on

the left) by IK .

Proof. Postponed to Subsection 3.3.
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Hence we then have the following commutative diagram, with exact diago-
nals:

ker ∂Ind ker ∂K

RK
m

I⊗Km (IK/I
2
K)⊗Qm

ooooF Syz
oo

F 0
//

�� ��

∂K

��

∂Ind

��

where ∂Ind is the composition and FSyz is the map induced from F 0 on kernels.
We are now in a position to state our criterion for quadraticity of K (with

notation as in the above diagram, and with the assumptions in Subsection 1.1.2):

Proposition 5 (PVH Criterion I). K is quadratic if and only if FSyz is sur-
jective (and hence an isomorphism) for all m ≥ 2.

This generalizes a result first obtained in [Hutchings], where K was the group
ring of the pure braid group (see also [BNStoi]). We give the proof in Section 2.

We can get a more precise and readily verifiable criterion for m ≥ 3 if we
first verify the criterion in degree 2. To set this up, we state the:

Proposition 6. Let {yq : q ∈ Q} be a minimal set of generators for M as a
two-sided F -module. Suppose the {yq + I3F : q ∈ Q} are linearly independent in
(M + I3F )/I3F . Then, for all m ≥ 2, we have an isomorphism:

F 1 : Rm
∼−→ Rm

as vector spaces over Q. Moreover, ∂Ind = ∂A◦F 1, and hence ker ∂Ind ∼= ker ∂A
consists of the syzygies of the quadratic algebra A.

Remark 1. The linear independence of the {yq + I3F : q ∈ Q} can be viewed
as the PVH Criterion in degree 2. Indeed, ∂A : R ↪→ V ⊗Q2 is the inclusion, so
ker ∂Ind ∼= ker ∂A = 0 and FSyz is automatically surjective.

Theorem 1 (PVH Criterion II). Under the assumptions in Proposition 6, grIK
is quadratic if and only if ker ∂K ∼= ker ∂A is an isomorphism for all m ≥ 3,
i.e. informally iff ‘the quadratic algebras A and A have the same syzygies’.

If A is Koszul,3 4 then we need only check that this isomorphism holds in

3The statement about Koszulness relies on results about Koszul algebras which have only
been developed for graded algebras whose graded components are finitely generated over the
ground ring. Hence, for purposes of this part of the theorem, we assume the algebra K to be
finitely generated, which is sufficient to ensure that Am is a finite dimensional Q-vector space
for all m.

4In fact, A need only be 2-Koszul, i.e. its Koszul complex need only be exact up to
homological degree 2 inclusive.
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degree 3.

The proof of Proposition 6 and Theorem 1 is deferred to Subsection 3.5.
A closely related theorem appeared in [PosVish], in the context of the coho-

mology algebra of a nilpotent augmented coalgebra (see the ‘Main Theorem’ of
that paper).

1.2 How the PVH Criterion is Useful

Assuming the requirements of Theorem 1 are met, we can conclude that grIK
is quadratic if, informally, the quadratic algebra A and its global analogue A
have the same syzygies.

It is often the case that the syzygies of a quadratic algebra can be determined
quite explicitly, using quadratic duality. Essentially, if the quadratic algebra A
is Koszul, then the syzygies are generated by A!3 (i.e. the degree 3 part of the
quadratic dual A! of A). Thus the problem of comparing syzygies is reduced
to the finite, computable problem of determining a basis for A!3 and checking
whether the resulting syzygies of A3 also hold in A3.

In the context of PvBn, it was shown in [BarEnEtRa] that pvbn is Koszul
(a different proof is provided in Section 4.7 of this paper), so we only need to
check the PVH Criterion in degree 3.

If we take K to be the group ring of PvBn and IK its augmentation ideal,
it is possible to interpret the spaces Am as spaces of ‘m-singular virtual braids’
– essentially virtual braids with m ‘semi-virtual’ double points (subject to a
certain equivalence relation) - see [GPV]. One knows certain syzygies that
are satisfied by such semi-virtual braids, particularly the syzygy known as the
Zamolodchikov tetrahedron:5

5The picture builds on an xy-pic template due to Aaron Lauda – see [Lau]. Another picture
is at [BN2].
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RijRikRilYjkl 6> RijRikC
jk
il RjlRkl

`h

RijYiklRjlRjk
=E

YijkRilRjlRkl
Ya

CklijRilRikRjlRjk

DL
RjkRikYijlRkl

RZ

RklRijRilC
jl
ikRjk

NV
RjkC

jl
ikRilRijRkl

HP

RklYijlRikRjk

RZ

RjkRjlRikRilC
kl
ij

DL

RklRjlRilYijk

T\

RjkRjlYiklRij

BJ

RklRjlC
jk
il RikRij

bj

YjklRilRikRij

4<

(The notation will be clarified in Subsection 4.2.)
In the second part of this paper, we will find a basis for the quadratic dual

algebra pvb!n, and in particular for pvb!3n . We will then check ‘by hand’ that
the corresponding degree 3 syzygies of A are also satisfied by A. There are a
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number of ‘trivial’ syzygies in A which are trivially seen to hold in A as well.
There is also a family of non-trivial syzygies in A, which turn out to correspond
to the ‘Zamolodchikov’ syzygy alluded to above (this is explained in Subsection
4.4.1). This will allow us to conclude that grIQPvBn ∼= pvbn.
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2 Key to the PVH Criterion

We recall a simple but useful fact from homological algebra. Given modules
A,B, and C over a ring, suppose with have a commutative triangle:

A

B C
g //

f

��

h

��

If we add kernels and cokernels wherever possible, and induced maps, we get
the following commutative diagram:

ker h ker f

A

B Cker g coker g

coker f coker h

oooooo

g //

�� ��

f

��

h

��
// //

�� ��

��

��
//

CC

Then we get the following ‘Hexagon Lemma’, which is a special case of the
Snake Lemma:

Lemma 1. With notation as above, the following sequence is exact:
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0 → ker f → ker h → ker g → coker f → coker h → coker g → 0 (8)

Proof. Easy diagram chase.

We apply the Hexagon Lemma to the commutative triangle:

RK
m

I⊗Km (I/I2)⊗QmF 0
//

∂K

��

∂Ind

��

(see Subsection 1.1.6). Adding kernels, cokernels and induced maps, we get the
diagram:

ker ∂Ind ker ∂K

RK
m

I⊗KmK (IK/I
2
K)⊗QmAm+1 ∼= ker F 0 coker F 0 = 0

Am ∼= coker ∂K coker ∂Ind ∼= Am

ooooF Syz
oo

F 0
//

�� ��

∂K

��

∂Ind

��
// //

�� ��

��

µA

��
//

GG

Lemma 2. The following sequence is exact:

0 → ker ∂K
F Syz

−−−→ ker ∂Ind → Am+1 µA−−→ Am −→ Am −→ 0 (9)

Proof. The only point that does not follow from the Hexagon Lemma is that
coker ∂Ind ∼= Am. Although this is true in general, we omit the proof as it
follows easily in the situations of greatest interest to us, where the requirements
of Proposition 6 are met. In such cases, we have F 1 : Rm

∼→ Rm, ∂Ind = ∂A◦F 1

and coker ∂A ∼= V ⊗Qm

∂A(Rm)
∼= Am, as desired.

We note that Proposition 3 follows immediately from the last 4 terms of the
above exact sequence.
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Lemma 3. For every m ∈ N, FSyz is surjective if and only if µA : Am+1 → Am

is injective.

Proof. Clear from the long exact sequence.

It is clear that the µA : Am+1 → Am are injective for all m if and only if
the compositions Am+1 → Am → · · · → ImK are also injective for all m. Since
the compositions are always surjective, injectivity is equivalent to isomorphism.
This proves Proposition 5.

3 Postponed Proofs

3.1 Eliminating Linear Relations

We mentioned in Subsection 1.1.2 that we work with the completions K̂ of K
(and F̂ of F ) because, by picking a suitable set of generators for K (and F ) and
passing to the completions, we may arrange that M ⊆ I2F (and we will use this
in the sequel).

To prove this claim, we let {xp : p ∈ P} be a set of generators for the algebra
K, so that {x̄p := (xp − 1) : p ∈ P} is a set of generators for IK as a left- or
right-sided ideal in K. The images of the {x̄p : p ∈ P} in the vector space
(IK/I

2
K) generate that space, so the images of some subset {x̄p : p ∈ S ⊆ P}

form a basis. Thus the {x̄p : p ∈ P−S} may be expressed as linear combinations
of the {x̄p : p ∈ S} modulo elements of I2K . More generally, we may replace
any polynomial involving the {x̄p : p ∈ P − S} by a polynomial involving only
{x̄p : p ∈ S}, modulo elements in higher powers of IK . It therefore follows that
the {x̄p : p ∈ S} generate the completion, and we may drop the {x̄p : p ∈ P −S}
from our list of generators.

We note in particular that in the case where K is the group algebra of some
group G, the generators of K as an algebra would normally include, not only
the group generators, but also their inverses. Moreover, the relations ideal M
would include relations derived from the group laws for the generators. Thus if
a is a generator of the group, and b its inverse, we have the group law ab = 1
which gives, under the substitution a 7→ ā+1, b 7→ b̄+1, where ā := (a−1) and
b̄ := (b− 1), the relation ā+ b̄+ āb̄ = 0, which is not in I2F . However using the
relation b̄ = −ā− āb̄ we can replace all occurrences of b̄ by −ā, provided we are
working in the completion of K. So in the case of group algebras we will take as
generators only the group generators and we omit the group law relations from
M .

Coming back to the case of a general K, we can also see that M ⊆ I2F .
Indeed, (IF /I

2
F ) and (IK/I

2
K) are now vector spaces with bases having the same

number of elements, and hence are isomorphic. However it is also clear that:
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(IK/I
2
K) =

IF /M

I2F /(M ∩ I2F )

=
IF /M

(I2F +M)/M

=
IF

I2F +M

=
(IF /I

2
F )

(I2F +M)/I2F

=
(IF /I

2
F )

M/(M ∩ I2F )

so we must have M/(M ∩ I2F ) = 0, i.e. M ⊆ I2F .

3.2 Some Algebraic Preliminaries

In this subsection we record two algebraic lemmas which are used in the sequel.
The reader may initially want only to skim the statement of the lemmas and
then pass on to the next subsection.

Lemma 4. Let C be an algebra and, for i = 1, 2, let Ai ⊆ Bi be 2-sided
C-modules. Then the obvious map B1⊗C B2 −→ B1

A1
⊗C B2

A2
induces an isomor-

phism:
B1 ⊗C B2

A1 ⊗C B2 +B1 ⊗C A2

∼=
B1

A1
⊗C

B2

A2

with an obvious extension to the case i = 1 . . . n, n ∈ N.

Proof. Straightforward.

Lemma 5. Let C be an augmented algebra over Q with augmentation ideal J ,
and H ⊆ L be 2-sided C-modules such that:

JL ⊆ H ⊇ LJ

Then L/H is a trivial 2-sided C-module.

Corollary 1. ImK /I
m+1
K is a trivial 2-sided A-module.

Proof. Follows from Lemma 5, with C replaced by A, J by IK , L by ImK and H
by Im+1

K .

Proof of Lemma 5. The left C-action C ⊗Q (L/H) −→ (L/H) is 0 on J ⊗Q

(L/H), hence factors through C⊗Q(L/H)
J⊗Q(L/H) , and:

C ⊗Q (L/H)

J ⊗Q (L/H)
∼= (C/J)⊗Q (L/H) ∼= Q⊗Q (L/H) ∼= (L/H)

The same is true for the right action, and the result follows.

14



3.3 Proof of Proposition 4

Proof of Proposition 4. We have:

I⊗KmK

IK .I
⊗Km
K

∼=
I⊗KmK∑

I⊗KpK ⊗K I2K ⊗K I⊗Km−p−1K

∼= (IK/I
2
K)⊗Km (10)

by Lemma 4.
It is clear that we can replace the ⊗K in (10) by ⊗Q since, by Corollary 1,

(IK/I
2
K) is a trivial 2-sided K-module.

3.4 Proof of Proposition 2

Before moving on to the proof of Proposition 2, we introduce some notation.
Recall that µK denotes the product I⊗Km+1

K −→ IK .I
⊗Km
K . By analogy, we will

denote by µFF the product

µFF : I⊗Fm+1
F −→ IF .I

⊗Fm
F (11)

Proof of Proposition 2. 6

We note that µFF is a homomorphism of 2-sided F -modules (where F acts by
left-multiplication in the left component of IF⊗F IF , and by right-multiplication
in the right component). It is clear that µFF is surjective; moreover, since IF is
a free F -module, the functor IF ⊗F − preserves the inclusion IF ↪→ F , and so
µFF is also injective, hence an isomorphism.

Since M ⊆ I2F , we can define:

RF := µ−1FF (M) ⊆ IF ⊗F IF

and get M = µFF (RF ).
Let us define:

RF
m,p := I⊗F pF ⊗F RF ⊗F I⊗Fm−p−2F

and
RF
m :=

∑
p

RF
m,p ⊆ I

⊗Fm+1
F

Similarly, let us define:

Mm,p := I⊗F pF ⊗F M ⊗F I⊗Fm−p−1F

and
Mm :=

∑
p

Mm,p ⊆ I⊗FmF

6With thanks to Dror Bar-Natan for considerably simplifying the original proof.
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Then it is again clear that, since IF is a free F -module, the isomorphism

M
µFF∼= RF extends to isomorphisms (for all m, p):

Mm−1,p ∼= RF
m,p

and hence ∑
p

Mm−1,p ∼=
∑
p

RF
m,p (12)

Now consider the following commutative diagram:

∑
pR

F
m,p

∑
pMm−1,p

I⊗FmF IF .I
⊗Fm−1
F

I⊗KmK IK .I
⊗Km−1
K

µresFF
∼

//

µFF

∼
//

µK //

����

��

����

��

πm

����

πresm−1

����

where πm : I⊗FmF � I
⊗Fm
F

Mm
= I⊗KmK (by Lemma 4), and the superscript •res

denotes the restriction of the relevant map. Note with regard to the top right
corner that ker πresm−1 = Mm−1 ∩ IF .I⊗Fm−1F = Mm−1 since M ⊆ I2F . Thus the
right column is exact by definition. Then we have:

ker µK = πm(µFF
−1(ker πresm−1)) = πm(

∑
p

µFF
−1Mm−1,p)

= πm(
∑
p

RF
m,p) = ∂KRm

where interchanging the
∑

and µ−1FF in the second equality is justified by (12).
Thus we conclude that ∂K(Rm) = ker µK for all m as required.

3.5 Proof of Proposition 6 and Theorem 1

We first need the following lemma.

Lemma 6. We have R ∼= M/(I3F ∩M) ∼= (M+I3F )/I3F . Moreover, (M+I3F )/I3F
is a trivial 2-sided F -module (with F acting by left multiplication on the left
component, and by right multiplication on the right component).
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Proof. To see this, note that:

I2K
I3K
∼=

I2F /M

I3F /(M ∩ I3F )
∼=

I2F /M

(I3F +M)/M
∼=

I2F
I3F +M

∼=
I2F /I

3
F

(I3F +M)/I3F

The lemma will follow once we see, with regard to the last numerator, that
I2F /I

3
F
∼= (IK/I

2
K)⊗Q (IK/I

2
K), as follows:

I2F
I3F

µFF∼←− IF ⊗F IF
IF .I

⊗F 2
F

∼=
I⊗F 2
F /M2

IF .I
⊗F 2
F /M2

∼=
IK ⊗K IK

IK .I
⊗K2
K

∼= (IK/I
2
K)⊗Q2

where for third equivalence we used Lemma 4 and for the last equivalence we
used Proposition 4.

The triviality of the F -action is clear from the fact that (I3F + M)/I3F ⊆
I2F /I

3
F , and the fact that the latter is a trivial F -module, which easily follows

from Lemma 5.

Proof of Proposition 6. Recalling that M is generated as a 2-sided F -module
by {yq : q ∈ Q} (see the statement of Proposition 6), let us write YF := {Yq :=
µFF
−1(yq) : q ∈ Q}. Then YF generates both RF /M2 and (M + I3F )/I3F as F -

modules; but since both RF /M2 and (M+I3F )/I3F are trivial 2-sided F -modules,
YF in fact generates both as 2-sided Q-modules. Therefore we have surjections

R ∼= RF /M2 QYF (M + I3F )/I3F
∼= R

πKoooo πR // //

Under our assumption that the {yq + I3F : q ∈ Q} are linearly independent,
πR is clearly injective, hence an isomorphism.

Similarly, note that because µFF is an isomorphism, and yq+I3F = µFF (Yq)+
µFF (IF .I

⊗F 2
F ) = µFF (Yq + IF .I

⊗F 2
F ), the linear independence of the {yq + I3F :

q ∈ Q} is equivalent to the linear independence of {Yq + IF .I
⊗F 2
F : q ∈ Q}. Now

since M2 ⊆ IF .I⊗F 2
F , it follows a fortiori that the {Yq +M2 : q ∈ Q} are linearly

independent. Hence πK is also injective, hence an isomorphism. Thus it follows
that F 1 := πR ◦ π−1K gives an isomorphism R

∼→ R as Q-modules, as required.
We now show that Rm

∼= Rm as Q-modules. This largely reduces to the
following lemma:

Lemma 7. If L is a trivial 2-sided K-module, then I⊗KpK ⊗K L ⊗K I⊗KqK
∼=

(IK/I
2
K)⊗Qp ⊗Q L⊗Q (IK/I

2
K)⊗Qq.

Proof. Suppose i, i′ ∈ IK and l ∈ L. Then ii′ ⊗K l = i⊗K i′l = 0. Thus IK ⊗K
L ∼= (IK/I

2
K) ⊗K L, and both components are trivial K-modules. Therefore

IK ⊗K L ∼= (IK/I
2
K)⊗Q L, and this extends readily to the desired result.

Now with L = R, we get:

Rm,p
∼= I⊗KpK ⊗K R⊗K I⊗KqK

∼= (IK/I
2
K)⊗Qp ⊗Q R⊗Q (IK/I

2
K)⊗Qq

∼= (IK/I
2
K)⊗Qp ⊗Q R⊗Q (IK/I

2
K)⊗Qq ∼= Rm,p
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hence
Rm =

⊕
Rm,p

∼=
⊕

Rm,p ∼= Rm

as Q-modules.
Lastly, we check that ∂Ind = F ◦ ∂K = ∂A ◦ F 1. More precisely, we need to

check that F ◦ ∂K = ∂A ◦ πR ◦ π−1K , or equivalently that F ◦ ∂K ◦ πK = ∂A ◦ πR.
So let Yq ∈ YF , then:

F ◦ ∂K ◦ πK(Yq) = F ◦ ∂K((Yq +M2)/M2) = F ((Yq +M2)/M2)

=
(Yq +M2)/M2 + IF .I

⊗F 2
F /M2

IF .I
⊗F 2
F /M2

=
(Yq + IF .I

⊗F 2
F )/M2

IF .I
⊗F 2
F /M2

=
Yq + IF .I

⊗F 2
F

IF .I
⊗F 2
F

= ∂A ◦ πR(Yq)

This extends immediately to the summands Rm,p and Rm,p of Rm and Rm
respectively, as needed.

Proof of Theorem 1. The first claim in Theorem 1 follows from Proposition 5
and Remark 1. We deal with the restriction to degree 3 for the Koszul case in
the next subsection.

3.6 Some Reminders About Quadratic Duality

3.6.1 Basics

In this subsection we briefly review the theory of quadratic algebras to the
extent needed to prove the final claim in Theorem 1, and to cover material that
will be needed later (but skipping proofs). The reader who is not familiar with
this theory can find a quick overview in [Froberg2] or [Hille], or more extensive
treatment in [Pol] and [Kraehmer]; the original source is [Priddy].7

We start with the quadratic algebra A which is given by A = TV/〈R〉 (in
the notation of Subsection 1.1.3). The quadratic dual algebra A! is defined as
A! := TV ∗/〈R⊥〉, where V ∗ is the linear dual vector space and R⊥ ⊆ V ∗ ⊗ V ∗
is the annihilator of R.

One indication of the usefulness of the concept of quadratic duality is that the
degree 2 part of the dual algebra catalogues the relations of the original algebra
(this is true for all quadratic algebras). More generally, the Koszul complex
provides a readily computable ‘candidate’ resolution for A, which is an actual
resolution precisely when A is Koszul. In particular the degree 3 part of the dual
provides at least a candidate catalogue of the relations among the relations of
the original algebra (i.e. syzygies) - and more generally, the degree m part of the
dual provides a candidate catalogue of the relations among relations among ...

7As noted in footnote 3, we rely on results about Koszul algebras which have only been
developed for graded algebras whose graded components are finitely generated over the ground
ring. Hence, wherever we rely on Koszulness of A, we assume the algebra K to be finitely
generated. This is sufficient to ensure that Am is finitely generated over Q.
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((m− 1) times) of the original algebra (which we will call the level m syzygies).
Moreover, there are specific maps from the degree m part of the dual into the
space of level m syzygies. The statement that a quadratic algebra is Koszul is
equivalent to the statement that the dual algebra not only provides a candidate
catalogue of the syzygies of all levels, but an actual, complete catalogue of
those syzygies. For purposes of this paper, it is only the level 3 syzygies that
are important.

More specifically, if we define ∆!
1,1 : A!2∗ → V ⊗ V as the dual to multipli-

cation V ∗ ⊗ V ∗ → A!2, then in fact ∆!
1,1 is an isomorphism:

∆!
1,1 : A!2∗ ∼→ R (13)

Thus A!2 catalogues the degree 2 relations of A and the map ∆!
1,1 sends a basis

of A!2 to a basis of R (see (22) and (23) below, in the case of pvb!n).
In the same vein, A!3 catalogues all relations between relations of A, in degree

three8 - in other words, A!3 ∼= (R ⊗ V ∩ V ⊗ R) (see [Pol], proof of Theorem
4.4.1). More specifically, if ∆!

2,1 is dual to the multiplication: A!2 ⊗ V ∗ � A!3,
then the map

(∆!
1,1⊗ 1) ◦∆!

2,1 : A!3∗ ↪→ R⊗V ⊆ X3
1 (14)

is actually an isomorphism A!3∗ ∼→ (R⊗V ∩ V ⊗R) which maps a basis for A!3

to a basis for the degree 3 syzygies (viewed as a subspace of X3
1 ).

Similarly, if ∆!
1,2 is dual to the multiplication: V ∗ ⊗A!2 → A!3, the map:

(1⊗∆!
1,1) ◦∆!

1,2 : A!3∗ ↪→ R⊗V ⊆ X3
2 (15)

is an isomorphism A!3∗ ∼→ (R⊗V ∩ V ⊗R), and maps a basis for A!3 to a basis
for the degree 3 syzygies (viewed as a subspace of X3

2 ).
A priori, A!3 need not generate the (level 3) syzygies of A in degrees higher

than 3. However, if A is Koszul then indeed A!3 does generate the (level 3)
syzygies of A in all degrees, as we will explain further in the next subsection.

3.6.2 The Role of Koszulness

We will make use of the following theorem, which follows from [Pol], Theorem
2.4.1 (p.29) and Proposition 1.7.2 (p.16), to which the reader is referred for
proofs.

8Note that since R is a vector space over Q, there are no relations within R, so level 3
syzygies must have at least degree 3 in the generators of A. Given a level 3, degree 3 syzygy,
we can also get level 3 syzygies of higher degree by pre- or post-multiplying all terms in the
syzygy by monomials in the generators, although level 3 syzygies of higher degree need not
all arise in this way (except when the algebra is Koszul).
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Theorem 2. Koszulness9 of the algebra A implies exactness of the sequence:⊕
i<j

(Rm,i ∩Rm,j)
∂Syz−→

⊕
i

Rm,i
κ−→ V ⊗m (16)

In (16), the direct sums are external, and the maps are induced from the
following diagram:

Rm,i ∩Rm,j

Rm,i

Rm,j

V ⊗m

(+1)

(−1)

<<

""

""

<<

where the left diagonals are multiplication by the indicated factors, and the
right diagonals are the inclusions.

Note that we can decompose
⊕

i<j(Rm,i ∩Rm,j) as follows:⊕
i<j

(Rm,i
⋂
Rm,j) =

⊕
i

(Rm,i ∩Rm,i+1)⊕
⊕
i+1<j

(Rm,i ∩Rm,j)

The syzygies
⊕

i+1<j(Rm,i ∩ Rm,j) are ‘trivial’ in the sense that they arise
from the obvious fact that non-overlapping relations commute. This fact re-
mains true at the global level, so that these ‘trivial’ syzygies also trivially satisfy
the PVH Criterion.

The more interesting syzygies are the (Rm,i ∩ Rm,i+1). From the review
given in the previous subsection, we have (Rm,i∩Rm,i+1) ∼= V ⊗i⊗ (X3

1 ∩X3
2 )⊗

V ⊗m−i−2 ∼= V ⊗i ⊗ A!3 ⊗ V ⊗m−i−2. This makes clear that the PVH Criterion
need only be checked in degree 3 in the Koszul case.

4 The Quadraticity of PvBn

4.1 Overview

We now turn to PvBn. Our goal being to establish that PvBn is quadratic using
the PVH Criterion, we will follow the following steps:

• Check that the preliminary requirements (as per Subsection 1.1.2) for
applying the PVH Criterion are met.

• Find the infinitesimal syzygies. We will use the fact that pvbn is Koszul,
and that accordingly the infinitesimal syzygies are essentially given by
pvb!3n . (The Koszulness of pvb!n was first established in [BarEnEtRa], and

9As per footnote 4, A need only be 2-Koszul, i.e. its Koszul complex need only be exact
up to homological degree 2 inclusive.
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we give an alternative proof in subsection 4.7). After finding a basis for
pvb!n, and in particular for pvb!3n , we will see that finding the infinitesimal
syzygies becomes a fairly straightforward calculation.

• Find the global syzygies corresponding to the Zamolodchikov tetrahedron,
and compute the induced infinitesimal syzygies.

• Check that global syzygies induce all of the infinitesimal syzygies, con-
firming that the PVH Criterion is met.

4.2 Terminology and Preliminary Requirements for PVH
Criterion

We denote by QPvBn and QF the rational group ring of PvBn and the rational
free group ring on the same generators, respectively. Their respective augmen-
tation ideals are denoted IK and IF .

Consistent with the discussion in Subsection 3.1, we take QPvBn to be com-
pleted with respect to the filtration by powers of the augmentation ideal, so
that we can eliminate the inverses of group generators, and the linear relations
corresponding to the group laws, from our presentation for QPvBn as an algebra.

Given the presentation for PvBn in Section 1, the augmentation ideal IK is
generated as a 2-sided QPvBn-module by the set X̃ := {Rij := (Rij − 1) : 1 ≤
i 6= j ≤ n}. As per Corollary 1, IK/I

2
K is a trivial 2-sided QPvBn-module, and

hence is a vector space generated by X̃. It is straightforward to check that the
elements of X̃ (modulo I2K) are linearly independent (i.e. QX̃ ∩ I2K = 0), and
hence in fact form a basis of IK/I

2
K . The X̃ (modulo I2K) correspond to the

generators {rij} for pvbn from the presentation (3).
As per Subsection 1.1.1, specifically (4), the relations in IF are given by the

2-sided ideal M in F generated by

Y ′ijk := RijRikRjkR
−1
ij R

−1
ik R

−1
jk − 1

Cklij
′

:= RijRklR
−1
ij R

−1
kl − 1

for 1 ≤ i, j, k, l ≤ n, and i, j, k, l all distinct. Equivalently, M is generated (as
2-sided F -ideal) by

Yijk := RijRikRjk −RjkRikRij (17)

Cklij := RijRkl −RklRij (18)

As per Lemma 6, the relations in pvbn are generated by R ∼= (M + I3F )/I3F .
Thus to obtain R, we make the substitution Rij 7→ (Rij + 1) throughout the
Yijk and Cklij , and drop all terms of degree 3 (or higher) in the Rij . We obtain

the quadratic relators {yijk; cklij} for pvbn (see (3)), up to replacing the {Rij}
by the {rij}.

Since PvBn is a finitely presented group, the requirements for applicability of
the PVH Criterion, as we have developed it, essentially reduce to (see Subsection
1.1.2):
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• Check that the ideal of relations M ⊆ IF actually satisfies M ⊆ I2F .

• Check that the generators (17) and (18) for M satisfy the requirement
that {Yijk + I3F , C

kl
ij + I3F } are linearly independent in (M + I3F )/I3F (as

required by Theorem 1).

The first requirement amounts to checking that the relators obtained above
for R (i.e. (3)) are all quadratic in the rij , which is clearly true. We note
that this is essentially due to the fact that the relators for PvBn all have degree
0 in each of the generators of PvBn, so that after performing the substitution
Rij 7→ (Rij+1) and expanding in terms of the Rij , all constant terms and terms
linear in the Rij cancel out. This proves the first requirement.

The second requirement is essentially a matter of checking that the {yijk; cklij}
are linearly independent. There are several ways to do this - one slightly fancy
way to do it is to use the isomorphism

∆!
1,1 : pvb!2n

∗ ∼→ R

which we recalled in (13), and note that ∆!
1,1 takes a basis of pvb!2n precisely to

the relators {yijk; cklij} of pvbn (we compute this in (22) and (23) below).

4.3 Finding the Infinitesimal Syzygies

As a preliminary matter we recall the definition of pvb!n and exhibit its relations.
As noted in Subsection 1.1.3, pvbn is defined as pvbn = TV/〈R〉 (where V =
IK/I

2
K and R were obtained in Subsection 4.2). The quadratic dual algebra

pvb!n is defined as pvb!n := TV ∗/〈R⊥〉, where V ∗ is the linear dual vector space
and R⊥ ⊆ V ∗ ⊗ V ∗ is the annihilator of R.

From these definitions, one readily finds that pvb!n is the exterior algebra
generated by the set {r∗ij : 1 ≤ i 6= j ≤ n}, subject to the relations:

r∗ij ∧ r∗ik = r∗ij ∧ r∗jk − r∗ik ∧ r∗kj (19)

r∗ik ∧ r∗jk = r∗ij ∧ r∗jk − r∗ji ∧ r∗ik (20)

r∗ij ∧ r∗ji = 0 (21)

where the indices i, j, k are all distinct.

4.3.1 A Basis for pvb!n

In this section we will identify a basis for the dual algebra pvb!n. We state the
result for all degrees, although we only actually need pvb!3n .

We note that monomials in pvb!n may be interpreted as directed graphs,
with vertices given by the integers [n] := {1, . . . , n}, and edges consisting of all
ordered pairs (i, j) such that rij is in the monomial. We thus get a graphical
depiction of the above relations:
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i

j k__ ?? =
i

j k__ //
−

i

j k??oo
(Pruning V)

k

i j

?? __
=

k

i j//
__

−
k

i joo
??

(Pruning A)

i j
//

oo = 0 (No Loop)

We note that there is a sign indeterminacy in the graphs, in that for instance
the LHS of (Pruning V) can equally refer to ±rij ∧ rik. We will only use the
graphs when the signs are immaterial.

Theorem 3. The algebra pvb!n has a basis consisting exactly of the monomials
corresponding to ‘chain gangs’, i.e. unordered partitions of [n] into ordered
subsets.

Corollary 2. The degree k component of pvb!n has dimension L(n, n−k), where
the ‘Lah number’ L(n, n− k) denotes the number of unordered partitions of [n]
into (n− k) ordered subsets.

Proof. Clear from the theorem, since it is easy to see that a chain gang on the
index set [n] with (n − k) chains must have exactly k arrows (and correspond
to a basis monomial of degree k).

We note that it was already proved in [BarEnEtRa] that the dimensions of
the graded components of pvb!n are given by the numbers of unordered partitions
of [n] into ordered subsets (although a basis for pvb!n was not provided).

We postpone the proof until Subsection 4.5. However, the idea of the proof is
straightforward, i.e. show that a basis is given by all monomials whose graphical
representation has no A-joinsA-joinsA-joins or V-joinsV-joinsV-joins (by which we mean the diagrams in the
LHS of the relations (Pruning A) and (Pruning V), respectvely) and no loops:

• One first shows that if a tree has an A-join or a V-join, we can replace it
by a sum of trees in which the particular join is replaced by an oriented
segment of length 2, using either (Pruning A) or (Pruning V). Eventually
we are left with a sum of oriented chains.

• One must then show that these oriented chains are linearly independent.

• Next one shows that all monomials whose graph contains a loop (oriented
or not) are 0: it turns out that loops of length greater than 2 can be
reduced progressively to loops of length 2, and then the resulting graph is
0 either by (No Loops) or by anti-commutativity.

Remark 2. We will see that directed chains of length 3 are in a 1-1 correspon-
dence with certain (level 3) syzygies of the global algebra A - specifically one
Zamolodchikov tetrahedron for each ordering of a particular choice of 4 of the n
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strands in PvBn. An arrow from index ‘i’ to index ‘j’ means strand ‘i’ remains
above strand ‘j’ throughout the syzygy. Although not relevant for our purposes,
this correspondence between oriented chains of length m and level m syzygies
holds for syzygies of all levels. These higher level global syzygies correspond to
generalizations of the Zamolodchikov tetrahedron, and most likely correspond in
some sense to generators of the cohomology of PvBn.

Remark 3. If in the basis given above one includes only generators rij with

i < j, we obtain a basis for the algebra pfb!n. This basis is different from the
basis given in [BarEnEtRa]. The basis given here is more useful for purposes of
applying the PVH criterion, because of the fact that directed chains of length 3
correspond to syzygies arising from the Zamolodchikov tetrahedron.

Remark 4. If, as in the previous remark, we again consider the implied basis for
pfb!n, we see that the (No Loop) relation and the exclusion of monomials whose
graph contains a loop are irrelevant. We are left with a rule that says that a basis
of pfb!n is given by all monomials whose graph does not contain an A-join or a
V-join. The exclusion of A-joins and V-joins amounts to specifying a quadratic
Gröbner basis for the ideal of relations in pfb!n. By a theorem of [Yuz], this
gives a proof that the algebra pfb!n (and its dual pfbn) is Koszul. Unfortunately
the given basis for pvb!n, as opposed to pfb!n, does not prove Koszulness, since
the no-loop exclusion corresponds to Gröbner basis elements of arbitrarily high
degree (i.e. of degree equal to the length of the loop). In subsection 4.7 we give
an alternative basis for pvb!n, from which the Koszulness of pvb!n can be deduced.

4.3.2 The Infinitesimal Syzygies

One can readily compute that the isomorphism ∆!
1,1 acts on basis elements of

pvb!2n
∗

as follows:10

∆!
1,1 : rij ∧ rjk 7→ [rij , rik] + [rij , rjk] + [rik, rjk] (22)

rij ∧ rkl 7→ [rij , rkl] (23)

Indeed one can in fact view (Pruning A) and (Pruning V) as giving the only
elements of V ∗ that do not multiply freely in pvb!2n , and then (since ∆!

1,1 is dual

to the product in pvb!2n ) the above result is immediate.
As noted following (14) and (15), the maps (1⊗∆!

1,1)◦∆!
1,2 and (∆!

1,1⊗1)◦∆!
2,1

are isomorphisms and give the inclusion of pvb!3n into X3
1 and X3

2 respectively.
It follows that the image of the map κ ◦ ∂Syz of X3

1 ∩X3
2 into V ⊗3 (see (16)) is

given by

κ ◦ ∂Syz(X3
1 ∩X3

2 ) =
[
(∆!

1,1⊗ 1) ◦∆!
2,1 − (1⊗∆!

1,1) ◦∆!
1,2

]
(pvb!3n ) (24)

10Instead of writing r∗∗ij for elements of pvb!2n
∗
, we write rij .
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It is easy to see that there are three types of basis element in pvb!3n , corre-
sponding to three types of chain gang with three edges:

• rij ∧ rjk ∧ rkl with i, j, k, l all distinct;

• rij ∧ rjk ∧ rst with i, j, k, s, t all distinct;

• rij ∧ rkl ∧ rst with i, j, k, l, s, t all distinct.

We first deal with the first type of basis element. We will show that in this
case the first term of (24) is given by:11

∆!
2,1(rij ∧ rjk ∧ rkl) = −(∆!

1,1 ⊗ 1)(rij ∧ rjk)⊗ (−ril − rjl − rkl)
+ (∆!

1,1 ⊗ 1)(rij ∧ rjl)⊗ (−rik − rjk + rkl)

− (∆!
1,1 ⊗ 1)(rik ∧ rkl)⊗ (−rij + rjk + rjl)

+ (∆!
1,1 ⊗ 1)(rjk ∧ rkl)⊗ (rij + rik + ril)

− (∆!
1,1 ⊗ 1)(rij ∧ rkl)⊗ (rik + ril + rjk + rjl)

+ (∆!
1,1 ⊗ 1)(rik ∧ rjl)⊗ (rij + ril − rjk + rkl)

+ (∆!
1,1 ⊗ 1)(ril ∧ rjk)⊗ (−rij − rik + rjl + rkl)

We defer a more detailed justification of the above calculation to Subsection
4.6. Now using (22) and (23), we get:

(∆!
1,1 ⊗ 1) ◦∆!

2,1(rij ∧ rjk ∧ rkl) = −yijk ⊗ (−ril − rjl − rkl) + yijl ⊗ (−rik − rjk + rkl)

− yikl ⊗ (−rij + rjk + rjl) + yjkl ⊗ (rij + rik + ril)

− cklij ⊗ (rik + ril + rjk + rjl) + cjlik ⊗ (rij + ril − rjk + rkl)

− cjkil ⊗ (rij + rik − rjl − rkl) (25)

In (25) the tensor products are the tensor products in the tensor algebra
TV , so we drop them. Furthermore, (1⊗∆!

1,1)◦∆!
1,2(rij ∧rjk∧rkl) is the same,

but with the tensor components flipped. Putting the two together gives:

(∆!
1,1 ⊗ 1) ◦∆!

2,1(rij ∧ rjk ∧ rkl) = −[yijk, (−ril − rjl − rkl)] + [yijl, (−rik − rjk + rkl)]

− [yikl, (−rij + rjk + rjl)] + [yjkl, (rij + rik + ril)]

− [cklij , (rik + ril + rjk + rjl)] + [cjlik, (rij + ril − rjk + rkl)]

− [cjkil , (rij + rik − rjl − rkl)] (26)

We will see that these syzygies are induced (via the map FSyz ) from global
syzygies in the next subsection.

11Again, we write rij instead of r∗∗ij for elements of pvb!3n
∗
.
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This leaves the two remaining types of degree 3 basis element in pvb!3n . It
is fairly straightforward to compute that they correspond, respectively, to the
relations:

yijkrst = rstyijk

and
cklijrst = rstc

kl
ij

which are clearly satisfied also at the global level.

4.4 Global Syzygies and the PVH Criterion

4.4.1 The Global Syzygies

We now display (a sum of) elements of I⊗K3
K which specify a syzygy of A3 and

which project via F 0 (see notation in Theorem 5) to the syzygy (26) in pvbn.
The syzygy corresponds to the standard syzygy in the braid group (i.e. the
Zamolodchikov tetrahedron pictured in Subsection 1.2), which can be written:

YjklRilRikRij +RjkRjlYiklRij +RjkRjlRikRilC
kl
ij

+RjkC
jl
ikRilRijRkl +RjkRikYijlRkl + YijkRilRjlRkl +RijRikC

jk
il RjlRkl

−RijRikRilYjkl −RijYiklRjlRjk − CklijRilRikRjlRjk
−RklRijRilCjlikRjk −RklYijlRikRjk −RklRjlRilYijk −RklRjlC

jk
il RikRij

where again

Yijk = RijRikRjk −RjkRikRij (27)

Cklij = RijRkl −RklRij

This calculation was illustrated in Subsection 1.2.
The calculation may be explained as follows. The illustration shows 14

braids {Bi}i=1,...,14 around its perimeter. These are linked by arrows labeled by
various multiples of the moves Yijk or Cklij . As per (27), if we attach the labels
B1, B2, . . . starting at the bottom braid and proceeding clockwise around the
perimeter, the arrows correspond to differences (B2−B1), . . . , (B8−B7) up the
left side of the diagram, and to differences (B14 − B1), . . . , (B8 − B9) around
the right side. But clearly the telescopic sums on the left and right both give
B8 −B1, so we get a syzygy which we wrote down above.

At this point the expression above should be viewed as an element of IF .
To write this syzygy as a sum of terms in I⊗K3

K , we proceed as in Subsection
4.2 and make the substitution Rij → (Rij + 1) throughout. One finds that all
terms of degree 0, 1 or 2 in the Rij cancel, so in fact the syzygy lives in I3F .

Recall that we denote π3 the projection I⊗F 3
F � I⊗K3

K (see Subsection 3.4).

If we denote by µ3
FF the composition I⊗F 3

F

µFF−→ I⊗F 2
F

µFF−→ IF , then applying
π3 ◦ (µ3

FF )−1 we get an element of I⊗K3
K (which we will not write down in full).
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This syzygy induces an infinitesimal syzygy which we obtain by dropping all
but the lowest degree terms in the Rij (this corresponds to applying the map
FSyz , which is just the restriction of the map F 0 from Subsection 1.1.6). After
reorganizing, we get:

[Ỹjkl, Rij +Rik +Ril]− [Ỹikl,−Rij +Rjk +Rjl] + [Ỹijl,−Rik −Rjk +Rkl]

− [Ỹijk,−Ril −Rjl −Rkl]

− [C̃klij , Rik +Ril +Rjk +Rjl] + [C̃jlik, Rij +Ril −Rjk +Rkl]

− [C̃jkil , Rij +Rik −Rjl −Rkl]

where the C̃klij and Ỹijk are the same as the cklij and yijk in (3), except the rij
are replaced by the Rij . By inspection, we see that this coincides with the
infinitesimal syzygy (26). Hence we have confirmed that all of the infinitesimal
syzygies are covered by global syzygies.

4.5 Proof of the Basis for pvb!
n

We will follow the outline of the proof provided in Subsection 4.3.1.
We will say that a pair of vertices in a forest graph is unorderedunorderedunordered if there is

not an oriented sequence of edges from one of them to the other. We define the
defectdefectdefect of a tree as the number of unordered pairs of vertices in the graph, and
the defect of a forest as the sum of the defects of its components.

Then chain gangs (unordered partitions of [n] into ordered subsets) are ex-
actly the forests with 0 defect. Moreover, in the pruning moves the A- and
V-joins have defect 1, while the remaining terms have defect 0.

We will refer to a relation formed by adding to each of the terms in either
(Pruning A) or (Pruning V) exactly the same additional edges, without ever
forming a loop, as a multiplemultiplemultiple of the original relation. Note that the graphs
representing the multiple need not be connected. The defect function has the
following ‘multiplicativity’ property on forests:

Lemma 8. In each multiple of either (Pruning A) or (Pruning V), the term
which is built from the term in the original relation containing a join has defect
strictly larger than the other terms.

The proof is deferred to the end of this subsection.

Proof of Theorem 3. We follow the plan of proof given following the statement
of Theorem 3.

The multiplicativity property of the defect makes clear that all forests can
be expressed in terms of (sums of) chain gangs: If a forest contains an A- or
V-join, then using either (Pruning A) or (Pruning V) we can replace it with a
sum of forests with strictly lower defect. Iterating, we get a forest with 0 defect,
i.e. a chain gang.
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Now we show that chain gangs are linearly independent modulo the relations
in pvb!n. The proof is a variation on the standard diamond lemma proof, which
we briefly recall. By a reductionreductionreduction, we mean specifically replacing the LHS of
either pruning relation, or a multiple thereof, by the RHS.

We will show that reducing a defect to 0 will produce the same chain gangs
regardless of the sequence of reductions chosen, by induction on the size of the
defect. This is clearly true when we start with a forest with defect 1, since there
is only one way to reduce such a forest.

Suppose the claim is true for all forests of defect ≤ m. Let us consider a
forest of defect m+ 1, and suppose there are two possible reductions, called (a)
and (b). Then applying either (a) or (b) gives a (sum of) new forests, which we
call A and B respectively, each of defect ≤ m.

Suppose (a) and (b) (or the pruning relations of which they are multiples)
involve changes to pairs of edges that do not overlap. Then it is still possible
to apply reduction (a) to B, and reduction (b) to A. Doing so, we obtain the
same forest C of defect ≤ m − 1, since the result of applying non-overlapping
reductions clearly does not depend on the order they are applied.

Alternatively, suppose (a) and (b) (or the pruning relations of which they
are multiples) involve changes to pairs of edges that do overlap. We will see
that we can find further reductions (a’), (a”) and (b’), (b”) such that applying
the sequence (a)-(a’)-(a”) or (b)-(b’)-(b”) leads to the same (sum of) forests C,
of defect ≤ m− 2.12

Either way, we know by induction that all reduction sequences from A give
the same results, and similarly for B, and since they have a common reduction
sequence going through C, we see that A and B both give the same (sum of)
forests of defect 0. Hence all reductions of the original forest must give the same
(sum of) chain gangs.

We now deal with the case where reductions (a) and (b) involve pairs of
edges that overlap, and exhibit the reductions (a’), (a”) and (b’), (b”). By
inspection of the A- and V-joins, the following three types of overlap can arise
(up to sign):

(X)

bb OO <<

(Y )

<<OObb

(Z)

??__ ??

In each case we have only shown the edges involved in the reductions.

Case (Z) is dealt with as follows (a star over a wedge
∗
∧ indicates the join

which is being reduced - hence to make the following more legible we have
dropped the ∗ from elements r∗ij ∈ pvb!n):

rij
∗
∧ rkj ∧ rkl = rik ∧ rkj

∗
∧ rkl + rij ∧ rki

∗
∧ rkl

= rik ∧ rkj ∧ rjl − rik ∧ rkl ∧ rlj − rij
∗
∧ ril ∧ rki + rkl ∧ rli ∧ rij

= rik ∧ rkj ∧ rjl − rik ∧ rkl ∧ rlj − rki ∧ rij ∧ rjl + rki ∧ ril ∧ rlj − rkl ∧ rli ∧ rij
12In fact the reductions (a’) and (b’) may really involve two reductions, applicable to dif-

ferent terms.
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while on the other hand

rij ∧ rkj
∗
∧ rkl = rik ∧ rkj

∗
∧ rkl + rki

∗
∧ rkl ∧ rij

= rik ∧ rkj ∧ rjl − rik ∧ rkl ∧ rlj + rki ∧ ril
∗
∧ rij − rkl ∧ rli ∧ rij

= rik ∧ rkj ∧ rjl − rik ∧ rkl ∧ rlj + rki ∧ ril ∧ rlj − rki ∧ rij ∧ rjl − rkl ∧ rli ∧ rij

Since the results of the two calculations are the same, we see that regardless
of which join we reduce first, there is a further sequence of reductions that leads
to the same (signed sum of) trees, which is what we needed.13

Cases (X) and (Y) are dealt with similarly - we simply note that

rij
∗
∧ rik ∧ ril = −rij ∧ rjl ∧ rlk + rij ∧ rjk ∧ rkl + ril ∧ rlj ∧ rjk

+ rik ∧ rkl ∧ rlj − rik ∧ rkj ∧ rjl − ril ∧ rlk ∧ rkj = rij ∧ rik
∗
∧ ril

and

ril
∗
∧ rjl ∧ rkl = rij ∧ rjk ∧ rkl − rik ∧ rkj ∧ rjl + rki ∧ rij ∧ rjl

− rji ∧ rik ∧ rkl + rjk ∧ rki ∧ ril − rkj ∧ rji ∧ ril = ril ∧ rjl
∗
∧ rkl

and leave the details of the calculations for the reader.
The next step in the proof is to show that all graphs with loops are 0. Let us

start by considering oriented loops. Using (Pruning V), we can reduce oriented
loops of length greater than 2 to (sums of) oriented loops of shorter length:

II //

YY
%%

=

II 99

YY
%%
−

99oo

YY
%%

Once again we note that there is a sign indeterminacy in the above graphical
representation, which does not affect the outcome as we do not rely on any
cancelation of terms and the specific coefficients do not matter.

Once we are down to oriented loops of length 2, these are 0 by (No Loops).
Now we consider unoriented loops. For loops containing a V-join, we can

use (Pruning V) to reduce loops of length greater than 2 to (sums of) loops of
shorter length:

		

//

= 		

99

−
//

yy

The case of unoriented loops containing an A-join, rather than a V-join, is
similar. Although the result of any such reduction may or may not be unori-
ented, we can still continue reducing the length of the loops using either the

13As per the previous footnote, note that reductions (a’) and (b’), indicated by the stars in
the RHS of the first lines, actually involve two reductions, applicable to separate terms.
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oriented or unoriented procedure. Once we are down to loops of length 2, these
are 0 either by (No Loops) or by anti-commutativity.

Thus, if we follow the above procedure, we can reduce all loops to 0. It is
also clear from the above that even if we followed a different sequence of pruning
moves we would never reduce loops to a sum of diagrams including trees, since
a pruning move can never break a loop.

We have completed the proof of Theorem 3, subject to proving multiplica-
tivity of the defect function, i.e. Lemma 8. We do this now.

By a ‘vertex in a relationvertex in a relationvertex in a relation’ we will mean a vertex which is an endpoint of at
least one edge in the graphs corresponding to the terms of the relation. It is
fairly clear this is a well-defined notion (and in particular that the number of
vertices in a relation is constant over all terms in a relation).

By the ‘join termjoin termjoin term’ in a multiple of a pruning relation, we mean the term
that was built by adding edges to the term in the original pruning relation
which contained an A- or V-join.

Proof of Lemma 8. We proceed by induction on the number of vertices in a
relation. We claim that if (x) and (y) are vertices in the new relation, and there
is a directed chain of edges from (x) to (y) in the join term, then there is also
a directed chain of edges from (x) to (y) (in the same direction) in the other
terms of the relation. Hence:

1. When we form a multiple of (Pruning A) or (Pruning V) by adding edges,
in that multiple each vertex is no more ordered (with respect to other
vertices) in the join-term than in the non-join terms.

2. However, in each relation, there is at least one pair of vertices which is
unordered in the join-term, but is ordered in the other terms, namely the
unordered paid in the original pruning relation.

So we can conclude that the join-term in the new relation must have strictly
highest defect.

The above claim is easily verified in the original relations (Pruning A) and
(Pruning V). We now assume the claim has been proved whenever there are up
to m edges in a relation; we take a relation with m edges and add a further
edge. There are three cases.

Case I: Two New Vertices.Case I: Two New Vertices.Case I: Two New Vertices. If the added edge forms a separate component in
the new graphs, then clearly the defect will have increased by the same amount
in all terms of the relation.

Case II: One Old, One New Vertex.Case II: One Old, One New Vertex.Case II: One Old, One New Vertex. So let us suppose that the added edge
has one vertex (a) already in the relation, and one new vertex (b). It is clear
that the orderliness of pairs of vertices not including (b) is unchanged.

Now suppose that (c) is any other vertex in the relation. If (b) and (c) are
ordered in the new join term, say with a directed chain from (b) to (c), this
chain must go through (a) since vertex (b) was not previously the endpoint of
any edge. Thus there was also a directed chain from (a) to (c) in the join-term
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of the old relation, hence by induction there were directed chains from (a) to (c)
in the non-join terms in the old relation. It follows that there is also a directed
chain from (b) to (c) in the new non-join terms. The case of a directed chain
from (c) to (b) in the new join-term is similar.

If (b) and (c) are unordered in the new join term, there is nothing to prove.
Letting (c) range over all other vertices in the relation proves Case II.

Case III: Two Old Vertices.Case III: Two Old Vertices.Case III: Two Old Vertices. All that is left is to consider the case where the
new edge links two existing vertices in the relation. Because we assume that
the added edge does not create a loop, it follows that the edge must be linking
two formerly disconnected components of the graphs underlying the relation.
We assume the new edge links existing vertices (a) and (b). It is clear that
the orderliness of pairs of vertices already within the same component in the
old relation is unchanged. So we take (c) and (d) to be to be any two vertices
in the component of (a) and (b) respectively. We can assume without loss of
generality that either (a) 6= (c) or (b) 6= (d) (because if (a) = (c) and (b) = (d)
then that pair is joined by the new edge and hence ordered in all terms of the
relation).

The reasoning is similar to Case II. If (c) and (d) are ordered in the new
join term, say with a directed chain from (c) to (d), this chain must go through
(a) and (b) since we assume there are no loops. Thus the new edge must be
oriented (a) to (b); moreover, there must also have been directed chains from
(c) to (a) and from (b) to (d) in the join-term of the old relation. By induction,
there were directed chains from (c) to (a) and from (b) to (d) in the non-join
terms in the old relation. It follows that there is also a directed chain from (c)
to (d) in the new non-join terms. The case of a directed chain from (d) to (c)
in the new join-term is similar.

Finally, if (c) and (d) are unordered in the new join term, there is nothing
to prove. Letting (c) and (d) range over all other vertices in the relation proves
Case III.

4.6 Justification of the Co-Product Formulas

We give here a summary of the action of the product m! : pvb!2n ⊗V ∗ → pvb!3n in
terms of the ‘directed chains’ basis for the respective spaces. The verifications
are routine and we will leave them to the reader.

r∗ij ∧ r∗jk ⊗ r∗il 7→ r∗il ∧ r∗lj ∧ r∗jk − r∗ij ∧ r∗jl ∧ r∗lk + r∗ij ∧ r∗jk ∧ r∗kl
r∗ij ∧ r∗jk ⊗ r∗jl 7→ −r∗ij ∧ r∗jl ∧ r∗lk + r∗ij ∧ r∗jk ∧ r∗kl
r∗ij ∧ r∗jk ⊗ r∗kl 7→ r∗ij ∧ r∗jk ∧ r∗kl
r∗ij ∧ r∗jk ⊗ r∗li 7→ r∗li ∧ r∗ij ∧ r∗jk
r∗ij ∧ r∗jk ⊗ r∗lj 7→ −r∗il ∧ r∗lj ∧ r∗jk + r∗li ∧ r∗ij ∧ r∗jk
r∗ij ∧ r∗jk ⊗ r∗lk 7→ r∗ij ∧ r∗jl ∧ r∗lk − r∗il ∧ r∗lj ∧ r∗jk + r∗li ∧ r∗ij ∧ r∗jk
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and

r∗ij ∧ r∗kl ⊗ r∗ik 7→ −r∗ij ∧ r∗jk ∧ r∗kl + r∗ik ∧ r∗kj ∧ r∗jl − r∗ik ∧ r∗kl ∧ r∗lj
r∗ij ∧ r∗kl ⊗ r∗ki 7→ r∗kl ∧ r∗li ∧ r∗ij − r∗ki ∧ r∗il ∧ r∗lj + r∗ki ∧ r∗ij ∧ r∗jl
r∗ij ∧ r∗kl ⊗ r∗il 7→ −r∗ij ∧ r∗jk ∧ r∗kl + r∗ik ∧ r∗kj ∧ r∗jl − r∗ik ∧ r∗kl ∧ r∗lj

− r∗ki ∧ r∗ij ∧ r∗jl + r∗ki ∧ r∗il ∧ r∗lj
r∗ij ∧ r∗kl ⊗ r∗li 7→ r∗kl ∧ r∗li ∧ r∗ij
r∗ij ∧ r∗kl ⊗ r∗jk 7→ −r∗ij ∧ r∗jk ∧ r∗kl
r∗ij ∧ r∗kl ⊗ r∗kj 7→ r∗kl ∧ r∗li ∧ r∗ij − r∗ki ∧ r∗il ∧ r∗lj + r∗ki ∧ r∗ij ∧ r∗jl

+ r∗ik ∧ r∗kl ∧ r∗lj − r∗ik ∧ r∗kj ∧ r∗jl
r∗ij ∧ r∗kl ⊗ r∗jl 7→ −r∗ij ∧ r∗jk ∧ r∗kl + r∗ik ∧ r∗kj ∧ r∗jl − r∗ki ∧ r∗ij ∧ r∗jl
r∗ij ∧ r∗kl ⊗ r∗lj 7→ r∗kl ∧ r∗li ∧ r∗ij − r∗ki ∧ r∗il ∧ r∗lj + r∗ik ∧ r∗kl ∧ r∗lj

Again the verification of the formulae for the dual map ∆!
2,1 is tedious but

routine and is left to the (beleaguered) reader.

4.7 Proof of the Koszulness of pvb!
n

As indicated in Remark 4, the basis given in Theorem 3 will not in itself lead
to a proof of Koszulness because the explicit exclusion of monomials whose
graphical representation contains a loop corresponds to Gröbner basis elements
of arbitrarily high degree. In contrast, standard theorems on Gröbner bases
only tell us that (under mild assumptions) algebras with quadratic Gröbner
bases are Koszul.

So we will exhibit a different basis for pvb!n, consisting of all monomials not
containing certain length two subwords, which corresponds to the specification
of a quadratic Gröbner basis for pvb!n. We will see that, by a result of Yuzvinsky
[Yuz] (see also [ShelYuz]), pvb!n(and hence also pvbn) is Koszul.

To begin with, given any finite subset I ⊆ N (which we order numerically),
we will define two kinds of graph with vertices indexed by I - we will call these
Down graphs and Up graphs. We will then show how to combine Down and Up
graphs to get graphs (which we will call Up-Down graphs) which correspond to
a new basis for pvb!n, of the desired form (i.e. corresponding to the specification
of a quadratic Gröbner basis for pvb!n).

We will also see that the Down and Up graphs, respectively, catalogue bases
for:

• the algebra pfb!n, which is quadratic dual to the quadratic approximation
for the flat virtual braid group PfBn ( i.e. the quadratic dual to the univer-
sal enveloping algebra of the triangular Lie algebra trn in [BarEnEtRa]);
and
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• the algebra pb!n, quadratic dual to the quadratic approximation for the
pure braid group PBn.

However, we do not have a coherent explanation for why bases for pfb!n and pb!n
should fit together in this way to produce bases of pvb!n. See Remark 8 below.

4.7.1 Down Graphs and pfb!n

A Down treeDown treeDown tree on the index set I = {i1, . . . , im} ⊆ N (with smallest index i1)
consists of a ‘tuft’ of directed edges {(i2, i1), . . . , (im, i1)}. (The graph is non-
planar in that all orderings of the edges incident to a particular vertex are
considered equivalent.) This corresponds to allowing all trees built with directed
edges with decreasing indices (i.e. edges (i, j) with i > j) by

• allowing the following subgraphs:

����

• excluding the following three subgraphs:

��

�� �� ��

��

��

where in all cases the relative heights of the endpoints indicate the relative
ordering of the indices (in particular, the middle subgraph has a doubled edge:
{(i, j), (i, j)}). We declare by way of convention that a Down tree on on index
set with one element is the empty graph. An example of a Down graph is the
following:

����ww

i.e.

i1

i2

i3

i4
�� �� ww

where i2 > i3 > i4 > i1.
Note that because of the last two types of excluded graph, we needn’t have

explicitly restricted ourselves to trees, as these exclusions prevent the formation
of (ordered or unordered) loops in the graph (recall also that Down graphs
are built only with directed edges with decreasing indices). Thus we have an
exclusion rule, of degree 2 in the number of edges, which effectively eliminates
loops. In particular the obstacle to proving Koszulness due to the presence of
non-quadratic Gröbner basis elements no longer arises.

We now define a Down forest on an index set I partitioned as I = S1t· · ·tSu
to be the union of the Down trees on the subsets Si.
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Remark 5. The monomials corresponding to Down forests induced by unordered
partitions of [n] = {1, 2, . . . , n} (using the correspondence explained in subsec-
tion 4.3.1) form a basis for the algebra pfb!n (as a skew-commutative algebra 14).
Indeed, it is easy to see that Down forests are in bijective correspondence with the
‘reduced monomials with disjoint supports’ which were proved in [BarEnEtRa],
Proposition 4.2, to form a basis of pfb!n = U(trn)! (with the minor difference
that the edges in [BarEnEtRa] had increasing indices). Also, the above excluded
subgraphs correspond to the excluded monomials implied by the Gröbner basis
given in [BarEnEtRa], Corollary 4.3, for U(trn)! (subject to always writing gen-
erators with increasing indices, using the relation ri,j = −rj,i). The fact that
these Gröbner basis elements are quadratic allowed [BarEnEtRa] to conclude
that pfb!n is Koszul.

4.7.2 Up Graphs and pb!n

An Up treeUp treeUp tree on the index set I = {i1, . . . , im} ⊆ N (with i1 < · · · < im) consists
of all trees built with directed edges with increasing indices by

• allowing the following two subgraphs:

__

GG OO

OO

• excluding the following two subgraphs:

??WW OO OO

where, again, in all cases the relative heights of the endpoints indicate relative
ordering of the indices. Furthermore, the graphs are again non-planar in that all
orderings of the edges incident to a particular vertex are considered equivalent;
also, we again declare by way of convention that a Up tree on an index set with
one element is the empty graph. An example of a Up tree is the following:

ZZ

OO

77

WW

??

LL

i.e.

i1

i4

i3

i2

i6

i5

i7

ZZ

OO
77

WW

??

LL

where i1 < · · · < i7.

14See [Mikha] for more on such bases.
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As with Down graphs we needn’t have explicitly restricted ourselves to trees,
since one effect of the excluded subgraphs is to prevent the formation of (ordered
or unordered) loops in the graph. Again, the obstacle to proving Koszulness due
to the presence of non-quadratic Gröbner basis elements has been avoided.

We now define an Up forest as a union of Up trees (with disjoint index sets).

Proposition 7. The Up trees on a given index set I with m elements (in which
all indices belong to at least one edge) are in bijective correspondence with the
cyclic orderings of [m] = {1, . . . ,m}, or equivalently the orderings of I starting
with the smallest index. This number is clearly (m− 1)!.

Proof. It is fairly easy to see that Up trees are what is called ‘recursive’ - i.e.
non-planar rooted trees with vertices labeled by distinct numbers, where the
labels are strictly increasing as move in the direction of the arrows. It is a
classical result that there are (m − 1)! of these on an index set of size m. One
way to see it is to place the root at the bottom of the picture with the edges
pointing up, and order the children of each node by increasing size toward the
left (we can do this since the trees are non-planar, i.e. the children of each node
are unordered): see the sample Up tree above. Now thicken all the edges into
ribbons (which are kept flat to the plane with no twisting). Finally, starting at
the root go along the outside edge of the ribbon graph in a clockwise direction
writing down each index the first time it is reached. The result is an ordering
of the m indices starting with the smallest (in the case of the sample Up tree
above we get (i1, i4, i6, i5, i3, i2, i7), and there are clearly (m− 1)! of these. It is
easy to see that this procedure gives the required bijection.

Corollary 3. The Up forests on an index set I are in bijective correspondence
with the unordered partitions of I into cyclically ordered subsets.

Remark 6. The monomials corresponding to Up forests induced by unordered
partitions of [n] = {1, 2, . . . , n}) into cyclically ordered subsets form a basis
for the algebra pb!n. Indeed, it is easy to see that Up forests are in bijective
correspondence with the basis elements for pb!n given in [Yuz], see also [Arnold]
and [ShelYuz]. Also, the above excluded subgraphs correspond to the excluded
monomials implied by the Gröbner basis given in [Yuz]. The fact that these
Gröbner basis elements are quadratic allowed [ShelYuz] to conclude that pb!n is
Koszul.

4.7.3 Up-Down Graphs and pvb!n

To define Up-Down graphs we first need the concept of an ordered 2-step par-
tition (essentially due to [BarEnEtRa]15). Namely given n ∈ N and [n] :=
{1, 2, . . . , n}, first take an unordered partition of [n] as [n] = S1 t · · · tSl where
the sets Si are cyclically ordered (and let mi denote the minimal element of
Si). Second, take an unordered partition of the set M := {mi : i = 1, . . . , l} of
minimal elements into distinct unordered subsets, M = M1 t · · · tMk.

15See the proof of Corollary 4.6, (iii). Our ordered 2-step partitions differ from their ‘2-step
partitions’ in that our underlying sets Si are cyclically ordered and theirs are unordered.
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Now suppose given such an ordered 2-step partition of [n]. First we form
the Down forest on the index set M with the given partition. Next we form
the Up tree on each of the (cyclically ordered) sets Si. The resulting graph is
called an Up-Down forestUp-Down forestUp-Down forest on the index set [n]. An Up-Down forest is uniquely
determined by a particular ordered 2-step partition, and conversely.

Theorem 4. The monomials corresponding to Up-Down graphs on ordered 2-
step partitions of [n] = {1, . . . , n} form a basis of pvb!n.

Remark 7. It is not hard to see that the Up-Down graphs on [n] consist exactly
of the red-black graphs corresponding to the monomials referred to in Proposition
4.5 of [BarEnEtRa].16 These monomials are shown in that proposition to form
a basis of a certain algebra QA0

n related to pvb!n: namely, after making a certain
change of basis to pvb!n = U(qtrn)!, [BarEnEtRa] show that a certain filtration
is defined on pvb!n. Then QA0

n is the quadratic approximation to the associated
graded of pvb!n with respect to that filtration. The given basis for QA0

n is then
used to find the Hilbert series and to prove the Koszulness of QA0

n, which in
turn lead to the Hilbert series and Koszulness of pvb!n. It is interesting that the
same collection of (Up-Down) graphs can be used to index a basis of pvb!n itself
and show directly that it is Koszul, as we shall see next.

Proposition 8. The algebra pvb!n has a basis consisting of all monomials whose
graph does not contain any of the following as subgraphs (again the relative
heights of the endpoints indicate relative ordering of the indices, and the graphs
are non-planar, so that the all edges (incoming or outgoing) incident to a par-
ticular vertex may be represented in any order without changing the graph):

OO OO ??WW

GG

��

??

��

��OO

OO

��

�� ��

��

��
��

��

Note that the first row consists exactly of the excluded subgraphs for Up
graphs. Thus if, in a graph corresponding to a basis monomial for pvb!n, we
look only at the subgraph of upward arrows, we see that this subgraph must be
an Up graph (and all Up graphs may arise).

The second row of excluded subgraphs features ‘mixed’ subgraphs, in that
they each involve both an up arrow and a down arrow. It is clear that the
non-excluded (= permitted) mixed subgraphs must be the following:

16The Down and Up graphs correspond respectively to red and black graphs in the ter-
minology used in the definition of 2-step partition immediately prior to Proposition 4.5 of
[BarEnEtRa].
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As is readily seen, the effect of these excluded and non-excluded mixed sub-
graphs is to ensure that different Up trees (which use only up arrows) which
are connected to each other by down arrows are in fact only connected to each
other by down arrows between their minimal elements.

Finally, the last row of excluded subgraphs involve only downward pointing
arrows, and consist precisely of the excluded subgraphs for Down graphs. Thus
a graph which excludes all the subgraphs listed in the proposition will be an
Up-Down graph, and conversely. Thus Theorem 4 follows from Proposition 8.

Proof of the Proposition. To begin with we linearly order the generators {rij :

1 ≤ i 6= j ≤ n} of pvb!n using the numerical order of the indices, i.e. rij >
rkl ⇐⇒ (i > k) or (i = k and j > l). Then, given a wedge product of
generators, we first order the generators in the product in increasing order, and
then we linearly order such monomials first by length and then lexicographically
(we also agree that u > 0 for all non-zero u). This ordering (which we refer to
as the lexicographical ordering) is multiplicative in the sense that if u, v, w are
wedge products such that u > v and uw 6= 0 then uw > vw.

We define a set S(2) of ‘illegal’ degree 2 monomials, consisting of those degree
2 monomials which can be expressed as linear combinations of ‘smaller’ mono-
mials (with respect to the lexicographical ordering) using the defining relations
of pvb!n. The set S(2) cannot be read off directly from the relations in the form
(19), (20) and (21) as some of these have the same maximal terms. However
one readily finds that those relations can be put in the following equivalent form
(where 1 ≤ i < j < k ≤ n):

rik ∧ rjk = rij ∧ rjk − rji ∧ rik (28)

rkj ∧ rji = rji ∧ rik − rji ∧ rjk − rji ∧ rki (29)

rki ∧ rkj = rki ∧ rij − rji ∧ rik + rji ∧ rjk + rji ∧ rki (30)

rik ∧ rkj = rij ∧ rjk − rij ∧ rik (31)

rjk ∧ rki = rji ∧ rik − rji ∧ rjk (32)

rij ∧ rkj = rij ∧ rjk − rij ∧ rik − rki ∧ rij (33)

as well as the relations (21). Each relation now has a distinct maximal term,
and these have been collected on the LHS above. Thus S(2) consists of the union
of the sets:

{rjk ∧ rik, rkj ∧ rji, rkj ∧ rki : 1 ≤ i < j < k ≤ n} (34)

{rik ∧ rkj , rjk ∧ rki, rij ∧ rkj , 1 ≤ i < j < k ≤ n} (35)

{rij ∧ rji, rij ∧ rij : 1 ≤ i 6= j ≤ n} (36)
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These monomials are readily seen to correspond with the excluded diagrams
of the Proposition. The Proposition will be proved if we can show that the set
S of monomials which do not contain any of the excluded 2-letter monomials
S(2) (even after re-ordering of the generators forming the monomial) comprise
a basis for pvb!n.

The proof of this fact is in the following two steps:

• show that the set S generates pvb!n; and

• show that S has the same number of elements in each degree as the basis
for pvb!n given in Theorem 3 (which implies that the elements of S are
linearly independent, and hence form a basis).

The fact that S generates pvb!n is easy, since if we have a monomial which
contains (possibly after reordering its factors) an excluded 2-letter monomial,
we can replace the monomial by a sum of terms in which the excluded 2-letter
monomial is replaced by a smaller, legal 2-letter monomial. It is clear that all of
these terms are strictly smaller than the original monomial with respect to the
lexicographical ordering, because of the multiplicative property of that ordering.
Hence, repeating if necessary, we must eventually reach a sum of terms none of
which contains an excluded 2-letter submonomial, even after reordering of its
factors - i.e. a sum of terms belonging to S.

The fact that S has the same number of elements in each degree as the basis
for pvb!n given in Theorem 3 is also straightforward. Let us consider again the
procedure described above for creating Up-Down graphs:

• First, take an unordered partition of [n] into some number l ≤ n of cycli-
cally ordered subsets (and form the unique Up graphs determined by the
cyclically ordered subsets) - the number of ways of doing this is s(n, l),
where s(−,−) denotes (unsigned) Stirling numbers of the first kind. It is
easy to see that the resulting Up forests have (n − l) arrows, so that the
resulting monomials have degree (n − l). We let mi denote the minimal
element of cycle Ci for i− 1, . . . , l.

• Second, take an unordered partition of M := {mi : i = 1, . . . , l} as M =
M1 t · · · tMk, where the Mi are unordered, and form the unique Down
graph determined by this partition of M. The number of ways of doing
this is S(l, k), where S(−,−) denotes (unsigned) Stirling numbers of the
second kind. It is easy to see that the resulting Down forests have (l− k)
arrows, so that the resulting monomials have degree (l − k).

It is clear that the resulting Up-Down graph will have (n−k) = (n−l)+(l−k)
arrows, and hence will correspond to a degree (n− k) monomial.

Thus if S̄n−k denotes the monomials in S̄ of degree (n− k) we find:

dim S̄n−k =

n∑
l=k

s(n, l)S(l, k) = L(n, k) = dim A!(n−k)
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For the last equality we used Corollary 2, and for the second-last equality
we used the so-called Lah-Stirling identity:

L = sS

where L, s and S are infinite-dimensional lower-triangular matrices whose (n, k)-
th entries are, respectively, L(n, k) (Lah numbers of Corollary 2), s(n, k) and
S(n, k). See [Riordan].

This completes the proof.

Corollary 4. The algebra pvb!n (and hence also pvbn) is Koszul.

Proof. The fact that the monomials S not containing any of the 2-letter mono-
mials S(2) form a basis for pvb!n means that the equations (28)-(33) and (21)
(whose leading terms are the S(2)) constitute a Gröbner basis for pvb!n (as a
skew-commutative algebra - see [Mikha]). This Gröbner basis is quadratic, and
hence by a result of [Yuz] 17, pvb!n is Koszul.

Remark 8. pvb!n as a ‘Product’ of the families pfb!n and pb!n

Given the correspondence between Down forests and pfb!n, and between Up
forests and pb!n, identified in Remarks 5 and 6, Theorem 4 suggests that the
family of all pvb!n (parametrized by n) may be some kind of ‘product’ of the
families of the pfb!n and pb!n. Indeed, one could express the Lah-Stirling identity
above in the form:

dim pvb!n−kn = L(n, k) =
∑
l

s(n, l)S(l, k) =
∑
l

dim pb!(n−l)n dim pfb
!(l−k)
l

As pointed out in [BarEnEtRa], pbn may be viewed as a quotient of pvbn
by pfbn. However, this does not explain why one might be able to view pvb!n as
the kind of product of the families pb!n and pfb!n suggested by the Lah-Stirling
identity.

5 Final Remarks

5.1 Other Groups

One could seek to apply the PVH Criterion to determine whether other groups
are quadratic. One group that comes to mind is the pure cactus group Γ,
as developed for instance in [EHKR]. As a prerequisite, one would need to
have a presentation for the pure cactus group, and to show that the quadratic
approximation to the associated graded of QΓ with respect to the filtration by
powers of the augmentation ideal (i.e. the universal enveloping algebra of the
holonomy Lie algebra of Γ) is Koszul.

17Theorem 6.16.
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5.2 Generalizing the PVH Criterion

As mentioned in the Introduction, the PVH Criterion arguably lives naturally
in a broader context than we have explored here, such as perhaps augmented
algebras over an operad (or the related ‘circuit algebras’ of [BN-WKO]).

In a different direction, one could try to generalize the criterion to deal with
filtrations of an algebra by powers of an ideal other than an augmentation ideal.
A particular case of this deals with groups that exhibit a ‘fibering’. For instance
the virtual braid group vBn fits into an exact sequence:

1→ PvBn → vBn → Sn → 1

where Sn is the symmetric group. (Similar sequences exist for the braid group
and the cactus group.) In such cases it is more interesting to consider the ideal
corresponding to the kernel of the induced homomorphism QvBn → QSn, rather
than the augmentation ideal of QvBn. The extension of the PVH Criterion to
cover these particular ideals should not be too difficult.

5.3 Further Applications of the Global Quadratic Approx-
imation

At least if B is quadratic, the algebra A appears to carry the same information
as K (and when K is the group ring of some group G, as G itself). The
advantage of A is that it is a ‘quadratic algebra’, in that it is a graded algebra
generated in degree 1 and with ideal of relations generated by homogeneous
relations of degree 2. Thus one may be able to bring the theory of quadratic
algebras (including quadratic duality and Koszulness) to bear on the study of
A, and indirectly of K or G.

One may for instance ask what ‘Koszulness’ of the quadratic algebra A means
(assuming it makes sense). It seems such Koszulness may have implications for
computing the cohomology of the group G, when K = QG (see Remark 2).

More generally, one might attempt to prove results about K by working with
the quadratic dual algebra A!. The dual algebra is often easier to work with, as
seen for example by the fact that we were able, in this paper, to find 2 bases for
pvb!n and thereby prove Koszulness, whereas no basis is as yet known for pvbn
itself.

In this vein, one could seek to relate the module categories of A and its
quadratic dual, by analogy with [BeilGS] and [Floystad] in which these cate-
gories are shown to be equivalent (under more restrictive conditions, in par-
ticular on the ground ring). One is often interested in determining whether
there is an algebra map K → A which induces an isomorphism in homology
(or, alternatively, a filtered algebra map K → A whose associated graded is the
identity). If B is quadratic, one could instead ask whether there is an algebra
map A → A with such a property. We note that such a map would induce a
particular structure of A-module on A. Hence one may be able to obtain infor-
mation about the existence of such a structure (and indirectly the existence of
the desired map) by instead studying A!-module structures.
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In attempting to pursue such questions, one immediately runs into the fact
that A is an algebra over the ground ring A0 which in general need not be semi-
simple, whereas thus far most of the results concerning quadratic duality and
Koszulness apply to graded rings over a semi-simple ring (or even a field). This
is true in particular of the papers [BeilGS] and [Floystad].18

At this point, these questions remain speculative.
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