Lecture #12 – Wednesday, October 15, 2003

PARTITIONS

1) The sets \{A_1, A_2, ..., A_n\} are mutually exclusive

2) \(\bigcup_{i=1}^{n} A_i = S \)

 - If \(A_1, ..., A_n \) is a partition then for any event \(B \subset S \), \(B = \bigcup_{i=1}^{n} (B \cap A_i) \)

Example

 - \(B = (B \cap A) \cup (B \cap A^c) \)

LAW OF TOTAL PROBABILITY

- If \(\{B, B^c\} \) is a partition, then \(P(A) = P(A \mid B) P(B) + P(A \mid B^c) P(B^c) \)

- If \(\{B_1, B_2, B_3\} \) is a partition of \(S \) and \(P(B_i) > 0 \) for \(i = 1, 2, 3, ..., n \), then
 \[
 P(A) = P(A \mid B_1) P(B_1) + P(A \mid B_2) P(B_2) + P(A \mid B_3) P(B_3)
 \]

Generalization

\[
P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i)
\]

Example

A transport company needs to do safety checking for its cars. Suppose there are only two repair stores in town. One of them is owned by a rival firm and the other is owned by an allied firm so the diagnostics will not be objective. The friendly garage will lie with probability 20% if a car is unsafe and will tell the truth if the car is safe. The “rival” garage with probability 35% will declare a car unsafe even if the car is safe and will always declare the truth if the car is unsafe. Assume that 20% of the company’s cars are actually unsafe and assume that the company will obtain a certificate from each garage for each of its cars. What is the percentage of cases in which the two conclusions are contradictory?

- \(G = \{ \text{Good cars} \} \), \(B = \{ \text{Bad cars} \} \)
- \(C = \{ \text{Conclusions are contradictory} \} \)

\[
P(C) = P(C \cap G) + P(C \cap B) \text{ because } G \text{ and } B \text{ forms a partition of all cars}
\]

\[
P(C) = P(C \mid G) P(G) + P(C \mid B) P(B)
\]

- \(P(C \mid G) = 35\% \) because the friendly garage tells the truth and the rival garage tells the lie
- \(P(C \mid B) = 20\% \) because the rival garage tells the truth and the friendly garage tells the lie

\[
P(C) = \frac{35}{100} \times \frac{80}{100} + \frac{20}{100} \times \frac{20}{100} = \frac{32}{100}
\]

BAYES RULE

- Start with a partition \(\{B_1, B_2, B_3, \} \)
- Take an event \(A \)
Instead of being interested in $P(A \mid B_1)$, we are now interested in $P(B_1 \mid A)$.

$$P(B_1 \mid A) = \frac{P(B_1 \cap A)}{P(A)}$$

$$= \frac{P(A \mid B_1)P(B_1)}{P(A \cap B_1) + P(A \cap B_2) + P(A \cap B_3)}$$

$$= \frac{P(A \mid B_1)P(B_1)}{P(A \mid B_1)P(B_1) + P(A \mid B_2)P(B_2) + P(A \mid B_3)P(B_3)}$$

Experiment In 2 Stages

- First stage – one of the B’s happens
- Second stage – we check whether A happens

Diagram

- Stage 1
 - $P(B_1)$
 - $P(B_2)$
 - $P(B_3)$

- Stage 2
 - $P(A \mid B_1)$
 - $P(A \mid B_2)$
 - $P(A \mid B_3)$

I know A happened. What is the probability that B_1 happened?

- $P(B_1 \mid A) = \frac{P(B_1 \cap A)}{P(A)} = \frac{P(A \mid B_1)P(B_1)}{P(A \mid B_1)P(B_1) + P(A \mid B_2)P(B_2) + P(A \mid B_3)P(B_3)}$
- $P(A) = P(A \mid B_1)P(B_1) + P(A \mid B_2)P(B_2) + P(A \mid B_3)P(B_3)$
- $P(B_1 \cap A) = P(A \cap B_1) = P(A \mid B_1)P(B_1)$

Example

Say I have a wallet that contains either a $5 bill or a $20 bill (with equal probability), but I don’t know which one. I add a $5 bill. Later, I reach into my wallet (without looking) and remove a bill. It’s a $5 bill. What is the probability that the bill left in the wallet is a $5 bill?

Diagram

- Start
 - $1/2$ $1/2$ 5 20

- Add
 - 2×5 $5, 20$

- Extract
 - $1/2$ $1/2$ $1/2$ 0
 - 5 20 5 20
• \(P(\text{start with } $5 \mid \text{extract a } $5) = \frac{1 \cdot 1}{1 \cdot 1 + 2 \cdot 1} = \frac{2}{3} \)

Example

A lab blood test is 95% effective in detecting a certain disease when it is in fact, present. However the test also yields a “false positive” result for 1% of the healthy people tested. If 0.5% of the population has the disease, what is the probability that a person who was tested positive actually has the disease?

\[
\begin{array}{c|c|c}
\text{Initial Condition} & 0.005 & 0.995 \\
\hline
\text{sick} & 0.95 & 0.05 \\
\text{healthy} & 0.01 & 0.95 \\
\end{array}
\]

\[P(\text{sick} \mid \text{positive}) = \frac{P(\text{sick} \cap \text{positive})}{P(\text{positive})} = \frac{P(\text{positive} \mid \text{sick})P(\text{sick})}{P(\text{positive})} \]

\[P(\text{positive}) = 0.005 \times 0.95 + 0.995 \times 0.01 \]

\[P(\text{sick} \cap \text{positive}) = 0.005 \times 0.95 \]

\[P(\text{sick} \mid \text{positive}) = \frac{0.005 \times 0.95}{0.005 \times 0.95 + 0.995 \times 0.01} = 32.31\% \]

Lecture #13 – Wednesday, October 22, 2003

INDEPENDENCE

• Two events, \(A \) and \(B \) are independent if \(P(A \cap B) = P(A) \cdot P(B) \).

• In general, \(P(A \cap B) = P(A \mid B) \cdot P(B) \).
 • If \(A \) and \(B \) are independent, \(P(A \mid B) = P(A) \) – The fact that \(B \) happened doesn’t change the chance of the occurrence of \(A \).

• In general, \(\{A_1, A_2, ..., A_n\} \) are independent if any two \(A_i, A_j \) are independent.

Example

An urn contains five red and seven blue balls. Suppose that two balls are selected at random and with replacement. Let \(A \) and \(B \) be the events that the first and the second balls are red, respectively. Check whether \(A \) and \(B \) are independent or not. Redo the calculation for the case of random selection without replacement.

• With replacement:
 • \(P(A \cap B) = \frac{5 \times 5}{12 \times 12} \).
• \(P(A) = \frac{5}{12}, \ P(B) = \frac{5}{12} \).
• So \(A, B \) are independent \((A \perp B) \).

• Without replacement:
 \[
 P(A \cap B) = \frac{5 \times 4}{12 \times 11} = \frac{20}{12 \times 11}
 \]
 \[
 P(A) = \frac{5}{12}, \ P(B) = P(B \mid A)P(A) + P(B \mid A^c)P(A^c) = \frac{4}{11} \cdot \frac{5}{12} + \frac{5}{11} \cdot \frac{7}{12} = \frac{55}{11 \times 12} = \frac{5}{12}.
 \]
• So \(A \) and \(B \) are not independent.

Exercises

1) Show that if \(E \) and \(F \) are independent then \(E \) and \(F^c \) are independent. What about then \(E \) and \(F^c \)?
 • I want to show \(P(E \cap F^c) = P(E) \cdot P(F^c) \).
 \[
 P(E \cap F^c) = P(E \cap F^c) + P(E \cap F) - P(E \cap F)
 \]
 \[
 = P(E) - P(E \cap F)
 \]
 \[
 = P(E) - P(E) \cdot P(F)
 \]
 \[
 = P(E) \cdot (1 - P(F))
 \]
 \[
 = P(E) \cdot P(F^c)
 \]
 • \(E \perp F \Rightarrow E \perp F^c \Rightarrow E^c \perp F^c \)

2) Show that if \(E \) and \(F \) are mutually exclusive with \(P(E) > 0 \) and \(P(F) > 0 \), then \(E, F \) cannot be independent.
 • \(P(E \cap F) = 0 \).
 • If \(E \) and \(F \) are independent, \(P(E \cap F) = P(E) \cdot P(F) > 0 \).
 • So \(A \) and \(B \) are not independent if they are mutually exclusive.

3) True or False: If \(E \) and \(F \) are independent and \(E \) and \(G \) are independent, then \(E \) and \(F \cap G \) are independent.
 • False!

4) True or False: In the case of 3 events \(E, F, G \), the equality \(P(E \cap F \cap G) = P(E) \cdot P(F) \cdot P(G) \) doesn’t imply that \(E, F, G \) are independent.
 • True!

Probability as a Continuous Function

• \(f : \mathbb{R} \rightarrow \mathbb{R} \).
• \(x_n \xrightarrow{n \to \infty} x \).
• \(f \) is continuous in \(x \) iff \(\lim_{x \to x_0} f(x_n) = f(x) \).
• \(P : \) sets from \(S \rightarrow [0,1] \).
Increasing Sequence of Events
- \(\{E_1, E_2, \ldots, E_n\} \) infinite sequence is increasing. \(E_k \subset E_{k+1}, \forall k \geq 1. \)

![Diagram of increasing sequence of events](image)

- The “limit” is the \(\bigcup_{k=1}^{\infty} E_k. \)

Decreasing Sequence of Events
- \(\{E_1, E_2, \ldots, E_n\} \) infinite sequence is decreasing. \(E_k \supseteq E_{k+1}, \forall k \geq 1. \)

![Diagram of decreasing sequence of events](image)

- The “limit” is the \(\bigcap_{k=1}^{\infty} E_k. \)

- \(\{E_n\} \) is decreasing or increasing. I can define \(\lim_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} E_n \).

- In both cases, \(\lim_{n \to \infty} P(E_n) = P\left(\lim_{n \to \infty} E_n \right) \).

Lecture #14 – Friday, October 24, 2003 10 26
- If sets are increasing, then \(\lim_{n \to \infty} E_n = \bigcup_{n=1}^{\infty} E_n \) – the smallest set containing all the sets.

- If sets are increasing, then \(\lim_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} E_n \) – the smallest set containing all the sets.

Example

If the probability that the entire population will die before having offspring in the \(n \)th is \(e^{\frac{2n^3}{6n^4+3}} \), what is the probability that it will survive forever?
• Let $E_n = \{\text{population wiped out by the } n^{th} \text{ generation}\}$.
• So $E_1 \subset E_2 \subset \ldots \subset E_n \subset E_{n+1}$.

\[
P(\text{survives forever}) = 1 - P(\text{dies out sometime in the future}) = 1 - P\left(\bigcup_{n=1}^{\infty} E_n\right) = 1 - \lim_{n \to \infty} P(E_n)
\]

\[
P(E_n) = \exp\left[-\frac{2n^2}{6n^2 + 3}\right]
\]

\[
\lim_{n \to \infty} P(E_n) = \lim_{n \to \infty} \exp\left[-\frac{2n^2}{6n^2 + 3}\right] = \exp\left[-\frac{2}{6}\right] = e^{-\frac{1}{3}}
\]

Lecture #15 – Monday, October 27, 2003

RANDOM VARIABLES

• In many situations when an experiment is performed the interest is in some numerical function of the outcome rather than the actual outcome itself.
• If S is the sample space of an experiment then a map $X: S \to \mathbb{R}$ is called a random variable.
• Additional Requirement: For any interval $I \subset \mathbb{R}$, $X^{-1}(I)$ is an event in S.

Example

• Tomorrow: rain, snow, shine.
• I bet $5 that it’s rain.
• $X = \text{my profit} = \{-$5, $5\}$
• $P(X = $5)$
• $Y = \text{profit from betting $100 on snow}$

• If S is a discrete sample space, then $X: S \to \mathbb{R}$ is a discrete random variable. The set of possible values of X is also discrete – $X: S \to \{a_1, a_2, \ldots, a_n\}$
• Some S’s may not be discrete.

Example

Suppose that three cards are drawn from an ordinary deck of 52 cards one-by-one at random and with replacement. Let X be the number of spades drawn. Find $P(X = i), i = 0, 1, 2, 3$.

• Possible values for random variable X are $\{0, 1, 2, 3\}$. $X: S \to \{0, 1, 2, 3\}$.
Random Selection of Points In Intervals

- Fix \(a < b \) and \(\alpha, \beta \) such that \(a \leq \alpha < \beta \leq b \). The probability that a point is randomly selected in the interval \((\alpha, \beta)\) is \(\frac{\beta - \alpha}{b - a} \).

- Sample space is not discrete but continuous (interval).

- Let \(C \) be a fixed point in the interval \((a, b)\). If \(X \) is a point randomly selected in the interval \((a, b)\) then the probability that \(X \) is selected to be exactly \(C \) is \(P(X = C) = 0 \).

- If \((a, b) \) was discrete \(\{a_1, a_2, \ldots, a_n\} \), then \(P(X = a_i) = \frac{1}{n} \).

- Define \(E_n = \left(C - \frac{1}{n}, C + \frac{1}{n} \right) \).

- \(E_n \Rightarrow E_{n+1} \), so \(E_{n+1} = \left(C - \frac{1}{n+1}, C + \frac{1}{n+1} \right) \). Sequence of events \(E_n = \left\{ C - \frac{1}{n}, C + \frac{1}{n} \right\} \) which is decreasing.

- \(P(X = C) = P(X \in E_1 \text{ and...and } X \in E_n) = P\left(\bigcap_{n=1}^\infty X \in E_n \right) = \lim_{n \to \infty} P(X \in E_n) = \lim_{n \to \infty} \frac{2}{b - a} = 0 \)

Example

A train passes through a town at random time between 10:00 am and 10:12 pm. If I drive through town between 9:55 am and 10:05 am, what is the probability that I see the train?

- \((a, b) = (10:00 \text{ am}, 10:12 \text{ am})\)

- \(P(\text{I see the train}) = P(\text{train goes through between 10:00 and 10:05}) = \frac{5}{12} \) — does not depend on the scale of measurement.
Example
A patient with flu may have a fever between 39°C and 42°C. Let X be the temperature of a randomly selected flu patient. What is the probability that the temperature is less than 40°C?

- \[S = \{ \text{all possible temperatures} \} = \{39°, 40°\} \]
- \[(a, b) = (39, 42), \ (\alpha, \beta) = (39, 40) \]
- \[P(X \in (39, 40)) = \frac{40 - 39}{42 - 39} = \frac{1}{3} \]
- \[P(X = 39.5) = 0 \]
- \[P(X \in (39.49, 39.51)) = \frac{0.02}{3} \]

- For continuous random variable, we look at \(P(\text{interval}) \) instead of \(P(\text{point}) \).

Definition
- For a discrete random variable \(X : S \rightarrow \{a_1, a_2, ..., a_n\} \), we can define a function \(P : \{a_1, a_2, ..., a_n\} \rightarrow [0, 1] \) such that \(P(a_i) = P(X = a_i) \).
- \(P \) is called probability function of the random variable \(X \).

Lecture #16 – Wednesday, October 29, 2003

Distribution Functions
- The distribution function \(F : \mathbb{R} \rightarrow [0, 1] \) of a random variable \(X \) is defined as \(F(t) = P(X \leq t) \).
- For example, \(F(1) = P(X \leq 1) \).

Properties of \(F \)
1) \(F \) is non-decreasing – i.e. \(t_1 \leq t_2 \Rightarrow F(t_1) \leq F(t_2) \). So \(F \) is increasing or constant.
2) \(\lim_{t \to \infty} F(t) = 1 \)
3) \(\lim_{t \to -\infty} F(t) = 0 \)
4) \(F \) is continuous to the right.

Proof of (1)
\[t_1 \leq t_2 \] I want to show \(F(t_1) \leq F(t_2) \)

- \[F(t_1) = P(X \leq t_1), \ F(t_2) = P(X \leq t_2) \]
- \(E = \{X \leq t_1\}, \ F = \{X \leq t_1\} \)
- \(E \subset F \Rightarrow P(E) \leq P(F) \)

- \(P(E) = P(X \leq t_1) = P(t_1) \)
- \(P(F) = P(X \leq t_2) = P(t_2) \) \(\Rightarrow F(t_1) \leq F(t_2) \)

- Attention: \(t_1 < t_2 \) does not imply \(F(t_1) < F(t_2) \); \(t_1 < t_2 \) implies \(F(t_1) \leq F(t_2) \)
Proof of (2)

- $X : S \rightarrow \mathbb{R}$ – real random variable.
- Always, there will be t large enough to have $P(X \leq t)$ is almost 1.
- Let $E_n = \{X \leq n\}, n \in \mathbb{Z}$.
- $\lim_{t \to \infty} F(t) = \lim_{n \to \infty} F(n) = \lim_{n \to \infty} P(n)$.
- $E_n \subseteq E_{n+1}$ implies the sequence E_n is increasing. I can use the continuity property of the probability function.
- $\lim_{n \to \infty} P(E_n) = P\left(\lim_{n \to \infty} E_n\right) = P\left(\bigcup_{n=1}^{\infty} E_n\right) = P\left(\bigcup_{n=1}^{\infty} X \leq n\right) = 1$

Proof of (3)

- The proof of $\lim_{t \to -\infty} F(t) = 0$ is the mirror of the proof of $\lim_{t \to \infty} F(t) = 1$.

Proof of (4)

- Convergence from the left means for all $x_n \leq x_0$ and $x_n \to x_0$. In fact, for all practical purposes, one can consider only increasing sequences. $x_n < x_{n+1} \forall n \in \mathbb{Z}$ and $x_n \leq x_0$ and $\lim_{n \to \infty} x_n = 0$.
- Notation: $x_n \uparrow x_0$ – converges to x_0 from the left. $\lim_{x_n \uparrow x_0} f(x_n) = f(x_0 -)$.
- If $f(x_0 -) = f(x_0)$, then f is continuous to the left.
- Continuity to the right.
- $x_n \geq x_{n+1}$
- $x_n \geq x_0$ \(\forall n \in \mathbb{Z}\)

- The limit to the right is denoted $x_n \downarrow x_0$ – $\lim_{x_n \downarrow x_0} f(x_n) = f(x_0 +)$.
- If $f(x_0 +) = f(x_0)$, then f is called continuous to the right.

- $f(x_0) = b$
- $f(x_0 -) = \lim_{x_n \downarrow x_0} f(x_n) = a$
- $f(x_0 +) = \lim_{x_n \downarrow x_0} f(y_n) = b$
- $f(x_0) = f(x_0 +)$ \(\Rightarrow f\) is continuous to the right, but f is not continuous to the left.
Generic $F(t)$

- Multiple jumps (or none).

Example

Suppose we flip twice a coin that has probability to land heads equal to 0.4. Let X be the number of tails. Calculate $F(t)$, the distribution function of X.

- $X : S \to \{0, 1, 2\}$
- $P(X = 0) + P(X = 1) + P(X = 2) = 1$
 - $P(X = 0) = 0.4 \cdot 0.4 = 0.16$
 - $P(X = 0) = 0.4 \cdot 0.6 + 0.6 \cdot 0.4 = 0.48$
- Probability function of X.
 - $P(X = 2) = 0.36$

- $F(t) = P(X \leq t)$ for any $t \in \mathbb{R}$:
 - If $t < 0$, $P(X \leq t) = F(0) = 0$.
 - If $t = 0$, $P(X \leq 0) = P(X = 0) = 0.16$.
 - If $t \in (0, 1)$, $P(X \leq t) = 0.16$.
 - If $t = 1$, $P(X \leq 1) = P(X = 0) + P(X = 1) = 0.64$.
 - If $t \in (1, 2)$, $P(X \leq t) = 0.64$.
 - If $t \geq 2$, $P(X \leq t) = 1$.

- Sometimes F called cumulative distributive function.
- Given a probability function for a discrete random variable X, one should be able to construct the distribution function for X.

Lecture #17 – Friday, October 31, 2003

Example

From 18 potential women jurors and 28 potential men jurors, a jury of 12 is chose at random. Let X be the number of women selected. Find the probability function of X.

- $S = \text{set of all possible jurors}$
- $X : S \to \{0, 1, \ldots, 12\}$
• Probability function of X is $P : \{0,1,2,\ldots,12\} \rightarrow [0,1]$

 \[\begin{pmatrix} 18 & 28 \\ 0 & 12 \end{pmatrix} \]

 $P(0) = P(X = 0) = \begin{pmatrix} 46 \\ 12 \end{pmatrix} = 0.000782$

 \[\begin{pmatrix} 18 & 28 \\ 1 & 11 \end{pmatrix} \]

 $P(1) = P(X = 1) = \begin{pmatrix} 46 \\ 12 \end{pmatrix} = 0.001$

 \[\begin{pmatrix} 18 & 28 \\ 4 & 8 \end{pmatrix} \]

 $P(4) = P(X = 4) = \begin{pmatrix} 46 \\ 12 \end{pmatrix} = 0.244$

Connection Between Probability and Distribution

<table>
<thead>
<tr>
<th>Event concerning X</th>
<th>Probability of the event in terms of F</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X \leq a$</td>
<td>$F(a)$</td>
</tr>
<tr>
<td>$X > a$</td>
<td>$1 - F(a)$</td>
</tr>
<tr>
<td>$X \geq a$</td>
<td>$1 - F(a -)$</td>
</tr>
<tr>
<td>$X = a$</td>
<td>$F(a) - F(a -)$</td>
</tr>
<tr>
<td>$a < X \leq b$</td>
<td>$F(b) - F(a)$</td>
</tr>
<tr>
<td>$a < X < b$</td>
<td>$F(b -) - F(a)$</td>
</tr>
<tr>
<td>$a \leq X \leq b$</td>
<td>$F(b -) - F(a -)$</td>
</tr>
<tr>
<td>$a \leq X < b$</td>
<td>$F(b -) - F(a -)$</td>
</tr>
</tbody>
</table>

- $P(a < X \leq b) = P([X \leq b \text{ but not } \{X \leq a\}]) = P([X \leq b] - \{X \leq a\})$
- $P(X \in [a,b]) = P(X \leq b) - P(X \leq a) = F(b) - F(a)$
- $P(a \leq X < b) = P(X \in [a,b]) = P([X \leq b \text{ but not } \{X \leq a\}]) = P([X \leq b] - \{X \leq a\}$
- $P(a \leq X < b) = P(X \leq b) - P(X \leq a) = F(b -) - F(a -)$

Example

The distribution function of a random variable X is given by:

\[
F(X) = \begin{cases}
0 & \text{if } x < -2 \\
\frac{1}{2} & \text{if } -2 \leq x < -2 \\
\frac{3}{4} & \text{if } 2 \leq x < 4 \\
\frac{8}{9} & \text{if } 4 \leq x < 6 \\
1 & \text{if } 6 \leq x
\end{cases}
\]

Calculate the probability function of X.
· $P(X = -3) = 0$. Why?
 · Take a sequence that converges to -3 from the left.
 · $P(X = -3) = P(X \leq -3) - P(X < -3) = F(-3) - F((-3)-) = F(-3) - \lim_{x_n \to -3} F(X_n) = 0 - 0 = 0$.

· The set of all possible values that X can take is given, in general, by those points t such that $F(t-) \neq F(t+) = F(t)$.
· In this example the set is $\{-2, 2, 4, 6\}$.
 · $P(X = -2) = F(-2) - F((-2)-) = \frac{1}{2}$.
 · $P(X = 2) = F(2) - F(2-) = \frac{3}{5} - \frac{1}{2} = \frac{1}{10}$.
 · $P(X = 4) = \frac{8}{9} - \frac{3}{5} = \frac{13}{45}$.
 · $P(X = 6) = \frac{1}{9}$.

Summary
· Both probability function and distribution function characterize completely the random variable X.
· Given the probability function P, we can construct the distribution function F and vice-versa.

Lecture #18 – Monday, November 3, 2003

EXPECTATION OF A DISCRETE RANDOM VARIABLE

Example

If I flip a coin (fair: $P(T) = P(H) = \frac{1}{2}$). If T, I gain $1. If H, I lose $1.

· $X = \{\text{my gain}\}$
· $X : \{H, T\} \to \{-1, 1\}$
· If I repeat many times, the expected gain is $0 - P(T) \cdot 1 + P(H) \cdot (-1) = \frac{1}{2} - \frac{1}{2} = 0$.
Definition

- \(X : S \rightarrow \{ a_1, a_2, \ldots, a_n \} \).
- The expected value of the discrete random variable \(X \) is defined \(E[X] = \sum_{i=1}^{\infty} P(X = a_i) \cdot a_i = \sum_{i=1}^{\infty} P(a_i) \cdot a_i \).

Properties of \(E[X] \)

1) If \(X \) is constant, \(\mathbb{E}[X] = c \cdot P(X = c) = c \cdot 1 = c \).

2) \(\mathbb{E}[X + c] = \sum_{i=1}^{\infty} P(a_i) \cdot (a_i + c) \).
 - Define \(Y = X + c \).
 - \(Y \) is also discrete and every time \(X \) takes value \(a_i \), \(Y \) takes value \(a_i + c \).
 \[E[X + c] = E[Y] = \sum_{i=1}^{\infty} (a_i + c) \cdot P(Y = a_i + c) = \sum_{i=1}^{\infty} (a_i + c) \cdot P(X = a_i) = \sum_{i=1}^{\infty} (a_i + c) \cdot P(a_i) \]
 \[= \sum_{i=1}^{\infty} (a_i) \cdot P(a_i) + c \sum_{i=1}^{\infty} P(a_i) = E[X] + c \]

3) \(\mathbb{E}[X \cdot C] = c \cdot \mathbb{E}[X] \).
 - Define \(Y = X \cdot c \).
 - If \(X = a_i \Leftrightarrow Y = c \cdot a_i \).
 \[E[X \cdot C] = E[Y] = \sum_{i=0}^{\infty} P(Y = c \cdot a_i) \cdot (c \cdot a_i) = c \sum_{i=0}^{\infty} P(X = a_i) \cdot a_i = c \cdot E[X] \]

Example

In a certain part of downtown Toronto parking lots charge $10 per day. A car that is illegally parked on the street will be fined $20 if caught and the chance of being caught is 70%. If money is the only concern, should one park illegally or not?

- \(X = \) What I pay per day if I park legally \(\quad Y = \) What I pay per day if I park illegally.
- \(X = $10 \) is a constant variable.
- \(Y = \{0, 20\} \quad P(Y = 0) = 30\% = \frac{3}{10}, \quad P(Y = 20) = 70\% = \frac{7}{10} \).
- \(E[X] = 10 \)
- \[E[Y] = P(Y = 0) \cdot 0 + P(Y = 20) \cdot 20 = \frac{3}{10} \cdot 0 + \frac{7}{10} \cdot 20 = 14 \].
- On average, we are better off if we park legally.

Example

In a lottery, a player pays $1 and selects four distinct numbers from 0 to 9. Then from an urn containing 10 identical balls numbered 0 to 9, four balls are drawn at random and without replacement. If the numbers of three or all four of these balls matches the player’s numbers, he wins $5 and $10, respectively. Otherwise he loses. On average, how much money does the player gain per game (gain = win – loss).

- \(X = \) gain after one round of the game.
- \(X : S \rightarrow \{-1, 4, 9\} \).
\[P(X = 9) = \binom{4}{4} = 0.005, \quad P(X = 4) = \binom{3}{4} = 0.114, \quad P(X = -1) = 1 - P(X = 9) - P(X = 4) = 0.881. \]

- \[E[X] = -1 \cdot 0.881 + 4 \cdot 0.114 + 9 \cdot 0.005 = -0.38 \]

- On average, he loses 38¢ per game.

Example

In the US the number of twin births is approximately 1 in 90. Let \(X \) be the number of births until the first twins are born. Calculate distribution function of \(X \).

- \(X : S \to \{0,1,2,\ldots,n\} \)
- \[P(X = 0) = \frac{1}{90}, \quad P(X = 1) = \frac{89}{90} \cdot \frac{1}{90}, \quad P(X = 2) = \left(\frac{89}{90} \right)^2 \cdot \frac{1}{90}. \] So \(P(X = n) = \left(\frac{89}{90} \right)^n \cdot \frac{1}{90}. \)

- \[\sum_{n=1}^{\infty} \frac{89}{90} = \lim_{n \to \infty} \sum_{n=1}^{n} \left(\frac{89}{90} \right)^n \]
- \[
\begin{align*}
\frac{89}{90} + \left(\frac{89}{90} \right)^2 + \ldots + \left(\frac{89}{90} \right)^n = R_n & \Rightarrow \left(\frac{89}{90} \right)^2 + \left(\frac{89}{90} \right)^3 + \ldots + \left(\frac{89}{90} \right)^{n+1} = \frac{89}{90} \cdot R_n \\
\Rightarrow R_n \left(1 - \frac{89}{90} \right) = \frac{89}{90} - \left(\frac{89}{90} \right)^{n+1} & \Rightarrow R_n = \frac{\frac{89}{90} - \left(\frac{89}{90} \right)^{n+1}}{1 - \frac{89}{90}}
\end{align*}
\]
- \[\lim_{n \to \infty} R_n = \frac{89}{90} \]
- \[\lim_{n \to \infty} R_n = \frac{89}{90} = 89 \]

- \[E[X] = 0 \cdot \frac{1}{90} + \left(\frac{89}{90} \right) \cdot \frac{1}{90} + \ldots + n \left(\frac{89}{90} \right)^n \cdot \frac{1}{90} = \sum_{n=1}^{\infty} \left(\frac{89}{90} \right)^n \cdot \frac{n}{90} = \frac{1}{90} \cdot 89 \sum_{n=1}^{\infty} \left(\frac{89}{90} \right)^{n-1} \cdot n = \lim_{n \to \infty} \sum_{n=1}^{\infty} \left(\frac{89}{90} \right)^{n-1} \cdot n.
\]

Lecture #19 – Wednesday, November 5 2003

- Sometimes we want \(E[g(x)] \) where \(g = \{a_1, a_2, \ldots, a_n, \ldots\} \to \mathbb{R} \) (a real function).
- \(g(x) = x^2 - E[X^2] \)
- \(g(x) = \log x - E[\log X] \)

Law of the Unconscious Probabilist

- \[E[g(x)] = \sum_{i=1}^{\infty} g(a_i) \cdot p(a_i) \]
- \[E[X] = \sum_{i=1}^{\infty} a_i \cdot p(a_i) \]
• If X is a random variable $X : S \rightarrow \{a_1, a_2, \ldots, a_n, \ldots\}$ with probability mass function $p(\cdot)$ and g is a map $g : \{a_1, a_2, \ldots, a_n, \ldots\} \rightarrow \mathbb{R}$ then $E[g(X)] = \sum_{i=1}^{\infty} g(a_i) \cdot p(a_i)$.

Example: 3 Gamblers

1) Risk-lover: Flips a coin. If T, wins $100; if H, loses $100. ($X_1$).
2) Conservative-gambler: If T, wins $1; if H, loses $1. ($X_2$).
3) Boring: Does not gamble. (X_3).

• $X_i =$ gain by player i.

$E[X_1] = 100 \cdot \frac{1}{2} - 100 \cdot \frac{1}{2} = 0$

$E[X_2] = 1 \cdot \frac{1}{2} - 1 \cdot \frac{1}{2} = 0$

$E[X_3] = 0 \cdot \frac{1}{2} - 0 \cdot \frac{1}{2} = 0$

VARIANCE

• Another interesting quantity we can look at is, beside the center, the spread of a distribution. How far apart the probability function “spikes” are.

• Formally, this is measured using the variance of a random variable. It is denoted $\text{Var}(X)$.

• $\text{Var}(X) = E[(X - E(X))^2]$

• Let $E[X] = \mu$.

• $\text{Var}(X) = E[(X - E(X))^2] = E[X^2 - 2\mu X + \mu^2] = E[X^2] - 2E[\mu X] + E[\mu^2] = E[X^2] - 2\mu^2 + \mu^2$

1) $X = c$ a constant:

• $\text{Var}(X) = E[(c - E(c))^2] = 0$.

• The variance is never negative.

2) $\text{Var}(X + c) = \text{Var}(X)$

• $\text{Var}(X + c) = E[((X + c) - E[X + c])^2] = E[(X - E[X])^2] = \text{Var}(X)$.

• Spread remains the same.

3) $\text{Var}(c \cdot X) = c^2 \text{Var}(X)$
\[
\text{Var}(c \cdot X) = E[(c \cdot X)^2] - (E[c \cdot X])^2 = E[c^2 \cdot X^2] - (c \cdot E[X])^2 = c^2 \cdot E[X^2] - c^2 \cdot (E[X])^2 = c^2 \cdot \text{Var}(X)
\]

Example

The distribution function of a random variable \(X \) is given by:

\[
F(x) = \begin{cases}
0 & \text{if } x < -3 \\
\frac{3}{8} & \text{if } -3 \leq x < 0 \\
\frac{1}{2} & \text{if } 0 \leq x < 3 \\
\frac{3}{4} & \text{if } 3 \leq x < 4 \\
1 & \text{if } x \geq 4
\end{cases}
\]

Calculate \(E[X] \), \(E[X^2 - 2|X|] \), and \(\text{Var}[X \mid |X|] \).

- \(\lim_{t \to -\infty} F(t) = 0 \)
- \(\lim_{t \to \infty} F(t) = 1 \)
- \(F \) is non-decreasing
- \(F \) is continuous from the right

The values \(X \) can take are the values where \(F \) has different limits at the left and the right.

\(X : S \to \{-3, 0, 3, 4\} \).

- \(P(X = -3) = \) difference between limit to the right and limit to the left = \(\frac{3}{8} \).
- \(P(X = 0) = \frac{1}{2} - \frac{3}{8} = \frac{1}{8} \).
- \(P(X = 3) = \frac{3}{4} - \frac{1}{2} = \frac{1}{4} \).
- \(P(X = 4) = 1 - \frac{3}{4} = \frac{1}{4} \).

\[
E[X] = \frac{-3 \cdot 3}{8} + \frac{0 \cdot 1}{8} + \frac{3 \cdot 1}{4} + \frac{4 \cdot 1}{4} = -\frac{5}{8}.
\]

\[
E[X^2 - 2|X|] = 3 \cdot \frac{3}{8} + 0 \cdot \frac{1}{8} + 3 \cdot \frac{1}{4} + 4 \cdot \frac{1}{4} = \frac{31}{8}
\]
\[\text{Var}[X \mid X] = \text{always boils down to computing some expectations} = E[(X - E[X])^2] - (E[X \mid X])^2 \]

\[h(r) = (r - \mu)^2, \quad h : \mathbb{R} \rightarrow \mathbb{R} \]

\[E[h(X)] = \sum h(a_i) \cdot p(a_i) \]

\[h(3) = 81, \quad h(0) = 0, \quad h(3) = 81, \quad h(4) = 256 \]

\[E[(X - E[X])^2] = 81 \cdot \frac{3}{8} + 0 \cdot \frac{1}{8} + 81 \cdot \frac{1}{4} + 256 \cdot \frac{1}{4} = \frac{755}{8} \]

\[c(v) = v \cdot \mid v \mid \]

\[v(-3) = -9, \quad v(0) = 0, \quad v(3) = 9, \quad g(4) = 16 \]

\[E[X \mid X] = -9 \cdot \frac{3}{8} + 0 \cdot \frac{1}{8} + 9 \cdot \frac{1}{4} + 16 \cdot \frac{1}{4} = \frac{23}{8} \]

\[\text{Var}[X \mid X] = \frac{755}{8} - \left(\frac{23}{8} \right)^2 = \frac{5511}{64} \]