Asset Markets

What Are Assets
Something acquired today that will have purchasing power later.
1. Bonds, stocks, treasury-bills.
2. Physical assets – houses, machinery, etc.
3. Human capital.

Assumptions
1. No transaction costs.
2. Short sales of securities permitted.
3. Agents limited by wealth constraint – can't acquire liabilities today that they will be unable to honour in the future.
4. No arbitrage condition.

Rate of Return

Ex-Post Nominal Rate of Return
- Suppose t-bill price last year is $955, and t-bill price this year (today) is $1000. Let \(r \) = rate of return. Then
 \[
 1 + r = \frac{\text{payoff}}{\text{previous price}} = \frac{1000}{955} \Rightarrow r = 0.04712 = 4.712\% .
 \]
- Here, \(r \) is the interest rate a year ago.
- Suppose stock price last year is $52, and stock price this year is $50. Then
 \[
 1 + R = \frac{\text{current price}}{\text{previous price}} = \frac{50}{52} \Rightarrow R = -0.0385 = -3.85\% .
 \]
- \(r \) and \(R \) are the ex-post nominal rates of return.

Ex-Ante Nominal Rate of Return
Suppose current price \(S_0 = $50 \), and price one year from now \(S_1 = ? \). Then
 \[
 1 + \hat{R} = \frac{S_1}{S_0} \Rightarrow \hat{R} = ?
 \]
is the ex-ante nominal rate of return (a random variable). It matters for decision making.

Ex-Ante Real Rate of Return
Let \(P_0 = \) current consumption price and \(P_1 = \) future consumption price. Then
 \[
 1 + \hat{R} = \frac{S_1}{S_0} \frac{P_0}{P_1} = \frac{S_1}{P_1} \frac{P_0}{S_0} = (1 + \hat{R}) \frac{P_0}{P_1} .
 \]

Asset Pricing Under Perfect Certainty
Suppose we have:
- Two consumption periods, current period 0 and future period 1.
- Consumption price 0 = consumption price 1.
- \(r = \hat{R} = 4\% \).
Suppose \(S_0 = $90 \), then \(\hat{R} = 15.56\% \). This is impossible because one can borrow $90 and buy stocks in period 0, and get $104 and repay $90 \times 1.04 = $93.60 \text{ in period 1. This is impossible because this is arbitrage.}
Therefore, the equilibrium price for the stock \(S_0 = $100 = \frac{104}{1.04} = \text{present discounted value} \).

Discounting
Let \(P_0^1 \) denote the price today of a one-period discount bond that will pay $1 in period 1. Then
Let \(P_{0}^{(1)}(1 + r_{0}) = \$1 \Leftrightarrow P_{0}^{(1)} = \frac{\$1}{1 + r_{0}} \).

Let \(P_{0}^{(2)} \) denote the price today of a one-period discount bond that will pay \$1 in period 2. Then
\[
P_{1}^{(2)} = \frac{\$1}{1 + r_{1}} \Leftrightarrow P_{0}^{(2)} = \frac{\$1}{(1 + r_{0})(1 + r_{1})}.
\]

Let \(r_{0}^{(2)} \) denote the 2-year rate of interest in period 0.
\[
P_{0}^{(2)} = \frac{\$1}{(1 + r_{0}^{(2)})^2} \Rightarrow r_{0}^{(2)} = \sqrt{\frac{\$1}{P_{0}^{(2)}}}.
\]

Yield To Maturity (a.k.a. Internal Rate of Return)

The yield to maturity of asset \(y \) that pays \$\(D_{T} \) in period \(T \) is \(i_{0}(y) \) such that
\[
P_{0}(y) = \sum_{t=1}^{\infty} \frac{D_{t}}{(1 + i_{0}(y))^{t}}.
\]

Equity/Share Price

The ex-dividend price of a share in period 0 is \(S_{0}^{ex} = \frac{D_{1}}{1 + r_{0}} + \frac{D_{2}}{(1 + r_{0})(1 + r_{1})} + \cdots + \frac{D_{T}}{(1 + r_{0})(1 + r_{1})\cdots(1 + r_{T-1})} \).

The pre-dividend price of a share in period 0 is \(S_{0}^{pre} = S_{0}^{ex} + D_{0} \).

If dividend \(D \) is constant and interest rate \(r \) is constant and the share pays forever, then
\[
S_{0}^{ex} = \sum_{t=1}^{\infty} \frac{D}{(1 + r)^{t}} = \frac{D}{r} \quad \text{and} \quad S_{0}^{pre} = \frac{D}{r} + D.
\]

If dividends grow at the constant rate \(g \) per time period and \(g < r \), then
\[
S_{0}^{ex} = \sum_{T=1}^{\infty} D_{0} \left(\frac{1 + g}{1 + r} \right)^{T} \quad \text{and} \quad S_{0}^{pre} = D_{0} \left(\frac{1 + g}{1 + r} \right)^{1} - \frac{D_{1}}{r - g}.
\]

Utility Maximization in a Two-Time Period

Lifetime utility: \(U_{0} = U(c_{0}, c_{1}) \).

Endowment: \((y_{0}, y_{1})\).

Initial wealth: \(W_{0} = y_{0} + \frac{y_{1}}{1 + r} \).

Budget constraint: \(c_{t} = y_{t} + (1 + r)(y_{t-1} - c_{0}) \quad \text{or} \quad c_{0} + \frac{c_{1}}{1 + r} = W_{0} \).

Maximum utility when \(\frac{\text{MRS}}{\text{slope of highest indifference curve}} = \frac{\text{MRT}}{-(1 + r)} \).

Fisher Separation Theorem

Corporate decisions independent of individual preference.

Asset Pricing Under Uncertainty

Expected Utility Theory

Utility is given by \(U(C) \). An individual will choose between \(A \) and \(B \) according to highest utility, ie prefer \(A \) iff \(E[U(A)] \geq E[U(B)] \).
Definitions
1. Certainty equivalent: The value CE that solves $U(CE) = E[U(W)]$.
2. Risk premium: The maximum amount Π that an individual would pay to exchange the risky wealth W for \bar{W}; so $U(\bar{W} - \Pi) = E[U(W)] = U(CE) \Rightarrow \Pi = \bar{W} - CE$.

Types of Utility Functions
Let $W = W_0 + X$, where X is a random variable with $E[X] = 0$ and $\text{var}(X) = \sigma^2 > 0$. Then the Markowitz approximation for π is $\pi \approx \frac{1}{2} \sigma^2 \left[-U''(W) \right]$.

Measure of Risk Aversion
Pratt Measure of Absolute Risk Aversion (ARA)
Pratt measure of ARA: $\frac{-U'''(W_0)}{U'(W_0)}$.
Note that this implies ARA decreases as W_0 increases.

Arrow Measure of Relative Risk Aversion (RRA)
Arrow measure of RRA: $\frac{-W_0 U''(W_0)}{U'(W_0)}$.
This is much more reasonable.

Class of CRRA Utility Function
$U(W) = \frac{W^{1-y}}{1-y}$, for $y \geq 0$ and $U(W) = \ln W$, for $y = 1$.
Then, $\text{RRA} = -W \frac{U''}{U'} = y$.

Portfolio Choice
- Assume two time periods: 0, 1. Household has initial wealth W at the start of period 0.
- Lifetime utility is $E[U(c_0, c_1)] = U(c_0) + \beta E[U(c_1)]$, where β is the time preference parameter ($\beta \approx 0.96$ empirically).
- Household chooses:
 - c_0, so $W_0 = W - c_0$ is invested.
 - αW_0 invested in risky asset (r_1 with $E(r_1) = r_1$ and $\text{var}(r_1) = \sigma^2_1$), and $(1 - \alpha)W_0$ invested in risk-free asset (r_f).
• Household has portfolio with return \(r_p = \alpha r_1 + (1 - \alpha) r_f \). So \(c_1 = W_0 (1 + r_p) \).

• Household will maximize \(E [U(c_0, c_1)] = U(W - W_0) - \beta E[U(W_0(1 + r_p))] \), or equivalently,
 \[
 \max_{\alpha} E[U(W_0(1 + \alpha r_1 + (1 - \alpha) r_f))] \quad . \text{The derivative is}
 \]

\[
E[U'(W_0(1 + \alpha r_1 + (1 - \alpha) r_f))(r_1 - r_f)] = 0 = E[U'(W_0(1 + \alpha r_1 + (1 - \alpha) r_f))|E[(r_1 - r_f)] + \text{cov}(\quad)
\]

- Case A: \(\tilde{r}_1 - r_f > 0 \Rightarrow \alpha > 0 \).
- Case B: \(\tilde{r}_1 - r_f < 0 \Rightarrow \alpha < 0 \).
- Case C: \(\tilde{r}_1 - r_f = 0 \Rightarrow \alpha = 0 \).

Result
If there are two households, the more risk averse one will have lower \(\tilde{\alpha} \), where \(\tilde{r}_1 > r_f \).

Approximation
Assume CRRA \(U(c) = \frac{c^{1-y}}{1-y} \), \(y \geq 0 \), \(U(c) = \ln c \), \(y = 1 \). Then \(\max_{\alpha} \beta E[U(c_1)] = \max_{\alpha} E[U(1 + r_p)] \). Note that as \(y \) increases, \(\tilde{\alpha} \) decreases.

An approximate for \(E[U(1 + r_p)] \) is \(E[U(1 + r_p)] = U(1 + r_f) + \frac{\sigma^2}{2}(1 + \bar{r}_p) = V(\bar{r}_p, \sigma_p) \), where \(\frac{\partial V}{\partial \bar{r}_p} > 0 \) and \(\frac{\partial V}{\partial \sigma_p} < 0 \).

This is a good approximation because:
1. If \(r_1 \) is normal, then \(E[U(1 + r_p)] = V(\bar{r}_p, \sigma_p) \).
2. Most assets are very close to normal.

Preferences
Indifference curves of \(V(\bar{r}_p, \sigma_p) \):

- The are upward sloping because \(\sigma \) is a “bad”.
- The slope is the MRS.
- The more risk averse an individual is, the steeper the curves.

Market Opportunities
If an individual invests \(\tilde{\alpha} \) in risky asset, \(1 - \tilde{\alpha} \) in risk-free asset, then \(\bar{r}_p = \alpha \bar{r}_1 + (1 - \alpha) r_f = r_f + \alpha (\bar{r}_1 - r_f) \) and \(\sigma_p^2 = \tilde{\alpha}^2 \sigma_1^2 \Leftrightarrow \sigma_p = \alpha \sigma_1 \).
• An individual will only choose the effect set of portfolio (upper branch) – it has higher rate of return for each σ.

• The equation of the effective set is $\tilde{r}_p = r_f + \left(\frac{\tilde{r}_1 - r_f}{\sigma_1} \right) \sigma_p$.

• The slope is the MRT.

Equilibrium
The equilibrium is when $\text{MRS} = \text{MRT}$, i.e. when the indifference curve is tangent to the market opportunity curve.

Market Opportunities: Two Risky Assets
Let α invested in riskier asset 1, and $1-\alpha$ invested in less risky asset 2. Then $r_p = \alpha r_1 + (1-\alpha) r_2$ with $\tilde{r}_p = \alpha \tilde{r}_1 + (1-\alpha) \tilde{r}_2$ and $\sigma_p^2 = \alpha^2 \sigma_1^2 + (1-\alpha)^2 \sigma_2^2 + 2 \alpha (1-\alpha) \rho_{1,2} \sigma_1 \sigma_2$ where $\rho_{1,2} = \frac{\text{cov}[r_1, r_2]}{\sigma_1 \sigma_2}$.

If $\rho_{1,2} = 1$, then $\sigma_p = \alpha \sigma_1 + (1-\alpha) \sigma_1$.

If $\rho_{1,2} = -1$, then $\sigma_p = \alpha \sigma_1 - (1-\alpha) \sigma_1$.

If \(-1 < \rho_{1,2} < 1\) (usual case), then
\[\sigma_p = \sqrt{\alpha^2 \sigma_1^2 + (1-\alpha)^2 \sigma_2^2 + 2 \alpha (1-\alpha) \rho_{1,2} \sigma_1 \sigma_2}. \]

The efficient set is all portfolios with \(r_p > \bar{r}_{\text{min var}} \).

Note:
\[\alpha_{\text{min var}} = \frac{\sigma_2^2 - \rho_{1,2} \sigma_1 \sigma_2}{\sigma_1^2 + \sigma_2^2 - 2 \rho_{1,2} \sigma_1 \sigma_2}. \]

Market Opportunities: Two Risky Assets and a Risk-Free Asset

Suppose \(\bar{\bar{r}}_1 > \bar{\bar{r}}_2 > r_f \) and \(\bar{\bar{\sigma}}_1 > \bar{\bar{\sigma}}_2 \).

Tangency portfolio: \(\alpha_T \) in asset 1, \(1-\alpha_T \) in asset 2, and thus
\(r_T = \alpha_T \bar{r}_1 + (1-\alpha_T) \bar{r}_2 \).

Agent's Portfolio: \(r_p = w r_r + (1-w) r_f \), and \(\sigma_p = w \bar{\sigma}_r \).

Two-Fund Theorem

Any agent will have the same risky portfolio, the tangency portfolio.

Market Opportunities: All Risky Assets and a Risk-Free Asset

CML (capital market line) is the opportunity set available to every investor. This is the efficient set.
Note: The two-fund theorem still applies here.

Consider all risky assets 1, 2, ..., N. Let asset i have value V_i, and $V_M = \sum_{i=1}^{N} V_i$.

The market portfolio is $\frac{V_1}{V_M}$ in asset 1, $\frac{V_2}{V_M}$ in asset 2, etc. Then $\mu_M = \sum_{i=1}^{N} \frac{V_i}{V_M} \mu_i$.

Note: The tangency portfolio = market portfolio.
Note: Lending = borrowing, so average agent is at M.

An agent's portfolio is $\hat{\mu}_p = w \hat{\mu}_M + (1-w) \mu_f$ with $\hat{\sigma}_p = w \sigma_M$.

Equation of CML is $\hat{\mu}_p = \mu_f + \frac{\hat{\mu}_M - \mu_f}{\sigma_M} \hat{\sigma}_p$.

Security Market Line

Now consider asset j. If an agent invests α in market portfolio and $1-\alpha$ in asset j, then $\hat{\mu}_p = \alpha \hat{\mu}_M + (1-\alpha) \hat{\mu}_j$ and

$\sigma_p = \sqrt{\alpha^2 \sigma_M^2 + (1-\alpha)^2 \sigma_j^2 + 2 \alpha(1-\alpha) \sigma_{M,j}}$. When $\alpha = 1$, the slope of CML is $\frac{\mu_M - \mu_f}{\sigma_M}$. Thus

$\hat{\mu}_j = \mu_j + \frac{\text{cov}(\hat{\mu}_M, \mu_j)}{\sigma_M^2}(\hat{\mu}_M - \mu_f) = \mu_j + \beta_j (\hat{\mu}_M - \mu_f)$; the bigger β_j, the riskier it is!

Diversifying Portfolio

Notice $\sigma_j^2 = \beta_j^2 \sigma_M^2 + \sigma_j^2$, i.e. total risk = systematic risk + unsystematic risk. An agent is only compensated for systematic risk.

Empirical Security Market Line: Since $E(r_j) = \mu_j$ not observable, write $\mu_j = \hat{\mu}_j + \beta_j (\hat{\mu}_M - \mu_f) + \epsilon_j$ with $E(\epsilon_j) = 0$ and $\text{cov}(\epsilon_j, \mu_f) = 0$.

CML

R

$w < 1$

$sigma$

$0 < w < 1$

$\hat{\mu}_j$
If \(r_p = w_1 r_1 + \cdots + w_k r_k, \) \(\sum w_i = 1 \), then \(r_p = r_f + \beta_p (r_M - r_f) + \sum w_i \varepsilon_i, \beta_p = \sum w_i \beta_i \) with \(r_p = r_f + \beta_p (r_M - r_f) \) and
\[\sigma_p = \beta_p^2 \sigma_M^2 + \text{var} \left(\sum w_i \varepsilon_i \right). \]
For large \(k \), \(\sigma_p \approx \beta_p^2 \sigma_M^2 \); the unsystematic risk disappears!

Notice \(r_p = \alpha r_m + (1 - \alpha) r_f = r_f + \alpha (r_M - r_f) \), so \(\beta_p = \alpha. \)

Application

Suppose the payoff is \(X \) in period 1, with \(X \) and \(\sigma_X^2 \). The price of \(X \) in period 0 is
\[P_X = \frac{X}{1 + r_f + d}. \]

What is \(d \)? Since \(1 + r_f + d = \frac{X}{P_X} = 1 + r_f \) and \(r_j = r_f + \beta_j (r_M - r_f) \), so \(d = \beta_j (r_M - r_f) \).

No Risk Free Asset

Let \(Z \) be the zero-beta portfolio, that is \(\beta_z = 0 \iff \text{cov} (r_Z, r_M) = 0 \).

The slope at \(M \) is \(\frac{r_M - r_z}{\sigma_M^2} \). So \(r_j = \beta_j (r_M - r_Z) \) (empirical: \(r_j = \beta_j (r_M - r_Z) + \varepsilon_j \)).

Note that in this model, different agents will hold different risky assets, with the average agent holding \(M \).

State Preference Theory

Suppose agents A and B has endowments:

<table>
<thead>
<tr>
<th>Time 0</th>
<th>(y_0^A)</th>
<th>(y_0^B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time 1</td>
<td>(y_1^A)</td>
<td>(y_1^B)</td>
</tr>
<tr>
<td></td>
<td>(U^A(c_0, c_1))</td>
<td>(U^B(c_0, c_1))</td>
</tr>
</tbody>
</table>

For each agent,
- Time 0: endowment \(y_0 \), utility \(U(c_0) + E(U(c_1)) \).
- Time 1: endowment \(y_1^A \) with probability \(\pi_1 \) (state 1), endowment \(y_1^B \) with probability \(\pi_2 \) (state 2), etc.

Suppose there are “pure securities”, with payoffs in time 1:

<table>
<thead>
<tr>
<th>Security</th>
<th>Price at Time 0</th>
<th>Payoff in State 1</th>
<th>Payoff in State 2</th>
<th>Payoff in State 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure 1</td>
<td>(q_1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pure 2</td>
<td>(q_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pure 3</td>
<td>(q_3)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pure A</td>
<td>(q_A = 3q_1 + 2q_2 + 4q_3)</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
Asset Pricing: Pure Securities
Pure Securities: Any security in the market is a linear combination of pure securities with price \(p_i \) and $1 payout in the \(i \)-th state. So if \(S \) and any security and \(s_i \) is its payoff in the \(i \)-th state, then \(P_s = p_1 s_1 + \cdots + p_n s_n \).

Hedge Portfolio: A risky portfolio that replicated a risk-free portfolio. If it contains \(a_i \) amount of security \(i \) (priced \(P_i \)), then \(a_1 P_1 + a_2 P_2 + \cdots + a_n P_n = \frac{1}{1+r_f} \).

Risk Neutral Probabilities: If an agent is risk neutral, then for any security \(S \), \(P_S = \mathbb{E}(S) = \pi^{RN}_1 s_1 + \cdots + \pi^{RN}_n s_n \); \(\pi^{RN}_i \) is the risk neutral probability of state \(i \). Notice \(\pi^{RN}_i = \left(1+r_f\right)p_i \).

Continuous Time Process
Definition
The current period is date 0. $1 in a risk-free debt at date 0 is worth $ \(e^{r_f T} \) at date \(T \). Here \(r_f \) is the continuously compounded/instantaneous rate of interest.
Note: Time is in years, so \(T=1 \) is one year.

Value of Equity
The value of a share of equity at date \(T \) is \(S_T = S_0 e^{\int_0^T r_s(t)dt} \).
Note: \(\int_0^T r_s(t)dt \sim N\left(\left(\mu - \frac{1}{2}\sigma^2\right)T, \sigma^2 T\right) \), so \(S_T \) is log-normal (i.e \(\ln \left(\frac{S_T}{S_0}\right) = \int_0^T r_s(t)dt \sim N\left(\left(\mu - \frac{1}{2}\sigma^2\right)T, \sigma^2 T\right) \)).

Options
Call Option
Written on a stock with price \(S_S \), there is:
- exercise buying price \(X \),
- maturity date \(T \).
European Call Options: At time \(T \), one can “exercise” – sell at \(S_T \) and buy at \(X \). So the payoff will be \(\max(S_T-X, 0) \).
American Call Options: One can exercise at any time up to time \(T \).

Put Option
Written on a stock with price \(S_S \), there is:
- exercise selling price \(X \),
- maturity date \(T \).
European Put Options: At time \(T \), one can “exercise” – buy at \(X \) and sell at \(S_T \). So the payoff will be \(\max(X-S_T, 0) \).
American Put Options: One can exercise at any time up to time \(T \).

Put-Call Parity
If the price of a stock is S_0, c_0 is the price of a call option, p_0 is the price of a put option, and X is the payout of a risk free debt at time T, then

$$S_0 + p_0 = c_0 + X e^{-rT}.$$

Note that for $0 < t < T$,
- Any asset is a combination of calls, puts, and risk free debts.
- $c_t = p_t + S_t - X e^{-r(T-t)} > p_t + S_t - X$ and $S_t - X e^{-r(T-t)} > S_t - X$, so nobody will exercise a call early.
- $p_t = c_t + X e^{-r(T-t)} - S_t$ and $X e^{-r(T-t)} - S_t < X - S_t$, so for c_t small enough, one might exercise a put early.

Risk Neutral Probability Pricing of a Call Option

Consider a stock with price S_0 at date 0. Its payout is either $S_T^1 = uS_0$ (state 1) or $S_T^2 = dS_0$ (state 2) at date T. Then a call option's payout is $uS_0 - X$ in state 1 and 0 in state 2. Let $1 + r_f = e^{rT}$.

If we assume $d < 1 + r_f < u$ (or else arbitrage) and $dS_0 < X < uS_0$, then

$$c_0 = \frac{\pi^R N(uS_0 - X)}{1 + r_f},$$

where $\pi^R = \frac{1 + r_f - d}{u - d}$.

Black-Scholes

The price of a call (European or American) is $c_0 = S_0 N(d_1) - e^{-rT} X N(d_2)$, where

- $N(d_1) = P(z \leq d_1)$, $z \sim N(0,1)$
- $N(d_2) = P(z \leq d_2)$, $z \sim N(0,1)$
- $d_1 = \frac{\ln \left(\frac{S_0}{X} \right) + r_f T}{\sigma \sqrt{T}} + \frac{1}{2} \sigma \sqrt{T}$ ($\sigma = \text{SD} \left(\ln S_t \right)$)
- $d_2 = d_1 - \sigma \sqrt{T}$.

Then by the put-call parity, the price of a put (European) is $p_0 = c_0 - S_0 + X e^{-rT}$.

Consumption Based Capital Asset Pricing Model

Every agent/household in the economy is identical. So only study a representative household.

Two Time Periods, Perfect Certainty

Suppose the representative household's lifetime utility is $U = U(C_0) + \beta U(C_1)$. Suppose its income in period 0 is Y_0 and its income in period 1 is Y_1.

Consider a discount bond issued by the government that pays 1 unit of consumption in period 1 and sells for $p_0 = \frac{1}{1 + r_0}$.

The household will choose q_0 optimally to maximize its lifetime utility. Then we get

$$p_0 = \beta \frac{U(Y_1 + q_0)}{U'(Y_0 - p_0q_0)}.$$

p_0 is the equilibrium price if $q_0 = q^*$ the quantity of bonds supplied per household.
FINITE TIME PERIODS, UNCERTAINTY

The representative household's lifetime utility (at period 0) is

\[U_0 = U(C_0) + E_0 \left[\beta \sum_{t=1}^{\infty} U(C_t) \right] \]

One Period Security

Suppose security \(X \) has current price \(P_{X,0} \). It can be redeemed in period 1 for \(x_1 \). Then we get

\[P_{X,0} = \beta E_0 \left[x_1 \frac{U'(C_1)}{U'(C_0)} \right] \]

Since \(\frac{x_1}{P_{X,0}} = 1 + r_{X,1} \), can rewrite \(1 = \beta E_0 \left[\frac{U'(C_1)}{U'(C_0)} \right] \).

Risk Free Asset

For risk-free asset, \(1 = \beta \left[1 + r_{X,1} \right] E_0 \left[\frac{U'(C_1)}{U'(C_0)} \right] \).

t Period Security

Suppose security \(Y \) has current price \(P_{Y,0} \) and pays \(y_t \) in period \(t \) (and nothing prior and after). Then

\[P_{Y,0} = \beta^t E_0 \left[y_t \frac{U'(C_t)}{U'(C_0)} \right] \]

Price of a Stock

The price of a stock that pays dividend \(\text{div}_t \) in period \(t \) is

\[S_0 = E_0 \left[\sum_{t=1}^{\infty} \beta^t \frac{U'(C_t)}{U'(C_0)} \right] \]