
APM346H1 Differential Equations

INTRODUCTION

Types of Partial Differential Equations
• Transport equation: u x  x , y u y  x , y =0 , where u x=

∂u
∂ x , u y=

∂u
∂ y , and u x , y=? .

• Shockwave equation: u x x , y u x , yu y  x , y=0 .

• The vibrating string equation: u tt x , t =c2 u xx x , t  , where ut=
∂2 u
∂ t 2  and u xx=

∂2 u
∂ x2 .

The wave equation: utt x , y , z , t =c2 u xx  x , y , z , t u yy x , y , z , t u zz  x , y , z , t  .

In general: utt  x1 , , xn , t =c2u  x1 , , xn , t  , where =the Laplacian= ∂2

∂ x1
2⋯

∂2

∂ xn
2  and

u= ∂
2 u
∂ x1

2⋯
∂2 u
∂ xn

2 .

• Diffusion equation: u t x , t =c2 u xx x , t  .
In general: ut  x1 , , xn , t =c2u x1 , , xn , t  .

• Steady state: ut=0 .

• Laplacian equation: u= ∂
2 u
∂ x1

2⋯
∂2 u
∂ xn

2=0 .

Initial Conditions and Boundary Values for Ordinary Differential Equations

Consider d 2 y
dt 2 =F t , y , dy

dt
 , and think of y t   as the position of the particle, d 2 y

dt 2  as acceleration, and F t , y , dy
dt
  as

force. The state/configuration space is x1t  , x2t  , where x1t = y t  , x2t =
dy
dt . Then the system of first order

equations is 

dx1

dt
=dy

dt
=x2t 

dx2

dt
=d 2 y

dt2 =F t , y t  , dy
dt
=F t , x1t  , x2t 

.

Theorem: Existence and Uniqueness of Solution
There exists one and only one solution x t = x1t  , , xnt   that satisfies x t0=x0t0  where x0t0  is the given intial
condition.

Quasi-Linear Partial Differential Equations
Definition: Quasi-Linear Partial Differential Equation
a  x , y , uux  x , yb x , y ,uu y  x , y =c x , y , u (*)  where a, b, c are given functions.

Claim
Let a and b be constant functions, and c=0 , so auxbu y=0 (1) . Then every solution u  x , y   of (1) is of the form
u x , y= f bx−ay  for some function of one variable (ex: f =2⇒u  x , y=bx−ay 2 ).
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Uniqueness and Initial Conditions
For initial condition, we prescribe u along a given curve  x , so u x , x=u0x  is given. Note that when
u x , y= f bx−ay , u  x , y   is constant along the line bx−ay=c . So if u0 x= f bx−a x , there is a unique f

provided that bx−a x=c  is not constant.

Suppose that  x=Ax . Then u0 x= f bx−aAx⇒ f x =u0
x

b−aA
 . In conclusion,

1) The solution u  x , y  is unique for any u0x   over the line y=Ax  provided that A≠ b
a .

2) When A=b
a  then there are infinitely many solutions provided that u0 x  is constant. If u0x   is not constant,

then there are no solutions.

Method of Characteristic
Define a vector field V x , y , z =a x , y , z  , b x , y , z  , c  x , y , z  . Normal direction at  x , y , z=u  x , y   is
n=ux x , y  , u y x , y ,−1 , but V⋅n=auxbu yc −1=0  because au xbu y=c . So V lies in the tangent plane.

If  x t  , y t  , z t   is a solution of (1)

dx
dt=a x t  , y t  , z t 
dy
dt=b  x t  , y t  , z t 
dz
dt=c  x t  , y t  , z t 

 such that  x 0 , y 0 , z 0  lies in z=u x , y  , ie

u x 0 , y 0=z 0 , then  x t  , y t  , z t   lies in z t =u  x t  , y t  .

Suppose now that  x t , x0 , y t , y0 , z t , z0  is any solution of (1) such that 
x 0, x0=x0

y 0, y0= y0

z 0, z0=z0

 where 
x t , s=x t , x0s
y t , s= y t , y0s
z t , s=z t , z0s

. In

most situations, we can solve for t and s in terms of x and y. Then u x , y =z t  x , y , s x , y .

Note: When the Jacobian J=det[ ∂ x
∂ t

∂ x
∂ s

∂ y
∂ t

∂ y
∂ s
]≠0 , then we can solve for t and s in terms of x and y locally.

Note: If J=0 , then if u  x , y =z  that contains u  x0 s  , y0  s =z0  s   satisfies 
dz0  s 

ds
=c  x0 s  , y0  s  , z0  s  , there are

infinitely many solutions; if not, then there is no solution.

Second Order Equations
a  x , y ⋅u xx2b  x , y ⋅u xyc  x , y ⋅u yyd  x , y ⋅u xe  x , y ⋅u y f  x , y ⋅u=0  (1), where a, b, c, d, e, f are given

functions.

Canonical Types
1. Hyperbolic type: b2−ac0 .
2. Parabolic type: b2−ac=0 .
3. Elliptic type: b2−ac0 .

Fact

If we make a (one-to-one) change in variables 
=  x , y 
=  x , y   and require that det[x y

x y
]≠0⇔x eta y−xi yx≠0 , then

there is a transformation such that (1) is transformed into:
1. ulower order terms=0  in the hyperbolic type;
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2. ulower order terms=0  in the parabolic type;
3. uulower order terms=0  in the elliptic type;

Special Case: a, b, c constants

Linear change of coordinates  x , y   ,  given by 
= x y
= x y  such that

det[x xi y

x y
]=det[x xi y

x y
]=−≠0 .

Then (1) becomes Au2 BuCulower order terms , where 

A=a22bc2

B=ab c 
C=a22bc2

.

1. In the hyperbolic case, choose =−bb2−ac  ,=−b− b2−ac  ,==a , =−b−b2−ac  , ==a .
Then A=C=0, B≠0 .

2. In the parabolic case, choose ==−b ,==a . Then B=C=0, A≠0  or A=B=0 ,C≠0 .

3. In the elliptic case, choose =
c

ac−b2
,= −c

ac−b2
,=0,=1 , then A=C≠0, B=0 .

THE WAVE EQUATION
utt  x , t =c2 uxx  x , t  ,−∞x∞  with initial conditions u  x ,0 =  x  , ut  x ,0 =  x  .

The solution is u  x , t =1
2   xct   x−ct  1

2 c  ∫xct

x−ct

  z dz .

DIFFUSION EQUATION
ut  x , y , z , t =ku=k u xxu yyuzz  .

In one dimension, ut  x , t =k u xx  x , t   is a parabolic type.

In One Dimension
ut  x , t =k uxx  x , t  ,−∞x∞  with given initial conditions u  x ,0 =  x   where   x   is a given function.

The solution is u  x , t = 1
4 k t ∫−∞

∞

  y e
− x−y 2

4 kt dy . If S  x , t = 1
4 kt

e
−x2

4 kt , t0 , then u  x , t =∫
−∞

∞

  y S  x− y , t dy .

Properties of the Kernel
The heat kernel/Gaussian/diffusion kernel S  x , t   has the following properties:
1. Symmetric: S  x , t =S −x , t  .

2. lim
t0

S  x , t ={∞ , x=0
0, x≠0 .

3. ∫
−∞

∞

S  x , t dx=1,∀ t0 .

4. lim
t0
∫
−∞

∞

  x S  x , t dx= 0  ,∀ .
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Evaluation Techniques

Useful formula: ∫
−∞

∞

 '  y S  x− y , t dy= 1
2 kt [∫−∞

∞

y  y S  x− y , t dy−x∫
−∞

∞

  y S  x− y , t dy] .

• If =1, '=0 , then ∫
−∞

∞

y S  x− y , t dy=x . So if   x =x , then

u  x , t =∫
−∞

∞

  y S  x− y , t dy=∫
−∞

∞

y S  x− y , t dy=x  and u  x ,0 =x=  x  .

• If = y , then ∫
−∞

∞

y2 S  x− y , t dy=x22 kt . So if   x =x2 , then u  x , t =x22 kt  and u  x ,0 =x2=  x  .

• If = y2 , then ∫
−∞

∞

y3 S  x− y , t dy=x36 ktx . So if   x =x3 , then u  x , t =x36 ktx  and u  x ,0 =x3=  x  .

Theorem

Suppose that   x   is such that lim
∣x∣∞

  x e−x2

=∞ , then lim
t 0
∫
−∞

∞

  y S  x− y , t dy=  x  ,∀ x . In that sense

∫
−∞

∞

  y S  x− y , t dy  is a solution with u  x ,0 =  x  .

The Maximum Principle
Let u  x , t   be a solution of ut=k u xx  on a rectangle 0≤x≤l ,0≤t≤T . The maximum of u  x , t   occurs only on the
part of the boundary { x ,0  :0≤x≤l }∪{0, t :0≤t≤T }∪{l , t :0≤t≤T } .

Theorem: Uniqueness of Solution
Suppose that we seek a solution u  x , t   that satisfies u  x ,0 =  x  ,0≤x≤l . Suppose further that u  x , t   satisfies
u 0, t = t   and u l , t = t  , where  t   and  t   are prescribed functions. Then the solution is unique, i.e. there is at

most one solution.

DIFFUSION EQUATION ON HALF LINE
Equation: ut  x , t =k u xx  x , t  ,0x∞ .
Initial data: u  x ,0 =  x  , x0 .
Boundary conditions: 

• Dirichlet Condition: prescribe u 0, t = t   (usually  t =0 ).
• Neumann Condition: prescribe u x 0, t = t   (usually  t =0 ).
• Robin Condition: prescribe u 0, t a ux 0, t =0 .
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Method of Solution: Dirichlet Boundary Condition
Take the case with ut  x , t =k uxx  x , t  , x0 , u  x ,0 =  x  , x0 , u 0, t =0,∀ t≥0 .
We want to extend   to the entire line −∞x∞  such that the solution u  x , t   induced by this extension satisfies
u 0, t =0 .

Note that   x =  x  , x0 . Now, u 0, t =0  for all t0  iff   is an odd function (  −x =−   x  ).

Then u  x , t =∫
−∞

∞

  y S  x− y , t dy=∫
0

∞

  y  S  x− y , t −S  x y , t dy .

Method of Solution: Neumann Boundary Condition
Solve ut=k u xx , x0 , with initial data u  x ,0 =  x  , x0  and Neumann condition u x 0, t =0 .
If u  x , t   is even (i.e. u −x , t =−u  x , t  ), then u x  x , t   is odd (i.e. u x −x , t =−u x  x , t  ).

The solution is u  x , t =∫
−∞

∞

  y S  x− y , t dy=∫
0

∞

  y  S  x− y , t S  x y , t dy .

WAVE EQUATION ON HALF LINE
Solve utt=c2 uxx , x0 .
Initial data u  x ,0 =  x  , and ut  x ,0 =0  for simplicity.

Dirichlet Boundary Condition
Dirichlet condition u 0, t =0 .

Extend   to odd function  . Then the solution is u  x , t =1
2    xct    x−ct  .

Note: u  x , t =−u  x , t ⇒u 0, t =0 .

WAVE EQUATION ON FINITE INTERVAL
Solve: utt=c2 u xx ,0xL .
Initial data:   x =u  x ,0  ,0xL  and   x =ut  x ,0  ,0xL .

Dirichlet Boundary Condition
Dirichlet condition: u 0, t =u L , t =0 .
Extend   to   and   to   so that u  x , t   is odd about x=0  (i.e. u −x , t =−u  x , t  ) and odd about x=L  (i.e.

u  xL , t =−u L−x , t  ). Then the solution is u  x , t =1
2    xct    x−ct  1

2 c  ∫xct

x−ct

  z dz .

Separation of Variables and Boundary Value Problems
Method of Separation of Variables
The method of separation of variables assumes that any solution u  x , t   can be written as u  x , t =X  x T t  .

Solutions
With the diffusion or wave equation, we need to solve X ' ' X=0 , where   is an unknown constant:
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• For 0 , X  x =Acos  x B sin  x  .
• For 0 , X  x =Acosh − x B sinh − x  .
• For =0 , X  x =AxB .

In the Dirichlet case ( u 0, t =u L , t =0 ), 0  and n=
n22

L2 . So X n  x =sin n
L

x .

In the Neumann case ( ux 0, t =ux L , t =0 ),  =0  so X  x =constant ; or 0  and n=
n22

L2 , so

X n  x =cos n
L

x .

Dirichlet Boundary Condition

For the wave equation utt  x , t =c2 uxx  x , t  , we have T n t =an cos cn
L

tbn sin cn
L

t . So

un  x , t =X n  x T n  t =[an cos cn
L

tbn sin cn
L

t]sin n
L

x .

For the diffusion equation ut  x , t =k u xx  x , t  , we have T n t =cn e
−k

n22

L2 t . So

un  x , t =X n  x T n  t =cn e
−k n22

L2 t
sinn

L
x .

Neumann Boundary Condition

Wave equation: un  x , t =[an cos cn
L

tbn sin cn
L

t]cos n
L

x .

Diffusion equation: un  x , t =cn e
−k

n22

L2 t
cos n

L
x .

Mixed Boundary Condition
Mixed boundary condition u 0, t =u x L , t =0 , then X 0 =X ' L =0 .

We have n=
 2 n1 

2 L .

Robin Condition
Take u x 0, t −h u 0, t =0  and ux L , t =0 . We have X ' ' X=0 .

• Assume 0 . Then X  x =Acos  x B sin  x  , and we get tan  L= h
 . Setting y= L0 , we get

tan y= Lh
y
= c

y  a transcendental equation. On y0 , we get infinitely many solutions y1 y2⋯⇒12⋯ ,

with the difference approaching  .

• Assume 0 . Then X  x =Acosh − x B sinh − x  , and setting y=− L0  we get tanh y=− c
y  a

transcendental equation. We get no solution.
So there are infinitely many eigenvalues 12⋯  with corresponding eigenfunctions X 1  x  , X 2  x  , .

VECTOR SPACES: INTRODUCTION TO FOURIER SERIES
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Let V n  be the space of all linear combinations of f =b1sinL xb2 sin2
L

x⋯bn sin n
L

x .

Define L:V nV n L  f =−d 2 f
d x2=∑

k=1

n

bk
k 22

L2 sin k
L  .

Choose basis: v1={sinL x , v2=sin2
L

x , , vn=sin n
L

x} . Then the matrix of L  relative to this basis 

[

L 

2

0 ⋯ 0

0 2
L 

2

0 ⋮

⋮ 22/L2 ⋱ 0

0 ⋯ 0  n
L 

2]
is a diagonal matrix since L vk = k

L 
2

vk .

Let n∞  and consider the space of functions f  on 0≤xL  which can be written as f  x =∑
k=1

∞

bk sin k
L

x  for

Fourier coefficients bk=
2
L∫0

L

f  x sin k
L

xdx k=1, 2,3,  of f  relative to X n .

FULL FOURIER SERIES

Definition

Let −LxL . The full Fourier series of f  x   is 
1
2

a0∑
n=1

∞

an cos n
L bn sin n

L  ..

Coefficients

The coefficients are uniquely determined from orthogonality of functions cos n
L   and sin n

L  :

• ∫
−L

L

sinn
L sinm

L dx={0 n≠m
L n=m

.

• ∫
−L

L

sin n
L cosm

L dx=0 .

• ∫
−L

L

cos n
L cosm

L dx={0 n≠m
L n=m

.

These relations imply that:

• an=
1
L∫−L

L

f  x cos n
L dx n=0,1, 2, .

• bn=
1
L∫−L

L

f  x sin n
L dx n=0,1, 2, .
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Relation To Differential Equations
Take 0≤x≤L .

Dirichlet Condition: Take f  x   an odd extension of   x  . Then an=0  and bn=
2
L∫0

L

f  x sin n
L dx n=1, 2, .

Neumann Condition: Take f  x   an even extension of   x  . Then an=
2
L∫0

L

f  x cos n
L dx n=0,1, 2,  and bn=0 .

GENERAL EIGENVALUES AND EIGENFUNCTIONS
X ' ' X=0  on 0≤x≤L .

1. If X 0 =X L =0 , then n= n
L 

2

 and X n  x =sinn
L

x .

2. If X ' 0 =X ' L =0 , then n= n
L 

2

 and X n  x =cos n
L

x .

3. If X ' 0 −hX 0 =0  and X ' L =0 , then 12⋯  (eigenvalues) and X 1, X 2,  (eigenfunctions).

4. If X 0 =X L =0  and X ' 0 =X ' L =0 , then =0  and X  x =constant  or n= 2 n
L 

2

 and

X n  x =An sin 2 n
L

xBn cos2 n
L

x  where An  and Bn  are arbitrary constants.

General Boundary Conditions

Solve  X ' ' X=0 , a≤x≤b  subject to the boundary conditions 
1 X a 2 X b 3 X ' a 4 X ' b =0
1 X a 2 X b 3 X ' a 4 X ' b =0

 for some

constants 1, ,n ,1, ,n .

Definition: Symmetric Boundary Conditions
Let f  and g  be any functions that satisfies the above boundary condition. Then conditions are called symmetric if
f '  x  g  x − f  x  g '  x ∣x=a

x=b=0⇔ f ' b  g b − f b  g ' b − f ' a  g a − f a  g ' a =0 .

Fact
Conditions 1 to 4 are symmetric.

Theorem
Suppose that X n  and X m  are eigenfunctions on [a ,b ]  that corresponds to distinct eigenvalues n  and m  ( n≠m ),
and suppose that the boundary conditions are symmetric. Then X n  and X m  are orthogonal in the sense that

∫
a

b

X n  x  X m  x dx=0 .

HILBERT SPACE

Basic Space

L2 [a ,b ]={ f : [a ,b ]ℝ |∫
a

b

f 2  x dx∞} .
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Fact
L2 [a ,b ]  is a vector space.

Inner Product

Take f  and g  in L2 . Then define the inner product to be  f , g =∫
a

b

f  x  g  x dx .

Norm

Define ∥ f ∥=∫
a

b

f 2  x dx
1
2= f , f 

1
2  to be the norm of f .

Cauchy-Schwartz Inequality

∣ f , g ∣≤∥ f ∥∥g∥  or ∣∫
a

b

f  x  g  x dx∣≤∣∫
a

b

f 2  x dx∣
1
2∣∫

a

b

g2  x dx∣
1
2 .

Note: This implies ∣ f
∥ f ∥

, g
∥g∥∣≤1 , so define cos=∣ f

∥ f ∥
, g
∥g∥∣ .

Definition: Convergence
{ f n}∈L2  is said to converge to f  if lim

n∞
∥ f n− f ∥=0 .

Definition: Cauchy Sequence
{ f n}∈L2  is called a Cauchy Sequence if ∥ f n− f m∥0  as n , m∞ .

Basic Properties of Inner Product and Norm
1. Symmetric:  f , g =g , f  .
2. Bilinear:  f , gh=  f , g   f , h   for  ,∈ℝ  and f , g , h∈L2 .

3.  f , f ≥0 ∀ f ∈L2 ; if  f , f =∫
a

b

f 2  x dx=0  then f =0  “almost everywhere”.

4. L2  is complete in the sense that any Cauchy sequence in L2  converges to an element in L2 .

Definition: Hilbert Space
Any vector space H  with an inner product  ,   that satisfies properties 1 to 4 is called a Hilbert space.

Theorem
If X 1, X 2, , X n ,  are the eigenfunctions corresponding to symmetric boundary problem, then the Fourier series of any
function f  converges to f  in L2  norm.

LEAST SQUARE APPROXIMATION
Let V n  denote the linear span of X 1, X 2, , X n  (i.e. f ∈V n⇔ f =1 X 12 X 2⋯n X n .

Problem
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Question: Let f ∈L2 . For which values of 1,2, ,n  is the distance ∥ f −∑ i X i∥  minimum?

Answer: i=
 f , X i 
∥X i∥

i=1, , n .

CONVERGENCE OF FOURIER SERIES

Theorem

The Fourier series relative to X 1, X 2,  of any element f ∈L2  converges to f . That is, if S N=∑
i=1

N

 f i , X i  X i , then

lim
N ∞

∥S N− f ∥=0 .

Definition: Piecewise Continuous
A function is piecewise continuous if it is continuous at all but a finite number of points. At a point of discontinuity f  has
both a right and a left limit (ie f  has a jump discontinuity).

So if c  is a point of discontinuity of f , then both 
f c+ =lim

x c
xc

f  x 
 and f c-=lim

x c
xc

f  x   exist.

Theorem: Point-wise Convergence of Fourier Series
Assume f  is such that:

• f  is periodic of period 2 .
• f  and its derivative f '  are “piecewise continuous”.

Then lim
n∞

S N  x =
1
2
 f  x+  f  x- .

Note: If f  is continuous at x , then f  x+ = f  x-= f  x  , so lim
n∞

S N  x = f  x  .

Auxiliary Results

1. Bessel's Inequality: ∥g∥2≥∑
k=1

∞ g , X k 
2

∥X k∥
2  where X 1, X 2,  are eigenfunctions on [a ,b ]  with symmetric boundary

values and g∈L2 [a ,b ] . This implies that lim
k∞

g , X k 
2

∥X k∥
2 =0 .

2. Let K N =12∑
k=1

N

cos k  . Then ∫
−

pi

K N d =2⇔ 1
2∫−

pi

K N d =1 .

3. K N =
sinN1

2
sin2

.

Definition: Uniform Convergence
f n  converges to f  uniformly if lim

n∞
max
axb

∣ f n  x − f  x ∣=0 .
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Harmonic Functions and Laplace's Equation
LAPLACE'S EQUATION
In n  dimensions,

u=div grad u =∂
2 u
∂ x1

2⋯
∂2 u
∂ xn

2=0 .

Notes:
•   is the Laplacian, and it is an operator that acts on functions of n  variables.

• The gradient of a scalar function u  x1, , xn  is grad u=∇ u= ∂u
∂ x1

, , ∂u
∂ xn
 .

• The divergence of a vector field V  x1, , xn=V 1  x1, , xn , ,V n  x1, , xn  is div  V =
∂V 1

∂ x1
⋯

∂V n

∂ xn
.

• When V=∇ u= ∂u
∂ x1

, , ∂u
∂ xn
 , then u=div grad u  .

Definition: Harmonic
Any solution of Laplace's equation is called harmonic.

Properties

• n=1 : d 2 u
d x2=0 , so u  x =AxB .

• n=2 : Connection to complex functions f  z =u  x , y iv  x , y  . Then f  analytic (can be expressed as a Taylor
series, i.e. differentiable) implies u  and v  are harmonic.

MAXIMUM/MINIMUM PRINCIPLE

Definitions
1. D  is an open subset of ℝn  if for all x∈D , there exists r0  such that for all y∈D , ∥x−y∥r .
2. ∂D  is the boundary of D . A point b  is a boundary point if for all 0 , B={∥x−b∥}  has non empty

intersection with both D  and the complement of D  in ℝn .
3. D  is connected if there exists a polynomial curve joining any two points in D  and is lying in D .
4. D  is bounded if it is contained in some ball B={x |∥x∥R } 0R∞ .

Maximum/Minimum Principle
Assume D  to be an open, connected subset of ℝn  such that D∪∂D  is bounded. Let u  be any solution of  (the Laplace
∂2 u
∂ x1

2⋯
∂2 u
∂ xn

2=0 equation) in D  such that u  is defined and continuous in D∪∂D . Then:

• Maximum Principle: u x ≤max
∂D

u x  ∀x∈D .

• Minimum Principle: u x ≥min
∂D

u x  ∀x∈D .
That is, u  attains its maximum/minimum on ∂D .

BOUNDARY VALUE PROBLEMS

11 of 15



APM346H1 Differential Equations

Dirichlet Problem
∂2 u
∂ x1

2⋯
∂2 u
∂ xn

2=0  subject to u |∂D= x   (given).

By the Maximum/Minimum Principle, the solution of the Dirichlet problem is unique.

Neumann Problem
∂2 u
∂ x1

2⋯
∂2 u
∂ xn

2=0  subject to ∂u
∂n

|∂D= x   (given). Here, n  is the external normal.

Robin/Mixed Problem
∂2 u
∂ x1

2⋯
∂2 u
∂ xn

2=0  subject to ∂u
∂n
a  x u x =k x   (given).

BASIC PROPERTY
Solutions to the Laplace equation are invariant under rigid motions   x =T x R x  , where

• T x =ax  is a translation,
• R x =Ax  ( AT=A−1  det A=±1 ) is a rotation.

RECTANGULAR HARMONICS

∂2 u
∂ x2

∂2 u
∂ y2=0  on D={ x , y :0≤x≤a ,0≤y≤b }  with ∂D={

u  x ,0 = f  x 
u a , y =g  x 
u  x ,b =h  x 
u 0, y =i  x 

}  where f , g , h , i  are given

functions.

Separation of Variables
We assume u  x , y =X  x Y  y  .

When ∂D={ u  x ,0 = f  x 
u  x ,b =h  x 

u 0, y =u a , y =0} , then un  x , y =an cosh
n
a

ybn sinh
n
a

ysin
n
a

x .

When ∂D={ u 0, y =g  x 
u a , y =i  x 

u  x ,0 =u  x ,b =0} , then un  x , y =an cosh
n
b

xbn sinh
n
b

xsin
n
b

y .

Note: ∂D={
u  x ,0 = f  x 
u a , y =g  x 
u  x ,b =h  x 
u 0, y =i  x 

}={ u  x ,0 = f  x 
u  x ,b =h  x 

u 0, y =u a , y =0}{
u 0, y =g  x 
u a , y =i  x 

u  x ,0 =u  x ,b =0} .

Note: u  x , y =∑
n=1

∞

un  x , y  .

Case 1
Suppose that we want the solution with ∂D={ u  x ,0 = f  x 

u  x ,b =u 0, y =u a , y =0} .
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The sine Fourier coefficients of f  are an=
2
a∫0

a

f  z sin n
a

zdz .

Since u  x ,b =0⇔∑
n=1

∞

an cosh
n
a

bbn sinh
n
a

bsin
n
a

x=0an cosh
n
a

bbn sinh
n
a

b=0 , so

bn=−
an cosh

n
a

b

sinh
n
a

b
.

Then 

u  x , y =∑
n=1

∞

an cosh
n
a

ybn sinh
n
a

ysin
n
a

x

=∑
n=1

∞

ancosh
n
a

y−
cosh

n
a

b

sinh
n
a

b
sinh

n
a

ysin
n
a

x

=∑
n=1

∞ an

sinh
n
a

y
sinh

n
a

b− y sin
n
a

x
.

LAPLACE'S EQUATION ON CIRCULAR REGIONS
1. Annulus: D={r , ,−≤ , a≤r≤b } , ∂D={a ,  ,−≤}∪{b , ,−≤} .
2. Disk: D={r ,  ,−≤ ,0≤r≤b} , ∂D={b , ,−≤} .
3. Wedge: D={r , ,0≤≤ ,0≤r≤b} .

Polar Coordinates and Separation of Variables

Using polar coordinates 
x=r cos
y=r sin , u xxu yy=0  becomes urr

1
r

ur
1
r2 u=0 .

Assuming u r ,=R r   , we get the two equations r2 R' 'r R '−R=0  and  ' '=0 .

Annulus
Eigenfunctions:

• When n≠0 , n =An cos nBn sin n  and Rn r =C n rnDn r−n .
• When n=0 , 0 =An  and R0 r =c0c1 ln r .

So the solution is u r , =∑
n=0

∞

Rn r n  =c0c1 ln r∑
n=1

∞

C n rnDn r−n An cos nBnsin n . The coefficients

are the Fourier coefficients of the boundary conditions u a , = f   and u b ,=g  .

Disk
The usual assumption is that u 0,  bounded. This forces c1=Dn=0 . So the solution is

u r ,=c0∑
n=1

∞

C n rn An cos nBnsin n=1
2

a0∑
n=1

∞

r n an cos nbn sin n , where an  and bn  are the Fourier

coefficients determined by the boundary condition u b ,= f  .
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Wedge
Consider the special case that u r ,0 =u r , =0  and u b , = f  .

The solution is u r ,=∑
n=1

∞

an r
n
 sin

n

 , where an=

2
bn/

∫
0



f sin
n

d  is the Fourier coefficient

determined by u b ,= f  .

POISSON FORMULA AND POISSON KERNEL

Poisson Formula
On the disk D={r , ,−≤ ,0≤r≤b}  with u b ,= f  ,

u r ,= 1
2 [∫−



f 12∑
n=1

∞

 r
a 

n

cos n −d]
=∫
−



f P −d

=∫
−

 b2−r2 f 
b2−2b r cos −r2 d

where P −= 1
212∑

n=1

∞

 r
a 

n

cos n − = 1
2

b2−r2

b2−2b r cos −r2 .

Poisson Kernel

Pa r ,= 1
2

a2−r2

a2−2 a r cosr 2 .

Basic Properties

1. ∫
0

2

Pa r ,−d=1⇔ 1
2∫0

2
a2−r2

a2−2 a r cos −r2 d=1 . In this case u a ,= f =1 , but

u r ,=1 ∀ r ,  also.

2. lim
ra

Pa r , ={0 ≠0
∞ =0 .

3. lim
ra
∫
0

2

f P a r ,−d= f    whenever f  is a continuous function of  .

4. Averaging Property of Harmonic Functions: x= y=0⇔r=0 , so

u 0,0 
cartesian

=u 0,
polar

= 1
2∫0

2 a2−02 f 
a2−2 a 0 cos −02 d= 1

2∫0
2

f d  is the average value of f .

Consequences of Poisson Representation
1. A harmonic function u  defined on some domain D  cannot attain a maximum (nor minimum) in the interior of D .

Here the interior of D  are the points p  in D  such that there exists a disk centered at p  that is entirely contained in
D .

2. u r ,  has partial derivatives of all orders, even when f  is only continuous.
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u r ,=∫
0

2

f Pa r ,−d⇒ ∂u
∂ r
=∫

0

2

f   ∂
∂ r

Pa r ,−d .
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