APM346H1 Differential Equations

INTRODUCTION

Types of Partial Differential Equations

o Transport equation: u (x,y)+u,(x,y)=0, where MXZZ—Z, uyzg—zi ;and u(x,y)=?.
 Shockwave equation: u, (x,y)+u(x,y)u,(x,y)=0.
2 2
o The vibrating string equation: u,,(x,¢)=c’u_(x,t), where u,za—z and u“:a_”;_
ot T Ox
The wave equation: u”(x,y,z,t):cz(uxx(x,y,z,t)—i—uyy(x,y,z,t)+uzz(x,y,z,t)) .
. o o’
In general: u,(x,,..., xn,t)zczAu(x1 ..... x,,t), where A=the LaplaCIan=—2+"'+F and
'xl ‘xn
2 2
Au= 0 u2+---+ 0 u2 .
ox, ox,
« Diffusion equation: u,(x,7)=c’u_(x,1).
In general: u,(x,,...,x,,t)=c’Au(x,,...,x,,1) .
o Steady state: u,=0 .
. . o’u o’u
e Laplacian equation: Au=——+--- >=0.
X, Ox

Initial Conditions and Boundary Values for Ordinary Differential Equations

2 2
Consider dtg} =F(t, y,%) , and think of y(#) as the position of the particle, iﬁg} as acceleration, and F(z,y, %) as
force. The state/configuration space is (x,(¢),x,(¢)) , where x,(¢)=y(¢), xz(t)Z% . Then the system of first order
dxl dy
—_— t
equations is di - dt ol
dx2 dzy dy ’
—= =F(t t),—)=F(t t t
= A= F ). G F (1), x(0)
Theorem: Existence and Uniqueness of Solution
There exists one and only one solution x(t)=(x,(2),..., x,,(t)) that satisfies x(to)zxo(to) where xo(lo) is the given intial

condition.

Quasi-Linear Partial Differential Equations

Definition: Quasi-Linear Partial Differential Equation
a(x,y,u)u(x,y)+b(x,y,u)u,(x,y)=c(x,y,u) (*) wherea, b, care given functions.

Claim
Let a and b be constant functions, and ¢=0 ,so au,+bu,=0 (1) . Then every solution u(x,y) of (1) is of the form

u(x,y)=f(bx—ay) for some function of one variable (ex: f (§)=E =u(x,y)=(bx—ay)’ ).
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APM346H1 Differential Equations

Uniqueness and Initial Conditions

For initial condition, we prescribe u along a given curve ¢ (x) ,s0 ulx,@(x))=uy(x) is given. Note that when
u(x,y)=f(bx—ay) , u(x,y) is constant along the line bx—ay=c . Soif uy(x)=f(bx—a@(x)), there is a unique
provided that bx—a ¢ (x)=c is not constant.

Suppose that P (X)=4x _Then uy(x)=f (bx—adx)= f(x)=u,(

b—xa A) . In conclusion,

. L . . b
1) The solution u(x,y) is unique for any uy(x) over the line y=Ax provided that Ai; .

b e . . . .
2) When AZ; then there are infinitely many solutions provided that u,(x) is constant. If u,(x) is not constant,

then there are no solutions.

Method of Characteristic

Define a vector field V (x,y,z)=(a(x,y,z),b(x,y,z), ,

ﬁ:(ux(x,y),uy(x,y),—l) but V-i=au, +bu +c( )=0 because au +bu,=c . So V lies in the tangent plane.
S=a(x(t),y(1),2(1))

If (x(¢),y(¢),z(¢)) isasolution of (1) £=h(x(t), y(t),2z(¢)) suchthat (x(0),y(0),z(0)) liesin z=u(x,y) ,ie
—ZC(X( ), y(t),z(1))

u(x(0), y(0))=z(0) , then (x(z),y(¢),z(¢)) liesin z(r)=u(x(1), y(¢)).

c(x,y,z)) . Normal direction at (x,y,z=u(x,y)) is
1

t\]

z\t

x(0,x,)=x, x(t,5)=x(t,x,(s))
Suppose now that (x(z,x,), ¥(¢,y,),z(t,z,)) is any solution of (1) such that y(0,y,)=y, where y(z,s)=y(¢,y,(s)).In
z(0,z,)=z z(t,5)=z(t,z,(s))

most situations, we can solve for # and s in terms of x and y. Then u(x,y)=z(t(x,y), ( »))

ox dox
Note: When the Jacobian J= det[‘” f;

ot s

#0 , then we can solve for 7 and s in terms of x and y locally.

dz,(s)

Note: If J=0 , thenif u(x, y)=z that contains u(x,(s), y,(s])=z,(s) satisfies =Ac(x,(s), yols), z,ls)) , there are

infinitely many solutions; if not, then there is no solution.

Second Order Equations

alx, y)-uxx+2b(x,y)-uxy-i-c(x,y)uw-i-d(x,y)-ux-i-e(x, y)'uy'i‘f(x,y)'u:o (1), where a, b, c, d, e, f are given
functions.

Canonical Types

1. Hyperbolic type: b°—ac>0 .
2. Parabolic type: b*—ac=0 .
3. Elliptic type: b*—ac<0 .

Fact
£=£(x,y)
n=nlx,y)

& &, .
If we make a (one-to-one) change in variables and require that det [rl "[#O0=Eeta,—xi,n#0  then

x y
there is a transformation such that (1) is transformed into:
1. ug,+lower order terms=0 in the hyperbolic type;
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APM346H1 Differential Equations

2. ug+lower order terms=0 in the parabolic type;
3. ug+u, +lower order terms=0 in the elliptic type;

Special Case: a, b, c constants

E=ax+By
Linear change of coordinates (x,y]=(€.n) given by n=yx+8y such that

det[g“‘ xz}}:det[gf xzy]:aé—ﬁy;to
n, n, n. n,
A=ac’+2baf+cp’
Then(]) becomes Au§§+23u§”+Cunn+lowerorderterrns , Where B:aO‘Y"‘b(O“S"‘YB)"‘CB‘S
C=ay’+2bys+cé’

1. In the hyperbolic case, choose a=—b+V(b*—ac), a=—b—(b*—ac), B=5=a , yz—b—\/(bQ—ac), B=6=a.
Then A=C=0,B#0
2. In the parabolic case, choose ®x=y=—b,B=6=a . Then B=C=0,4#0 or A=B=0,C#0.

3. In the elliptic case, choose 0‘:\/( < bz):“:\/( _Cbz),y=0,6=l ,then A=C+#0,B=0
ac— ac—

THeE Wave Equartion
u,(x,t)=c’u_(x,t),—oo<x<oo with initial conditions ulx,0)=(x], u,x,0/=wx|

The solution is u(x,t)=%((p(x+ct)—l—(p(x—ct))+2—( f w(z)dz) )
c

x+ct

Dirrusion EquaTion
w(x,y,z, t)=k Au=k(u, +u, +u.)

In one dimension, u,(x,7)=ku,(x,) is a parabolic type.

In One Dimension
u,(x, t)zkuxx(x, t),—o<x<o with given initial conditions ulx,0)=@(x) where ®(x) isa given function.
~lx=yP e w

1 o
The solution is u(x,t)=ﬁf<p(y)e ody If S(x,t):ﬁe‘”“,t>0,then u(x,t)zf(p(y)S(x—y,t)dy.
bt ™

—o0

Properties of the Kernel
The heat kernel/Gaussian/diffusion kernel S(x,¢) has the following properties:
1. Symmetric: S(x,¢)=S(—x,¢) .

lim S (x, ¢)=(*¥ =0
2 tlf(} (x ) {0,X¢0
3. fS(x,t)dle,Vt>0
4. lim [ @(x)S(x,1)dx=@(0),V o .

t—=0 _q

30of 15
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Evaluation Techniques

©

1

Useful formula: f(p'(y)S(x—y,t)dyzz—h | yoy)Sx—y.tldv—x [ @ly)S(x—y,t)dy

©

o If ®=1,0'=0  then [ yS(x—y, tldy=x.Soif ®(x)=x | then

u(x,t):f (p(y)S(x—y,t)dyzf yS(x—y,t)dy=x and u(x,0)=x=¢(x).

—o0

e If =y ,then fyzS(x—y,t)dy=x2+2kt.So if @(x)=x",then u(x,t)=x*+2kt and u(x,0)=x"=¢(x).

—o0

o If @=)",then J'y3S(x—y,t)dy=x3+6ktx.So if @(x)=x",then u(x,t)=x’+6ktx and u(x,0)=x’=¢@(x).

Theorem

Suppose that @(x) is such that lllifi(p(x)eﬁ =% | then lim f ely)Slx—y,t)dy=p(x),V x

110 o
o0

f(p(y)S(x—y,t)dy is a solution with u(x,0)=p(x]) .

—00

The Maximum Principle

. In that sense

Let u(x,t) beasolution of u,=ku_ onarectangle 0<x</,0<¢<T .The maximum of u(x,?) occurs only on the

part of the boundary {(x,0):0<x</]U{(0,¢):0<¢t<T|U|(l,¢):0<t<T]

Theorem: Uniqueness of Solution

Suppose that we seek a solution u(x, ) that satisfies #(x,0)=@(x),0=x</  Suppose further that u(x,) satisfies
u(0,¢)=c(t) and u(l,t)=PB(t), where «(t) and B(¢) are prescribed functions. Then the solution is unique, i.e. there is at

most one solution.

DirrusioN EquAaTion ON HALF LINE

Equation: ut(x,t):kuxx(x,t),0<x<oo

Initial data: u(x,0)=@(x), x>0

Boundary conditions:
e Dirichlet Condition: prescribe u(0,]=a(t) (usually «(¢)=0 ).
e Neumann Condition: prescribe #,(0,¢)=a(t) (usually «(¢)=0).
e Robin Condition: prescribe u(0,¢)+au (0,¢)=0 .
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Method of Solution: Dirichlet Boundary Condition

Take the case with u,(x,¢)=ku_(x,¢),x>0, u(x,0)=@(x), x>0 | 4(0,£)=0,V¢>0.

We want to extend ¢ to the entire line —co<x<oo  such that the solution u(x,#) induced by this extension satisfies
u(0,¢)=0 .

Note that @(x)=@(x),x>0  Now, u(0,£/)=0 forall r>0 iff ¢ isan odd function ( P(—x)=—@(x) ).

Then ulx,t)= [ @(y)S(x—y,t)dy=[ @(y)(S(x—y,1)-S(x+y,1)ldy.

Method of Solution: Neumann Boundary Condition
Solve u,=ku_,x>0 | with initial data u(x,0)=@(x),x>0 and Neumann condition u,(0,7)=0 .
If u(x,t) iseven (ie. ul—x,t)=—u(x,t) ), then u (x,¢) isodd (ie. u (—x, t)=—u(x,¢)).

The solution is u/(x,¢)=

§ =

(]S (x—y. tldy=[ @(y)(S(x=y, 1S+, e))dy

Wave EquaTioN oN HALF LINE
x>0 .
Initial data #(x,0)=@(x)  and u,(x,0)=0 for simplicity.

2
Solve u,=c’u

Dirichlet Boundary Condition
Dirichlet condition #(0,¢)=0 .

- 1,. -
Extend ® to odd function ¢ . Then the solution is u(x,I)IE((p(x—i-ct)—i-(p(x—ct))

Note: u(x,t)=—ulx,t)=>u(0,t)=0.

Wave EquAaTioN oN FINITE INTERVAL
Solve: u,=c’u_,0<x<L
Tnitial data: @(x)=u(x,0),0<x<L  and tl/(x)=u,(x,0),0<x<L_

Dirichlet Boundary Condition
Dirichlet condition: u(0,¢)=u(L,¢)=0
Extend @ to ¢ and ¢ to ¢ sothat u(x,¢) is odd about x=0 (i.e. u(—x,t)=—u(x,t) )andoddabout x=L (i.e.

x—ct
u(x+L,t)=—u(L—x,t)). Then the solution is u(x,t):%((b(x+ct)+(b(x—ct))+i f Jj(z)dz).

x+ct

Separation of Variables and Boundary Value Problems

Method of Separation of Variables
The method of separation of variables assumes that any solution u(x,¢) can be written as u(x,¢)=X (x)T(t) .

Solutions
With the diffusion or wave equation, we need to solve X ''+AX =0 where A is an unknown constant:
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APM346H1 Differential Equations

e For A>0 | X|(x)=Acos(VAx)+Bsin(VAx]

e For A<O, X(x):Acosh<\/—_/\x)+Bsinh(\/—_/\x) .
e For A=0, X(x)=Ax+B.

’n’ . (nm
In the Dirichlet case ( u(0,¢)=u(L,t)=0 ), A>0 and Anznl;r .So X,,(X)ZSIH(Tx)

2_2
n Tt
2

In the Neumann case ( u,(0,¢)=u (L,1)=0), A=0 so X (x)=constant ;or A<0 and A, = , SO

X (x)=cos(%x) .

Dirichlet Boundary Condition

. enT _[enm
For the wave equation u,(x,¢)=c’u_(x,t), we have T"(t)zancos(Tt)—i-bnsm(Tt .So

un(x,t)zxnmTnm:[a,,cos(%t)w,,sm(%t)]sm(%x) |

noT

For the diffusion equation u,(x,t)=ku_(x,t), we have T (f)=c e*kT’ So
71("2?21 nm
u,x,t)=X,x)T, (t)=c,e * sin <

Neumann Boundary Condition

. enT . [enT n
Wave equation: u,,(x,t):[ancos(Tt)+bnsm(Tt)]cos(Tx) :

nzﬂz
—k t
p . : nT
Diffusion equation: 4 (x,¢)=c,e * COS(TX) .

Mixed Boundary Condition
Mixed boundary condition #(0,¢)=u_(L,t)=0 |, then X (0)=X"'(L)=0

m(2n+1
We have \/T,,thiL)

Robin Condition
Take u,(0,¢)—hu(0,¢)=0 and u.(L,t)=0 .Wehave X +AX=0 .

. h
e Assume A>0 . Then X(x)ZAcos(\/Xx)—i-Bsm(\/Xx) , and we get tan(\/x )Zﬁ.Setting yZ\/XL>0 , we get

Lh . e .
tan y =7=§ a transcendental equation. On y>0 , we get infinitely many solutions Y; <y, <'--=A;<A,<-- ,
with the difference approaching 7 .

 Assume A<0.Then X (x)=4cosh(V=2x|+Bsinh(\V=Ax),and setting y=y-AL>0 we get tanhyz—% a

transcendental equation. We get no solution.
So there are infinitely many eigenvalues A, <A,<--- with corresponding eigenfunctions X ,(x), X,(x),... .

VEcToRr Spaces: INTRobucTION TO FOURIER SERIES
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. L LT .2 . [nm
Let V', be the space of all linear combinations of f=b,sin Zx +b,sin Tx +---+b, sin Tx

2
. (km
Zb sm( 7 )

21

[T . . [nTT
Choose basis: v, Z[sm(z x), vzzsm(T x), vnzsm(Tx)} . Then the matrix of L relative to this basis

Define L:V,=V, LIf

T 2
(f) 0 0
27\’
0 (T) 0
2117 0
nt
0 0 (T)

. . . kT
is a diagonal matrix since L{v,)= =7 ) Ve

Z kT
Let n—oo and consider the space of functions f on 0<x<ZL which can be written as f (x)= z b, sin (Tx) for
k=1

kT
Fourier coefficients b ——f flx SIH(T x) dx k=1,2,3,...  of f relativeto X, .

FuLL FouriEr SERIES
Definition

. . L1 nt
Let —L<x<L . The full Fourier series of f(x) is 2a0+Za COS( 7 )+b Sln( 7 )

Coefficients

n
The coefficients are uniquely determined from orthogonality of functions €o0S (T) and sin (%) :

L
. fsin(ﬂ)sin(ﬂ)dx={0 n#Em .
L L =

M) L n=m

L
ntt mTt
. 1 E— _ d =0.
J‘LSIH( I )COS( I ) X

L
n m 0 n#m
. — — |dx= .
chos( 7 )cos( 7 ) X {L i

These relations 1mply that:

. z—ff Ccos

/\

)dx n=0,1,2,..
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Relation To Differential Equations

Take 0<x<L .
L

Dirichlet Condition: Take f(x) an odd extension of @(x) . Then a,=0 and bHZ%f f(x)sin(%)dx n=1,2,....

0
L

Neumann Condition: Take f(x) an even extension of ¢(x). Then anZ%f f(x)cos(%)dx n=0,1,2,... and b,=0.
0

GEeNERAL EIGENVALUES AND EIGENFUNCTIONS
X +AX=0 on 0<x<L .

2
. [nTT
1. If X(0)=X(L)=0 ,then An=(%) and XM<X)ZSIH(T)C)
2
2. If X'(0)=X'(L)=0, then An:(%) and Xn(x):cos(%x).
3. If X'(0)—4X(0)=0 and X '(L)=0,then A,<A,<--- (eigenvalues) and X, X, ... (eigenfunctions).

2
4. If X(0)=X(L)=0 and X '(0)=X(L)=0,then A=0 and X (x)=constant or An:(ZzZn) and

2nT

2
X (x)zAﬂsin( Gl

n

x)—i— B, cos( x) where 4, and B, are arbitrary constants.

General Boundary Conditions
o, X (a)+o, X (b)+, X (a)+a, X (b)=0

B, X a)+B, X (b)+B, X (a)+B,X (b)=0 for some

Solve X '+AX=0, a<x<b subject to the boundary conditions

constants ¢ ..., &,, B ..., B,

Definition: Symmetric Boundary Conditions
Let f and g be any functions that satisfies the above boundary condition. Then conditions are called symmetric if

fx)glx)=f(x)g (x)[2=0e f'(b) g(b)— £ (b g (b)—(f(a)gla)- fa)g (a))=0

Fact
Conditions 1 to 4 are symmetric.

Theorem
Suppose that X, and X, are eigenfunctions on [a,b| that corresponds to distinct eigenvalues A, and A, (A,#A,,),
and suppose that the boundary conditions are symmetric. Then X, and X, are orthogonal in the sense that

[ X, (%)X, (x)dx=0

HiLBerT SpPACE
Basic Space

Lz[a,b}:[f;[a,bwmffz(x)dx<oo
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Fact
L’|a,b] is a vector space.
Inner Product

Take f and g in L*. Then define the inner product to be (f.g)=] flx)g(x)dx

Norm
b

Define ||f||=(ffz(x)dx)z=(f,f)2 to be the norm of f.

a

Cauchy-Schwartz Inequality

b b 1
(7. gl<lflllgl or |f fix)glx)dx f axl |[ g*(x
Note: This implies (ﬁ @)‘sl so define cos@= ‘(L )‘

Definition: Convergence
fn}EL2 is said to converge to f if lg?J’fn_fH:O

Definition: Cauchy Sequence
(f.er’

Basic Properties of Inner Product and Norm
1. Symmetric: (f,g)=(g, f).
2. Bilinear: (f,ag-i—Bh):a(f,gHB(f,h) for «,fER and f, g, hel’.

3. (f,f)=0 VY fel?;if (f, f)= ff =0 then /=0 “almost everywhere”.

4. [* is complete in the sense that any Cauchy sequence in > converges to an elementin [?.

Definition: Hilbert Space

Any vector space H with an inner product ( , ) that satisfies properties 1 to 4 is called a Hilbert space.
Theorem
If X, X,...,X,,... arethe eigenfunctions corresponding to symmetric boundary problem, then the Fourier series of any

function f convergesto f in L® norm.

LeasT SqQuARE APPROXIMATION
Let V', denote the linear span of X | X,.... X, (ie. JE€EV, o /=0, X o, X, + -+, X,

Problem
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Question: Let €L’ . For which values of & &,...,«, minimum?
Lf X))
Answer: «,= i=1,...,n
[el

CoNVERGENCE OF FOURIER SERIES

Theorem

The Fourier series relative to X, X, ... ofany element fe€L’ convergesto f.Thatis,if Sy= Z (f.. X)X, ,then
i=1

lim ||S,— f]|=0
N—-o

Definition: Piecewise Continuous
A function is piecewise continuous if it is continuous at all but a finite number of points. At a point of discontinuity f has
both a right and a left limit (ie f has a jump discontinuity).

Iepi et
So if ¢ is a point of discontinuity of f', then both f(c ) fflf(x) and f(c) ililzf(x) exist.

x>c x<c

Theorem: Point-wise Convergence of Fourier Series
Assume f is such that:

e f isperiodic of period 27T .
e [ andits derivative f' are “piecewise continuous”.

Then lim SN(x)Z%(f'(f)Jrf(x'))

n—oo

Note: If f is continuous at x , then f(x+)=f(x')=f(x) , SO lim S (x)=f(x) .

n—o

Auxiliary Results

2
X)) where X, X, ... are eigenfunctions on [a,b] with symmetric boundary

|| I

X 2
values and geL’[a,b] . This implies that lim %—
k— oo /\

N
2. Let Ky(0)=1+2) cosk0  Then fK 0)d o= 2n@2—f1< 0)do=1.

k=1

w2l
o)

Definition: Uniform Convergence
£ lim max|f (x)|=0

n—wa<x<b

1. Bessel's Inequality: |/g]| ZZ

3. K,l0)=

f, convergesto f uniformly i
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Harmonic Functions and Laplace's Equation

LApLACE's EQUATION
In n dimensions,
o o’u

AuZdiv(gradu)z—L;+~~~+—2=O )
0x; ox,
Notes:
o A s the Laplacian, and it is an operator that acts on functions of » variables.
0 0
e The gradient of a scalar function u(x,...,x,) is gradMZVu:(a—u,...,—u)
’ X, ox,
. - L, =y OV, ov,
e The divergence of a vector field V(x,...,x,)=(V(x,...,x,),..., Valx,...,x,)) is dlv(V)zax AR
1 n
¢ Wh I_}:Vu: ﬂ ﬂ th Au=di ( d )
en ox,"" ox, ,then Au=div(gradu).

Definition: Harmonic
Any solution of Laplace's equation is called harmonic.

Properties
d’u
e n=1: 5=0 ,s0 u(x)=Ax+B .
dx
e n=2 : Connection to complex functions f(z)=u(x,y)+iv(x,y) .Then f analytic (can be expressed as a Taylor
series, i.e. differentiable) implies # and v are harmonic.

Maximum/MiNnimum PRINCIPLE

Definitions
1. D isan opensubsetof R" ifforall X€D |, there exists »>0 such that forall yeD , ||X—7|<r
2. 0D isthe boundary of D . A point b isa boundary point if for all €>0 | B:{”?c—b”

intersection with both D and the complement of D in R".
D is connected if there exists a polynomial curve joining any two points in D and is lyingin D .
D is bounded if it is contained in some ball B={%|||¥||<R] 0<R<w .

<e} has non empty

W

Maximum/Minimum Principle
Assume D to be an open, connected subset of IR” such that DUS D is bounded. Let u be any solution of (the Laplace

0’ o
a—L;-f" - +a—L;= 0 equation) in D such that u is defined and continuous in DUG D . Then:
X X

u(X)<maxu(¥) VYXED
oD
e Minimum Principle: ¥ (})anin ulX) VieD
D
That is, u attains its maximum/minimum on 0D .

e Maximum Principle:

BounbarY VALUE PRrRoBLEMS
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Dirichlet Problem

o’ o’u
u+ +—5=0 subject to %l,p=P (%) (given).
ox; X

By the Maximum/Minimum Principle, the solution of the Dirichlet problem is unique.

Neumann Problem

’u o’u ou
—++===0
ox ox subject to FY

n

—|,p=wI(X) (given). Here, 7 is the external normal.

Robin/Mixed Problem
o’u ’u

8x1+ +5x =0 subject to g—n-i-a( Ju(%)=k(X) (given).

n

Basic PRoOPERTY

Solutions to the Laplace equation are invariant under rigid motions @ (x)=T(%)+R(X) , Where
e T(X)=d+x is a translation,
e R(X)=AX% (A"=4" det A==*1 )isarotation.

RecTanGcuLAR HARMONICS

o’u o’u . _|ula,yl=glx . .

ﬁ-l-a—o on D=|(x,y):0<x<a,0<y<b| with 0D= ulx b1=hlx) where f, g, h, i are given
u(O,y)Zz(x)

functions.

Separation of Variables

We assume u(x,y)=X(x)Y(y) .
ulx,0)=f(x)
When 0D= ulx,b)=h(x] |, then un(x,y)=(ancosh%wbnsinh%y)sin%x
ul0,y)=ula, y)=0
u(0,y)=g/x]

] ,then u,(x,y)= (a costhvab smh%x)sm%y

Note: u(x,y)zz un(x,y)

n=1

Case 1

. D= u(x,0)
Suppose that we want the solution with ulx,b)=ul0,
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. . . 2 . [nTmT
The sine Fourier coefficients of f are GHZ;I f (Z Jsin (7 z )dz

0

Since u(x,b) 0@2 a, cosh—b+b smh—b)sm7x 0—a, cosh—b+b smh—b 0 , SO

n=1

ni
a,cosh—>b
a
. AT
sinh—»b
a

©

ulx,y)=Y. (ancoshﬂy+bnsinhﬂy)sinﬂx
a a a

n=1

© cosh -~ b
a .,.nm | . nm
ZZan cosh— y———sinh—y [sin—ux
= a .
"= sinh 2 b
a
Z a
=27(smh—(b y))(sinﬂx)
n=1 a

sinh—y

LapLAce's EquaTioN oN CircuLAR REGIONS

1. Annulus: D=[(r,6),—mt<6<m, a<r<b , 0D=|(a,0),—w<0<m|U|(b,0),—-TT<O<T| .
2. Disk: D=|(r,0),—m<0<m,0<r<b|, dD=|(b,0),—r<0<m|.
3. Wedge: D=|(r,0),0<0<«,0<r<b| .

Polar Coordinates and Separation of Variables
x=rcos6

1 1
y:I"Sil’le > uxx+u,vy:O becomes urr+7ur+Fu99:0

Using polar coordinates

Assuming #(r,0)=R(r)@(0) | we get the two equations #’R’'+rR'—AR=0 and O''+AO=0

Annulus
Eigenfunctions:
e When n#0, 0,(0)=4,cosn0+B,sinn® and R,(r)=C,r"+D,r"
e When n=0, 0,(0)=4, and R,(rl=c,+c,Inr .
So the solution is (7, 6) ZR =cytc, lnr+Z(C r"+D,r ')(Aﬂcosne—i-anian) . The coefficients

n=0 n=1

are the Fourier coefficients of the boundary conditions (4, 0)=11(0) and u (b,0)=g(0) .
Disk
The usual assumption is that #(0,0) bounded. This forces ¢,=D,=0 . So the solution is
ul(r,0) c0+z C,r"(A,cosn0+B,sinno|= a +z "(a,cosn0+b,sinnd), where a, and b, are the Fourier

coefficients determlned by the boundary condltlon u (b, 0)=11(0).
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Wedge
Consider the special case that #(r,0)=u(r,a)=0 and u(b,0)=71(0)

o . . NT
The solution is u r, 9 z a,r sm—@ where 4,~ ""/“0( f S ((p)sm 7@‘{ ¢ is the Fourier coefficient
x 0

n=1

determined by u(b,0)=f(0).

PoissoN FormuLA AND PoissoN KERNEL

Poisson Formula
On the disk D={(r,0),—w<0<m,0<r<b| with u(b,0)=1(0),

vt o5 oo

2
=[ fle)Plo=0)de
™ b _
:J‘ - ( r )f((p) zd(P
“w b*=2brcos(p—0)+r
where Plp—0)= (1+2Z( ) cosn(p— 9)) 1 b=r”
e 2m B —2brcos(p—0)+r

Poisson Kernel

1 at—r
P (r,0 .
ol 0)= 27 >~ 2arcos0+r

Basic Properties
2m 2m

1 a—r .

1. P lr,p—0ldp=1e— ~d =1 .Inthis case ula,0)=f0)=1, but
}[ Aro=0lde 2W{a—2arcos((p 0)+r ® (a.0)=116)
u(r,9)=l Yr,0 also.

5 limP Jr0)=( (0 0=0

: r—a (X) 9—0

3. lim _f fl@)P,(r,p—0)d p=f(0) whenever f isa continuous function of 6 .

r—a
4. Averaging Property of Harmonic Functions: x=y=0<r= 0 , SO
2m 2 2
_ _ 1 (a®=0%) £ (o)
u(0,0)—u(O,G)—zn{ & —240c0s|—0]+0 .[f is the average value of f.

cartesian polar

Consequences of Poisson Representation
1. A harmonic function u defined on some domain D cannot attain a maximum (nor minimum) in the interior of D .

Here the interior of D are the points p in D such that there exists a disk centered at p that is entirely contained in
D.

2. ulr,0) has partial derivatives of all orders, even when f is only continuous.
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fnf(qa)—Pa(r,w—G)dw.
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