Utility Theory

One Good Utility Theory

- "Cardinal" measure of utility - precise, accurate, numerical measurement.
- Assume one good X :
- Total Utility $=\mathrm{TU}(X)$.
- Marginal Utility $=\operatorname{MU}(X)=\frac{\Delta \mathrm{TU}(X)}{\Delta X}$.
- Diminishing marginal utility - "Can get too much of a good thing"..

Example: Deriving Demand

- MU drives D - diminishing marginal utility leads to a negatively sloped D.
- Constant marginal utility of money - constant value everywhere.

Consumer Surplus

- The difference of the value of the commodity and how much the consumer spend on it.
- Consumer surplus comes about because every unit is the same price, but consumers value each unit differently.

Example

Given $p=12-2 q$, at $\quad p=2, \quad C S=\frac{1}{2}(5)(12-2)=25$.

- Note the $\$ 5$ difference is due to the extra area from the triangles.

Two Good utility Function

- $\mathrm{TU}(X, Y)=\mathrm{TU}(X)+\mathrm{TU}(Y)-X$ and Y are not related goods.
- Equilibrium: $\frac{M U_{X}}{P_{X}}=\frac{M U_{Y}}{P_{Y}}$

- $\frac{M U_{X}}{P_{X}}=\frac{M U_{Y}}{P_{Y}}$.
- If $P_{X} \downarrow$, then $Q_{X} \uparrow$.

Indifference Theory

Indifference Curves

Definition

All points with the same level of satisfaction.

Assumptions

- Consumers are able to rank - given A and B, they are able to pick the preferred one.
- Transitivity/rational/consistent - if $\mathrm{A}>\mathrm{B}>\mathrm{C}$, then $\mathrm{A}>\mathrm{C}$.
- More is preferred to less $-M U>0$.

Derivation

- $\quad B$ is preferred to A (more of both goods) and A is preferred to C (more of both goods), so B and C are not on IC - IC negatively sloped.
- $\frac{\Delta C}{\Delta F}<0 \Rightarrow C \uparrow, F \downarrow$.
- Typically non-linear: $\Delta T U$ due to $\Delta \mathrm{C}+\Delta T U$ due to $\Delta \mathrm{F}=0$

$$
\begin{aligned}
\Delta C\left(\frac{\Delta T U}{\Delta C}\right)+\Delta F\left(\frac{\Delta T U}{\Delta F}\right) & =0 \\
\Delta C \cdot M U_{C}+\Delta F \cdot M U_{F} & =0 \\
\frac{\Delta C}{\Delta F} & =-\frac{M U_{F}}{M U_{C}}
\end{aligned}
$$

- $\quad M R S$: Willingness to trade on $I C$ (holding $T U$ constant) $-M R S_{F / C}=\left|\frac{M U_{F}}{M U_{C}}\right|$.
- IC convex because of marginal utility - diminishing marginal rate of substation.
- IC's can't cross - there is one and only one IC through any point.

Special Cases

F and C are perfect substitutes.

- MRS constant.
- $I C$ is linear - slope of $I C=M R S$.

F is a "neutral" good (adds no satisfaction).
- $\quad I C$ is horizontal.
C is a "neutral" good (adds no satisfaction).

- IC is vertical.
F and C must be consumed in fixed proportions.
- Increases in only one good adds no satisfaction.

C is a "bad" $\left(M U_{C}<0\right)$.
- Additional units of C will decrease satisfaction.
- $I C_{2}>I C_{1}$.

Indifference Map

- In a typical indifference map, higher IC represents higher level of satisfaction.

Change in Taste

Suppose more F is preferred ($M U_{F}$ increases).

- Since $M R S=\left|\frac{M U_{F}}{M U_{C}}\right|$, increase in $M U_{F}$ means steeper $I C$'s.
- $\quad M R S_{\text {Today }}>M R S_{\text {Yesterday }}$.

Budget Constraint

Suppose $I=\$ 100, P_{F}=\$ 5, P_{C}=\$ 10$.

- $\quad I=P_{F} \cdot F+P_{C} \cdot C$, so $\$ 100=\$ 5 F+\$ 10 C$.
- C intercept: $\frac{I}{P_{C}}=\frac{\$ 100}{\$ 10}=10$.
- $\quad F$ intercept: $\frac{I}{P_{F}}=\frac{\$ 100}{\$ 5}=20$.
- Slope of $B L:-\frac{\frac{I}{P_{C}}}{\frac{I}{P_{F}}}=-\frac{P_{F}}{P_{C}}=-\frac{1}{2}$.

Changes to BL

P_{F} increases.

Income increases.

P_{C} decreases.

P_{F}, P_{C}, and I increase/decrease proportionally.

P_{F} and P_{C} increase proportionally.

Equilibrium

- Equilibrium is at the point of tangency of the $I C$ to the $B L-$ slope $_{I C}=$ slope $_{B L} \Rightarrow \frac{M U_{F}}{M U_{C}}=\frac{P_{F}}{P_{C}}$.
- The equilibrium $I C$ is the highest attainable $I C$ maximum satisfaction.
- At A, the market is saying F is cheaper than the consumer values it. The consumer should consumer more F and move towards E, where the consumer feels what the market prices say.

Price and Income Effects

Price Effects

- If P_{F} falls, there are 3 possibilities: more F, same F, less F.
- Price Consumption Curve: connects A and B.

Substitute, Complement, and Neutral Goods

- \quad Suppose P_{C} fell. Assuming negatively sloped demand curves, then:
- If F and C are substitutes, $C \uparrow$ and $F \downarrow$.
- If F and C are complements, $C \uparrow$ and $F \uparrow$.
- If F is a neutral good, $C \uparrow$ and F constant.

Elasticity

- $\varepsilon_{D}=-\frac{\% \Delta q_{D}}{\% \Delta p}$.
- Arc elasticity - elasticity between two points.
Δq_{D}
- $\varepsilon_{D}=-\frac{/ \operatorname{Avg} q_{D}}{\Delta p /}$ (mid-point formula).

$$
\operatorname{Avg} p
$$

- Point elasticity - elasticity at a point.
- $\varepsilon_{D}=-\frac{\Delta q_{D} / q_{D}}{\Delta p / p}=-\frac{\Delta q_{D}}{\Delta p} \cdot \frac{p}{q_{D}}$.
- If $p \downarrow$, then:
- $\quad T R \uparrow$ means $\varepsilon_{D}>1$ - relatively elastic.
- $\quad T R \downarrow$ means $\varepsilon_{D}<1$ - relatively inelastic.
- $T R$ constant means $\varepsilon_{D}=1$ - unit elastic.
- Readily available substitutes $-\varepsilon_{D}$ large.
- Time period - the longer the time period, the larger ε_{D}.
- Percentage of income - the larger percentage, the larger the ε_{D}.

- $\varepsilon_{D}>1$ for F.
- Spend more on F, so spend less on $C-$ more F, less C.

- $\quad \varepsilon_{D}<1$ for F.
- Spend less on F, so spend more on C - more F and C.
- $\varepsilon_{D}=1$ for F.

- \quad Spend same on F and C - more F, C constant.

Income Effects

- Assume P_{F}, P_{C} constant; only I changes.

Indifference Graphs

- B_{1} : normal good.
- B_{2} : inferior good.
- $\quad B_{3}$: neither/neutral good.

Engle Curves

- Positively sloped: normal good.
- Negatively sloped: inferior good.
- Vertical: neither/neutral good.

Elasticity

- Income elasticity of demand: $\varepsilon_{I}=\frac{\% \Delta q_{D}}{\% \Delta I}$.
- >0 - normal.
- $<0-$ inferior.
- >1 - income elastic/luxury.
- < 1 - income inelastic/non-luxury.

Applications of Indifference Theory

Change in Consumer Tastes

Health Canada now requires that cigarette boxes contain a warning about the health hazards of tobacco.

If consumers totally ignore it:

(cigarettes)

- No change in anything.

If consumers alter their preference:

(cigarettes)

- ICs flatter - change in indifference map.
- $M U_{X} \downarrow$, so $M R S_{X / Y} \downarrow$.

Rationing of Goods

Suppose that widgets are in "short supply" and the government has decided in its wisdom not to let the price of widgets rise in order to clear the market. Instead the government restricts the amount a consumer can acquire by issuing ration coupons.

Consumers who don't like widgets:

- No change in anything.

Consumers who like widgets:

- They are restricted - can't get the amount of widgets they want.
- $\quad I C$ falls - satisfaction falls.
- Enforcement needed - rations may be sold to those who want them.

Goods In-Kind

Government often establish programs to assist people in need by providing them with particular goods or services "for free". This is called an "in-kind" subsidy. Public housing is one example. The alternative of course is to provide recipients with cash transfers equivalent to the "in-kind" subsidy.
A similar situation exists with respect to benefits packages provided by employers to employees. The employer could provide the package or could provide an increased wage instead.

Consumers who don't like X (good in-kind):

- Goes to the corner solution.
- Would buy more Y if X was money.
- Fungibility - if the units in-kind can be sold, then the consumers may reach maximum satisfaction instead of the corner solution.

Charitable Donations

Why do people make charitable donations? After all, they do not receive any commodities in return.

- People donate because it gives them satisfaction - it is a "good".

- Charitable donation is a "bad".

- Charitable donation is neutral.

- Charitable donation is a "good".

Income and Substitution Effects

Conceptual Basis

- Suppose the price of coffee falls. A consumer would buy more.
- Cheaper - substitute other goods with coffee.
- Can buy more coffee - higher income.
- If $P_{X} \downarrow$, then $\Delta X=\Delta X_{S E}+\Delta X_{I E}$.
- $\Delta X_{S E}$ focuses on ΔP_{X}, holding I constant.
- $\Delta X_{I E}$ focuses on ΔI, holding P_{X} constant.

Hicks Method

- The Hicks Method holds satisfaction constant.

Normal Goods

Suppose the price of X falls. X is a normal good.

- A to I : Substitution Effect.
- I to B : Income Effect.
- This produces a negatively sloped demand curve.
- The Substitution Effect is always negative with price.
- The Income Effect depends on the Engle curve.

Inferior Goods

Suppose the price of X rises. X is an inferior good with $S E>I E$.

- A to I : Substitution Effect.
- I to B : Income Effect.
- This still produces a negatively sloped demand curve.

Giffen Goods

Suppose the price of X rises. X is an inferior good with $I E>S E$.

- $\quad A$ to $I:$ Substitution Effect.
- I to B : Income Effect.
- This produces a positive sloped demand curve.

Slutsky Method

- The Slutsky Method holds real income constant.

Normal Goods

Suppose the price of X falls. X is a normal good.

- A to I : Substitution Effect.
- I to B : Income Effect.
- This produces a negatively sloped demand curve.
- The Substitution Effect is always negative with price.
- The Income Effect depends on the Engle curve.

Compensated Demand and Consumer Surplus

Impact of a Price Change

- \quad Suppose the price of X went up. Assume X is normal.

Compensating Variation

- Idea: Compensate the consumer for the price change.
- How much income is needed to bring the consumer back to the same level of satisfaction before the price change? $B L_{2}$ to $B L_{3}$, the compensating variation.
- Equivalent to the Hicks substitution effect.
- Idea: The amount of income equivalent to the price change.
- How much income need to take away for the consumer to be at the second indifference curve under original condition.? $B L_{1}$ to $B L_{2}$, the equivalent variation.

Consumer Surplus and the Compensated Demand Schedule

- Why compensated demand schedule? Have to look at SE only - relative price change.
- $\quad D$ based on SE is always negative.
- Use CV to get D.

Application to the Labour Market

Impact of a Wage Change

- Wage rate falls. Leisure is normal, $\mathrm{SE}>\mathrm{IE}$.

- \quad Slope $=-$ wage rate.
- SE: Work less - opportunity cost of leisure is down.
- IE: Work more to make up for less income.
- If SE $>$ IE, work less.
- If IE $>$ SE, work more.
- Those who value leisure more will have steeper ICs.

Supply Curve of Labour

Work more as W increases.
Work less as W increases.

The Real World

Producer Surplus

- Those who have lower income will work more when wages increase.
- Those who have higher income will work less when wages increase.

Two Period Consumption Model

- Assumptions: No inflation, no price change, borrow rate = saving rate.
- Interest rate return will allowing a consumer to buy more - "save today, spend tomorrow".

The Budget Line

- Given M_{1} and M_{2} :
- $\max C_{2}=M_{1}+M_{2}(1+r)$.
- $\max C_{1}=M_{1}+\frac{M_{2}}{1+r}$.
- E is the endowment point - neither borrow nor save.

- Saver - flatter indifference curves.
- Borrower - steep indifference curves.

Changes In Interest Rates

Suppose interest rates rise.

- A borrower will borrow less - SE and IE work the same way.
- A saver will either save more or less - depends in size of SE and IE.
- If SE $>$ IE, save more.
- If IE $>$ SE, save less.

Rate of Time Preference

- Indifference curves represent the willingness to sacrifice tomorrow to enjoy today.
- Slope of $\mathrm{IC}=-(1+p)$, where p is the rate of time preference.
- Slope of $\mathrm{BL}=-(1+r)$, where r is the interest rate.
- At equilibrium, $-(1+p)=-(1+r) \Rightarrow 1+p=1+r \Rightarrow p=r$. Thus, a consumer changes his/her rate of time preference to match the interest rate to reach maximum satisfaction.

Choice Under Uncertainty: Expected Value Approach
 Probability, Odds, and Expected Value

- Suppose the game is coin-toss. There are only two outcomes: head or tail.
- The probability of head is $\rho_{H}=0.5$ and tail is $\rho_{T}=0.5$.
- The odds of head to tail is $\frac{\rho_{H}}{\rho_{T}}=\frac{0.5}{0.5}=\frac{1}{1}=1: 1$. In general, the odds of X to Y is $\frac{\rho_{X}}{\rho_{Y}}$.
- The expected value of a game is $E V=\rho_{1} O_{1}+\rho_{2} O_{2}+\rho_{3} O_{3}+\cdots$, where ρ_{i} is the probability and O_{i} is the value of the outcome.
- If $E V>0$ - better than fair.
- If $E V<0$ - unfair.
- If $E V=0$-fair.

Indifference Approach to Uncertainty

Suppose you:

- Lose $\$ 1$ if a spade is drawn.
- Win $\$ 0.5$ if any other card is drawn.
- $E V=\frac{3}{4}(\$ 0.5)+\frac{1}{4}(-\$ 1)=0.125>0$.

This is a better than fair game.

Suppose you:

- Lose $\$ 1$ if a spade is drawn.
- Win $\$ 0.33$ if any other card is drawn.
- $E V=\frac{3}{4}(\$ 0.33)+\frac{1}{4}(-\$ 1)=0$. This is a fair game.

Preferences

Risk Averse

A risk averse person will not take a fair bet.

- If odds are better than fair, a risk averse person will bet.

Risk Neutral

A risk neutral person is indifferent between a fair bet or its certainty equivalent (EV).

Risk Seeker

A risk seeker will take a fair bet.

- $\quad A$ is preferred to E.
- The equilibrium will be a corner solution.

Applications

- Risk-free-rate-of-interest: Interest paid by highly secure deposits, for example government bonds.
- Risk premiums: The higher return needed to induce consumers to buy non risk-free deposits.

Diversification

- "Spread the risk" - lowers the risk.
- Trade-off: Lower return than high-risk-high-return winner - sacrifice the opportunity to "win big".

Insurance

- Certainty - coverage, premium.

- House $=\$ 100000$
- Probability of fire $=0.01$
- Probability of no fire $=0.99$
- Fair premium $=E V=1000$
- A risk averse person will buy full insurance if odds are fair.

If fire

Choice Under Uncertainty: Expected Utility Approach

Example

If the price to play a game of coin toss is $\$ 49$, and the payoffs are $\$ 100$ if tails and $\$ 0$ if heads, will a person play given their utility function?

\quad Utility Function	Expected Utility if no play	Expected Utility if play	Conclusion
$U=U(W)=\sqrt{W}$	$E U=\sqrt{49}=7$	$E U=\frac{1}{2} \sqrt{100}+\frac{1}{2} \sqrt{0}=5$	No play
$U=U(W)=W$	$E U=49$	$E U=\frac{1}{2}(100)+\frac{1}{2}(0)=50$	Play

- In general, $E U=\sum_{i=1}^{n} \rho_{i} \cdot U\left(X_{i}\right)$, measured in jollies.

Preferences

Given risk situation $\left(\rho_{1}, \rho_{2} ; W_{1}, W_{2}\right), E V=\rho_{1} W_{1}+\rho_{2} W_{2}=W_{E}$.

- Risk averse: $U\left(W_{E}\right)>\rho_{1} \cdot U\left(W_{1}\right)+\rho_{2} \cdot U\left(W_{2}\right)$.
- Risk neutral: $U\left(W_{E}\right)=\rho_{1} \cdot U\left(W_{1}\right)+\rho_{2} \cdot U\left(W_{2}\right)$.
- Risk averse: $U\left(W_{E}\right)<\rho_{1} \cdot U\left(W_{1}\right)+\rho_{2} \cdot U\left(W_{2}\right)$.

Example

Given risk situation $\left(\frac{1}{4}, \frac{3}{4} ; 100,0\right)$ and the cost is $\$ 25$.
Utility Function

$$
\begin{array}{lcc}
\text { Utility Function } & U\left(W_{E}\right) & \text { Expected Utility } \\
U(W)=\sqrt{W} & U\left(W_{E}\right)=\sqrt{25}=5 & E U=\frac{1}{4} \sqrt{100}+\frac{3}{4} \sqrt{0}=2.5 \\
U(W)=W & U\left(W_{E}\right)=25 & E U=\frac{1}{4}(100)+\frac{3}{4}(0)=25 \\
U(W)=W^{2} & U\left(W_{E}\right)=(25)^{2}=625 & E U=\frac{1}{4}(100)^{2}+\frac{3}{4}(0)^{2}=2500
\end{array}
$$

Conclusion No play.

Indifferent.

Play.

Utility Functions

Risk averse:
$U(W)=\sqrt{W}$

W

W

Risk seeker:
$U(W)=W^{2}$

W

Reservation Price

- Reservation price is the maximum price consumers are willing to pay.
- A consumer wouldn't pay more than the expected utility - don't want negative EU.

Risky Pathways

- On an EV basis, hockey wins.
- On an EU basis, school wins.
- Risk averse - don't value high rewards as much.

