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If an augmented algebra K over Q is filtered by powers of its augmentation ideal I,

the associated graded algebra grIK need not in general be quadratic: although it is

generated in degree 1, its relations may not be generated by homogeneous relations of

degree 2. In this thesis we give a sufficient criterion (called the PVH Criterion) for grIK

to be quadratic. When K is the group algebra of a group G, quadraticity is known to

be equivalent to the existence of a (not necessarily homomorphic) universal finite type

invariant for G. Thus the PVH Criterion also implies the existence of a universal finite

type invariant for the group G. We apply the PVH Criterion to the group algebra of the

pure virtual braid group (also known as the quasi-triangular group), and show that the

corresponding associated graded algebra is quadratic, and hence that these groups have

a universal finite type invariant.
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Chapter 1

Executive Summary

This thesis will ultimately be concerned with the pure virtual braid groups PvBnPvBnPvBn, for all

n ∈ N, generated by symbols Rij, 1 ≤ i 6= j ≤ n, with relations the Reidemeister III

moves (or quantum Yang-Baxter relations) and certain commutativities:

RijRikRjk = RjkRikRij (1.1)

RijRkl = RklRij, (1.2)

with i, j, k, l distinct. This group is referred to as the quasi-triangular group QTrnQTrnQTrn in

[BarEnEtRa].

We will also be concerned with the related algebra pvbn, generated by symbols rij,

1 ≤ i 6= j ≤ n, with relations the ‘6-term’ (or ‘classical Yang-Baxter’) relations, and

related commutativities:

yijk := [rij, rik]+[rij, rjk] + [rik, rjk] = 0, (1.3)

cklij := [rij, rkl] = 0 (1.4)

with i, j, k, l distinct. This algebra is the universal enveloping algebra of the quasi-

triangular Lie algebra qtrn in [BarEnEtRa].
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Chapter 1. Executive Summary 2

The group of pure flat braids PfBnPfBnPfBn is given by the same generators and relations as

PvBn, but with additional relations RijRji = 1. Associated to it is the algebra pfbnpfbnpfbn with

the same generators and relations as pvbn, but with the additional relations rij + rji = 0.

PfBn is referred to as Trn in [BarEnEtRa], while pfbn is the universal enveloping algebra

of the Lie algebra trn of [BarEnEtRa].

We will show that PvBn is a ‘quadratic group’, in the sense that if its rational group

ring QPvBn is filtered by powers of the augmentation ideal I, the associated graded ring

grPvBn is a quadratic algebra: i.e., a graded algebra generated in degree 1, with relations

generated by homogeneous relations of degree 2. We note that, in different language, this

is the statement that PvBn has a universal finite-type invariant, which takes values in

the algebra pvbn. We will also prove the corresponding statements for PfBn.

In [Hutchings], a criterion was given for the quadraticity of the pure braid group.

The proof relied on the geometry of braids embedded in R3. In order to generalize this

criterion to all finitely presented groups, we developed an algebraic proof of the criterion.

This proof turned out not to rely on the existence of an underlying group, and applies

instead to algebras over Q, filtered by powers of an augmentation ideal I. Indeed, this

criterion arguably lives naturally in an even broader context, such as perhaps augmented

algebras over an operad (or the related ‘circuit algebras’ of [BN-WKO]), although we do

not investigate this broader context here.

Our criterion may be summarized as follows in the case of an augmented algebra

K with augmentation ideal IK . We denote by grIK = ⊕m≥0ImK /Im+1
K the associated

graded algebra of K with respect to the filtration by powers of the augmentation ideal.

Let A be the ‘quadratic approximation’ of grIK, namely the graded algebra with the

same generators and with ideal of relations generated by the degree 2 relations of grIK.

We will see that, in fact, we can view the generators of K as also generating A, and

interpret a certain space RF of free generators of the relations in K as also generating

the relations in A. It thus makes sense to ask whether the relations among the elements



Chapter 1. Executive Summary 3

of RF , when viewed as relations in A, also hold when these are viewed as relations in K

- i.e., informally, whether the syzygies in A also hold in K. We show that if the syzygies

of A do also hold in K, then grIK is quadratic. Furthermore, if A is Koszul, we show

that it is sufficient to check this criterion in degrees 2 and 3.

In Chapter 2 of this thesis we give some useful background, both for the concept of

quadraticity and for the pure virtual (and pure flat) braid groups. We first briefly review

two concepts that are perhaps better known than quadraticity, namely that of a group

expansion, and that of 1-formality of a group. In particular we show that quadraticity

is equivalent to the existence of a particular type of group expansion, specifically a

(non-homomorphic) universal finite type invariant for the group G. We then introduce

the weaker, graded versions of expansion and 1-formality. We show that for a reasonably

broad class of groups (including those with finite type rational homology, and in particular

PfBn and PvBn) quadraticity is also equivalent to graded 1-formality. Although this

material is not needed in the sequel, it should help to situate the concept of quadraticity

in terms of concepts that may be more broadly familiar. We then give a more leisurely

introduction to PvBn and PfBn, and discuss the notion of an expansion and quadraticity

as applied to those groups. In particular, we recall that in [BarEnEtRa] it was shown

that PfBn and PvBn are not 1-formal, which is the motivation for proving that that they

are, nonetheless, quadratic.

In Chapter 3 we set the stage for and give a precise statement of the quadraticity

criterion (see Theorem 4). In Chapter 4 we supply details of proofs that were omitted

in Chapter 3. In Chapter 5 we specialize to PvBn. We present a basis for the quadratic

dual algebra pvb!n, and use this basis to compute the syzygies of pvbn and prove that

PvBn satisfies the quadraticity criterion. It follows that PvBn is quadratic (see Theorem

6). Because PfBn is a split quotient of PvBn, it also follows that PfBn is quadratic (see

Corollary 2), which confirms a result originally announced in [BarEnEtRa].

Although Koszulness of the algebra pvbn was originally established in
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[BarEnEtRa], we give a somewhat different proof in Section 5.7, by exhibiting a quadratic

Gröbner basis for pvb!n.

Finally, in Chapter 6 we point out some possible future avenues of research.

We note that the quadraticity of PvBn was conjectured in [BarEnEtRa]. As pointed

out in section 8.5 of that paper, the quadraticity of PvBn implies that H∗(PvBn) ∼= pvb!n

as algebras (this is Conjecture 8.6 of [BarEnEtRa]). Similarly, the quadraticity of PfBn

implies that H∗(PfBn) ∼= pfbn
! as algebras (which is Theorem 8.5 of [BarEnEtRa]). See

Corollary 1 and Corollary 3.

After this paper was substantially completed, the result was communicated to Alexan-

der Polishchuk, who pointed out that a theorem similar to Theorem 4 was obtained in

[PosVish] in the context of the cohomology algebra of a nilpotent augmented coalgebra,

albeit by different methods. For this reason we have referred to the criterion in Theorem

4 as the PVH Criterion (with reference to Positselski, Vishik and Hutchings).
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Chapter 2

Background

In this Chapter, which is not needed in the sequel, we will give a fairly concise summary

of two concepts, that of group expansion and that of 1-formality, and how they relate to

quadraticity. In particular we show that quadraticity is equivalent to the existence of a

(non-homomorphic) expansion, also known as a (non-homomorphic) universal finite type

invariant for the group G. Although this material is not needed in the sequel, it should

help to situate the significance of the concept of quadraticity in terms of concepts that

may be more broadly familiar. We also give additional background on the pure virtual

braid groups PvBn, emphasizing their relation to the better-known braids groups, and

use this to give a pictorial interpretation of the PvBn. The material in this Chapter is

mostly well known and we have attempted to give suitable references.

2.1 Group Expansions

In this section we suppose K is an augmented algebra over Q generated by a set X, with

augmentation ideal IK given as the kernel of the augmentation map which sends x 7→ 1

for x ∈ X. K is filtered by powers of IK . In typical applications, K will be the group

algebra of some group G.

We recall that the quadratic approximation q(grIK) is the graded algebra with the

6
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same generators as grIK = ⊕p≥0IpK/I
p+1
K , but with only the quadratic relations of grIK.

Thus if we put V := IK/I
2
K , and denote 〈∂R〉 the ideal generated in the tensor algebra TV

by the degree 2 relations ∂R (the notation will be explained below), then q(grIK) = TV
〈∂R〉 .

Moreover, there is a canonical projection µ : q(grIK) � grIK which is induced by the

identity in degree 1.

Following [BN3] (see also [Lin] and [BN-WKO]), we define a (homomorphic, quadratic)

expansion for K to be a homomorphism of filtered algebras Z : K → ̂q(grIK) (where the

hat denotes completion) whose associated graded is the identity map in degree 1. The

latter requirement implies in particular that, on the generators x ∈ X of K, Z takes the

form:

x 7→ 1 + x̃+ h.d. (2.1)

where x̃ := (x − 1) mod I2K ∈ IK/I
2
K is a generator in q(grIK), and ‘h.d.’ refers to

higher degree terms in the z̃, z ∈ X. Indeed, we then see that:

(x− 1) 7→ x̃+ h.d.

and thus the associated graded map grZ is the identity in degree 1.

Since grZ ◦ µ = id in degree 1, the composition grZ ◦ µ must be the identity in all

degrees. Consequently, µ must be injective, hence an isomorphism.

One can show that one gets an equivalent definition of expansion if one requires

that Z be a filtered algebra isomorphism K̂
∼→ ̂q(grIK) (where again the hats denote

completion), instead of a filtered homomorphism K → ̂q(grIK) (but with the definition

otherwise the same).

Thus the situation may be summarized by the following diagram:
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K̂ ̂q(grIK)

ĝrIK

Z //

Z′=µ◦Z
��

grZ

CC

µ

����

Then the following theorem is clear:

Theorem 1. The existence of a (homomorphic, quadratic) expansion Z is equivalent to:

1. the existence of a filtered isomorphism Z ′ : K̂
∼−→ ĝrIK whose associated graded is

the identity in degree 1; plus

2. the natural surjection µ being an isomorphism - i.e. grIK is quadratic.

Quadraticity can be viewed as a ‘graded’ version of the existence of a homomorphic,

quadratic expansion. It is a necessary, but not sufficient, condition for the existence of

such an expansion.

2.2 Hopf Algebra Expansions and 1-Formality

In this Section 2.2, we take all our filtered or graded spaces (including K, grIK and

others) to be completed, whether or not this is indicated with a hat.

When K = Q̂G is a group algebra, one can step up the requirements on an expansion

and require that the map Z respect the Hopf structure – one then speaks of a Hopf

algebra expansion. In this section, we will explain the Hopf algebra structures on K

and q(grIK), and briefly discuss Hopf algebra expansions and the related concept of

1-formality.

One may view K as a Hopf algebra using the co-product induced from G (i.e. ∆(g) =

g ⊗ g for g ∈ G) and the augmentation map as the co-unit. Thus K has a Lie algebra

of primitives P(K), which is the ‘Malcev Lie algebra’ MG of G [Quillen2]. Also, one can

show that the degree 2 relations ∂R of q(grIK) are all Lie elements of TV . Hence the
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Hopf algebra structure on T̂ V (the completed tensor algebra) induces a Hopf algebra

structure on q(grIK), and it is fairly easy to show that the Lie algebra of primitives of

q(grIK) is just L̂ieV
〈∂R〉 , the quotient of the completed free Lie algebra on V by the Lie ideal

generated by ∂R.

It thus makes sense to ask whether there is a filtered isomorphism between the re-

spective Lie algebras of primitives Z : MG → P(q(grIK)) whose associated graded is the

identity in degree 1 (both Lie algebras have the filtrations induced from the lower central

series).

Actually, 1-formality is commonly defined as the existence of a filtered isomorphism

of Lie algebras MG → hol(G) whose associated graded is the identity in degree 1, where

hol(G) is the ‘holonomy’ Lie algebra of G (defined below), which is in particular a graded

Lie algebra completed with respect to the lower central series filtration.1 However, if G

is a group whose rational homology is of finite type, then (as explained below) hol(G) ∼=

P(q(grIK)), so in these cases 1-formality is exactly the Lie algebra analogue of the

existence of an expansion.

In particular, when G has finite type rational homology, the existence of a Hopf

algebra expansion implies 1-formality, since the expansion induces a filtered Lie algebra

homomorphism on the primitives.2

One can also consider a weaker, graded version of 1-formality, i.e. we consider a group

to be ‘graded 1-formal’ if grMG
∼= gr(hol(G)) (∼= hol(G)), with the isomorphism being

induced from the identity map in degree 1. (Here the associated gradeds are determined

with respect to the filtrations induced from the lower central series).

If the filtered isomorphism Z exists, then its associated graded grZ must be a graded

Lie algebra isomorphism. Thus, as with expansions, one has the following diagram:

1See also the summary of 1-formality in [PapSu].
2In fact, by a theorem in [ABCKT] (originally due to Morgan), 1-formality for a finitely presentable

group is equivalent to the existence of a filtered isomorphism between MG and any quadratic Lie algebra
(with the filtration induced by the lower central series), although their proof uses real coefficients. When
this theorem applies, the existence of a Hopf algebra expansion would always imply 1-formality.
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MG hol(G)

grMG

Z //

Z′

��

grZ

CC

And again we have the theorem:

Theorem 2. 1-formality is equivalent to:

1. the existence of a filtered Lie algebra isomorphism Z ′ : MG
∼−→ grMG whose asso-

ciated graded is the identity in degree 1; plus

2. the existence of a graded Lie algebra isomorphism hol(G) ∼= grMG induced by the

identity in degree 1 - - i.e. graded 1-formality.

Thus graded 1-formality is a necessary, but not sufficient, condition for 1-formality.

We will now amplify briefly on graded 1-formality, and in particular explain how, for

groups with finite type rational homology, graded 1-formality is equivalent to quadratic-

ity.

2.2.1 The Associated Graded of MG

For purposes of graded 1-formality we need a good description of grMG. By work of

Quillen,3 we have grMG
∼= grG⊗Q as graded Lie algebras, where grG := ⊕̂p≥0G(p)/G(p+1)

(completed direct sum) and G(j) is the j-th term in the lower central series of G.4

As discussed in [Quillen], grIK has the structure of a graded Hopf algebra which

is primitively generated (specifically by gr1K, all of which is primitive). It follows by

the Milnor-Moore theorem that grIK ∼= U(P(grIK)), where P(grIK) denotes the Lie

algebra of primitives of grIK and U(−) denotes the universal enveloping algebra.

3[Quillen] and [Quillen2]. See also the summary of the construction of MG and grMG in [PapSu].
4See [MKS], section 5.7, for the Lie algebra structure on grG.
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Again by [Quillen], there is an isomorphism of graded Lie algebras grG⊗Q ∼= P(grIK)

and hence U(grG ⊗ Q) ∼= grIK. In particular, we have a Lie algebra isomorphism

grMG
∼= P(grIK).

2.2.2 The Holonomy Lie Algebra and Its Associated Graded

We now define the holonomy Lie algebra. Let X be an Eilenberg-MacLane K(G, 1) space

for G, and put H i := H i(X,Q) for i ≥ 0. Let ∪ : H1 ∧ H1 → H2 be the cup product,

and ∂ : H2∗ → H1∗ ∧H1∗ be the dual map. Then:

hol(G) :=
̂Lie(H1∗)

〈Im ∂〉

where ̂Lie(H1∗) is the free, graded Lie algebra generated by H1∗ and 〈Im∂〉 is the ideal

in ̂Lie(H1∗) generated by Im ∂. Thus we have by definition an exact sequence:

H2∗ ∂→ H1∗ ∧H1∗ → hol(G)2 → 0

where hol(G)2 is the degree 2 component of hol(G). Dually, hol(G)2∗ ∼= ker ∪.

In many cases, we have explicit information about ker ∪:5

Theorem 3. Let G be a group such that Hn(G,Q) is finite dimensional over Q for all

n. Then the following sequence is exact:

0→ (G(2)/G(3) ⊗Q)∗
d−→ H1 ∧H1 ∪−→ H2

where d is dual to the commutator map [−,−] : G(1)/G(2) ∧G(1)/G(2) → G(2)/G(3).6

Thus, when this theorem applies, hol(G)2 ∼= G(2)/G(3) ⊗Q.

Now note that U(hol(G)) is generated by H1∗ ∼= G(1)/G(2) ∼= IK/I
2
K , so it has the

same generators as grIK. Also, from the preceding remark, if Theorem 3 applies then

5See [Lambe]. This theorem extends part of Theorem (8.1)’ of [Sullivan]. See also [Cenkl].
6We recall that G(1)/G(2) ∼= H1∗ (see [HilStam]).
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U(hol(G)) must have the same quadratic relations as U(grG ⊗ Q) ∼= grIK, but has no

further defining relations. Hence it follows that:

U(hol(G)) ∼= q(grIK)

whenever the result in Theorem 3 (or similar theorems) applies.

2.2.3 Relation Between Quadraticity and Graded 1-Formality

We are now in a position to relate quadraticity with graded 1-formality, in cases where

the results of Theorem 3 or similar theorems hold. Recall that quadraticity means that

grIK ∼= q(grIK). Pulling together the various isomorphisms identified above, this is

equivalent to U(P(grIK)) ∼= U(hol(G)) as associative algebras.

Both sides of the latter isomorphism have generators (as associative algebras) of degree

1, all of which are primitive elements, and the isomorphism (when it exists) comes from

identifying generators in the respective algebras. Hence the isomorphism respects the

Hopf algebra structure. It follows that the isomorphism descends to the respective Lie

algebras of primitives, i.e. quadraticity is equivalent to P(grIK) ∼= hol(G).

Recalling the result of Quillen mentioned earlier, i.e. P(grIK) ∼= grMG, we find that

quadraticity is equivalent to grMG
∼= hol(G), which is just graded 1-formality.

In summary, we have shown that (when the results of Theorem 3 or similar theorems

hold), quadraticity is equivalent to graded 1-formality.7

7Alternatively, whenever the result in footnote 2 applies, quadraticity is equivalent to graded 1-
formality, whether or not hol(G) ∼= P(q(grIK)).
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2.3 Universal Finite Type Invariants

In this section, we give some background on the theory of finite type invariants, and

explain how quadraticity is equivalent to the existence of a universal finite type invari-

ant. The existence of such an invariant is perhaps the central question of the theory of

finite type invariants for any group. Much of the material in this section comes from

[BN-WKO], to which the reader is referred for more on finite type theory.

2.3.1 What is a Universal Finite Type Invariant?

A universal finite type invariant (‘UFTI’) for a group G is just a not-necessarily ho-

momorphic (but still quadratic) expansion. Thus it is simply a filtered linear map

Z : K → ̂q(grIK) whose associated graded is a left inverse for µ, i.e. grZ ◦ µ = id.

This is described by the following diagram:

K ̂q(grIK)

ĝrIK

Z //

grZ

CC

µ

����

By the argument given in the previous section the existence of a not necessarily homo-

morphic expansion implies quadraticity (the fact that the expansion was homomorphic

in the previous section did not play a role). In fact, we will show that the existence of

an UFTI is equivalent to quadraticity. First, though, we need some background on finite

type invariants.

We begin with the following sequence, which is clearly exact:

0 −→ IpK/I
p+1
K −→ K/Ip+1

K −→ K/IpK −→ 0

We combine this with the surjection q(grIK)p � IpK/I
p+1
K to get:
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0 IpK/I
p+1
K K/Ip+1

K
K/IpK 0

q(grIK)p

// // // //

µ
����

Now we take linear duals - since the spaces are all vector spaces over Q, the sequence

remains exact:

0(IpK/I
p+1
K )∗(K/Ip+1

K )∗(K/IpK)∗0

q(grIK)p∗

// // π// //
��
µ∗

��π′ %%

The space q(grIK)p∗ is referred to as the space of ‘weight systems of degree p’. The

space (K/Ip+1
K )∗ is referred to as the space of ‘finite type invariants’ (of type p). A central

question in the theory of finite type invariants of the group G is whether every weight

system of degree p is induced by an invariant of type p - i.e. whether the map π′ is

surjective.

It is clear that surjectivity of π′ is equivalent to surjectivity of µ∗, which in turn is

equivalent to µ∗ being an isomorphism (since µ∗ is already injective). Thus surjectivity of

π′ is equivalent to quadraticity. We will now show that quadraticity implies the existence

of an UFTI, so that all three concepts are equivalent.

Indeed, assuming quadraticity, let {xi}i∈J be a basis for q(grIK), and let {x∗i }i∈J be a

dual basis pulled back to grIK
∗ via (µ∗)−1. Then, for x∗i ∈ (IpK/I

p+1
K )∗, let vi ∈ (K/Ip+1

K )∗

s.t. π(vi) = x∗i . Finally, if ρp : K � K/Ip+1
K is the projection, put v̄i := vi ◦ ρp. Now

define:

Z(−) :=
∑
i

xi.v̄i(−)

We need to check that grZ is the identity on a basis {x̃i : i ∈ J1 ⊆ J} for IK/I
2
K . It

is easy to see that grZ(x̃i) =
∑

j∈J1 π(vj)(x̃i) =
∑

j∈J1 x̃
∗
j(x̃i) = x̃i, as required.
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2.3.2 What is ‘Universal’ About an UFTI?

An UFTI Z is universal in the sense that all finite type invariants factor through Z - at

least, up to finite type invariants of lower type. Let us make this more precise.

First we show that, using Z, and given any degree p weight system Wp ∈ IpK/I
p+1
K
∼=

q(grIK)p, we can construct a finite type invariant Vp = V (Wp) such that π(Vp) = Wp.

Namely, we set V (Wp) := Wp ◦Z. The verification that π(Vp) = Wp is easy. Specifically,

let Wp =
∑

i∈L x
∗
i be the expression of Wp in terms of the basis {x∗i }. Then it is immediate

that Wp ◦ Z(−) =
∑

iWp(xi)v̄i(−) =
∑

i∈L v̄i(−), and then by definition of the vi,

π(
∑

i∈L v̄i) =
∑

i∈L x
∗
i = Wp, as required. Thus the map V (−) can be viewed as a

right-sided ‘inverse’ of π.

We will now see that every type p invariant Vp can be factored through Z as Vp ≡

V ◦ π(Vp) = π(Vp) ◦ Z, up to invariants of lower type. This is a simple calculation:

π(Vp − π(Vp) ◦ Z) = π(Vp)− π(V (π(Vp)) = π(Vp)− π(Vp) = 0

where in the next to last equality we used the fact that π(Vp) is a degree p weight system,

and that V (−) is right-inverse to π.

This calculation shows that (Vp−π(Vp)◦Z) ∈ ker π = (K/IpK)∗, i.e. Vp and π(Vp)◦Z

differ by an invariant of type (p− 1).

2.4 The Pure Virtual Braid Groups

2.4.1 Definition

Recall that the braid group Bn is generated by the symbols {σi : i = 1, . . . , (n − 1)},

corresponding to a braid with n strands with the strand in position i crossing over the

adjacent strand to the ‘right’ (i.e. the strand in position (i+ 1)), in a ‘positive’ fashion:
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. . . . . .

i i+1

(where by convention all strands are oriented upwards).

The relations in Bn are the well-known Reidemeister III move and obvious commu-

tativities:

σiσi+1σi = σi+1σiσi+1

σiσj = σjσi for |i− j| > 1

The pure virtual braid group has a similar presentation, except that we allow genera-

tors {Rij}1≤i 6=j≤n corresponding to a strand with label i crossing over a strand with label

j in a positive fashion, even if if those strands are not adjacent. This means that these

generators may not in general correspond to braids that can be realized with real strings.

One may think of strand i ‘getting into position’, immediately to the left of strand j, by

means of ‘virtual’ moves, so that Rij may be depicted:

. . .

i j

(again with all strands oriented upwards).

The virtual moves are not part of the group data and are shown only to enable one

to draw a picture.8 In particular, no significance attaches to the choice of virtual moves

made to get the strands into position for a crossing. For instance, the above generator

Rij could have been depicted:

8Note that there is a different presentation for the pure virtual braid groups, in which virtual moves
are part of the group data - in particular there are generators {Sij : 1 ≤ i 6= j ≤ n} corresponding to
virtual crossings, and suitable relations involving the {Sij}. We will not use this presentation.
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. . .

i j

The relations are essentially the same as in the braid case:

RijRikRjk = RjkRikRij

RijRkl = RklRij

or, in pictures:

= ,

i j k i j k i j k l i j k l

=

Here we have omitted the virtual moves which get strands i, j, k and l into position

before and after the depicted moves, and we will continue to omit them going forward.

Thus, as mentioned earlier, pure virtual braids are given by the following presentation:

PvBn := 〈Rij〉1≤i 6=j≤n/{Reid. III, Commutativities}

As mentioned previously, the presentation for PfBn is the same, except that we also

impose the relation RijRji = 1. One could instead retain only those generators Rij with

i < j (and keep the PvBn relations which involve only such generators, but leave out

RijRji = 1). This gives an isomorphic group known as the group of pure descending

braids. The ‘descending’ refers to the fact that if in all crossings Rij we impose i < j,

this corresponds to the fact that strand i always passes over strand j so that the ‘height’

of strands decreases as the labels increase.
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2.4.2 Filtration, Associated Graded and Quadratic Approxima-

tion

We let F denote the free (unital) algebra with the same generators {Rij} as PvBn; and

denote by IF and IK the augmentation ideals of F and K := QPvBn, respectively, given

by the kernels of the augmentation maps which send Rij 7→ 1. Both IF and IK are

generated by the sets {Rij := (Rij − 1)}. The Rij may be depicted as:

Rij := ©
i j

:=
i j
−
i j

Re-expressed in terms of the Rij, the Reidemeister III relation gives a ‘topological

8-term’ relation:

− =

©
©

©
−

©
©
©

+ ©
©

+
©

©
+
©
© − ©

©
−

©

©
−

©
©

In symbols, this is:

Yijk := RijRikRjk −RjkRikRij (2.2)

= RijRikRjk −RjkRikRij

+RijRik +RijRjk +RikRjk −RjkRik −RjkRij −RikRij

= RijRikRjk −RjkRikRij

+ [Rij, Rik] + [Rij, Rjk] + [Rik, Rjk]

where square brackets denote the usual algebra commutator.
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There are also commutativities:

Ckl
ij := RijRkl −RklRij = [Rij, Rkl] (2.3)

Both F and K are filtered by powers of their augmentation ideals. We can form the

respective associated graded algebras grF := ⊕p≥0IpF/I
p+1
F and grK := ⊕p≥0IpK/I

p+1
K ,

and there are clearly surjections IpF/I
p+1
F � IpK/I

p+1
K . These factor through the quadratic

approximation as follows:

IpF/I
p+1
F

IpF /I
p+1
F

〈∂R〉

IpK/I
p+1
K

//

%% ��

where 〈∂R〉 is the ideal of relations in grF generated by ∂R := Q{yijk := Yijk mod I3F , c
kl
ij :=

Ckl
ij mod I3F} (the notation ∂R will be explained later).

The graded algebra pvbn := ⊕p≥0
IpF /I

p+1
F

〈∂R〉 is isomorphic to the quadratic approximation

q(grIK) to grK (see Subsection 3.6 below). It is generated by IF/I
2
F = Q{rij := Rij

mod I2F} and is subject to the relations (1.3) and (1.4):

yijk = [rij, rik]+[rij, rjk] + [rik, rjk] = 0,

cklij = [rij, rkl] = 0

which come from (2.2) and (2.3) modulo I3F . We thus recover the presentation given in

the Introduction for pvbn.

2.4.3 Expansions, 1-Formality and their Graded Versions

It has been shown in [BarEnEtRa] that PfBn, and hence PvBn, are not 1-formal. However,

in the same paper, Hilbert series for the integral homology of these groups were obtained,

from which one can conclude in particular that the rational homology is finite dimensional
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(and hence of finite type). Therefore, by the results of Subsection 2.2.3, the concept of

quadraticity and graded 1-formality for these groups coincide.

In Theorem 6 and its corollaries we show that PvBn and PfBn are quadratic. In

different language, this shows that the PvBn have a universal finite type invariant.



Chapter 3

Overview of the PVH Criterion

3.1 Group Theoretic Background

Since the classic setting of the PVH criterion is that of group rings, we identify the

attributes of group rings which we rely on and will want to see preserved in our generalized

context. We recall the follow basic fact:

Proposition 1 (See [MKS], s. 5.15). If G is given by the short exact sequence

1→ N → FG→ G→ 1

where FG is a free group generated by symbols {gp : p ∈ P} and N is a normal subgroup

of FG generated by the set {rq : q ∈ Q}, then the rational group ring of G is given by

the exact sequence

0→ (N − 1)→ QFG→ QG→ 0

where (N − 1) is the two-sided ideal in QFG generated by {(rq − 1) : q ∈ Q}.

We can clearly restrict the second exact sequence to the exact sequence

0→ (N − 1)→ IFG → IG → 0 (3.1)

where IFG and IG are the augmentation ideals of QFG and QG respectively.

21
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3.2 Generalized Algebraic Setting

By analogy with the above group case, we take KKK to be an augmented (unital) algebra

over Q with 2-sided augmentation ideal IK , and FFF to be the free algebra over Q with the

same generating set as K, with 2-sided augmentation ideal IFIFIF . In particular we assume

an exact sequence:

0 −→ IK −→ K
ε−→ Q −→ 0

By analogy with the ideal (N − 1) in the group context, we let MMM ⊆ IF ⊆ F be a

2-sided ideal such that:

0 −→M −→ F −→ K −→ 0

0 −→M −→ IF −→ IK −→ 0

are exact.

We suppose F (and K) to be generated by a set XXX. For convenience, we will suppose

IF (and IK) to be the kernel of the algebra homomorphism which sends each x ∈ X to

1 ∈ Q. Using this convention, we will exhibit an explicit grading on F which induces the

filtration by powers of IF .

Specifically, we define X̃̃X̃X := Q{x̄ := (x−1) : x ∈ X}. Then F has the graded structure

of tensor algebra1 over X̃, i.e. F = TX̃ = ⊕p≥0X̃p where X̃pX̃pX̃p consists of all sums of p-fold

products of elements of X̃. We obtain a filtration on F by setting X̃≥pX̃≥pX̃≥p := ⊕q≥pX̃q. It

should be clear that X̃≥p = IpF .

We will henceforth in fact work with the completions K̂ of K (and F̂ of F ) with

respect to the filtrations by powers of their respective augmentation ideals. Our reason

1This can be seen as follows. Essentially by definition, F = TX, the tensor algebra over X. But
then it is easy to see that the algebra homomorphism which maps x 7→ x̄ + 1 converts from the TX
presentation to the TX̃ presentation.
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for doing this is that, by picking a suitable set of generators for K (and F ) and passing

to the completions, we claim that we may arrange that M ⊆ I2F (see Section 4.1), and we

will need this in the sequel. Since we always work with the completions, we will simply

denote them K and F , without the hat.

3.3 The Associated Graded Algebra

K is filtered by powers of IK :

. . . ↪→ I3K ↪→ I2K ↪→ IK ↪→ I0K = K

We denote grIKgrIKgrIK the associated graded of the above filtration. We have grIK ∼=⊕
p I

p
K/I

p+1
K . It is clear that grIK is generated as an algebra by its degree one piece

VVV := IK/I
2
K , a vector space over Q.

3.4 A Candidate Presentation for IpK

In order to understand the quotients IpK/I
p+1
K , we will first seek a presentation for the

IpK , for p ≥ 0 (we take I0K = K). Note that, essentially by definition, IpK = IpF/(M ∩ I
p
F ).

So we wish to determine (M ∩ IpF ).

Let {yq : q ∈ Q} ⊆ I2F be a minimal set of generators for M . Then define YYY :=

{Yq : q ∈ Q} to be a collection of symbols in 1-1 correspondence with the {yq}. Then

we define RFRFRF to be the free 2-sided F -module generated by Y . Now if we define a map

∂K∂K∂K : RF → F which maps Yq 7→ yq (and extend ∂K as an F -module homomorphism to

RF ) then it is clear that

K =
F

∂KRF
(3.2)

RF inherits both a graded and a filtered structure from F . Specifically, if we define:
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Rp,q := X̃q.QY .X̃p−q−2

and

Rp :=

p−2∑
q=0

Rp,q (3.3)

then RF = ⊕p≥0Rp gives a graded structure on RF . We get a filtered structure by

defining

R≥pR≥pR≥p :=
⊕
q≥p

Rq

and we have the filtration of RF :

. . . ↪→ R≥3 ↪→ R≥2 = RF

By construction, ∂K(R≥p) ⊆ (M ∩ IpF ). In fact we will prove in Section 4.2 that we

have the following:

Proposition 2. The PVH Criterion (to be defined in Theorem 4) is met if and only if,

for all p ≥ 2, we have ∂K(R≥p) = (M ∩ IpF ), and hence IpK
∼= IpF/∂KR≥p.

It is clear that ∂K is a filtered map, ie ∂K : R≥p → IpF = X̃≥p. This leads to the

following remark.

Remark 1. Spectral Sequence Interpretation

Although not required logically to prove the PVH Criterion (nor even to understand

it), it may be of interest to note that the PVH Criterion can be explained in terms of a

spectral sequence.

Specifically, we can interpret the construction of K in (3.2) in homological terms.

Indeed, we can view the map ∂K : RF → F as forming a complex:

0→ C1 = RF ∂K→ C0 = F
0→ 0
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Then K = H0(C•). Since ∂K respects the filtrations on RF and F , we can compute

grH0 (the associated graded of H0 with respect to the induced filtration on H0) using

a spectral sequence. Moreover, under this interpretation, grH0 = grIK whenever the

PVH Criterion (explained in Theorem 4) is met, and (as we will see in the next two

sections) the terms Ep,−p
1 of the first page correspond to the grade-p components of the

quadratic approximation q(grIK) to grIK. Theorem 4 can be interpreted as saying

that if the PVH Criterion (defined in that theorem) is met, then Ep,−p
1 = Ep,−p

∞ and

q(grIK) ∼= ⊕Ep,−p
1
∼= grH0

∼= grIK as vector spaces.

We will periodically provide further details of this interpretation as they become

relevant, but again note that these details are not needed to follow the proof.

3.5 A Graded Approximation to K

We may ‘approximate’ K by taking a graded version of the construction (3.2) of K, i.e.

we define an algebra

AAA :=
⊕p≥0X̃p

⊕p≥0∂ARp

(3.4)

where ∂A is a graded version of ∂K . More precisely, we have projections:

π0
p : X̃≥p � X̃p

which are the identity on X̃p and send ⊕q>pX̃q to 0. Similarly, we have projections:

π1
p : R≥p � Rp

which are the identity on Rp and send ⊕q>pRq to 0.

Then ∂A is defined by:

∂A(z) = π0
p ◦ ∂K(z) for z ∈ Rp
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These definitions are encapsulated in the following diagram, which is commutative

and has exact rows:

0 R≥p+1 R≥p Rp 0

0 Ip+1
F

IpF X̃p 0

// ι //
π1
p // //

// ι //
π0
p // //

∂resK
��

∂K
��

∂A
��

where ∂resK denotes the restriction and ι denotes the inclusions.

Remark 2. Spectral Sequence Interpretation Continued

We explain briefly how the algebra A fits with the spectral sequence interpretation

from Remark 1. Essentially by definition, we have:

Ep,−p
0 = X̃p

Ep,1−p
0 = Rp

and Ep,q
• = 0 for q 6= −p, 1 − p. Furthermore, the page 0 differential d0 for the spectral

sequence satisfies d0 = ∂A, so Ep,−p
1 = Ap, and Ep,1−p

1 = [ker ∂A]p (the degree p component

of ker ∂A).

As we will see shortly, the PVH Criterion will imply that d1 (and any higher degree

differentials) do not add any (non-zero) corrections to the E1 page.

3.6 The Quadratic Approximation

In this section, we show that the graded algebra A is the ‘quadratic approximation’

q(grIK) of grIK, in the sense that A has the same generators as grIK, and has relations

generated by the degree 2 relations of grIK.

We noted previously that grIK is generated by its degree 1 piece V = IK/I
2
K . In

fact, because we take M ⊆ I2F , we have
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IK/I
2
K =

IF/M

I2F/(M ∩ I2F )
∼=
IF/M

I2F/M
∼= IF/I

2
F

so that actually we may view V as V = IF/I
2
F .

With that in mind, it should be clear that we have an isomorphism

X̃
∼−→ V = IF/I

2
F

(x− 1) 7→ (x− 1) + I2F

which extends to an isomorphism of graded algebras Π : F = TX̃
∼−→ TV (where TV is

the tensor algebra of V over Q) by the universal property of tensor algebras.

Now we identify V ⊗V = IF/I
2
F ⊗IF/I2F , and define R := ker(mK : IF/I

2
F ⊗IF/I2F →

I2K/I
3
K). Here mK is the composition IF/I

2
F ⊗ IF/I2F

mF→ I2F/I
3
F

p
� I2K/I

3
K , where the first

map mF is the isomorphism induced from multiplication in F , and the second map p is

induced from the projection F � K.

The quadratic approximation q(grIK) is formally defined as q(grIK) := TV/〈R〉,

where 〈R〉 is the two-sided ideal in TV generated by the vector subspace R ⊆ V ⊗ V .

Thus A and q(grIK) at least have spaces of generators which are isomorphic via the

map Π. The following lemma effectively tells us that ∂AQY = R and hence that A and

q(grIK) have the same relations:

Lemma 1. We have R ∼= (M + I3F )/I3F
∼= ∂AQY.

Proof. It suffices to determine the kernel ker(I2F/I
3
F

p
� I2K/I

3
K), and then pull the result

back to V ⊗ V via the isomorphism m−1F . We have:

I2K
I3K

=
I2F/M

I3F/(M ∩ I3F )
∼=

I2F/M

(I3F +M)/M
∼=

I2F
I3F +M

∼=
I2F/I

3
F

(I3F +M)/I3F

It follows that ker p must be the last denominator, i.e. (I3F + M)/I3F , which is what

we needed.
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It is immediate from the lemma that in fact ⊕p≥2∂ARp = 〈R〉, and hence that A ∼=

q(grIK).

We will denote by Am the m-th graded piece of A. We note that since A has the

same generators and the same quadratic relations as grIK, there is always a surjection

A� grIK. Quadraticity of grIK is thus equivalent to the fact that this surjection is an

isomorphism Am ∼= ImK /I
m+1
K , for all m. We will often use this alternative definition of

quadraticity.

3.7 The PVH Criterion

We now resume the thread of our development of the PVH Criterion. Recall that we

have the exact, commutative diagram:

0 R≥p+1 R≥p Rp 0

0 Ip+1
F

IpF X̃p 0

// //
π1
p // //

// //
π0
p // //

∂resK
��

∂K
��

∂A
��

We extend the right half of the above diagram by adding kernels at the top:

ker ∂K ker ∂A

R≥p Rp

IpF X̃p

�� ��

πSyz
p //

π1
p // //

π0
p // //

∂K
��

∂A
��

where πSyzp is the map induced from π1
p on kernels; and also we have abbreviated ∂K |R≥p

as ∂K , and ∂A|Rp as ∂A.

We are now in a position to state our criterion for quadraticity of K (with notation

as in the above diagram, and with the assumptions in Section 3.2)2:

2The statement about Koszulness, however, relies on results about Koszul algebras which have only
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Theorem 4 (PVH Criterion). K is quadratic if πSyzp is surjective for all p ≥ 2, i.e.

informally if ‘the syzygies of A also hold in K’.

If A is Koszul,3 then we need only check that this criterion holds for degree 2 and 3

syzygies of A.

This generalizes a result first obtained in [Hutchings], where K was the group ring

of the pure braid group (see also [BNStoi]). We give the proof in Section 4.2. As

was pointed out to me by Alexander Polishchuk, the result also follows from the paper

[PosVish], whenever the algebra K is finitely generated.

3.8 Checking the PVH Criterion in Degree 2

The following proposition shows how to check the criterion in degree 2.

Proposition 3. Let {yq : q ∈ Q} be a minimal set of generators for M as a two-sided

F -module. If the {yq + I3F : q ∈ Q} are linearly independent in R ∼= (M + I3F )/I3F , then

the PVH Criterion is satisfied in degree 2.

Proof. Indeed, ∂A : QY → V ⊗2 ∼= I2F/I
3
F is then an inclusion, so ker ∂A = 0 and πSyz is

automatically surjective.

been developed for graded algebras whose graded components are finitely generated over the ground
ring. Hence, for purposes of this part of the theorem, we assume the algebra K to be finitely generated,
which is sufficient to ensure that Am is a finite dimensional Q-vector space for all m.

3In fact, A need only be 2-Koszul, i.e. its Koszul complex need only be exact up to homological
degree 2 inclusive.
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3.9 How the PVH Criterion is Useful

Assuming the requirements of Theorem 4 are met, we can conclude that grIK is quadratic

if, informally, the syzygies of A also hold in K.

It is often the case that the syzygies of a quadratic algebra can be determined quite

explicitly, using quadratic duality. Essentially, if the quadratic algebra A is Koszul, then

the syzygies are generated by A!3 (i.e. the degree 3 part of the quadratic dual A! of A).

Thus the problem of comparing syzygies is reduced to the finite, computable problem of

determining a basis for A!3 and checking whether the resulting syzygies of A3 also hold

in K.

In the context of PvBn, it was shown in [BarEnEtRa] that pvbn is Koszul (a different

proof is provided in Section 5.7 of this paper), so we only need to check the PVH Criterion

in degree 2 and 3.

If we take K to be the group ring of PvBn and IK its augmentation ideal, it is possible

to interpret the ideals ImK as spaces of ‘m-singular virtual braids’ – essentially virtual

braids with (at least) m ‘semi-virtual’ double points (subject to a certain equivalence

relation) - see [GPV]. One knows certain syzygies that are satisfied by such semi-virtual

braids, particularly the syzygy known as the Zamolodchikov tetrahedron:4

4The picture builds on xy-pic templates due to Aaron Lauda – see [Lau]. Another picture is at [BN2].
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RijRikRilYjkl 6> RijRikC
jk
il RjlRkl`h

RijYiklRjlRjk

=E
YijkRilRjlRkl

Ya

Ckl
ijRilRikRjlRjk

DL
RjkRikYijlRkl

RZ

RklRijRilC
jl
ikRjk

NV
RjkC

jl
ikRilRijRkl

HP

RklYijlRikRjk

RZ

RjkRjlRikRilC
kl
ij

DL

RklRjlRilYijk

T\

RjkRjlYiklRij

BJ

RklRjlC
jk
il RikRij

bj

YjklRilRikRij

4<

(The notation will be clarified in Section 5.2.)

In the second part of this paper, we will find a basis for the quadratic dual algebra

pvb!n, and in particular for pvb!3n . We will then check ‘by hand’ that the corresponding

degree 3 syzygies of A are also satisfied by K. These consist primarily of syzygies which

correspond to the ‘Zamolodchikov’ syzygy alluded to above (this is explained in Section

5.4.1). This will allow us to conclude that grIQPvBn
∼= pvbn.
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Postponed Proofs

4.1 Eliminating Linear Relations

We mentioned in Section 3.2 that we work with the completions K̂ of K (and F̂ of

F ) because, by picking a suitable set of generators for K (and F ) and passing to the

completions, we may arrange that M ⊆ I2F .

To prove this claim, we let {xp : p ∈ P} be a set of generators for the algebra K, so

that {x̄p := (xp− 1) : p ∈ P} is a set of generators for IK as a left- or right-sided ideal in

K. The images of the {x̄p : p ∈ P} in the vector space (IK/I
2
K) generate that space, so

the images of some subset {x̄p : p ∈ S ⊆ P} form a basis. Thus the {x̄p : p ∈ P −S} may

be expressed as linear combinations of the {x̄p : p ∈ S} modulo elements of I2K . More

generally, we may replace any polynomial involving the {x̄p : p ∈ P −S} by a polynomial

involving only {x̄p : p ∈ S}, modulo elements in higher powers of IK . It therefore follows

that the {x̄p : p ∈ S} generate the completion, and we may drop the {x̄p : p ∈ P − S}

from our list of generators.

We note in particular that in the case where K is the group algebra of some group G,

the generators of K as an algebra would normally include, not only the group generators,

but also their inverses. Moreover, the relations ideal M would include relations derived

32



Chapter 4. Postponed Proofs 33

from the group laws for the generators (recall that F is the free algebra on X, not the

free group algebra on X). Thus if a is a generator of the group, and b its inverse, we have

the group law ab = 1 which gives, under the substitution a 7→ ā + 1, b 7→ b̄ + 1, where

ā := (a − 1) and b̄ := (b − 1), the relation ā + b̄ + āb̄ = 0, which is not in I2F . However

using the relation b̄ = −ā − āb̄ we can replace all occurrences of b̄ by −ā, provided we

are working in the completion of K. So in the case of group algebras we will take as

generators only the group generators and we omit the group law relations from M .

Coming back to the case of a general K, we can also see that M ⊆ I2F . Indeed, (IF/I
2
F )

and (IK/I
2
K) are now vector spaces with bases having the same number of elements, and

hence are isomorphic. However it is also clear that:

(IK/I
2
K) =

IF/M

I2F/(M ∩ I2F )

=
IF/M

(I2F +M)/M

=
IF

I2F +M

=
(IF/I

2
F )

(I2F +M)/I2F

=
(IF/I

2
F )

M/(M ∩ I2F )

so we must have M/(M ∩ I2F ) = 0, i.e. M ⊆ I2F .

4.2 Proof of Proposition 2 and Theorem 4

Recall that we have the following exact, commutative diagram:

0 R≥p+1 R≥p Rp 0

0 Ip+1
F

IpF X̃p 0

// //
π1
p // //

// //
π0
p // //

∂resK
��

∂K
��

∂A
��

where ∂resK denotes the restriction.
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We extend the above diagram by adding a row of kernels at the top, and a row of

cokernels at the bottom:

ker ∂resK ker ∂K ker ∂A

0 R≥p+1 R≥p Rp 0

0 Ip+1
F

IpF X̃p 0

Ip+1
F

∂resK R≥p+1

IpF
∂KR≥p

Ap

// //
π1
p // //

// //
π0
p // //

∂K
��

∂K
��

∂A
��

�� �� ��

�� ��
��

//
πSyz
p //

µp // //

where we have abbreviated ∂K |R≥p
as ∂K , and ∂A|Rp as ∂A.

By the Snake Lemma, the following sequence is exact:

Lemma 2.

0 → ker ∂K
πSyz
p−−→ ker ∂A →

Ip+1
F

∂KR≥p+1

µp−→ IpF
∂KR≥p

−→ Ap −→ 0 (4.1)

Also, as is clear from the long exact sequence, we have:

Lemma 3. For every p ≥ 2, πSyzp is surjective if and only if µp :
Ip+1
F

∂KR≥p+1
→ IpF

∂KR≥p
is

injective.

Proof of Proposition 2. It is clear that the µp :
IpF

∂KR≥p
→ Ip−1

F

∂KR≥p−1
are injective for all

p ≥ 2 if and only if the compositions
IpF

∂KR≥p
→ µp(

IpF
∂KR≥p

)→ · · · → IpK are also injective

for all p ≥ 2. Since these compositions are always surjective, injectivity is equivalent to

isomorphism. This proves Proposition 2.

Proof of Theorem 4. The first claim in Theorem 4 follows from the long exact sequence

(4.1) and Proposition 2, which imply that

Ap ∼=
IpF

∂KR≥p
/

Ip+1
F

∂KR≥p+1

∼= IpK/I
p+1
K
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whenever πSyzp is surjective.

We deal with the restriction to degrees 2 and 3 for the Koszul case in the next

section.

Remark 3. Spectral Sequence Interpretation Continued

In Remark 2 we interpreted the spaces E0 and E1 in terms of the algebra A and

its relations. The next step in applying a spectral sequence would be to successively

determine the differentials di, i ≥ 1, and thence the pages Ei+1, until we reach E∞.

Instead, however, we can collapse all these steps into one.

The d1 differential is normally determined1 as the coboundary operator arising from

the exact sequence (we use the notation F p
0 := X̃≥p and F p

1 := R≥p for the filtration)

0 F p+1
1 /F p+2

1 F p
1 /F

p+2
1 F p

1 /F
p+1
1 0

0 F p+1
0 /F p+2

0 F p
0 /F

p+2
0 F p

0 /F
p+1
0 0

// // // //

// // // //

∂A
��

∂Ind
K
��

∂A
��

where ∂IndK denotes the induced map.

We extend the above diagram by adding a row of kernels at the top, and a row of

cokernels at the bottom:

[ker ∂A]p+1 ker ∂IndK [ker ∂A]p

0 F p+1
1 /F p+2

1 F p
1 /F

p+2
1 F p

1 /F
p+1
1 0

0 F p+1
0 /F p+2

0 F p
0 /F

p+2
0 F p

0 /F
p+1
0 0

coker ∂A coker ∂IndK Ap

// // // //

// // // //

∂A
��

∂Ind
K
��

∂A
��

�� �� ��

�� �� ��

// ρ //

ν // //

Then, as before, the following sequence is exact by the Snake Lemma:

1See e.g. [Lang], Proposition XX 9.2, page 817.
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ker ∂IndK

ρ−→ [ker ∂A]p
d1→ coker ∂A

ν−→ coker ∂IndK

and this d1 is the differential for the page E1. It is clear from the exact sequence that

ρ is injective iff ν is surjective iff d1 = 0. Unfortunately, though, this is not enough to

prove the PVH Criterion, since in particular ker ∂IndK are not the syzygies of K, and

coker ∂IndK is not
IpF

∂KR≥p
(i.e. effectively because we have not considered all higher degree

differentials of the spectral sequence).

However, we can bring all of the higher degree differentials in simultaneously by

considering instead the coboundary operator arising from the exact sequence:

0 F p+1
1 F p

1 F p
1 /F

p+1
1 0

0 F p+1
0 F p

0 F p
0 /F

p+1
0 0

// // // //

// // // //

∂resK
��

∂K
��

∂A
��

and the result is just the diagram considered in our proof of Theorem 4. Moreover, the

fact that πSyz is a surjection is equivalent to the coboundary operator from the above

sequence being 0, i.e. there are no corrections to the E1 page in computing E∞. Finally,

we have grpK = X̃≥p

∂KR≥p
/ X̃≥p+1

∂KR≥p+1
= grpH0 and grpK = grpH0 = Ep,−p

1 = Ap.

4.3 Some Reminders About Quadratic Duality

4.3.1 Basics

In this section we briefly review the theory of quadratic algebras to the extent needed

to prove the final claim in Theorem 4, and to cover material that will be needed later

(but skipping proofs). The reader who is not familiar with this theory can find a quick

overview in [Fröberg2] or [Hille], or more extensive treatment in [Pol] and [Kraehmer];
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the original source is [Priddy].2

We start with the quadratic algebra A which is given by A = TV/〈R〉 (in the notation

of Section 3.6). The quadratic dual algebra A! is defined as A! := TV ∗/〈R⊥〉, where V ∗

is the linear dual vector space and R⊥ ⊆ V ∗ ⊗ V ∗ is the annihilator of R.

One indication of the usefulness of the concept of quadratic duality is that the degree 2

part of the dual algebra catalogues the relations of the original algebra (this is true for all

quadratic algebras). More generally, the Koszul complex provides a readily computable

‘candidate’ resolution for A, which is an actual resolution precisely when A is Koszul.

In particular the degree 3 part of the dual provides at least a candidate catalogue of the

relations among the relations of the original algebra (i.e. syzygies) - and more generally,

the degree m part of the dual provides a candidate catalogue of the relations among

relations among ... ((m− 1) times) of the original algebra (which we will call the level m

syzygies). Moreover, there are specific maps from the degree m part of the dual into the

space of level m syzygies. The statement that a quadratic algebra is Koszul is equivalent

to the statement that the dual algebra not only provides a candidate catalogue of the

syzygies of all levels, but an actual, complete catalogue of those syzygies. For purposes

of this paper, it is only the level 3 syzygies that are important.

More specifically, if we define ∆!
1,1 : A!2∗ → V ⊗ V as the dual to multiplication

V ∗ ⊗ V ∗ → A!2, then in fact ∆!
1,1 is an isomorphism:

∆!
1,1 : A!2∗ ∼→ R (4.2)

Thus A!2 catalogues the degree 2 relations of A and the map ∆!
1,1 sends a basis of A!2 to

a basis of R (see (5.6) and (5.7) below, in the case of pvb!n).

2As noted in footnote 2, we rely on results about Koszul algebras which have only been developed for
graded algebras whose graded components are finitely generated over the ground ring. Hence, wherever
we rely on Koszulness of A, we assume the algebra K to be finitely generated. This is sufficient to ensure
that Am is finitely generated over Q.



Chapter 4. Postponed Proofs 38

In the same vein, A!3 catalogues all relations between relations of A, in degree three3

- in other words, A!3 ∼= (R ⊗ V ∩ V ⊗ R) (see [Pol], proof of Theorem 4.4.1). More

specifically, if ∆!
2,1 is dual to the multiplication: A!2 ⊗ V ∗ � A!3, then the map

(∆!
1,1⊗ 1) ◦∆!

2,1 : A!3∗ ↪→ R⊗V ⊆ X3
1 (4.3)

is actually an isomorphism A!3∗ ∼→ (R⊗V ∩ V ⊗R) which maps a basis for A!3 to a basis

for the degree 3 syzygies (viewed as a subspace of X3
1 ).

Similarly, if ∆!
1,2 is dual to the multiplication: V ∗ ⊗ A!2 → A!3, the map:

(1⊗∆!
1,1) ◦∆!

1,2 : A!3∗ ↪→ R⊗V ⊆ X3
2 (4.4)

is an isomorphism A!3∗ ∼→ (R⊗V ∩ V ⊗R), and maps a basis for A!3 to a basis for the

degree 3 syzygies (viewed as a subspace of X3
2 ).

A priori, A!3 need not generate the (level 3) syzygies of A in degrees higher than 3.

However, if A is Koszul then indeed A!3 does generate the (level 3) syzygies of A in all

degrees, as we will explain further in the next section.

4.3.2 The Role of Koszulness

We will make use of the following theorem, which follows from [Pol], Theorem 2.4.1 (p.29)

and Proposition 1.7.2 (p.16), to which the reader is referred for proofs.

Theorem 5. Koszulness4 of the algebra A implies exactness of the sequence:

⊕
i<j

(Rm,i ∩Rm,j)
∂Syz−→

⊕
i

Rm,i
κ−→ V ⊗m (4.5)

3If we assume that ∂A : QY → R is injective (i.e. the PVH Criterion is satisfied in degree 2) then
level 3 syzygies must have at least degree 3 in the generators of A. Given a level 3, degree 3 syzygy,
we can also get level 3 syzygies of higher degree by pre- or post-multiplying all terms in the syzygy by
monomials in the generators, although level 3 syzygies of higher degree need not all arise in this way
(except when the algebra is Koszul).

4As per footnote 3, A need only be 2-Koszul, i.e. its Koszul complex need only be exact up to
homological degree 2 inclusive.
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In (4.5), the direct sums are external, and the maps are induced from the following

diagram:

Rm,i ∩Rm,j

Rm,i

Rm,j

V ⊗m

(+1)

(−1)

<<

""

""

<<

where the left diagonals are multiplication by the indicated factors, and the right diago-

nals are the inclusions.

Note that we can decompose
⊕

i<j(Rm,i ∩Rm,j) as follows:

⊕
i<j

(Rm,i

⋂
Rm,j) =

⊕
i

(Rm,i ∩Rm,i+1)⊕
⊕
i+1<j

(Rm,i ∩Rm,j)

The syzygies
⊕

i+1<j(Rm,i ∩ Rm,j) are ‘trivial’ in the sense that they arise from the

obvious fact that non-overlapping relations commute. This fact remains true at the global

level, so that these ‘trivial’ syzygies also trivially satisfy the PVH Criterion.

The more interesting syzygies are the (Rm,i ∩ Rm,i+1). From the review given in the

previous section, we have (Rm,i ∩Rm,i+1) ∼= V ⊗i ⊗ (X3
1 ∩X3

2 )⊗ V ⊗m−i−2 ∼= V ⊗i ⊗A!3 ⊗

V ⊗m−i−2. This makes clear that the PVH Criterion need only be checked in degree 3 in

the Koszul case.
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The Quadraticity of PvBn

5.1 Overview

We now turn to PvBn. Our goal is to establish the following theorem:

Theorem 6. PvBn is quadratic.

As pointed out in Section 8.5 of [BarEnEtRa], Theorem 6 implies the truth of their

Conjecture 8.6, namely:

Corollary 1. H∗(PvBn) ∼= pvb!n as algebras.

Note that there are natural homomorphisms PfBn → PvBn → PfBn, with the compo-

sition being the identity (this is pointed out in Section 2.3 of [BarEnEtRa]). The second

map sends all generators Rij to themselves, and the first sends Rij to itself whenever

i < j. It follows that PfBn is a split quotient of PvBn (and similarly pfbn is a split

quotient of pvbn by essentially the same reasoning). Hence quadraticity of PvBn implies:

Corollary 2. PfBn is quadratic.

This confirms a result originally announced in [BarEnEtRa] (in which PfBn is referred

to as Trn). Again as pointed out in Section 8.5 of [BarEnEtRa], Corollary 2 implies the

following (which is Theorem 8.5 of [BarEnEtRa]):

40
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Corollary 3. H∗(PfBn) ∼= pfb!n as algebras.

Because we prove the quadraticity of PvBn using the PVH Criterion, we go through

the following steps:

• Check that the preliminary requirements (as per Section 3.2) for applying the PVH

Criterion are met.

• Find the infinitesimal syzygies. We will use the fact that pvbn is Koszul, and

that accordingly the infinitesimal syzygies are essentially given by pvb!3n . (The

Koszulness of pvb!n was first established in [BarEnEtRa], and we give an alternative

proof in section 5.7). After finding a basis for pvb!n, and in particular for pvb!3n ,

we will see that finding the infinitesimal syzygies becomes a fairly straightforward

calculation.

• Find the global syzygies corresponding to the Zamolodchikov tetrahedron, and

compute the induced infinitesimal syzygies.

• Check that global syzygies induce all of the infinitesimal syzygies, confirming that

the PVH Criterion is met.

5.2 Terminology and Preliminary Requirements for

PVH Criterion

We denote by QPvBn and QF the rational group ring of PvBn and the rational free

group ring on the same generators, respectively. Their respective augmentation ideals

are denoted IK and IF .

Consistent with the discussion in Section 4.1, we take QPvBn to be completed with

respect to the filtration by powers of the augmentation ideal, so that we can eliminate
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the inverses of group generators, and the linear relations corresponding to the group laws,

from our presentation for QPvBn as an algebra.

We now derive a presentation for pvbn, even though it was given in substantially

similar form in Section 2.4.2.

Given the presentation for PvBn in Section 1, the augmentation ideal IK is generated

as a 2-sided QPvBn-module by the set X̃ := {Rij := (Rij − 1) : 1 ≤ i 6= j ≤ n}. It is

straightforward to check that the elements of X̃ (modulo I2K) are linearly independent

(i.e. QX̃ ∩ I2K = 0), and hence in fact form a basis of V = IK/I
2
K . The Rij mod I2K

correspond to the generators {rij} for pvbn from the presentation (1.3).

From the relations (1.1) and (1.2) for PvBn, the ideal M ⊆ IF of relations for K is

the 2-sided ideal M in F generated by

Y ′ijk := RijRikRjkR
−1
ij R

−1
ik R

−1
jk − 1

Ckl
ij

′
:= RijRklR

−1
ij R

−1
kl − 1

for 1 ≤ i, j, k, l ≤ n, and i, j, k, l all distinct. Equivalently, M is generated (as 2-sided

F -ideal) by

Yijk := RijRikRjk −RjkRikRij (5.1)

Ckl
ij := RijRkl −RklRij (5.2)

As per Lemma 1, the relations in pvbn are generated by R ∼= (M + I3F )/I3F . Thus

to obtain R, we make the substitution Rij 7→ (Rij + 1) throughout the Yijk and Ckl
ij ,

and drop all terms of degree 3 (or higher) in the Rij. We obtain the quadratic relators

{yijk; cklij} for pvbn (see (1.3) and (1.4)), up to replacing the {Rij} by the {rij}.

Since PvBn is a finitely presented group, the requirements for applicability of the PVH

Criterion, as we have developed it, essentially reduce to (see Section 3.2) checking that

the ideal of relations M ⊆ IF actually satisfies M ⊆ I2F . In turn this amounts to checking

that the relators obtained above for R (i.e. (1.3)) are all quadratic in the rij, which is
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clearly true. We note that this is essentially due to the fact that the relators for PvBn all

have degree 0 in each of the generators of PvBn, so that after performing the substitution

Rij 7→ (Rij + 1) and expanding in terms of the Rij, all constant terms and terms linear

in the Rij cancel out.

We can also easily check that PvBn satisfies the degree 2 PVH Criterion, i.e. that the

generators (5.1) and (5.2) for M satisfy the requirement that {Yijk + I3F , C
kl
ij + I3F} are

linearly independent in (M + I3F )/I3F . Equivalently we have to check that the {yijk; cklij}

are linearly independent. There are several ways to do this - one slightly fancy way to

do it is to use the isomorphism

∆!
1,1 : pvb!2n

∗ ∼→ R

which we recalled in (4.2), and note that ∆!
1,1 takes a basis of pvb!2n precisely to the

relators {yijk; cklij} of pvbn (we compute this in (5.6) and (5.7) below).

5.3 Finding the Infinitesimal Syzygies

As a preliminary matter we recall the definition of pvb!n and exhibit its relations. As noted

in Section 3.6, pvbn is defined as pvbn = TV/〈R〉 (where V = IK/I
2
K and R were obtained

in Section 5.2). The quadratic dual algebra pvb!n is defined as pvb!n := TV ∗/〈R⊥〉, where

V ∗ is the linear dual vector space and R⊥ ⊆ V ∗ ⊗ V ∗ is the annihilator of R.

From these definitions, one readily finds that pvb!n is the exterior algebra generated

by the set {r∗ij : 1 ≤ i 6= j ≤ n}, subject to the relations:

r∗ij ∧ r∗ik = r∗ij ∧ r∗jk − r∗ik ∧ r∗kj (5.3)

r∗ik ∧ r∗jk = r∗ij ∧ r∗jk − r∗ji ∧ r∗ik (5.4)

r∗ij ∧ r∗ji = 0 (5.5)

where the indices i, j, k are all distinct.
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5.3.1 A Basis for pvb!
n

In this section we will identify a basis for the dual algebra pvb!n. We state the result for

all degrees, although we only actually need pvb!3n .

We note that monomials in pvb!n may be interpreted as directed graphs, with vertices

given by the integers [n] := {1, . . . , n}, and edges consisting of all ordered pairs (i, j) such

that rij is in the monomial. We thus get a graphical depiction of the above relations:

i

j k__ ?? =
i

j k__ //
−

i

j k??oo
(Pruning V)

k
i j
?? __

=
k

i j//
__
−

k
i joo
??

(Pruning A)

i j//oo = 0 (No Loop)

We note that there is a sign indeterminacy in the graphs, in that for instance the

LHS of (Pruning V) can equally refer to ±rij ∧ rik. We will only use the graphs when

the signs are immaterial.

Theorem 7. The algebra pvb!n has a basis consisting exactly of the monomials corre-

sponding to ‘chain gangs’, i.e. unordered partitions of [n] into ordered subsets.

Corollary 4. The degree k component of pvb!n has dimension L(n, n − k), where the

‘Lah number’ L(n, n− k) denotes the number of unordered partitions of [n] into (n− k)

ordered subsets.

Proof. Clear from the theorem, since it is easy to see that a chain gang on the index set

[n] with (n− k) chains must have exactly k arrows (and correspond to a basis monomial

of degree k).
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We note that it was already proved in [BarEnEtRa] that the dimensions of the graded

components of pvb!n are given by the Lah numbers (although a basis for pvb!n was not

provided).

We postpone the proof until Section 5.5. However, the idea of the proof is straight-

forward, i.e. show that a basis is given by all monomials whose graphical representation

has no A-joinsA-joinsA-joins or V-joinsV-joinsV-joins (by which we mean the diagrams in the LHS of the relations

(Pruning A) and (Pruning V), respectvely) and no loops:

• One first shows that if a tree has an A-join or a V-join, we can replace it by a sum

of trees in which the particular join is replaced by an oriented segment of length

2, using either (Pruning A) or (Pruning V). Eventually we are left with a sum of

oriented chains.

• One must then show that these oriented chains are linearly independent.

• Next one shows that all monomials whose graph contains a loop (oriented or not)

are 0: it turns out that loops of length greater than 2 can be reduced progressively

to loops of length 2, and then the resulting graph is 0 either by (No Loops) or by

anti-commutativity.

Remark 4. We will see that directed chains of length 3 are in a 1-1 correspondence

with certain (level 3) syzygies of the global algebra A - specifically one Zamolodchikov

tetrahedron for each ordering of a particular choice of 4 of the n strands in PvBn. An

arrow from index ‘i’ to index ‘j’ means strand ‘i’ remains above strand ‘j’ throughout

the syzygy. Although not relevant for our purposes, this correspondence between oriented

chains of length m and level m syzygies holds for syzygies of all levels. These higher level

global syzygies correspond to generalizations of the Zamolodchikov tetrahedron, and most

likely correspond in some sense to generators of the cohomology of PvBn.

Remark 5. If in the basis given above one includes only generators rij with i < j,

we obtain a basis for the algebra pfb!n. This basis is different from the basis given in
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[BarEnEtRa]. The basis given here is more useful for purposes of applying the PVH

criterion, because of the fact that directed chains of length 3 correspond to syzygies arising

from the Zamolodchikov tetrahedron.

Remark 6. If, as in the previous remark, we again consider the implied basis for pfb!n,

we see that the (No Loop) relation and the exclusion of monomials whose graph contains

a loop are irrelevant. We are left with a rule that says that a basis of pfb!n is given

by all monomials whose graph does not contain an A-join or a V-join. The exclusion

of A-joins and V-joins amounts to specifying a quadratic Gröbner basis for the ideal of

relations in pfb!n. By a theorem of [Yuz], this gives a proof that the algebra pfb!n (and its

dual pfbn) is Koszul. Unfortunately the given basis for pvb!n, as opposed to pfb!n, does

not prove Koszulness, since the no-loop exclusion corresponds to Gröbner basis elements

of arbitrarily high degree (i.e. of degree equal to the length of the loop). In section 5.7 we

give an alternative basis for pvb!n, from which the Koszulness of pvb!n can be deduced.

5.3.2 The Infinitesimal Syzygies

One can readily compute that the isomorphism ∆!
1,1 acts on basis elements of pvb!2n

∗
as

follows:1

∆!
1,1 : rij ∧ rjk 7→ [rij, rik] + [rij, rjk] + [rik, rjk] (5.6)

rij ∧ rkl 7→ [rij, rkl] (5.7)

Indeed one can in fact view (Pruning A) and (Pruning V) as giving the only elements of

V ∗ that do not multiply freely in pvb!2n , and then (since ∆!
1,1 is dual to the product in

pvb!2n ) the above result is immediate.

As noted following (4.3) and (4.4), the maps (1⊗∆!
1,1) ◦∆!

1,2 and (∆!
1,1⊗ 1) ◦∆!

2,1 are

1Instead of writing r∗∗ij for elements of pvb!2n
∗
, we write rij .
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isomorphisms and give the inclusion of pvb!3n into X3
1 and X3

2 respectively. It follows that

the image of the map κ ◦ ∂Syz of X3
1 ∩X3

2 into V ⊗3 (see (4.5)) is given by

κ ◦ ∂Syz(X3
1 ∩X3

2 ) =
[
(∆!

1,1⊗ 1) ◦∆!
2,1 − (1⊗∆!

1,1) ◦∆!
1,2

]
(pvb!3n ) (5.8)

It is easy to see that there are three types of basis element in pvb!3n , corresponding to

three types of chain gang with three edges:

• rij ∧ rjk ∧ rkl with i, j, k, l all distinct;

• rij ∧ rjk ∧ rst with i, j, k, s, t all distinct;

• rij ∧ rkl ∧ rst with i, j, k, l, s, t all distinct.

We first deal with the first type of basis element. We will show that in this case the

first term of (5.8) is given by:2

∆!
2,1(rij ∧ rjk ∧ rkl) = −(∆!

1,1 ⊗ 1)(rij ∧ rjk)⊗ (−ril − rjl − rkl)

+ (∆!
1,1 ⊗ 1)(rij ∧ rjl)⊗ (−rik − rjk + rkl)

− (∆!
1,1 ⊗ 1)(rik ∧ rkl)⊗ (−rij + rjk + rjl)

+ (∆!
1,1 ⊗ 1)(rjk ∧ rkl)⊗ (rij + rik + ril)

− (∆!
1,1 ⊗ 1)(rij ∧ rkl)⊗ (rik + ril + rjk + rjl)

+ (∆!
1,1 ⊗ 1)(rik ∧ rjl)⊗ (rij + ril − rjk + rkl)

+ (∆!
1,1 ⊗ 1)(ril ∧ rjk)⊗ (−rij − rik + rjl + rkl)

We defer a more detailed justification of the above calculation to Section 5.6. Now using

(5.6) and (5.7), we get:

2Again, we write rij instead of r∗∗ij for elements of pvb!3n
∗
.
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(∆!
1,1 ⊗ 1) ◦∆!

2,1(rij ∧ rjk ∧ rkl) = (5.9)

− yijk ⊗ (−ril − rjl − rkl) + yijl ⊗ (−rik − rjk + rkl)

− yikl ⊗ (−rij + rjk + rjl) + yjkl ⊗ (rij + rik + ril)

− cklij ⊗ (rik + ril + rjk + rjl) + cjlik ⊗ (rij + ril − rjk + rkl)

− cjkil ⊗ (rij + rik − rjl − rkl) (5.10)

In (5.10) the tensor products are the tensor products in the tensor algebra TV , so we

drop them. Furthermore, (1⊗∆!
1,1) ◦∆!

1,2(rij ∧ rjk ∧ rkl) is the same, but with the tensor

components flipped. Putting the two together gives:

(∆!
1,1 ⊗ 1) ◦∆!

2,1(rij ∧ rjk ∧ rkl) = (5.11)

− [yijk, (−ril − rjl − rkl)] + [yijl, (−rik − rjk + rkl)]

− [yikl, (−rij + rjk + rjl)] + [yjkl, (rij + rik + ril)]

− [cklij , (rik + ril + rjk + rjl)] + [cjlik, (rij + ril − rjk + rkl)]

− [cjkil , (rij + rik − rjl − rkl)] (5.12)

We will see that these syzygies are induced (via the map πSyz) from global syzygies

in the next section.

This leaves the two remaining types of degree 3 basis element in pvb!3n . It is fairly

straightforward to compute that they correspond, respectively, to the relations:

yijkrst = rstyijk

and

cklijrst = rstc
kl
ij

which are clearly satisfied also at the global level.
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5.4 Global Syzygies and the PVH Criterion

5.4.1 The Global Syzygies

We now display (a sum of) elements of R3 which specify a syzygy of K = QPvBn and

which project via πSyz (see notation in Theorem 4) to the syzygy (5.12) in pvbn. The

syzygy corresponds to the standard syzygy in the braid group (i.e. the Zamolodchikov

tetrahedron pictured in Section 3.9), which can be written:

YjklRilRikRij +RjkRjlYiklRij +RjkRjlRikRilC
kl
ij

+RjkC
jl
ikRilRijRkl +RjkRikYijlRkl + YijkRilRjlRkl +RijRikC

jk
il RjlRkl

−RijRikRilYjkl −RijYiklRjlRjk − Ckl
ijRilRikRjlRjk

−RklRijRilC
jl
ikRjk −RklYijlRikRjk −RklRjlRilYijk −RklRjlC

jk
il RikRij

where again

Yijk = RijRikRjk −RjkRikRij (5.13)

Ckl
ij = RijRkl −RklRij

This calculation was illustrated in Section 3.9.

The calculation may be explained as follows. The illustration shows 14 braids {Bi}i=1,...,14

around its perimeter. These are linked by arrows labeled by various multiples of the moves

Yijk or Ckl
ij . If we attach the labels B1, B2, . . . starting at the bottom braid and proceeding

clockwise around the perimeter, the arrows correspond to differences (B2−B1), . . . , (B8−

B7) up the left side of the diagram, and to differences (B14 −B1), . . . , (B8 −B9) around

the right side. If we label the differences in accordance with (5.13), we get the labeling

in the picture. But clearly the telescopic sums on the left and right both give B8 − B1,

so we get a syzygy which we wrote down above.
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This syzygy induces an infinitesimal syzygy which we obtain by substituting Rij 7→

(Rij + 1) and dropping all but the lowest degree terms in the Rij (this corresponds to

applying the map πSyz). After reorganizing, we get:

[Yjkl, Rij +Rik +Ril]− [Yikl,−Rij +Rjk +Rjl] + [Yijl,−Rik −Rjk +Rkl]

− [Yijk,−Ril −Rjl −Rkl]

− [Ckl
ij , Rik +Ril +Rjk +Rjl] + [Cjl

ik, Rij +Ril −Rjk +Rkl]

− [Cjk
il , Rij +Rik −Rjl −Rkl]

where the Ckl
ij and Yijk are the same as the cklij and yijk in (1.3), except the rij are replaced

by the Rij. By inspection, and after substituting Rij 7→ rij and {Ckl
ij 7→ cklij , Yijk 7→ yijk},

we see that this coincides with the infinitesimal syzygy (5.12). Hence we have confirmed

that all of the infinitesimal syzygies are covered by global syzygies.

5.5 Proof of the Basis for pvb!
n

We will follow the outline of the proof provided in Section 5.3.1.

We will say that a pair of vertices in a forest graph is unorderedunorderedunordered if there is not an

oriented sequence of edges from one of them to the other. We define the defectdefectdefect of a tree

as the number of unordered pairs of vertices in the graph, and the defect of a forest as

the sum of the defects of its components.

Then chain gangs (unordered partitions of [n] into ordered subsets) are exactly the

forests with 0 defect. Moreover, in the pruning moves the A- and V-joins have defect 1,

while the remaining terms have defect 0.

We will refer to a relation formed by adding to each of the terms in either (Pruning

A) or (Pruning V) exactly the same additional edges, without ever forming a loop, as

a multiplemultiplemultiple of the original relation. Note that the graphs representing the multiple need
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not be connected. The defect function has the following ‘multiplicativity’ property on

forests:

Lemma 4. In each multiple of either (Pruning A) or (Pruning V), the term which is

built from the term in the original relation containing a join has defect strictly larger

than the other terms.

The proof is deferred to the end of this section.

Proof of Theorem 7. We follow the plan of proof given following the statement of Theo-

rem 7.

The multiplicativity property of the defect makes clear that all forests can be ex-

pressed in terms of (sums of) chain gangs: If a forest contains an A- or V-join, then using

either (Pruning A) or (Pruning V) we can replace it with a sum of forests with strictly

lower defect. Iterating, we get a forest with 0 defect, i.e. a chain gang.

Now we show that chain gangs are linearly independent modulo the relations in pvb!n.

The proof is a variation on the standard diamond lemma proof, which we briefly recall.

By a reductionreductionreduction, we mean specifically replacing the LHS of either pruning relation, or a

multiple thereof, by the RHS.

We will show that reducing a defect to 0 will produce the same chain gangs regardless

of the sequence of reductions chosen, by induction on the size of the defect. This is clearly

true when we start with a forest with defect 1, since there is only one way to reduce such

a forest.

Suppose the claim is true for all forests of defect ≤ m. Let us consider a forest of

defect m + 1, and suppose there are two possible reductions, called (a) and (b). Then

applying either (a) or (b) gives a (sum of) new forests, which we call A and B respectively,

each of defect ≤ m.

Suppose (a) and (b) (or the pruning relations of which they are multiples) involve

changes to pairs of edges that do not overlap. Then it is still possible to apply reduction



Chapter 5. The Quadraticity of PvBn 52

(a) to B, and reduction (b) to A. Doing so, we obtain the same forest C of defect ≤ m−1,

since the result of applying non-overlapping reductions clearly does not depend on the

order they are applied.

Alternatively, suppose (a) and (b) (or the pruning relations of which they are mul-

tiples) involve changes to pairs of edges that do overlap. We will see that we can find

further reductions (a’), (a”) and (b’), (b”) such that applying the sequence (a)-(a’)-(a”)

or (b)-(b’)-(b”) leads to the same (sum of) forests C, of defect ≤ m− 2.3

Either way, we know by induction that all reduction sequences from A give the same

results, and similarly for B, and since they have a common reduction sequence going

through C, we see that A and B both give the same (sum of) forests of defect 0. Hence

all reductions of the original forest must give the same (sum of) chain gangs.

We now deal with the case where reductions (a) and (b) involve pairs of edges that

overlap, and exhibit the reductions (a’), (a”) and (b’), (b”). By inspection of the A- and

V-joins, the following three types of overlap can arise (up to sign):

(X)

bb OO <<

(Y )

<<OObb

(Z)

??__ ??

In each case we have only shown the edges involved in the reductions.

Case (Z) is dealt with as follows (a star over a wedge
∗
∧ indicates the join which is

being reduced - hence to make the following more legible we have dropped the ∗ from

elements r∗ij ∈ pvb!n):

rij
∗
∧ rkj ∧ rkl = rik ∧ rkj

∗
∧ rkl + rij ∧ rki

∗
∧ rkl

= rik ∧ rkj ∧ rjl − rik ∧ rkl ∧ rlj − rij
∗
∧ ril ∧ rki + rkl ∧ rli ∧ rij

= rik ∧ rkj ∧ rjl − rik ∧ rkl ∧ rlj − rki ∧ rij ∧ rjl + rki ∧ ril ∧ rlj

− rkl ∧ rli ∧ rij

3In fact the reductions (a’) and (b’) may really involve two reductions, applicable to different terms.
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while on the other hand

rij ∧ rkj
∗
∧ rkl = rik ∧ rkj

∗
∧ rkl + rki

∗
∧ rkl ∧ rij

= rik ∧ rkj ∧ rjl − rik ∧ rkl ∧ rlj + rki ∧ ril
∗
∧ rij − rkl ∧ rli ∧ rij

= rik ∧ rkj ∧ rjl − rik ∧ rkl ∧ rlj + rki ∧ ril ∧ rlj − rki ∧ rij ∧ rjl

− rkl ∧ rli ∧ rij

Since the results of the two calculations are the same, we see that regardless of which

join we reduce first, there is a further sequence of reductions that leads to the same

(signed sum of) trees, which is what we needed.4

Cases (X) and (Y) are dealt with similarly - we simply note that

rij
∗
∧ rik ∧ ril = −rij ∧ rjl ∧ rlk + rij ∧ rjk ∧ rkl + ril ∧ rlj ∧ rjk

+ rik ∧ rkl ∧ rlj − rik ∧ rkj ∧ rjl − ril ∧ rlk ∧ rkj = rij ∧ rik
∗
∧ ril

and

ril
∗
∧ rjl ∧ rkl = rij ∧ rjk ∧ rkl − rik ∧ rkj ∧ rjl + rki ∧ rij ∧ rjl

− rji ∧ rik ∧ rkl + rjk ∧ rki ∧ ril − rkj ∧ rji ∧ ril = ril ∧ rjl
∗
∧ rkl

and leave the details of the calculations for the reader.

The next step in the proof is to show that all graphs with loops are 0. Let us start by

considering oriented loops. Using (Pruning V), we can reduce oriented loops of length

greater than 2 to (sums of) oriented loops of shorter length:

II //

YY
%%
=

II 99

YY
%%
−

99oo

YY
%%

4As per the previous footnote, note that reductions (a’) and (b’), indicated by the stars in the RHS
of the first lines, actually involve two reductions, applicable to separate terms.
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Once again we note that there is a sign indeterminacy in the above graphical represen-

tation, which does not affect the outcome as we do not rely on any cancelation of terms

and the specific coefficients do not matter.

Once we are down to oriented loops of length 2, these are 0 by (No Loops).

Now we consider unoriented loops. For loops containing a V-join, we can use (Pruning

V) to reduce loops of length greater than 2 to (sums of) loops of shorter length:

		

//

= 		

99

−
//

yy

The case of unoriented loops containing an A-join, rather than a V-join, is similar.

Although the result of any such reduction may or may not be unoriented, we can still

continue reducing the length of the loops using either the oriented or unoriented proce-

dure. Once we are down to loops of length 2, these are 0 either by (No Loops) or by

anti-commutativity.

Thus, if we follow the above procedure, we can reduce all loops to 0. It is also clear

from the above that even if we followed a different sequence of pruning moves we would

never reduce loops to a sum of diagrams including trees, since a pruning move can never

break a loop.

We have completed the proof of Theorem 7, subject to proving multiplicativity of the

defect function, i.e. Lemma 4. We do this now.

By a ‘vertex in a relationvertex in a relationvertex in a relation’ we will mean a vertex which is an endpoint of at least one

edge in the graphs corresponding to the terms of the relation. It is fairly clear this is a

well-defined notion (and in particular that the number of vertices in a relation is constant

over all terms in a relation).

By the ‘join termjoin termjoin term’ in a multiple of a pruning relation, we mean the term that was

built by adding edges to the term in the original pruning relation which contained an A-

or V-join.
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Proof of Lemma 4. We proceed by induction on the number of vertices in a relation. We

claim that if (x) and (y) are vertices in the new relation, and there is a directed chain of

edges from (x) to (y) in the join term, then there is also a directed chain of edges from

(x) to (y) (in the same direction) in the other terms of the relation. Hence:

1. When we form a multiple of (Pruning A) or (Pruning V) by adding edges, in that

multiple each vertex is no more ordered (with respect to other vertices) in the

join-term than in the non-join terms.

2. However, in each relation, there is at least one pair of vertices which is unordered

in the join-term, but is ordered in the other terms, namely the unordered paid in

the original pruning relation.

So we can conclude that the join-term in the new relation must have strictly highest

defect.

The above claim is easily verified in the original relations (Pruning A) and (Pruning

V). We now assume the claim has been proved whenever there are up to m edges in a

relation; we take a relation with m edges and add a further edge. There are three cases.

Case I: Two New Vertices.Case I: Two New Vertices.Case I: Two New Vertices. If the added edge forms a separate component in the new

graphs, then clearly the defect will have increased by the same amount in all terms of

the relation.

Case II: One Old, One New Vertex.Case II: One Old, One New Vertex.Case II: One Old, One New Vertex. So let us suppose that the added edge has one

vertex (a) already in the relation, and one new vertex (b). It is clear that the orderliness

of pairs of vertices not including (b) is unchanged.

Now suppose that (c) is any other vertex in the relation. If (b) and (c) are ordered in

the new join term, say with a directed chain from (b) to (c), this chain must go through

(a) since vertex (b) was not previously the endpoint of any edge. Thus there was also

a directed chain from (a) to (c) in the join-term of the old relation, hence by induction

there were directed chains from (a) to (c) in the non-join terms in the old relation. It
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follows that there is also a directed chain from (b) to (c) in the new non-join terms. The

case of a directed chain from (c) to (b) in the new join-term is similar.

If (b) and (c) are unordered in the new join term, there is nothing to prove. Letting

(c) range over all other vertices in the relation proves Case II.

Case III: Two Old Vertices.Case III: Two Old Vertices.Case III: Two Old Vertices. All that is left is to consider the case where the new

edge links two existing vertices in the relation. Because we assume that the added edge

does not create a loop, it follows that the edge must be linking two formerly disconnected

components of the graphs underlying the relation. We assume the new edge links existing

vertices (a) and (b). It is clear that the orderliness of pairs of vertices already within the

same component in the old relation is unchanged. So we take (c) and (d) to be to be any

two vertices in the component of (a) and (b) respectively. We can assume without loss

of generality that either (a) 6= (c) or (b) 6= (d) (because if (a) = (c) and (b) = (d) then

that pair is joined by the new edge and hence ordered in all terms of the relation).

The reasoning is similar to Case II. If (c) and (d) are ordered in the new join term,

say with a directed chain from (c) to (d), this chain must go through (a) and (b) since

we assume there are no loops. Thus the new edge must be oriented (a) to (b); moreover,

there must also have been directed chains from (c) to (a) and from (b) to (d) in the

join-term of the old relation. By induction, there were directed chains from (c) to (a)

and from (b) to (d) in the non-join terms in the old relation. It follows that there is also

a directed chain from (c) to (d) in the new non-join terms. The case of a directed chain

from (d) to (c) in the new join-term is similar.

Finally, if (c) and (d) are unordered in the new join term, there is nothing to prove.

Letting (c) and (d) range over all other vertices in the relation proves Case III.
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5.6 Justification of the Co-Product Formulas

We give here a summary of the action of the product m! : pvb!2n ⊗ V ∗ → pvb!3n in terms

of the ‘directed chains’ basis for the respective spaces. The verifications are routine and

we will leave them to the reader.

r∗ij ∧ r∗jk ⊗ r∗il 7→ r∗il ∧ r∗lj ∧ r∗jk − r∗ij ∧ r∗jl ∧ r∗lk + r∗ij ∧ r∗jk ∧ r∗kl

r∗ij ∧ r∗jk ⊗ r∗jl 7→ −r∗ij ∧ r∗jl ∧ r∗lk + r∗ij ∧ r∗jk ∧ r∗kl

r∗ij ∧ r∗jk ⊗ r∗kl 7→ r∗ij ∧ r∗jk ∧ r∗kl

r∗ij ∧ r∗jk ⊗ r∗li 7→ r∗li ∧ r∗ij ∧ r∗jk

r∗ij ∧ r∗jk ⊗ r∗lj 7→ −r∗il ∧ r∗lj ∧ r∗jk + r∗li ∧ r∗ij ∧ r∗jk

r∗ij ∧ r∗jk ⊗ r∗lk 7→ r∗ij ∧ r∗jl ∧ r∗lk − r∗il ∧ r∗lj ∧ r∗jk + r∗li ∧ r∗ij ∧ r∗jk

and

r∗ij ∧ r∗kl ⊗ r∗ik 7→ −r∗ij ∧ r∗jk ∧ r∗kl + r∗ik ∧ r∗kj ∧ r∗jl − r∗ik ∧ r∗kl ∧ r∗lj

r∗ij ∧ r∗kl ⊗ r∗ki 7→ r∗kl ∧ r∗li ∧ r∗ij − r∗ki ∧ r∗il ∧ r∗lj + r∗ki ∧ r∗ij ∧ r∗jl

r∗ij ∧ r∗kl ⊗ r∗il 7→ −r∗ij ∧ r∗jk ∧ r∗kl + r∗ik ∧ r∗kj ∧ r∗jl − r∗ik ∧ r∗kl ∧ r∗lj

− r∗ki ∧ r∗ij ∧ r∗jl + r∗ki ∧ r∗il ∧ r∗lj

r∗ij ∧ r∗kl ⊗ r∗li 7→ r∗kl ∧ r∗li ∧ r∗ij

r∗ij ∧ r∗kl ⊗ r∗jk 7→ −r∗ij ∧ r∗jk ∧ r∗kl

r∗ij ∧ r∗kl ⊗ r∗kj 7→ r∗kl ∧ r∗li ∧ r∗ij − r∗ki ∧ r∗il ∧ r∗lj + r∗ki ∧ r∗ij ∧ r∗jl

+ r∗ik ∧ r∗kl ∧ r∗lj − r∗ik ∧ r∗kj ∧ r∗jl

r∗ij ∧ r∗kl ⊗ r∗jl 7→ −r∗ij ∧ r∗jk ∧ r∗kl + r∗ik ∧ r∗kj ∧ r∗jl − r∗ki ∧ r∗ij ∧ r∗jl

r∗ij ∧ r∗kl ⊗ r∗lj 7→ r∗kl ∧ r∗li ∧ r∗ij − r∗ki ∧ r∗il ∧ r∗lj + r∗ik ∧ r∗kl ∧ r∗lj
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Again the verification of the formulae for the dual map ∆!
2,1 is tedious but routine

and is left to the (beleaguered) reader.

5.7 Proof of the Koszulness of pvb!
n

As indicated in Remark 6, the basis given in Theorem 7 will not in itself lead to a proof of

Koszulness because the explicit exclusion of monomials whose graphical representation

contains a loop corresponds to Gröbner basis elements of arbitrarily high degree. In

contrast, standard theorems on Gröbner bases only tell us that (under mild assumptions)

algebras with quadratic Gröbner bases are Koszul.

So we will exhibit a different basis for pvb!n, consisting of all monomials not contain-

ing certain length two subwords, which corresponds to the specification of a quadratic

Gröbner basis for pvb!n. We will see that, by a result of Yuzvinsky [Yuz] (see also

[ShelYuz]), pvb!n(and hence also pvbn) is Koszul.

To begin with, given any finite subset I ⊆ N (which we order numerically), we will

define two kinds of graph with vertices indexed by I - we will call these Down graphs

and Up graphs. We will then show how to combine Down and Up graphs to get graphs

(which we will call Up-Down graphs) which correspond to a new basis for pvb!n, of the

desired form (i.e. corresponding to the specification of a quadratic Gröbner basis for

pvb!n).

We will also see that the Down and Up graphs, respectively, catalogue bases for:

• the algebra pfb!n, which is quadratic dual to the quadratic approximation for the

pure flat braid group PfBn ( i.e. the quadratic dual to the universal enveloping

algebra of the triangular Lie algebra trn in [BarEnEtRa]); and

• the algebra pb!n, quadratic dual to the quadratic approximation for the pure braid

group PBn.
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However, we do not have a coherent explanation for why bases for pfb!n and pb!n should

fit together in this way to produce bases of pvb!n. See Remark 10 below.

5.7.1 Down Graphs and pfb!
n

A Down treeDown treeDown tree on the index set I = {i1, . . . , im} ⊆ N (with smallest index i1) consists

of a ‘tuft’ of directed edges {(i2, i1), . . . , (im, i1)}. (The graph is non-planar in that all

orderings of the edges incident to a particular vertex are considered equivalent.) This

corresponds to allowing all trees built with directed edges with decreasing indices (i.e.

edges (i, j) with i > j) by

• allowing the following subgraphs:

����

• excluding the following three subgraphs:

��

�� �� ��

��

��

where in all cases the relative heights of the endpoints indicate the relative ordering of

the indices (in particular, the middle subgraph has a doubled edge: {(i, j), (i, j)}). We

declare by way of convention that a Down tree on on index set with one element is the

empty graph. An example of a Down graph is the following:

����ww

i.e.

i1

i2
i3

i4�� �� ww

where i2 > i3 > i4 > i1.

Note that because of the last two types of excluded graph, we needn’t have explicitly

restricted ourselves to trees, as these exclusions prevent the formation of (ordered or
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unordered) loops in the graph (recall also that Down graphs are built only with directed

edges with decreasing indices). Thus we have an exclusion rule, of degree 2 in the

number of edges, which effectively eliminates loops. In particular the obstacle to proving

Koszulness due to the presence of non-quadratic Gröbner basis elements no longer arises.

We now define a Down forest on an index set I partitioned as I = S1 t · · · t Su to be

the union of the Down trees on the subsets Si.

Remark 7. The monomials corresponding to Down forests induced by unordered parti-

tions of [n] = {1, 2, . . . , n} (using the correspondence explained in section 5.3.1) form a

basis for the algebra pfb!n (as a skew-commutative algebra 5). Indeed, it is easy to see

that Down forests are in bijective correspondence with the ‘reduced monomials with dis-

joint supports’ which were proved in [BarEnEtRa], Proposition 4.2, to form a basis of

pfb!n = U(trn)
! (with the minor difference that the edges in [BarEnEtRa] had increasing

indices). Also, the above excluded subgraphs correspond to the excluded monomials im-

plied by the Gröbner basis given in [BarEnEtRa], Corollary 4.3, for U(trn)
! (subject to

always writing generators with increasing indices, using the relation ri,j = −rj,i). The

fact that these Gröbner basis elements are quadratic allowed [BarEnEtRa] to conclude

that pfb!n is Koszul.

5.7.2 Up Graphs and pb!
n

An Up treeUp treeUp tree on the index set I = {i1, . . . , im} ⊆ N (with i1 < · · · < im) consists of all

trees built with directed edges with increasing indices by

• allowing the following two subgraphs:

__

GG OO

OO

5See [Mikha] for more on such bases.
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• excluding the following two subgraphs:

??WW OO OO

where, again, in all cases the relative heights of the endpoints indicate relative ordering

of the indices. Furthermore, the graphs are again non-planar in that all orderings of the

edges incident to a particular vertex are considered equivalent; also, we again declare by

way of convention that a Up tree on an index set with one element is the empty graph.

An example of a Up tree is the following:

ZZ

OO

77

WW

??

LL

i.e.

i1

i4
i3

i2

i6
i5

i7

ZZ

OO
77

WW

??

LL

where i1 < · · · < i7.

As with Down graphs we needn’t have explicitly restricted ourselves to trees, since one

effect of the excluded subgraphs is to prevent the formation of (ordered or unordered)

loops in the graph. Again, the obstacle to proving Koszulness due to the presence of

non-quadratic Gröbner basis elements has been avoided.

We now define an Up forest as a union of Up trees (with disjoint index sets).

Proposition 4. The Up trees on a given index set I with m elements (in which all indices

belong to at least one edge) are in bijective correspondence with the cyclic orderings of

[m] = {1, . . . ,m}, or equivalently the orderings of I starting with the smallest index. This

number is clearly (m− 1)!.

Proof. It is fairly easy to see that Up trees are what is called ‘recursive’ - i.e. non-

planar rooted trees with vertices labeled by distinct numbers, where the labels are strictly

increasing as move in the direction of the arrows. It is a classical result that there are
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(m − 1)! of these on an index set of size m. One way to see it is to place the root at

the bottom of the picture with the edges pointing up, and order the children of each

node by increasing size toward the left (we can do this since the trees are non-planar,

i.e. the children of each node are unordered): see the sample Up tree above. Now

thicken all the edges into ribbons (which are kept flat to the plane with no twisting).

Finally, starting at the root go along the outside edge of the ribbon graph in a clockwise

direction writing down each index the first time it is reached. The result is an ordering

of the m indices starting with the smallest (in the case of the sample Up tree above we

get (i1, i4, i6, i5, i3, i2, i7), and there are clearly (m − 1)! of these. It is easy to see that

this procedure gives the required bijection.

Corollary 5. The Up forests on an index set I are in bijective correspondence with the

unordered partitions of I into cyclically ordered subsets.

Remark 8. The monomials corresponding to Up forests induced by unordered partitions

of [n] = {1, 2, . . . , n}) into cyclically ordered subsets form a basis for the algebra pb!n.

Indeed, it is easy to see that Up forests are in bijective correspondence with the basis

elements for pb!n given in [Yuz], see also [Arnold] and [ShelYuz]. Also, the above excluded

subgraphs correspond to the excluded monomials implied by the Gröbner basis given in

[Yuz]. The fact that these Gröbner basis elements are quadratic allowed [ShelYuz] to

conclude that pb!n is Koszul.

5.7.3 Up-Down Graphs and pvb!
n

To define Up-Down graphs we first need the concept of an ordered 2-step partition (es-

sentially due to [BarEnEtRa]6). Namely given n ∈ N and [n] := {1, 2, . . . , n}, first take

an unordered partition of [n] as [n] = S1t· · ·tSl where the sets Si are cyclically ordered

(and let mi denote the minimal element of Si). Second, take an unordered partition of

6See the proof of Corollary 4.6, (iii). Our ordered 2-step partitions differ from their ‘2-step partitions’
in that our underlying sets Si are cyclically ordered and theirs are unordered.
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the set M := {mi : i = 1, . . . , l} of minimal elements into distinct unordered subsets,

M = M1 t · · · tMk.

Now suppose given such an ordered 2-step partition of [n]. First we form the Down

forest on the index setM with the given partition. Next we form the Up tree on each of

the (cyclically ordered) sets Si. The resulting graph is called an Up-Down forestUp-Down forestUp-Down forest on the

index set [n]. An Up-Down forest is uniquely determined by a particular ordered 2-step

partition, and conversely.

Theorem 8. The monomials corresponding to Up-Down graphs on ordered 2-step parti-

tions of [n] = {1, . . . , n} form a basis of pvb!n.

Remark 9. It is not hard to see that the Up-Down graphs on [n] consist exactly of

the red-black graphs corresponding to the monomials referred to in Proposition 4.5 of

[BarEnEtRa].7 These monomials are shown in that proposition to form a basis of a

certain algebra QA0
n related to pvb!n: namely, after making a certain change of basis to

pvb!n = U(qtrn)
!, [BarEnEtRa] show that a certain filtration is defined on pvb!n. Then

QA0
n is the quadratic approximation to the associated graded of pvb!n with respect to that

filtration. The given basis for QA0
n is then used to find the Hilbert series and to prove the

Koszulness of QA0
n, which in turn lead to the Hilbert series and Koszulness of pvb!n. It

is interesting that the same collection of (Up-Down) graphs can be used to index a basis

of pvb!n itself and show directly that it is Koszul, as we shall see next.

Proposition 5. The algebra pvb!n has a basis consisting of all monomials whose graph

does not contain any of the following as subgraphs (again the relative heights of the

endpoints indicate relative ordering of the indices, and the graphs are non-planar, so that

the all edges (incoming or outgoing) incident to a particular vertex may be represented

in any order without changing the graph):

7The Down and Up graphs correspond respectively to red and black graphs in the terminology used
in the definition of 2-step partition immediately prior to Proposition 4.5 of [BarEnEtRa].
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OO OO ??WW
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OO
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Note that the first row consists exactly of the excluded subgraphs for Up graphs.

Thus if, in a graph corresponding to a basis monomial for pvb!n, we look only at the

subgraph of upward arrows, we see that this subgraph must be an Up graph (and all Up

graphs may arise).

The second row of excluded subgraphs features ‘mixed’ subgraphs, in that they each

involve both an up arrow and a down arrow. It is clear that the non-excluded (= per-

mitted) mixed subgraphs must be the following:

��

??

��

GG

•
OO

��

As is readily seen, the effect of these excluded and non-excluded mixed subgraphs is

to ensure that different Up trees (which use only up arrows) which are connected to each

other by down arrows are in fact only connected to each other by down arrows between

their minimal elements.

Finally, the last row of excluded subgraphs involve only downward pointing arrows,

and consist precisely of the excluded subgraphs for Down graphs. Thus a graph which

excludes all the subgraphs listed in the proposition will be an Up-Down graph, and

conversely. Thus Theorem 8 follows from Proposition 5.

Proof of the Proposition. To begin with we linearly order the generators {rij : 1 ≤ i 6=

j ≤ n} of pvb!n using the numerical order of the indices, i.e. rij > rkl ⇐⇒ (i >

k) or (i = k and j > l). Then, given a wedge product of generators, we first order the
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generators in the product in increasing order, and then we linearly order such monomials

first by length and then lexicographically (we also agree that 0 has length 0, so that 0 < u

for all non-zero u). This ordering (which we refer to as the lexicographical ordering) is

multiplicative in the sense that if u, v, w are wedge products such that u > v and uw 6= 0

then uw > vw.

We define a set S(2) of ‘illegal’ degree 2 monomials, consisting of those degree 2

monomials which can be expressed as linear combinations of ‘smaller’ monomials (with

respect to the lexicographical ordering) using the defining relations of pvb!n. The set S(2)

cannot be read off directly from the relations in the form (5.3), (5.4) and (5.5) as some

of these have the same maximal terms. However one readily finds that those relations

can be put in the following equivalent form (where 1 ≤ i < j < k ≤ n):

rik ∧ rjk = rij ∧ rjk − rji ∧ rik (5.14)

rkj ∧ rji = rji ∧ rik − rji ∧ rjk − rji ∧ rki (5.15)

rki ∧ rkj = rki ∧ rij − rji ∧ rik + rji ∧ rjk + rji ∧ rki (5.16)

rik ∧ rkj = rij ∧ rjk − rij ∧ rik (5.17)

rjk ∧ rki = rji ∧ rik − rji ∧ rjk (5.18)

rij ∧ rkj = rij ∧ rjk − rij ∧ rik − rki ∧ rij (5.19)

as well as the relations (5.5). Each relation now has a distinct maximal term, and these

have been collected on the LHS above. Thus S(2) consists of the union of the sets:

{rjk ∧ rik, rkj ∧ rji, rkj ∧ rki : 1 ≤ i < j < k ≤ n} (5.20)

{rik ∧ rkj, rjk ∧ rki, rij ∧ rkj, 1 ≤ i < j < k ≤ n} (5.21)

{rij ∧ rji, rij ∧ rij : 1 ≤ i 6= j ≤ n} (5.22)

These monomials are readily seen to correspond with the excluded diagrams of the
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Proposition. The Proposition will be proved if we can show that the set S of monomials

which do not contain any of the excluded 2-letter monomials S(2) (even after re-ordering

of the generators forming the monomial) comprise a basis for pvb!n.

The proof of this fact is in the following two steps:

• show that the set S generates pvb!n; and

• show that S has the same number of elements in each degree as the basis for pvb!n

given in Theorem 7 (which implies that the elements of S are linearly independent,

and hence form a basis).

The fact that S generates pvb!n is easy, since if we have a monomial which contains

(possibly after reordering its factors) an excluded 2-letter monomial, we can replace

the monomial by a sum of terms in which the excluded 2-letter monomial is replaced

by a smaller, legal 2-letter monomial. It is clear that all of these terms are strictly

smaller than the original monomial with respect to the lexicographical ordering, because

of the multiplicative property of that ordering. Hence, repeating if necessary, we must

eventually reach a sum of terms none of which contains an excluded 2-letter submonomial,

even after reordering of its factors - i.e. a sum of terms belonging to S.

The fact that S has the same number of elements in each degree as the basis for pvb!n

given in Theorem 7 is also straightforward. Let us consider again the procedure described

above for creating Up-Down graphs:

• First, take an unordered partition of [n] into some number l ≤ n of cyclically or-

dered subsets (and form the unique Up graphs determined by the cyclically ordered

subsets) - the number of ways of doing this is s(n, l), where s(−,−) denotes (un-

signed) Stirling numbers of the first kind. It is easy to see that the resulting Up

forests have (n − l) arrows, so that the resulting monomials have degree (n − l).

We let mi denote the minimal element of cycle Ci for i− 1, . . . , l.
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• Second, take an unordered partition ofM := {mi : i = 1, . . . , l} asM = M1t· · ·t

Mk, where the Mi are unordered, and form the unique Down graph determined by

this partition of M. The number of ways of doing this is S(l, k), where S(−,−)

denotes (unsigned) Stirling numbers of the second kind. It is easy to see that the

resulting Down forests have (l − k) arrows, so that the resulting monomials have

degree (l − k).

It is clear that the resulting Up-Down graph will have (n − k) = (n − l) + (l − k)

arrows, and hence will correspond to a degree (n− k) monomial.

Thus if S̄n−k denotes the monomials in S̄ of degree (n− k) we find:

dim S̄n−k =
n∑
l=k

s(n, l)S(l, k) = L(n, k) = dim A!(n−k)

For the last equality we used Corollary 4, and for the second-last equality we used

the so-called Lah-Stirling identity:

L = sS

where L, s and S are infinite-dimensional lower-triangular matrices whose (n, k)-th entries

are, respectively, L(n, k) (Lah numbers of Corollary 4), s(n, k) and S(n, k). See [Riordan].

This completes the proof.

Corollary 6. The algebra pvb!n (and hence also pvbn) is Koszul.

Proof. The fact that the monomials S not containing any of the 2-letter monomials S(2)

form a basis for pvb!n means that the equations (5.14)-(5.19) and (5.5) (whose leading

terms are the S(2)) constitute a Gröbner basis for pvb!n (as a skew-commutative algebra

- see [Mikha]). This Gröbner basis is quadratic, and hence by a result of [Yuz] 8, pvb!n is

Koszul.

8Theorem 6.16.
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Remark 10. pvb!n as a ‘Product’ of the families pfb!n and pb!n

Given the correspondence between Down forests and pfb!n, and between Up forests

and pb!n, identified in Remarks 7 and 8, Theorem 8 suggests that the family of all pvb!n

(parametrized by n) may be some kind of ‘product’ of the families of the pfb!n and pb!n.

Indeed, one could express the Lah-Stirling identity above in the form:

dim pvb!n−kn = L(n, k) =
∑
l

s(n, l)S(l, k) =
∑
l

dim pb!(n−l)n dim pfb
!(l−k)
l

As pointed out in [BarEnEtRa], pbn may be viewed as a quotient of pvbn by pfbn.

However, this does not explain why one might be able to view pvb!n as the kind of product

of the families pb!n and pfb!n suggested by the Lah-Stirling identity.
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Final Remarks

6.1 Other Groups

One could seek to apply the PVH Criterion to determine whether other groups are

quadratic. One group that comes to mind is the pure cactus group Γ, as developed

for instance in [EHKR]. As a prerequisite, one would need to have a presentation for

the pure cactus group, and to show that the quadratic approximation to the associated

graded of QΓ with respect to the filtration by powers of the augmentation ideal (i.e. the

universal enveloping algebra of the holonomy Lie algebra of Γ) is Koszul (at least up to

homological degree 2).

There are many other groups to which one could seek to apply the PVH Criterion.

These include: pure braid groups of surfaces (see for instance [CEE]); pure braid groups

of Coxeter groups (see for instance [tDieck] and [Cher]) and virtual virtual braid groups

of Coxeter groups (see [Thiel]). It would also be interesting to define a notion of pure

virtual braid groups of surfaces and determine whether they are quadratic. In the case

of some of the above groups, quadraticity has already been established by transcendental

means, but obtaining a purely combinatorial proof through the use of the PVH Criterion

would again be of interest. (I am indebted to Pavel Etingof and Eric Rains for suggesting

69
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these possible applications of the PVH Criterion.)

6.2 Generalizing the PVH Criterion

As mentioned in the Introduction, the PVH Criterion arguably lives naturally in a broader

context than we have explored here, such as perhaps augmented algebras over an operad

(or the related ‘circuit algebras’ of [BN-WKO]).

In a different direction, one could try to generalize the criterion to deal with filtrations

of an algebra by powers of an ideal other than an augmentation ideal. A particular case

of this deals with groups that exhibit a ‘fibering’. For instance the virtual braid group

vBn fits into an exact sequence:

1→ PvBn → vBn → Sn → 1

where Sn is the symmetric group. (Similar sequences exist for the braid group and the

cactus group.) In such cases it is more interesting to consider the ideal corresponding to

the kernel of the induced homomorphism QvBn → QSn, rather than the augmentation

ideal of QvBn. The extension of the PVH Criterion to cover these particular ideals should

not be too difficult, but dealing with more general ideals could be interesting.
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