Introduction

Types of Partial Differential Equations

- Transport equation: \(u_x(x, y) + u_y(x, y) = 0 \), where \(u_x = \frac{\partial u}{\partial x}, \quad u_y = \frac{\partial u}{\partial y} \), and \(u(x, y) = \)
- Shockwave equation: \(u_x(x, y) + u(x, y)u_y(x, y) = 0 \).

The vibrating string equation: \(u_x(x, t) = c^2 u_{xx}(x, t) \), where \(u_x = \frac{\partial u}{\partial x} \) and \(u_{xx} = \frac{\partial^2 u}{\partial x^2} \).

The wave equation: \(u_{tt}(x, y, z, t) = c^2 (u_{xx}(x, y, z, t) + u_{yy}(x, y, z, t) + u_{zz}(x, y, z, t)) \).

In general: \(u_p(x_1, \ldots, x_n, t) = c^2 \Delta u(x_1, \ldots, x_n, t) \), where \(\Delta = \frac{\partial^2 u}{\partial x_1^2} + \cdots + \frac{\partial^2 u}{\partial x_n^2} \).

Diffusion equation: \(u_y(x, t) = c^2 u_{xx}(x, t) \).

In general: \(u_i(x_1, \ldots, x_n, t) = c^2 \Delta u(x_1, \ldots, x_n, t) \).

Steady state: \(u = 0 \).

Laplacian equation: \(\Delta u = \frac{\partial^2 u}{\partial x_1^2} + \cdots + \frac{\partial^2 u}{\partial x_n^2} = 0 \).

Initial Conditions and Boundary Values for Ordinary Differential Equations

Consider \(\frac{d^2 y}{dt^2} = F(t, y, \frac{dy}{dt}) \), and think of \(y(t) \) as the position of the particle, \(\frac{d^2 y}{dt^2} \) as acceleration, and \(F(t, y, \frac{dy}{dt}) \) as force. The state/configuration space is \((x_1(t), x_2(t)) \), where \(x_1(t) = y(t), \quad x_2(t) = \frac{dy}{dt} \). Then the system of first order

\[
\frac{dx_1}{dt} = \frac{dy}{dt} = x_2(t)
\]

equations is

\[
\frac{dx_2}{dt} - \frac{d^2 y}{dt^2} = F(t, y(t), \frac{dy}{dt}) = F(t, x_1(t), x_2(t))
\]

Theorem: Existence and Uniqueness of Solution

There exists one and only one solution \(x(t) = (x_1(t), \ldots, x_n(t)) \) that satisfies \(x(t_0) = x_0(t_0) \) where \(x_0(t_0) \) is the given initial condition.

Quasi-Linear Partial Differential Equations

Definition: Quasi-Linear Partial Differential Equation

\[a(x, y, u)u_x(x, y) + b(x, y, u)u_y(x, y) = c(x, y, u) \quad (*) \]

where \(a, b, c \) are given functions.

Claim

Let \(a \) and \(b \) be constant functions, and \(c = 0 \), so \(au_x + bu_y = 0 \) \((1)\). Then every solution \(u(x, y) \) of \((1)\) is of the form \(u(x, y) = f(bx - ay) \) for some function of one variable (ex: \(f(\xi) = \xi^2 \Rightarrow u(x, y) = (bx - ay)^2 \)).
Uniqueness and Initial Conditions

For initial condition, we prescribe \(u(x) \), so \(u(x, \varphi(x)) = u_0(x) \) is given. Note that when \(u(x, y) = f(bx - ay) \), \(u(x, y) \) is constant along the line \(bx - ay = c \). So if \(u_0(x) = f(bx - a \varphi(x)) \), there is a unique \(f \) provided that \(bx - a \varphi(x) = c \) is not constant.

Suppose that \(\varphi(x) = Ax \). Then \(u_0(x) = f(bx - aAx) \Rightarrow f(x) = u_0\left(\frac{x}{b - aA}\right) \). In conclusion,

1) The solution \(u(x, y) \) is unique for any \(u_0(x) \) over the line \(y = Ax \) provided that \(A \neq \frac{b}{a} \).

2) When \(A = \frac{b}{a} \) then there are infinitely many solutions provided that \(u_0(x) \) is constant. If \(u_0(x) \) is not constant, then there are no solutions.

Method of Characteristic

Define a vector field \(V(x, y, z) = (a(x, y, z), b(x, y, z), c(x, y, z)) \). Normal direction at \((x, y, z = u(x, y))\) is \(\vec{n} = (u_x(x, y), u_y(x, y), -1) \), but \(V \cdot \vec{n} = au_x + bu_y + c(-1) = 0 \) because \(au_x + bu_y = c \). So \(V \) lies in the tangent plane.

If \((x(t), y(t), z(t)) \) is a solution of (1) \(\frac{dx}{dt} = b(x(t), y(t), z(t)) \), then \(x(0), y(0), z(0) \) lies in \(z = u(x, y) \), ie \(\frac{dx}{dt} = a(x(t), y(t), z(t)) \).

Suppose now that \((x(t, x_0), y(t, y_0), z(t, z_0)) \) is any solution of (1) such that \(y(0, y_0) = y_0 \) where \(y(t, s) = y(t, y_0(s)) \). In most situations, we can solve for \(t \) and \(s \) in terms of \(x \) and \(y \). Then \(u(x, y) = z(t(x, y), s(x, y)) \).

Note: When the Jacobian \(J = \det \begin{vmatrix} \frac{\partial x}{\partial t} & \frac{\partial x}{\partial s} \\ \frac{\partial y}{\partial t} & \frac{\partial y}{\partial s} \end{vmatrix} \neq 0 \), then we can solve for \(t \) and \(s \) in terms of \(x \) and \(y \) locally.

Note: If \(J = 0 \), then if \(u(x, y) = z \) that contains \(u(x_0(s), y_0(s)) = z_0(s) \), satisfies \(\frac{dz_0(s)}{ds} = \lambda c(x_0(s), y_0(s), z_0(s)) \), there are infinitely many solutions; if not, then there is no solution.

Second Order Equations

\[a(x, y)u_{xx} + 2b(x, y)u_{xy} + c(x, y)u_{yy} + d(x, y)u_x + e(x, y)u_y + f(x, y)u = 0 \]

(1), where \(a, b, c, d, e, f \) are given functions.

Canonical Types

1. Hyperbolic type: \(b^2 - ac > 0 \).
2. Parabolic type: \(b^2 - ac = 0 \).
3. Elliptic type: \(b^2 - ac < 0 \).

Fact

If we make a (one-to-one) change in variables \(\xi = \xi(x, y) \) and \(\eta = \eta(x, y) \) and require that \(\det \begin{vmatrix} \xi_x & \xi_y \\ \eta_x & \eta_y \end{vmatrix} \neq 0 \Leftrightarrow \xi, \eta \text{ at } -x_i, \eta_i \neq 0 \), then there is a transformation such that (1) is transformed into:

1. \(u_{\xi \eta} + \text{lower order terms} = 0 \) in the hyperbolic type;
2. \(u_{tt} + \text{lower order terms}=0 \) in the parabolic type;
3. \(u_{tt} + u_{xx} + \text{lower order terms}=0 \) in the elliptic type;

Special Case: \(a, b, c \) constants

Linear change of coordinates \((x, y) \rightarrow (\xi, \eta)\) given by \(\xi = \alpha x + \beta y\) such that
\[
\det \begin{bmatrix} \xi_x & \xi_y \\ \eta_x & \eta_y \end{bmatrix} = \det \begin{bmatrix} \xi_x & \xi_y \\ \eta_x & \eta_y \end{bmatrix} = \alpha \delta - \beta \eta \neq 0
\]

Then (1) becomes \(Au_{tt} + 2 Bu_{t} + Cu_{y} + \text{lower order terms} \), where
\[
A = a \alpha^2 + 2 b \alpha \beta + c \beta^2
\]
\[
B = a \alpha y + b (\alpha \delta + \gamma \beta) + c \beta \delta
\]
\[
C = a y^2 + 2 b y \delta + c \delta^2
\]

1. In the hyperbolic case, choose \(\alpha = -b + \sqrt{b^2 - ac}, \beta = \delta = a\) \(A = C = 0, B \neq 0\).
2. In the parabolic case, choose \(\alpha = y = -b, \beta = \delta = a\) \(B = C = 0, A \neq 0\) or \(A = B = 0, C \neq 0\).
3. In the elliptic case, choose \(\alpha = \frac{c}{\sqrt{|ac-b^2|}}, \beta = \frac{-c}{\sqrt{|ac-b^2|}}, y = 0, \delta = 1\) \(A = C \neq 0, B = 0\).

The Wave Equation

\(u_t(x,t) = c^2 u_{xx}(x,t), -\infty < x < \infty \) with initial conditions \(u(x,0) = \varphi(x), u_t(x,0) = \psi(x) \).

The solution is \(u(x,t) = \frac{1}{2} [\varphi(x+ct) + \varphi(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(z) \, dz \).

Diffusion Equation

\(u_t(x,t) = k u_{xx}(x,t), -\infty < x < \infty \) with given initial conditions \(u(x,0) = \varphi(x) \) where \(\varphi(x) \) is a given function.

In One Dimension

\(u_t(x,t) = k u_{xx}(x,t), -\infty < x < \infty \) with given initial conditions \(u(x,0) = \varphi(x) \).

The solution is \(u(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} \varphi(y) e^{-\frac{(x-y)^2}{4kt}} \, dy \). If \(S(x,t) = \frac{1}{\sqrt{4\pi kt}} e^{-\frac{x^2}{4kt}}, t > 0 \), then \(u(x,t) = \int_{-\infty}^{\infty} \varphi(y) S(x-y,t) \, dy \).

Properties of the Kernel

The heat kernel/Gaussian/diffusion kernel \(S(x,t) \) has the following properties:
1. Symmetric: \(S(x,t) = S(-x,t) \).
2. \(\lim_{t \to 0} S(x,t) = \begin{cases} \varphi(x) & \text{if } x = 0 \\ 0 & \text{if } x \neq 0 \end{cases} \).
3. \(\int_{-\infty}^{\infty} S(x,t) \, dx = 1, \forall t > 0 \).
4. \(\lim_{t \to 0} \int_{-\infty}^{\infty} \varphi(x) S(x,t) \, dx = \varphi(0), \forall \varphi \).
Evaluation Techniques

Useful formula: \[\int_{-\infty}^{\infty} \varphi'(y) S(x-y, t) dy = \frac{1}{2kt} \left[\int_{-\infty}^{\infty} y \varphi(y) S(x-y, t) dy - x \int \varphi(y) S(x-y, t) dy \right]. \]

- If \(\varphi=1, \varphi' = 0 \), then \(\int_{-\infty}^{\infty} y S(x-y, t) dy = x \). So if \(\varphi(x) = x \), then
 \[u(x, t) = \int_{-\infty}^{\infty} \varphi(y) S(x-y, t) dy = \int y S(x-y, t) dy = x \quad \text{and} \quad u(x, 0) = x = \varphi(x). \]
- If \(\varphi = 0 \), then \(\int_{-\infty}^{\infty} y^2 S(x-y, t) dy = x^2 + 2kt \). So if \(\varphi(x) = x^2 \), then \(u(x, t) = x^2 + 2kt \) and \(u(x, 0) = x^2 = \varphi(x) \).
- If \(\varphi = y^2 \), then \(\int_{-\infty}^{\infty} y^3 S(x-y, t) dy = x^3 + 6ktx \). So if \(\varphi(x) = x^3 \), then \(u(x, t) = x^3 + 6ktx \) and \(u(x, 0) = x^3 = \varphi(x) \).

Theorem

Suppose that \(\varphi(x) \) is such that \(\lim_{|x| \to \infty} \varphi(x) e^{-x^2} = 0 \), then \(\lim_{t \to 0} \int_{-\infty}^{\infty} \varphi(y) S(x-y, t) dy = \varphi(x) \), \(\forall x \). In that sense \(\int_{-\infty}^{\infty} \varphi(y) S(x-y, t) dy \) is a solution with \(u(x, 0) = \varphi(x) \).

The Maximum Principle

Let \(u(x, t) \) be a solution of \(u_t = \Delta u \) on a rectangle \(0 \leq x \leq L, 0 \leq t \leq T \). The maximum of \(u(x, t) \) occurs only on the part of the boundary \(\{(x, 0): 0 \leq x \leq L \} \cup \{(0, t): 0 \leq t \leq T \} \cup \{(L, t): 0 \leq t \leq T \} \).

Theorem: Uniqueness of Solution

Suppose that we seek a solution \(u(x, t) \) that satisfies \(u(0, t) = \varphi(t), 0 \leq x \leq l \). Suppose further that \(u(x, t) \) satisfies \(u(0, t) = \alpha(t) \) and \(u(L, t) = \beta(t) \), where \(\alpha(t) \) and \(\beta(t) \) are prescribed functions. Then the solution is unique, i.e. there is at most one solution.

![Diagram](image)

Diffusion Equation on Half Line

Equation: \(u_{x,x} + ku_{x} = 0 \).

Initial data: \(u(x, 0) = \varphi(x), x > 0 \).

Boundary conditions:
- Dirichlet Condition: prescribe \(u(0, t) = \alpha(t) \) (usually \(\alpha(t) = 0 \)).
- Neumann Condition: prescribe \(u_x(0, t) = \alpha(t) \) (usually \(\alpha(t) = 0 \)).
- Robin Condition: prescribe \(u(0, t) + a u_x(0, t) = 0 \).
Method of Solution: Dirichlet Boundary Condition
Take the case with \(u_x|\{x,t \}=k u_{xx}(x,t), x>0 \), \(u(x,0)=\varphi(x), x>0 \), \(u(0,t)=0, \forall t \geq 0 \).

We want to extend \(\Phi \) to the entire line \(-\infty < x < \infty \) such that the solution \(u(x,t) \) induced by this extension satisfies \(u(0,t)=0 \).

Note that \(\tilde{\Phi}(x)=\Phi(x), x>0 \). Now, \(u(0,t)=0 \) for all \(t>0 \) iff \(\tilde{\Phi} \) is an odd function (\(\Phi(-x)=-\Phi(x) \)).

Then \(u(x,t)=\int_{-\infty}^{\infty} \tilde{\Phi}(y) S(x-y,t)dy=\int_{0}^{\infty} \varphi(y) |S(x-y,t)-S(x+y,t)|dy \).

Method of Solution: Neumann Boundary Condition
Solve \(u_t=k u_{xx}, x>0 \), with initial data \(u(x,0)=\varphi(x), x>0 \) and Neumann condition \(u_x|\{0,t \}=0 \).

If \(u(x,t) \) is even (i.e. \(u(-x,t)=-u(x,t) \)), then \(u_x|\{x,t \} \) is odd (i.e. \(u_x|\{-x,t \}=-u_x|\{x,t \} \)).

The solution is \(u(x,t)=\int_{-\infty}^{\infty} \tilde{\Phi}(y) S(x-y,t)dy=\int_{0}^{\infty} \varphi(y) |S(x-y,t)+S(x+y,t)|dy \).

Wave Equation on Half Line
Solve \(u_t=c^2 u_{xx}, x>0 \).

Initial data \(u(x,0)=\varphi(x), x \geq 0 \) and \(u(x,0)=0 \) for simplicity.

Dirichlet Boundary Condition
Dirichlet condition \(u(0,t)=0 \).

Extend \(\Phi \) to odd function \(\tilde{\Phi} \). Then the solution is \(u(x,t)=\frac{1}{2}(|\tilde{\Phi}(x+ct)|+|\tilde{\Phi}(x-ct)|) \).

Note: \(u(x,t)=-u(x,t) \Rightarrow u(0,t)=0 \).

Wave Equation on Finite Interval
Solve: \(u_t=c^2 u_{xx}, 0<x<L \).

Initial data: \(\varphi(x)=u(x,0), 0<x<L \) and \(\psi(x)=u_x|\{x,0 \}, 0<x<L \).

Dirichlet Boundary Condition
Dirichlet condition: \(u(0,t)=u(L,t)=0 \).

Extend \(\varphi \) to \(\tilde{\varphi} \) and \(\psi \) to \(\tilde{\psi} \) so that \(u(x,t) \) is odd about \(x=0 \) (i.e. \(u(-x,t)=-u(x,t) \)) and odd about \(x=L \) (i.e. \(u(x+L,t)=-u(x+L,t) \)).

Then the solution is \(u(x,t)=\frac{1}{2}(|\tilde{\Phi}(x+ct)|+|\tilde{\Phi}(x-ct)|+\frac{1}{2}c \int_{x-ct}^{x+ct} \tilde{\psi}(z)dz) \).

Separation of Variables and Boundary Value Problems

Method of Separation of Variables
The method of separation of variables assumes that any solution \(u(x,t) \) can be written as \(u(x,t)=X(x)T(t) \).

Solutions
With the diffusion or wave equation, we need to solve \(X'''+\lambda X=0 \), where \(\lambda \) is an unknown constant:
So there are infinitely many eigenvalues.

- For $\lambda > 0$, $X(x) = A \cos(\sqrt{\lambda}x) + B \sin(\sqrt{\lambda}x)$.
- For $\lambda < 0$, $X(x) = A \cosh(\sqrt{-\lambda}x) + B \sinh(\sqrt{-\lambda}x)$.
- For $\lambda = 0$, $X(x) = Ax + B$.

In the Dirichlet case ($u(0,t) = u(L,t) = 0$), $\lambda > 0$ and $\lambda_n = \frac{n^2 \pi^2}{L^2}$. So $X_n(x) = \sin \left(\frac{n \pi}{L} x \right)$.

In the Neumann case ($u_x(0,t) = u_x(L,t) = 0$), $\lambda = 0$ so $X(x) = \text{constant}$; or $\lambda < 0$ and $\lambda_n = \frac{n^2 \pi^2}{L^2}$, so $X_n(x) = \cos \left(\frac{n \pi}{L} x \right)$.

Dirichlet Boundary Condition

For the wave equation $u_{tt}(x,t) = c^2 u_{xx}(x,t)$, we have $T_n(t) = a_n \cos(\frac{c n \pi}{L} t) + b_n \sin(\frac{c n \pi}{L} t)$. So

$u_n(x,t) = X_n(x) T_n(t) = a_n \cos(\frac{c n \pi}{L} x) + b_n \sin(\frac{c n \pi}{L} x)$.

For the diffusion equation $u_t(x,t) = k u_{xx}(x,t)$, we have $T_n(t) = c_n e^{-\frac{L^2}{4k} t}$. So

$u_n(x,t) = X_n(x) T_n(t) = c_n e^{-\frac{L^2}{4k} t} \sin \left(\frac{n \pi}{L} x \right)$.

Neumann Boundary Condition

Wave equation: $u_n(x,t) = a_n \cos \left(\frac{c n \pi}{L} x \right) + b_n \sin \left(\frac{c n \pi}{L} x \right) \cos \left(\frac{n \pi}{L} x \right)$.

Diffusion equation: $u_n(x,t) = c_n e^{-\frac{L^2}{4k} t} \cos \left(\frac{n \pi}{L} x \right)$.

Mixed Boundary Condition

Mixed boundary condition $u(0,t) = u(L,t) = 0$, then $X(0) = X'(L) = 0$.

We have $\lambda_n = \frac{\pi (2n + 1)}{2L}$.

Robin Condition

Take $u(0,t) = hu(0,t) = 0$ and $u(L,t) = 0$. We have $X'' + \lambda X = 0$.

- Assume $\lambda > 0$. Then $X(x) = A \cos(\sqrt{\lambda}x) + B \sin(\sqrt{\lambda}x)$, and we get $\tan(\sqrt{\lambda} L) = \frac{h}{\sqrt{\lambda}}$. Setting $y = \sqrt{\lambda} L > 0$, we get $\tan y = \frac{Lh}{y} = \frac{c}{\sqrt{\lambda}}$, a transcendental equation. On $y > 0$, we get infinitely many solutions $y_1 < y_2 < \cdots \Rightarrow \lambda_1 < \lambda_2 < \cdots$, with the difference approaching π.

- Assume $\lambda < 0$. Then $X(x) = A \cosh(\sqrt{-\lambda}x) + B \sinh(\sqrt{-\lambda}x)$, and setting $y = \sqrt{-\lambda} L > 0$ we get $\tanh y = \frac{c}{y}$, a transcendental equation. We get no solution.

So there are infinitely many eigenvalues $\lambda_1 < \lambda_2 < \cdots$ with corresponding eigenfunctions $X_1(x), X_2(x), \ldots$.

Vector Spaces: Introduction to Fourier Series
Let V_n be the space of all linear combinations of $f=b_1 \sin \left(\frac{\pi}{L} x \right) + b_2 \sin \left(\frac{2\pi}{L} x \right) + \cdots + b_n \sin \left(\frac{n\pi}{L} x \right)$.

Define $L: V_n \rightarrow V_n$, $L(f) = \frac{d^2 f}{dx^2} = \sum_{k=1}^{n} b_k \frac{k^2 \pi^2}{L^2} \sin \left(\frac{k\pi}{L} x \right)$.

Choose basis: $v_1 = \sin \left(\frac{\pi}{L} x \right), v_2 = \sin \left(\frac{2\pi}{L} x \right), \ldots, v_n = \sin \left(\frac{n\pi}{L} x \right)$. Then the matrix of L relative to this basis is a diagonal matrix since $L(v_k) = \left(\frac{k\pi}{L} \right)^2 v_k$.

Let $n \rightarrow \infty$ and consider the space of functions f on $0 \leq x < L$ which can be written as $f(x) = \sum_{k=1}^{\infty} b_k \sin \left(\frac{k\pi}{L} x \right)$ for Fourier coefficients $b_k = \frac{2}{L} \int_{-L}^{L} f(x) \sin \left(\frac{k\pi}{L} x \right) dx$, $k = 1, 2, 3, \ldots$ of f relative to X_n.

FULL FOURIER SERIES

Definition

Let $-L < x < L$. The full Fourier series of $f(x)$ is $\frac{1}{2} a_0 + \sum_{n=1}^{\infty} a_n \cos \left(\frac{n\pi}{L} x \right) + b_n \sin \left(\frac{n\pi}{L} x \right)$.

Coefficients

The coefficients are uniquely determined from orthogonality of functions $\cos \left(\frac{n\pi}{L} \right)$ and $\sin \left(\frac{n\pi}{L} \right)$:

- $\int_{-L}^{L} \sin \left(\frac{n\pi}{L} \right) \sin \left(\frac{m\pi}{L} \right) dx = \begin{cases} 0 & n \neq m \\ L & n = m \end{cases}$
- $\int_{-L}^{L} \sin \left(\frac{n\pi}{L} \right) \cos \left(\frac{m\pi}{L} \right) dx = 0$.
- $\int_{-L}^{L} \cos \left(\frac{n\pi}{L} \right) \cos \left(\frac{m\pi}{L} \right) dx = \begin{cases} 0 & n \neq m \\ L & n = m \end{cases}$

These relations imply that:
- $a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n\pi}{L} x \right) dx$, $n = 0, 1, 2, \ldots$.
- $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n\pi}{L} x \right) dx$, $n = 0, 1, 2, \ldots$.

7 of 15
Relation To Differential Equations
Take $0 \leq x \leq L$.

Dirichlet Condition: Take $f(x)$ an odd extension of $\varphi(x)$. Then $a_n = 0$ and $b_n = \frac{2}{L} \int_0^L f(x) \sin \left(\frac{n \pi x}{L} \right) dx \quad n = 1, 2, \ldots$.

Neumann Condition: Take $f(x)$ an even extension of $\varphi(x)$. Then $a_n = \frac{2}{L} \int_0^L f(x) \cos \left(\frac{n \pi x}{L} \right) dx \quad n = 0, 1, 2, \ldots$ and $b_n = 0$.

GENERAL EIGENVALUES AND EIGENFUNCTIONS

$X'' + \lambda X = 0$ on $0 \leq x \leq L$.

1. If $X(0) = X(L) = 0$, then $\lambda_n = \left(\frac{n \pi}{L} \right)^2$ and $X_n(x) = \sin \left(\frac{n \pi x}{L} \right)$.

2. If $X'(0) = X'(L) = 0$, then $\lambda_n = \left(\frac{n \pi}{L} \right)^2$ and $X_n(x) = \cos \left(\frac{n \pi x}{L} \right)$.

3. If $X(0) = -hX(0) = 0$ and $X'(L) = 0$, then $\lambda_1 < \lambda_2 < \cdots$ (eigenvalues) and X_1, X_2, \ldots (eigenfunctions).

4. If $X(0) = X(L) = 0$ and $X'(0) = X'(L) = 0$, then $\lambda = 0$ and $X(x)$ is constant or $\lambda_n = \left(\frac{2n \pi}{L} \right)^2$ and

$$X_n(x) = A_n \sin \left(\frac{2n \pi x}{L} \right) + B_n \cos \left(\frac{2n \pi x}{L} \right)$$

where A_n and B_n are arbitrary constants.

General Boundary Conditions

Solve $X'' + \lambda X = 0$, $a \leq x \leq b$ subject to the boundary conditions $\alpha_1 X(a) + \alpha_2 X(b) + \alpha_3 X'(a) + \alpha_4 X'(b) = 0$ and $\beta_1 X(a) + \beta_2 X(b) + \beta_3 X'(a) + \beta_4 X'(b) = 0$ for some constants $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n$.

Definition: Symmetric Boundary Conditions

Let f and g be any functions that satisfies the above boundary condition. Then conditions are called symmetric if

$$f'(x)g(x) - f(x)g'(x)|_{a}^{b} = 0 \iff f'(b)g(b) - f(b)g'(b) - (f'(a)g(a) - f(a)g'(a)) = 0.$$

Fact

Conditions 1 to 4 are symmetric.

Theorem

Suppose that X_n and X_m are eigenfunctions on $[a, b]$ that corresponds to distinct eigenvalues λ_n and λ_m ($\lambda_n \neq \lambda_m$), and suppose that the boundary conditions are symmetric. Then X_n and X_m are orthogonal in the sense that

$$\int_a^b X_n(x)X_m(x)dx = 0.$$

HILBERT SPACE

Basic Space

$$L^2[a, b] = \left\{ f : [a, b] \to \mathbb{R} \mid \int_a^b |f|^2 dx < \infty \right\}.$$
Fact
$L^2[a, b]$ is a vector space.

Inner Product
Take f and g in L^2. Then define the inner product to be $\langle f, g \rangle = \int_a^b f(x)g(x)dx$.

Norm
Define $\|f\| = \left(\int_a^b f^2(x)dx\right)^{1/2} = \sqrt{\langle f, f \rangle}$ to be the norm of f.

Cauchy-Schwartz Inequality
$\|f \cdot g\| \leq \|f\| \|g\|$ or $\left| \int_a^b f(x)g(x)dx \right| \leq \left(\int_a^b f^2(x)dx\right)^{1/2} \left(\int_a^b g^2(x)dx\right)^{1/2}$.

Note: This implies $\left| \langle f, f \rangle \right| = \left| \langle f, f \rangle \right|^{1/2}$, so define $\cos \theta = \frac{\langle f, f \rangle}{\|f\| \|g\|}$.

Definition: Convergence
$f_n \in L^2$ is said to converge to f if $\lim_{n \to \infty} \|f_n - f\| = 0$.

Definition: Cauchy Sequence
$f_n \in L^2$ is called a Cauchy Sequence if $\|f_n - f_m\| \to 0$ as $n, m \to \infty$.

Basic Properties of Inner Product and Norm
1. Symmetric: $\langle f, g \rangle = \langle g, f \rangle$.
2. Bilinear: $\langle f, \alpha g + \beta h \rangle = \alpha \langle f, g \rangle + \beta \langle f, h \rangle$ for $\alpha, \beta \in \mathbb{R}$ and $f, g, h \in L^2$.
3. $\langle f, f \rangle \geq 0$ for all $f \in L^2$; if $\langle f, f \rangle = \int_a^b f^2(x)dx = 0$ then $f = 0$ “almost everywhere”.
4. L^2 is complete in the sense that any Cauchy sequence in L^2 converges to an element in L^2.

Definition: Hilbert Space
Any vector space H with an inner product $\langle \cdot, \cdot \rangle$ that satisfies properties 1 to 4 is called a Hilbert space.

Theorem
If $X_1, X_2, \ldots, X_n, \ldots$ are the eigenfunctions corresponding to symmetric boundary problem, then the Fourier series of any function f converges to f in L^2 norm.

Least Square Approximation
Let V_n denote the linear span of X_1, X_2, \ldots, X_n (i.e. $f \in V_n \iff f = \alpha_1 X_1 + \alpha_2 X_2 + \cdots + \alpha_n X_n$).

Problem
Question: Let \(f \in L^2 \). For which values of \(\alpha_1, \alpha_2, \ldots, \alpha_n \) is the distance \(\|f - \sum \alpha_i X_i\| \) minimum?

Answer: \(\alpha_i = \frac{(f, X_i)}{||X_i||} \quad i=1, \ldots, n \).

Convergence of Fourier Series

Theorem
The Fourier series relative to \(X_1, X_2, \ldots \) of any element \(f \in L^2 \) converges to \(f \). That is, if \(S_N = \sum_{i=1}^{N} (f, X_i) X_i \), then
\[
\lim_{N \to \infty} \|S_N - f\| = 0.
\]

Definition: Piecewise Continuous
A function is piecewise continuous if it is continuous at all but a finite number of points. At a point of discontinuity \(f \) has both a right and a left limit (ie \(f \) has a jump discontinuity).

So if \(c \) is a point of discontinuity of \(f \), then both \(f^+(x) = \lim_{x \to c^+} f(x) \) and \(f^-(x) = \lim_{x \to c^-} f(x) \) exist.

Theorem: Point-wise Convergence of Fourier Series
Assume \(f \) is such that:
- \(f \) is periodic of period \(2\pi \).
- \(f \) and its derivative \(f' \) are “piecewise continuous”.

Then
\[
\lim_{n \to \infty} S_n(x) = \frac{1}{2} \left(f^+(x) + f^-(x) \right).
\]

Note: If \(f \) is continuous at \(x \), then \(f^+(x) = f^-(x) = f(x) \), so \(\lim_{n \to \infty} S_n(x) = f(x) \).

Auxiliary Results
1. Bessel's Inequality: \(\|g\|^2 \geq \sum_{k=1}^{N} \frac{(g, X_k)^2}{||X_k||^2} \) where \(X_1, X_2, \ldots \) are eigenfunctions on \([a, b]\) with symmetric boundary values and \(g \in L^2[\alpha, \beta] \). This implies that \(\lim_{k \to \infty} \frac{(g, X_k)^2}{||X_k||^2} = 0 \).

2. Let \(K_N(\theta) = 1 + 2 \sum_{k=1}^{N} \cos k\theta \) \(\quad \text{Then} \quad \int_{-\pi}^{\pi} K_N(\theta) d\theta = 2\pi \rightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(\theta) d\theta = 1 \).

3. \(K_N(\theta) = \frac{\sin\left(\left(\frac{N+1}{2}\right)\theta\right)}{\sin\left(\frac{\theta}{2}\right)} \).

Definition: Uniform Convergence
\(f_n \) converges to \(f \) uniformly if \(\lim_{n \to \infty} \max_{\alpha \in [a, b]} |f_n(x) - f(x)| = 0 \).
Harmonic Functions and Laplace's Equation

LAPLACE'S EQUATION
In n dimensions,

$$\Delta u = \text{div} (\text{grad} u) = \frac{\partial^2 u}{\partial x_1^2} + \cdots + \frac{\partial^2 u}{\partial x_n^2} = 0.$$

Notes:
- Δ is the Laplacian, and it is an operator that acts on functions of n variables.
- The gradient of a scalar function $u(x_1, \ldots, x_n)$ is $\text{grad} u = \nabla u = \left(\frac{\partial u}{\partial x_1}, \ldots, \frac{\partial u}{\partial x_n} \right)$.
- The divergence of a vector field $\mathbf{V}(x_1, \ldots, x_n) = (V_1(x_1, \ldots, x_n), \ldots, V_n(x_1, \ldots, x_n))$ is $\text{div} (\mathbf{V}) = \frac{\partial V_1}{\partial x_1} + \cdots + \frac{\partial V_n}{\partial x_n}$.
- When $\mathbf{V} = \nabla u = \left(\frac{\partial u}{\partial x_1}, \ldots, \frac{\partial u}{\partial x_n} \right)$, then $\Delta u = \text{div} (\text{grad} u)$.

Definition: Harmonic
Any solution of Laplace's equation is called harmonic.

Properties
- $n=1$: $\frac{d^2 u}{dx^2} = 0$, so $u(x) = Ax + B$.
- $n=2$: Connection to complex functions $f(z) = u(x, y) + iv(x, y)$. Then f analytic (can be expressed as a Taylor series, i.e. differentiable) implies u and v are harmonic.

MAXIMUM/MINIMUM PRINCIPLE

Definitions
1. D is an open subset of \mathbb{R}^n if for all $\mathbf{x} \in D$, there exists $r > 0$ such that for all $\mathbf{y} \in D$, $\| \mathbf{x} - \mathbf{y} \| < r$.
2. ∂D is the boundary of D. A point \mathbf{b} is a boundary point if for all $\varepsilon > 0$, $B = \{ \| \mathbf{x} - \mathbf{b} \| < \varepsilon \}$ has non empty intersection with both D and the complement of D in \mathbb{R}^n.
3. D is connected if there exists a polynomial curve joining any two points in D and is lying in D.
4. D is bounded if it is contained in some ball $B = \{ \| \mathbf{x} \| < R \}$, $0 < R < \infty$.

Maximum/Minimum Principle

Assume D to be an open, connected subset of \mathbb{R}^n such that $D \cup \partial D$ is bounded. Let u be any solution of (the Laplace $\frac{\partial^2 u}{\partial x_1^2} + \cdots + \frac{\partial^2 u}{\partial x_n^2} = 0$ equation) in D such that u is defined and continuous in $D \cup \partial D$. Then:

- **Maximum Principle:** $\max_{\partial D} u(\mathbf{x}) \leq u(\mathbf{x}) \quad \forall \mathbf{x} \in D$.
- **Minimum Principle:** $\min_{\partial D} u(\mathbf{x}) \geq u(\mathbf{x}) \quad \forall \mathbf{x} \in D$.

That is, u attains its maximum/minimum on ∂D.

BOUNDARY VALUE PROBLEMS
Dirichlet Problem
\[\frac{\partial^2 u}{\partial x_1^2} + \cdots + \frac{\partial^2 u}{\partial x_n^2} = 0 \quad \text{subject to} \quad u|_{\partial \Omega} = \varphi(x) \quad \text{(given)}. \]
By the Maximum/Minimum Principle, the solution of the Dirichlet problem is unique.

Neumann Problem
\[\frac{\partial^2 u}{\partial x_1^2} + \cdots + \frac{\partial^2 u}{\partial x_n^2} = 0 \quad \text{subject to} \quad \frac{\partial u}{\partial n}|_{\partial \Omega} = \varphi(x) \quad \text{(given)}. \]
Here, \(n \) is the external normal.

Robin/Mixed Problem
\[\frac{\partial^2 u}{\partial x_1^2} + \cdots + \frac{\partial^2 u}{\partial x_n^2} = 0 \quad \text{subject to} \quad \frac{\partial u}{\partial n} + a(x)u(x) = k(x) \quad \text{(given)}. \]

Basic Property
Solutions to the Laplace equation are invariant under rigid motions \(\varphi(x) = T(x) + R(x) \), where
- \(T(x) = \bar{x} + \bar{x} \) is a translation,
- \(R(x) = A\bar{x} \) (\(A^T = A^{-1} \) \(\det A = \pm 1 \)) is a rotation.

Rectangular Harmonics
\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{on} \quad D = \{(x, y) : 0 \leq x \leq a, 0 \leq y \leq b\} \quad \text{with} \quad \partial D = \begin{cases} \quad u(x, 0) = f(x) \\ \quad u(x, b) = h(x) \\ \quad u(0, y) = u(a, y) = 0 \end{cases} \]
where \(f, g, h, i \) are given functions.

Separation of Variables
We assume \(u(x, y) = X(x)Y(y) \).

When \(\partial D = \begin{cases} \quad u(x, 0) = f(x) \\ \quad u(x, b) = h(x) \\ \quad u(0, y) = u(a, y) = 0 \end{cases} \), then
\[u_n(x, y) = \left(a_n \cosh \frac{n\pi}{a} x + b_n \sinh \frac{n\pi}{a} x \right) \sin \frac{n\pi}{a} y. \]

When \(\partial D = \begin{cases} \quad u(x, 0) = f(x) \\ \quad u(x, y) = g(x) \\ \quad u(0, y) = u(a, y) = 0 \end{cases} \), then
\[u_n(x, y) = \left(a_n \cosh \frac{n\pi}{b} x + b_n \sinh \frac{n\pi}{b} x \right) \sin \frac{n\pi}{b} y. \]

Note: \(\partial D = \begin{cases} \quad u(x, 0) = f(x) \\ \quad u(x, b) = h(x) \\ \quad u(0, y) = u(a, y) = 0 \end{cases} \) \(\begin{cases} \quad u(x, 0) = g(x) \\ \quad u(x, b) = h(x) \\ \quad u(0, y) = u(a, y) = 0 \end{cases} \). \(\begin{cases} \quad u(x, 0) = g(x) \\ \quad u(x, b) = h(x) \\ \quad u(0, y) = u(a, y) = 0 \end{cases} \)

Note: \(u(x, y) = \sum_{n=1}^{\infty} u_n(x, y) \).

Case 1
Suppose that we want the solution with \(\partial D = \begin{cases} \quad u(x, 0) = f(x) \\ \quad u(x, b) = u(0, y) = u(a, y) = 0 \end{cases} \).
The sine Fourier coefficients of \(f \) are \(a_n = \frac{2}{a} \int_{0}^{a} f(z) \sin \left(\frac{n \pi z}{a} \right) dz \).

Since \(u(x, b) = 0 \) \(\Rightarrow \) \(\sum_{n=1}^{\infty} \left(a_n \cosh \frac{n \pi}{a} b + b_n \sinh \frac{n \pi}{a} b \right) \sin \frac{n \pi}{a} x = 0 \),

\[
b_n = -\frac{a_n \cosh \frac{n \pi}{a} b}{\sinh \frac{n \pi}{a} b}.
\]

Then

\[
u(x, y) = \sum_{n=1}^{\infty} \left(a_n \cosh \frac{n \pi}{a} y + b_n \sinh \frac{n \pi}{a} y \right) \sin \frac{n \pi}{a} x \]
\[
= \sum_{n=1}^{\infty} a_n \left(\cosh \frac{n \pi}{a} y - \frac{\cosh \frac{n \pi}{a} b}{\sinh \frac{n \pi}{a} b} \sin \frac{n \pi}{a} y \right) \sin \frac{n \pi}{a} x .
\]
\[
= \sum_{n=1}^{\infty} \frac{a_n}{\sinh \frac{n \pi}{a} y} \left(\sinh \frac{n \pi}{a} (b-y) \right) \left(\sin \frac{n \pi}{a} x \right).
\]

Laplace’s Equation on Circular Regions

1. Annulus: \(D = \{(r, \theta) : -\pi < \theta \leq \pi, a \leq r \leq b\} \), \(\partial D = \{(a, \theta), -\pi < \theta \leq \pi \} \cup \{(b, \theta), -\pi < \theta \leq \pi \} \).
2. Disk: \(D = \{(r, \theta) : -\pi < \theta \leq \pi, 0 \leq r \leq b\} \), \(\partial D = \{(b, \theta), -\pi < \theta \leq \pi \} \).
3. Wedge: \(D = |(r, \theta), 0 \leq \theta \leq \alpha, a \leq r \leq b\} \).

Polar Coordinates and Separation of Variables

Using polar coordinates \(x = r \cos \theta \), \(y = r \sin \theta \), \(u_x + u_y = 0 \) becomes \(u_r + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta \theta} = 0 \).

Assuming \(u(r, \theta) = R(r) \Theta(\theta) \), we get the two equations \(r^2 R'' + r R' - \lambda R = 0 \) and \(\Theta'' + \lambda \Theta = 0 \).

Annulus

Eigenfunctions:

- When \(n \neq 0 \), \(\Theta_n(\theta) = A_n \cos n \theta + B_n \sin n \theta \) and \(R_n(r) = C_n r^n + D_n r^{-n} \).
- When \(n = 0 \), \(\Theta_0(\theta) = A_n \) and \(R_0(r) = c_n + c_1 \ln r \).

So the solution is \(u(r, \theta) = \sum_{n=0}^{\infty} R_n(r) \Theta_n(\theta) = c_0 + c_1 \ln r + \sum_{n=1}^{\infty} \left(C_n r^n + D_n r^{-n} \right) (A_n \cos n \theta + B_n \sin n \theta) \). The coefficients are the Fourier coefficients of the boundary conditions \(u(a, \theta) = f(\theta) \) and \(u(b, \theta) = g(\theta) \).

Disk

The usual assumption is that \(u(0, \theta) \) bounded. This forces \(c_1 = D_n = 0 \). So the solution is

\[
u(r, \theta) = c_0 + \sum_{n=1}^{\infty} C_n r^n (A_n \cos n \theta + B_n \sin n \theta) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} r^n (a_n \cos n \theta + b_n \sin n \theta),
\]

where \(a_n \) and \(b_n \) are the Fourier coefficients determined by the boundary condition \(u(b, \theta) = f(\theta) \).
Wedge
Consider the special case that \(u(r,0) = u(r,\alpha) = 0 \) and \(u(b,\theta) = f(\theta) \).

The solution is \(u(r,\theta) = \sum_{n=1}^{\infty} a_n r^n \sin \frac{n\pi \theta}{\alpha} \), where \(a_n = \frac{2}{b^{n+1}/\alpha} \int_{0}^{\pi} f(\varphi) \sin \frac{n\pi \varphi}{\alpha} \varphi \, d\varphi \) is the Fourier coefficient determined by \(u(b,\theta) = f(\theta) \).

Poisson Formula and Poisson Kernel

Poisson Formula
On the disk \(D = \{(r,\theta), -\pi < \theta \leq \pi, 0 \leq r \leq b\} \) with \(u(b,\theta) = f(\theta) \),

\[
u(r,\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[f(\varphi) \left(1 + 2 \sum_{n=1}^{\infty} \left(\frac{r}{a} \right)^n \cos n(\varphi - \theta) \right) \right] d\varphi,
\]

\[
= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\varphi) P(\varphi - \theta) d\varphi
\]

\[
= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{(b^2 - r^2) f(\varphi)}{b^2 - 2br \cos(\varphi - \theta) + r^2} d\varphi
\]

where \(P(\varphi - \theta) = \frac{1}{2\pi} \left(1 + 2 \sum_{n=1}^{\infty} \left(\frac{r}{a} \right)^n \cos n(\varphi - \theta) \right) = \frac{1}{2\pi} \frac{b^2 - r^2}{b^2 - 2br \cos(\varphi - \theta) + r^2} \).

Poisson Kernel

\[
P_n(r,\theta) = \frac{a^2 - r^2}{2\pi a^2 - 2ar \cos \theta + r^2}.
\]

Basic Properties
1. \(\int_{0}^{2\pi} P_n(r,\varphi - \theta) d\varphi = 1 \) \(\forall r, \theta \). In this case \(u(a,\theta) = f(\theta) = 1 \), but \(u(r,\theta) = 1 \) \(\forall r, \theta \) also.
2. \(\lim_{r \to a} P_n(r,\theta) = \begin{cases} 0 & \theta \neq 0 \\ \infty & \theta = 0 \end{cases} \).
3. \(\lim_{r \to 0} \int_{0}^{2\pi} f(\varphi) P_n(r,\varphi - \theta) d\varphi = f(\theta) \) whenever \(f \) is a continuous function of \(\theta \).
4. Averaging Property of Harmonic Functions: \(x = y = 0 \Rightarrow r = 0 \), so
 \[
u(0,0) = u(0,\theta) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{(a^2 - 0^2) f(\varphi)}{a^2 - 2a \cos(\varphi - \theta) + 0^2} d\varphi = \frac{1}{2\pi} \int_{0}^{2\pi} f(\varphi) d\varphi
 \]
 is the average value of \(f \).

Consequences of Poisson Representation
1. A harmonic function \(u \) defined on some domain \(D \) cannot attain a maximum (nor minimum) in the interior of \(D \).
2. \(u(r,\theta) \) has partial derivatives of all orders, even when \(f \) is only continuous.
\[u(r, \theta) = \int_0^{2\pi} f(\varphi) P_\varphi(r, \varphi - \theta) \, d\varphi \Rightarrow \frac{\partial u}{\partial r} = \int_0^{2\pi} f(\varphi) \frac{\partial}{\partial r} P_\varphi(r, \varphi - \theta) \, d\varphi. \]