Groups and Symmetries

Definition: Symmetry
A symmetry of a shape is a rigid motion that takes vertices to vertices, edges to edges.
Note: A rigid motion preserves angles and distances.

Definition: Group
A group \((G, \ast) \) is a set \(G \) and an operation \(\ast \) such that \(G \) is closed under \(\ast \) and that:
1. There exists \(e \) such that \(e \ast x = x = x \ast e \) for all \(x \in G \) (existence of identity \(e \)).
2. For every \(x \in G \) there exists \(x^{-1} \) such that \(x \ast x^{-1} = e = x^{-1} \ast x \) (existence of inverses).
3. For all \(x, y, z \in G \), \(x \ast (y \ast z) = (x \ast y) \ast z \) (associativity).

Examples
- \(D_3 \) is the group of symmetries of a regular 3-gon. \(D_3 = \{ e, r, r^2, s, sr, sr^2 \} \), \((D_3, \circ) \) with \(r = 60^\circ \) rotation clockwise and \(s = \text{reflection about y-axis} \).
- \(D_n \) is the group of symmetries of a regular \(n \)-gon.

Claim
The identity of \((G, \ast) \) is unique.

Proof: Assume the \(e_1 \) and \(e_2 \) are identities of \((G, \ast) \). \(e_1 = e_1 \ast e_2 = e_2 \Leftrightarrow e_1 = e_2 \). So there is only one identity.

Claim
Given \(x \in G \), \(x^{-1} \) is unique.

Proof: Let \(y = x^{-1} \) and \(z = x^{-1} \) but \(y \neq z \). Now \(y \ast e = y \ast (x \ast z) = (y \ast x) \ast z = e \ast z = z \), so \(y = z \). Contradiction!
So \(x^{-1} \) is unique given \(x \).

Definition: Commute
If \(x \ast y = y \ast x \) then \(x \) and \(y \) are said to commute.

Definition: Abelian
If all elements in \((G, \ast) \) commute, then \((G, \ast) \) is said to be Abelian.

Definition: Order (Group)
The order of a group \(G \), denoted \(|G|\), is the number of elements in \(G \).

Examples
- \(|Q| = 8\), \(|V^4| = 4\), \(|D_3| = 6\), \(|D_4| = 8\), \(|\mathbb{Z}| = \infty\), \(|\mathbb{Q}| = \infty\).

Definition: Order (Element)
The order of an element \(x \in G \), written \(|x|\), is the smallest positive integer \(n \) such that \(x^n = e \).

Examples
- In \(D_3 \), \(r \cdot r \cdot r = r^3 = e \) so \(|r| = 3\).
- \(|e| = 1\).
• In \(V_4 = \{ e, a, b, ab \} \), \(|e| = 1\), \(a \cdot a = e \Rightarrow |a| = 2\), \(b \cdot b = e \Rightarrow |b| = 2\), \(|ab| = 2\).

• In \(Q_8 = \{ 1, -1, i, -i, j, -j, k, -k \} \), \(|1| = 1\), \(|-1| = 2\), \(|i| = |j| = |k| = 4\).

Definition: Subgroup

A subgroup of \(G \) is a subset of \(G \) which is a group under the same operation as \(G \).

Example

In \(D_4 = \{ e, r, r^2, r^3 \} \) is a subgroup since it is closed under \(\times \) (\(r_n \times r_m = r^{n+m} \)), has inverses (\(r^{-1} = r^3 \), \((r^2)^{-1} = r^2 \)), and \(e \in \{ e, r, r^2, r^3 \} \).

Definition: Proper Subgroup

A proper subgroup of \(G \) is a subgroup of \(G \) and \(H \neq G \), \(H \neq \{ e \} \).

Note

Does \(G \) always have a proper subgroup? No. \(\{ e, r, r^2 \} \) has no proper subgroups.

Definition: Set of Generators

\(S \) is a set of generators of a group \(G \) if every \(g \in G \) can be expressed as:

- multiplication: \(g = s_1^{m_1} \times s_2^{m_2} \times \cdots \times s_k^{m_k} \)
- addition: \(g = m_1 s_1 + m_2 s_2 + \cdots + (m_k s_k) \)

where \(m_i \in \mathbb{Z} \) and \(s_i \in S \) (repetitions of \(s_i \)'s are allowed). Any such combinations of \(s_i \)'s is called a word.

Definition: Relation

A relation is an equation that tells use the “rules” for using \(* \) in \((G, *) \).

Example

If we specify that \(r^3 = e \), \(s^2 = e \), \(sr = r^2 s \), the group generated by \(\{ r, s \} \) is \(\{ e, r, r^2 s, rs, r^2 s \} \). We called this group \(D_3 \). So \(D_3 = \langle r, s | r^3 = e, s^2 = e, rs = r^2 s \rangle \).

Definition: Free Group

A free group on \(n \) generators is \(\langle a_1, \ldots, a_n \rangle \) (a group with \(n \) generators and no relations).

Definition: Cyclic

A group (or subgroup) is cyclic if it can be generated by only one element.

Example

\(\langle a | a^5 = e \rangle = \{ e, a, a^2, a^3, a^4 \} \) is cyclic.

Definition

\(C_n \) is the cyclic group of order \(n \). \(C_n = \langle g | g^n = e \rangle \).

Definition: Infinite, Finite

A group \(G \) is infinite if \(|G| = \infty \). A group \(G \) is finite if \(|G| = n < \infty \).
Example

\((\mathbb{Z}, +)\) is infinite.

Example

In \((\mathbb{Z}, +)\), what does \([2]\) generate?

\[0 \in \langle 2 \rangle, \; 2 \in \langle 2 \rangle, \; 2 + \cdots + 2, \; -2 \in \langle 2 \rangle, \; (-2) + (-2) + \cdots + (-2)\]. So \(2 \mathbb{Z} \equiv \{2n \mid \forall n \in \mathbb{Z}\}\) is the set of even numbers.

Theorem: The Subgroup Criterion

If \(H \subset G\) is a non-empty subset, then \(\forall x, y \in H \Rightarrow xy^{-1} \in H\) if and only if \(H\) is a subgroup.

Proof:

(⇒) Assume \(\forall x, y \in H \Rightarrow xy^{-1} \in H\). Let \(y = x\), then \(xx^{-1} = e \in H\). Let \(x = e\), then \(y^{-1} \in H\). So \(H\) is closed under inverses, i.e. \(y^{-1} \in H\) whenever \(y \in H\). So take \(x\) and \(y^{-1}\) to be two arbitrary elements in \(H\). Then \(x(y^{-1})^{-1} = xy \in H\), so it is closed under multiplication.

(⇐) Assume \(H\) is a subgroup of \(G\). So if \(x, y \in H\), then \(y^{-1} \in H\). Since \(H\) is closed under multiplication, \(xy^{-1} \in H\).

Definition

\(\mathbb{Z}_n = \{\text{integers mod } n\}\).

Claim

Let \(p\) be a prime. \(\mathbb{Z}_p\) has no proper subgroup.

Proof: Let \(0 < n < p\). Since \(p\) is a prime, \(\gcd(n, p) = 1\). So \(n \not\equiv 0 \mod p\), \(2n \not\equiv 0 \mod p\), etc., \((p-1)n \not\equiv 0 \mod p\). So \(\mathbb{Z}_p\) has no proper subgroup.

HOMOMORPHISMS AND ISOMORPHISMS

Definition: One-to-One

1:1 means \(f(x) = f(y) \iff x = y\), \(\forall x, y\).

Definition: Onto

Onto means if \(f: A \rightarrow B\) then for all \(b \in B\) there exists \(a \in A\) such that \(f(a) = b\). Equivalently, \(f: A \rightarrow B\) is onto if and only if \(f(A)\) is all of \(B\).

Definition: Homomorphism

\(f\) is an homomorphism iff \(f(ab) = f(a) \circ f(b)\) where \(f:(A, \ast) \rightarrow (B, \square)\).

Definition: Isomorphism

\(f\) is an isomorphism iff \(f\) is a homomorphism, 1:1, and onto.

Properties of Homomorphisms

Let \(f: (G, \ast) \rightarrow (K, \square)\) be a homomorphism.

1. \(\text{Im}(f)\) is a subgroup of \(K\).
2. If \(H\) is a subgroup of \(G\), then \(f(H)\) is a subgroup of \(K\).
3. f sends inverses to inverses, i.e. $f(x) = y \Rightarrow f(x^{-1}) = y^{-1}$.
4. f sends identities to identities, i.e. $f(e_G) = e_K$.
5. If $x_1 x_2 = x_2 x_1$, then $f(x_1 x_2) = f(x_2 x_1) = f(x_1) f(x_2) = f(x_2) f(x_1)$.

Definition: Trivial Homomorphism

$f : (G, \ast) \rightarrow \{ e \}$ is called the trivial homomorphism.

Properties of Isomorphism

Let $f : (G, \ast) \rightarrow (K, \square)$ be a homomorphism.
1. All properties of homomorphism.
2. f preserves the order of elements, i.e. $f(x) = y \Rightarrow |x|_G = |y|_K$.
4. G and K can be written be the same number of generators and the same relations. In other words, G and K have the same $\langle \square \rangle$ form.

Example

All groups are isomorphic to themselves.

Definition: Symmetric Group

The symmetric group (on n letters) S_n is the group of permutations that permute up to n symbols/letters.

Examples

- $(234) : A B C D \rightarrow A D B C$.
- $(1247) : A B C D E F G \rightarrow A C B E F D$.

Definition: Disjoint

If there are no common numbers in two different sets of brackets, they are said to be disjoint.

Definition: n-Cycle

A bracket with n distinct numbers is called an n-cycle. Note: A 2-cycle is also called a transposition.

Example

Is S_3 abelian? $(23) \circ (123) : A B C \rightarrow C A B \rightarrow C B A$, but $(123) \circ (23) : A B C \rightarrow A C B \rightarrow B A C$. So S_3 is not abelian.

Conventions

- Write the smallest number first. So if “1” gets moved first, write “1”, if “2” gets moved first, write “2”, etc.
- Only write each number once to avoid confusion. Also end the bracket when the first repeating number appears.

Claim

Using the convention gives a unique way of writing a permutation. However, there are many ways to write a permutation as a product of 2-cycles.
Theorem
All \(n \)-cycles (except the identity \(e \)) can be written as a product of 2-cycles and therefore all permutations.

Theorem
The 2-cycles generate \(S_n \).

Question
How big is \(S_n \)? \(n! \).

Example
Write \((3 \ 7 \ 4 \ 6 \ 8)(5 \ 10 \ 9) \) as a product of 2-cycles.
\[
(3 \ 7 \ 4 \ 6 \ 8) = (3 \ 8)(3 \ 6)(3 \ 4)(3 \ 7), \quad (5 \ 10 \ 9) = (5 \ 9)(5 \ 10).
\]

Definition: Even, Odd
A permutation is even iff it can be written as the product of an even number of 2-cycles.
A permutation is odd iff it can be written as the product of an odd number of 2-cycles.

Claim
If \(\sigma \) can be written as an even number of 2-cycles, then it can never be written as an odd element.

Claim
\(A_n = \{ \text{even permutations of } S_n \} \) is a subgroup of \(S_n \), and hence a group.
Note: \(|A_n| = \frac{|S_n|}{2} \).

Theorem
The following are sets of generators for \(S_n \).
- All 2 cycles,
 - \((1 \ 2), (1 \ 3), \ldots, (1 \ n) \) since \((a \ b) = (1 \ a)(1 \ b)(1 \ a) \).
 - \((1 \ 2), (2 \ 3), \ldots, (n-1 \ n) \) since \((1 \ k) = ((k-1) \ k)\ldots(2 \ 3)(1 \ 2)(2 \ 3)\ldots((k-1) \ k) \).
- \((1 \ 2) \) and \((1 \ 2 \ \ldots \ n) \).

Remarks
If \(f: A \rightarrow B \) is an isomorphism, then \(g(b) \) is the preimage of \(f \) when \(f(a) = b \) and \(g(b) = a \). \(g \) is also an isomorphism.

Definition: Center
The center of a group \(G \) is \(Z(G) = \{ z \in G | z*g = g*z \ \forall \ g \in G \} \), elements that commute with everything.
Note: \(\{ e \} \) is called the trivial center.

Definition: Direct Sum
The direct sum \(A \oplus B \) is the set of coordinates \(\{(a, b) | a \in A, b \in B \} \).

Facts
1. \(Z(G \oplus K) = Z(G) \oplus Z(K) \).

2. If \(H_1 \) is a subgroup of \(G \) and \(H_2 \) is a subgroup of \(K \), then \(H_1 \oplus H_2 \) is a subgroup of \(G \oplus K \).

Remark

Direct sums can be abelian or not, cyclic or not, etc., all the same definitions apply.

Definition: Left Multiplication Function

\(L_g(x) = g \cdot x \), \(g, x \in G \) is the left multiplication function.

Lemma

\(L_g \) is 1:1 and onto when applied to the group \(G \).

Proof: Let \(L_g(x) = L_g(y) \Rightarrow g \cdot x = g \cdot y \Rightarrow g^{-1} \cdot g \cdot x = g^{-1} \cdot g \cdot y \Rightarrow x = y \), so \(L_g \) is 1:1. Now assume \(L_g \) is not onto. Then \(\{L_g(x_1), \ldots, L_g(x_n)\} \) is not the entire group. So \(L_g(x_i) = L_g(x_j) \) for some \(i \neq j \), then \(g \cdot x_i = g \cdot x_j \Rightarrow x_i = x_j \). Contradiction, so \(L_g \) is onto.

Theorem: Cayley’s Theorem

Let \(G \) be any group. There exists an isomorphism \(f \) such that \(f : G \rightarrow \text{subgroup of } S_{|G|} \). In particular, if \(|G| = n \), \(G \) is isomorphic to a subgroup of \(S_n \).

Proof: \(L_g \) is 1:1 and onto, so \(L_g \) permutes the elements of \(G \). If \(|G| = n \), then \(L_g \in S_n \). Let \(f : G \rightarrow S_n, f(g) = L_g \).

\(f(a \cdot b) = L_{g \cdot h} = L_g \cdot L_h = f(g) \cdot f(h) \), so \(f \) is a homomorphism. \(f \) is 1:1 since \(f(x) = f(y) \Rightarrow L_g = L_h \Rightarrow x \cdot g = y \cdot g \), \(\forall g \in G \Rightarrow x \cdot e = y \cdot e \Rightarrow x = y \). Since \(f \) is 1:1 and takes \(n \) elements \((g \in G) \) to \(n \) elements \(L_g \in S_n \), \(f \) is onto. Hence \(f \) is an isomorphism.

Theorem: Lagrange’s Theorem

Let \(H \) be a subgroup of \(G \). Then \(|H| \) is a factor of \(|G| \).

Proof: Let \(g_1 \notin H \) but \(g_1 \in G \), then \(g_1 \cdot H = \{g_1 \cdot h \mid \forall h \in H\} \) has the same number of elements as \(H \) (lemma applied to \(L_{g_1} \)). Take \(g_2 \notin H, g_1 H \) but \(g_2 \in G \), then \(|g_2 \cdot H| = |H| \). If \(|G| \) is finite, then we get \(|G| = k \cdot |H| \) where \(k \) is the number of \(g \), since \(G = H \cup g_1 H \cup \cdots \cup g_k H \).

Corollary

Since \(|g| = |\langle g \rangle| \), then \(|g| \) is a factor of \(|G| \) whenever \(g \in G \).

Example

Let \(|G| = p \) a prime number. If \(x \in G \), then \(|x| = 1 \) or \(|x| = p \). If \(|x| = 1 \), then \(x = e \) (i.e., \(\langle x \rangle = \{e\} \)). Otherwise \(G = \langle x \rangle \), which has no proper subgroup. This also shows that \(G \) is cyclic.

NORMAL SUBGROUPS AND QUOTIENT GROUPS

Definition: Partition

A partition of \(G \) is a collection of disjoint subsets such that their union is \(G \).

Definition: Equivalence Relation
An equivalence relation \(\sim \) is a relation such that:
1. \(x \sim x \ \forall x \in G \) (reflexive).
2. \(x \sim y \iff y \sim x \ \forall x, y \in G \) (commutative).
3. \(x \sim y, y \sim z \Rightarrow x \sim z \ \forall x, y, z \in G \) (transitive).

Definition: Conjugation

If \(x = g^{-1} y g \) for some \(g \in G \), then \(x \) is conjugate to \(y \).

Claim

Conjugacy is an equivalence relation.

Proof:
1. \(x = e^{-1} xe \).
2. Let \(x = g^{-1} y g \). Let \(h = g^{-1} \). Then \(y = h^{-1} x h \).
3. Let \(x = g^{-1} y g \) and \(y = h^{-1} z h \). Then \(x = g^{-1} h^{-1} z h g = k^{-1} z k \) where \(k = h g \).

Definition: Equivalence Class

An equivalence class is a complete set of elements that are equivalent to each other. In other words, \(x \) is in the equivalence class of \(y \) if and only if \(x \sim y \).

Claim

Equivalence relation partition all groups \(G \) into equivalence classes.

Proof: Assume two equivalence classes, say of \(x \) and \(y \), are not disjoint. Then there exists \(z \) such that \(z \sim x \) and \(z \sim y \). Therefore \(x \sim y \) and \(y \sim x \), so they are the same classes. Contradiction. Hence two equivalence classes are disjoint. Now \(x \sim x \), therefore any \(x \in G \) is in the equivalence class of \(x \). So the union of all equivalent classes is \(G \). Therefore equivalence classes partition \(G \).

Definition: Normal Subgroup

\(H \) is a normal subgroup in \(G \) iff \(g^{-1} h g \in H \) for all \(g \in G \) and all \(h \in H \).

Example

\(H = \{ e, r, r^2 \} \) is a normal subgroup of \(D_3 \).

Definition: Conjugacy Class

The conjugacy class of \(x \in G \) is the set \(\{ g^{-1} x g \mid \forall g \in G \} \) (equivalence class of \(x \) where the equivalence relation is conjugation).

Example

In \(D_3 \), the conjugacy class of \(r \) is \(\{ r, r^3 \} \). It is also the conjugacy class of \(r^2 \) by transitivity, since \(r \sim r^2 \).
The conjugacy class of \(e \) is \(\{ e \} \).

Definition: Normal Subgroup
H is a normal subgroup in G iff H is a union of conjugacy classes in G.

Example

$H = \{e, r, r^2\} = \{e \cup \{r, r^2\}\}$ is a union of conjugacy classes, so H is a normal in G.

Definition: Coset

A coset of H in G is $gH = \{gh \mid \forall h \in H\}$ for some fix $g \in G$.

Example

$sH = \{se, sr, sr^2\} = \{s, r^2s, rs\}$ is a coset of H. $eH = H$ is also a coset of H.

Definition: Index

The index of H in G, denoted $[G : H]$, is the number of distinct cosets of H in G.

Definition: Normal Subgroup

H is a normal subgroup in G iff $gH = Hg$ for all $g \in G$.

Example

If G is abelian, H is always normal in G if H is a subgroup in G.

Claim

Let H be a subgroup of G. The following are equivalent:

1. $g^{-1}hg \in H$ for all $g \in G$ and all $h \in H$.
2. $g^{-1}Hg = H$ for all $g \in G$.
3. H is a union of conjugacy classes in G.
4. $gH = Hg$ for all $g \in G$.
5. H is a normal subgroup in G, denoted $H \triangleleft G$.

Proof:

$(\Rightarrow) \text{ Assume } g^{-1}Hg \subseteq \{g^{-1}hg \mid \forall h \in H\} = H \text{ for all } g \in G. \text{ Therefore elements of } \{g^{-1}hg \mid \forall h \in H\} \text{ are also elements of } H.$

$(\Rightarrow) \text{ Assume } H \text{ is a union of conjugacy classes in } G, \text{ i.e. } H = \bigcup_{h \in H} \{g^{-1}hg \mid \forall g \in G\}. \text{ So } H = \bigcup_{h \in H} \{g^{-1}hg \mid \forall g \in G, \forall h \in H\} = g^{-1}Hg.$

$(\Rightarrow) \text{ Assume } g^{-1}hg \in H \text{ for all } g \in G \text{ and all } h \in H. \text{ So the conjugacy class of } h \text{ is in } H. \text{ Suppose } H \text{ is not a union of conjugacy classes in } G. \text{ Then there exists } z \in H \text{ not in a conjugacy class. Now } g^{-1}zg \in H, \text{ so the conjugacy class of } z \text{ is in } H. \text{ Contradiction.}$

$(\Rightarrow) \text{ Assume } g^{-1}Hg = H \Leftrightarrow g^{-1}Hg = Hg \Leftrightarrow Hg = gH \Leftrightarrow H \triangleleft G.$

Definition: Quotient Group

The quotient group G/H is the set of cosets $\{gH \mid \forall g \in G\}$ with the operation $xH * yH = x * yH$ where $*$ is the group operation from G.

Note: This only works if H is a normal subgroup in G.

Example

Let $H = \{e, r, r^2\} \subseteq D_3$ be normal. Then $D_3/H = \{eH, sH\}$.
Fact

\(|G/H|=|G|/|H|\) (since \(L_g\) is 1:1).

Properties of Quotient Groups

- \(G/G=\{gG|\forall g \in G\cong \{e\}\).
- If \(G\) is abelian, then \(G/H\) is abelian.

 Proof: \(xHyH=xyH=xyxH=xyHxH\) since \(xy=xy\).
- If \(G\) is cyclic, then \(G/H\) is cyclic.

 Proof: \(G=\{g^\alpha|\alpha=1,\ldots,n\}\). The cosets in \(G/H\) are \(\{g^iH\}\), so \(gH\) generates \(G/H\) whenever \(g\) generates \(G\).
- If \(G\) is finitely generated, then \(G/H\) is finitely generated.

 Proof: If \(g_1,\ldots,g_n\) generate \(G\), then \(g_1H,\ldots,g_nH\) generate \(G/H\).

Claim

\(xHyH=xyH\) if and only if \(H\) is normal.

Proof:

\((\Rightarrow)\) \(xHyH=xyH=x^{-1}xHyH=y^{-1}xyH\) \(\Rightarrow H=Hy\), so \(h,yh_j=yh_i\) (fixing \(h_i\) and \(h_j\) we get \(\forall h_i\)), so \(h,y=yh_ih_j^{-1}\). Let \(\hat{h}=h_ih_j\) which can be anything in \(H\). Then \(h,y=y\hat{h}\rightarrow H=Hy\), so \(H\) is normal.

\((\Leftarrow)\) Clear from definition.

Definition: Kernel, Image

Let \(f:G\rightarrow G'\). Then \(\text{Ker}(f)=\{g\in G|f(g)=e\}\), and \(\text{Im}(f)=\{g\in G'|\exists g\in G\text{ such that }f(g)=g'\}\).

Theorem: 1st Isomorphism Theorem

Let \(f:G\rightarrow G'\) be a homomorphism. Then \(\text{Ker}(f)\cong G\) and \(G/\text{Ker}(f)\cong \text{Im}(f)\).

Proof:

Want: \(\text{Ker}(f)\cong G\). Let \(x\in \text{Ker}(f)\). Then \(f(g^{-1}x)=f(g^{-1})f(x)=f(g)^{-1}e\quad f(g)=e\), so \(g^{-1}xg\in \text{Ker}(f)\). Now, \(f(z)f(ez)=f(e)f(z)\rightarrow f(e)=e\), so \(\text{Ker}(f)\neq \emptyset\). Hence \(\text{Ker}(f)\cong G\).

Want: \(G/\text{Ker}(f)\cong \text{Im}(f)\). Let \(K=\text{Ker}(f)\). Let \(\varphi:G/\text{Ker}(f)\rightarrow \text{Im}(f)\) where \(\varphi(xK)=f(x)\). Then \(\varphi\) is a homomorphism since \(\varphi(aKbK)=\varphi(abK)=f(ab)=f(a)f(b)=\varphi(a)\varphi(b)K\). \(\varphi\) is onto \(\text{Im}(f)\) since \(\varphi\) is onto \(\text{Im}(\varphi)\) by definition of image, and \(\text{Im}(\varphi)=\text{Im}(f)\) by construction. \(\varphi\) is 1:1 since \(\varphi(aK)=\varphi(bK)\Rightarrow f(a)=f(b)\Rightarrow f(a)f(b)=e\Rightarrow f(ab^{-1})=e\Rightarrow (ab^{-1})^{-1}=e\Rightarrow a^{-1}b^{-1}\in K\), so \(ab^{-1}K=K\Rightarrow ab^{-1}KbK=Kb\Rightarrow aK=bK\). Hence \(\varphi:G/\text{Ker}(f)\rightarrow \text{Im}(f)\) is an isomorphism and so \(G/\text{Ker}(f)\cong \text{Im}(f)\).

Corollary

Let \(f:G\rightarrow G'\) be a homomorphism. \(\text{Ker}(f)=\{e_G\}\) if and only if \(f\) is an isomorphism.

Proof:

\((\Rightarrow)\) \(\text{Ker}(f)=\{e_G\}\), then by the 1st Isomorphism Theorem, \(G/\{e_G\}\cong \text{Im}(f)\) and so \(G\cong \text{Im}(f)\). Take \(\varphi:G/\text{Ker}(f)\rightarrow \text{Im}(f)\) defined by \(\varphi(xK)=f(x)\) as in the proof of 1st Isomorphism Theorem. Here \(K=\{e\}\), so \(\varphi(x)=f(x)\), and we already know that \(\varphi\) is an isomorphism, and hence \(f\) is an isomorphism. \((\Leftarrow)\) \(f\) is an isomorphism, so \(f\) is 1:1 and \(f(e_G)=e_G'\), therefore \(\text{Ker}(f)\) can only contain one element, \(e_G\).

Definition: Commutator Subgroup
The commutator subgroup \([G,G]\) is the subgroup of \(G\) that is generated by all \(xyx^{-1}y^{-1}\) for all \(x,y \in G\).

Claim

\([G,G]\) is abelian.

Proof: Let \(H = \{g \in G \mid xyx^{-1}y^{-1} \in H\} \) since \(xyx^{-1}y^{-1} \in H\). So \(xyx^{-1}y^{-1} \in H \Rightarrow xxyx^{-1} = xyx^{-1}H = yH \Rightarrow xxyx^{-1}HxH = yxyx^{-1} \Rightarrow (xH)(yH) = (yH)(xH)\). Hence \(H = [G,G]\) is abelian.

Claim

If \(G/H\) is abelian, then \([G,G] \subseteq H\).

Proof: \(xyH = yxH\) since \(G/H\) abelian. So \(xyx^{-1}y^{-1} = yxyx^{-1}H = xxyx^{-1}H = xxyx^{-1} = H\), so \(xxyx^{-1} \in H\). Therefore all generators of \([G,G]\) is in \(H\), so \([G,G] \subseteq H\).

Remark

The commutator subgroup \([G,G]\) is the smallest subgroup \(H\) of \(G\) such that its quotient \(G/H\) is abelian. Since bigger \(H\) implies few cosets, so \(G/[G,G]\) is the largest abelian quotient of \(G\).

Definition: Abelianisation

The abelianisation of a group \(G\) is \(G/[G,G]\).

Claim

If \(A \trianglelefteq G\), \(B \trianglelefteq G'\), then \(A \oplus B \trianglelefteq G \oplus G'\) and \(G \oplus G' \simeq \frac{G \oplus G'}{A \oplus B}\).

Proof: Define \(f : G \oplus G' \rightarrow \frac{G \oplus G'}{A \oplus B}\) by \(f((g,g')) = (gA, gB)\). Then \(f((g_1g_1')(g_2g_2')) = f((g_1g_2g_1g_2')) = (g_1g_2A , g_1g_2'B) = (g_1A , g_1'B)g_2Ag_2'B = f((g_1g_1'))f((g_2g_2'))\), so \(f\) is a homomorphism.

\(\ker(f) = \{(g,g') \in G \oplus G' \mid f((g,g')) = (eA, eB)\}\), but \(f((g,g')) = (gA, g'B) = (eA, eB) = e \in A \oplus B\), so \(\ker(f) = \{(g,g') \in G \oplus G' \mid g \in A, g' \in B\} = A \oplus B\).

\(\text{Im}(f) = \{(gA, g'B) \in \frac{G \oplus G'}{A \oplus B} \mid \exists (g,g') \in G \oplus G'\) such that \(f((g,g')) = (gA, g'B)\} = \frac{G \oplus G'}{A \oplus B}\), so \(f\) is onto.

Definition: Lattice

A group lattice is a diagram with subgroups as vertices and edges mean that the lower subgroup sits inside the upper subgroup.

Theorem: 2nd Isomorphism Theorem

Let \(H, J\) be subgroups of \(G\) and \(J \trianglelefteq G\). Then:

1. \(HJ \trianglelefteq \{hj \mid h \in H, j \in J\}\) is a subgroup.
2. \(H \cap J \trianglelefteq G\).
3. \(\frac{HJ}{J} \cong \frac{H}{H \cap J}\).

Proof: \(eHe = eAe = e\), so \(HJ \neq \emptyset\). Let \(g, gH \in HJ\), \(g = hj\), \(g = j\). Then \(g\overline{g}^{-1} = h\overline{j}^{-1} = h\). Since \(j\overline{j}^{-1} \in J\), so
Let \(H \cong G \), \(J \cong G \), and \(H \subset J \). Then:

1. \(\frac{J}{H} \cong \frac{G}{J} \).
2. \(\frac{G}{H} \cong \frac{J}{H} \).

Note that \(H \cong J \) since \(G = H \cdot g \), \(g \in G \) and \(H \subset J \), so \(jH = H \cdot j \), \(\forall j \in G \).

Proof: Define \(f : \frac{G}{H} \to \frac{G}{J} \) by \(f(xH) = xJ \). Then \(f(xH \cdot yH) = f(xyH) = xyJ = xJ \cdot yJ = f(x) \cdot f(y) \), so \(f \) is a homomorphism. \(\text{Ker}(f) = \left\{ gH \in \frac{G}{H} \mid f(gH) = eJ \right\} = \left\{ gH \in \frac{G}{H} \mid gJ = eJ \right\} = \left\{ gH \in \frac{G}{H} \mid g \in J \right\} = \frac{J}{H} \).

\(\text{Im}(f) = \left\{ gJ \in \frac{G}{J} \mid f(gH) = gJ \right\} = \left\{ gJ \in \frac{G}{J} \mid gJ = gJ \right\} = \frac{G}{J} \), hence \(f \) is onto. Therefore, by the 1st Isomorphism Theorem, \(\frac{J}{H} \cong \frac{G}{H} \) and \(\frac{G}{H} \cong \frac{J}{H} \).

Definition: Maximal Normal Subgroup

\(H \) is a maximal normal subgroup of \(G \) if the only normal subgroups of \(G \) containing \(H \) are \(H \) and \(G \).

Claim

\(\frac{G}{H} \) has no proper normal subgroups if and only if \(H \) is a maximal normal subgroup in \(G \).

Proof:

(\(\Rightarrow \)) Assume \(\frac{G}{H} \) has no proper subgroups. Suppose \(H \) is not maximal. Let \(A \cong G \) such that \(H \subset A \). Then \(A \cong H \) since \(gH = H \cdot g \), \(\forall g \in G \), especially for \(g \in A \). So \(\frac{A}{H} \) is a group. By part 1 of 3rd Isomorphism Theorem, \(\frac{A}{H} \cong \frac{G}{H} \).

Contradiction.

(\(\Leftarrow \)) Assume \(H \) is a maximal normal subgroup in \(G \). Suppose \(\frac{G}{H} \) has a proper normal subgroup \(\frac{A}{H} \) (can choose coset representatives such that \(A \) is a subgroup of \(G \)). By part 2 of 3rd Isomorphism Theorem, \(\frac{G}{A} \cong \frac{A}{H} \). Since \(\frac{G}{A} \) is isomorphic to a group, it is a group. Hence \(A \cong G \). But \(A \supset H \), so \(H \) is not maximal. Contradiction.

Group Actions

Definition: Group Action
A group action $G \cdot X \to X$ is such that $g \cdot (g_2 \cdot x) = (g_1 \cdot g_2) \cdot x$, where $g_2, g_2 \in G$ (G a group), $x \in X$ (X a set), is the group operation, * is the group operation.

Definition: Orbit
The orbit of $x \in X$ is the set of images of x after being acted on by all $g \in G$. That is, $O(x) = \{ g \cdot x \mid \forall g \in G \}$. Note: $O(x) \subseteq X$.

Definition: Stabilizer
The stabilizer of $x \in X$ is $\text{Stab}_G(x) = \{ g \in G \mid g \cdot x = x \}$. Note: $\text{Stab}_G(x) \subseteq G$.

Definition: Faithful
A group action is called faithful if $g \cdot x = x \iff g = e$.

Remark
A group action is faithful if and only if $\text{Stab}_G = \{ e \}$.

Definition: Transitive
A group action is transitive if for all $x, y \in X$ there exists $g \in G$ such that $x = g \cdot y$.

Remark
$O(X) = X$ if and only if $G \cdot X \to X$ is transitive.

Definition: Centralizer
In the case where $G = G$, $X = G$, $g \cdot x = g^{-1} \cdot x \cdot g$, the stabilizer of $x \in X$ is $\text{Stab}_G(x) = \{ g \in G \mid g \cdot x^{-1} \cdot x = x \}$. It is called a centralizer.

- The centralizer of $a \subseteq X = G$ is $C_G(a) = \{ g \in G \mid g \cdot a \cdot g^{-1} \cdot a \}$. The centralizer of $x \in X = G$ is $C_G(x) = \{ g \in G \mid g \cdot x^{-1} \cdot x = x \cdot g^{-1} \cdot x \cdot g^{-1} \cdot x \cdot g^{-1} \cdot x \cdot g^{-1} \cdot x \}$.

Remark
The centralizer of G is $C_G(G) = Z(G)$, the center of G.

Definition: Normalizer
The normalizer of $x \in G$ is $N_G(x) = \{ g \in G \mid g \cdot x = x \} = C_G(x)$.
The normalizer of $A \subseteq G$ is $N_G(A) = \{ g \in G \mid g \cdot a \cdot g^{-1} \cdot a \cdot g^{-1} \cdot a \cdot g^{-1} \cdot a \}$.

Lemma
$\text{Stab}_G(x)$ is a subgroup.

Proof: $e \cdot x = x$, hence $e \in \text{Stab}_G(x)$. Let $g, g_2 \in \text{Stab}_G(x)$. Then $g_2^{-1} \cdot x = g^{-1} \cdot x \iff g_2^{-1} \cdot g_1 \cdot g_2 \cdot x = g_2^{-1} \cdot g_1 \cdot x \iff e \cdot x = g_2^{-1} \cdot x = g_2^{-1} \cdot x$, so $g^{-1} \in \text{Stab}_G(x)$. So $(g_1 \cdot g_2^{-1}) \cdot x = g_1 \cdot (g_2^{-1} \cdot x) = g_1 \cdot x = x$, hence $g_1 \cdot g_2^{-1} \in \text{Stab}_G(x)$. So by the subgroup criterion, $\text{Stab}_G(x)$ is a subgroup.
Theorem: Orbit-Stabilizer Theorem

\[|O(x)| = \frac{|G|}{|\text{Stab}_G(x)|} . \]

Proof: Fix \(x \in X \). \(O(x) = \{g \cdot x | \forall g \in G\} \). Define \(f: O(X) \rightarrow \frac{G}{\text{Stab}_G(x)} \) by \(f(g \cdot x) = gH \) where \(H = \text{Stab}_G(x) \). \(f \) is onto since all \(gH \) will have preimage \(g \cdot x \). Now let \(g_1H = g_2H \). Then \(g_1 = g_2h \) for some \(h \in H \), so \(g_1 \cdot x = g_2 \cdot h \cdot x = g_2 \cdot x \). Hence \(f \) is 1:1. So if \(|G| < \infty\), then \(|O(x)| = \frac{|G|}{|H|} = \frac{|G|}{|H|} \).

Theorem: Class Equation

Let \(G = G, X = G, g \cdot x = g^{-1}xg \). Then \(|G| = |Z(G)| + \sum_{x \in \text{Stab}_G(x)} \frac{|G|}{|\text{Stab}_G(x)|} \) with no repetition of \(x \)'s conjugate to each other.

Proof: Conjugacy class of \(z \in Z(G) \) is \(\{z\} \). Conjugacy class partition \(G \), so \(|G| = |Z(G)| + \sum_{x \in Z(G)} |\text{conjugacy class of } x| \).

Now, \(O(x) = \{g \cdot x | \forall g \in G\} = \{g^{-1}xg | \forall g \in G\} \) is the conjugacy class of \(x \), and \(|O(x)| = \frac{|G|}{|\text{Stab}_G(x)|} \) by the orbit-stabilizer theorem. Hence \(|G| = |Z(G)| + \sum_{x \in \text{Stab}_G(x)} \frac{|G|}{|\text{Stab}_G(x)|} \).

Lemma

\(|O(x)| \) is a factor of \(|G| \).

Proof: \(|O(x)| = \frac{|G|}{|\text{Stab}_G(x)|} \) by orbit-stabilizer theorem. \(\text{Stab}_G(x) \) is a subgroup of \(G \), and so \(|\text{Stab}_G(x)| \) is a factor of \(|G| \) by Lagrange's theorem.

Claim

If \(p \) is prime, then \(|G| = p^k \) if and only if \(|Z(G)| > 1 \).

Proof: Let \(G = G, X = G, g \cdot x = g^{-1}xg \). The by the class equation, \(|G| = |Z(G)| + \sum |O(x)| \), so \(|O(x)| \) has \(p \) as a factor. Suppose \(|Z(G)| = 1 \). Then \(p = 1 + \sum p^n \), but \(p \) should be a factor of both sides. Hence \(|Z(G)| > 1 \). In fact, \(|Z(G)| = p^\alpha \) for some \(\alpha \leq k \).

Theorem: Cauchy’s Theorem

Let \(|G| = kp^\alpha \) where \(p \) is prime and \(p \) is not a factor of \(k \). Then there exists \(x \in G \) such that \(|x| = p \).

Proof: Let \(X = \langle x_1, \ldots, x_p \rangle \) be the set of \(p \)-tuples in \(G \) such that \(x_1 \cdot \cdots \cdot x_p = e \). \(|X| \) is a multiple of \(p \). Let \(m \in \mathbb{Z}_p \) act on \(X \) by sending \(m \cdot (x_1, \ldots, x_p) \) to \((x_{m+1}, \ldots, x_p, x_1, \ldots, x_m) \). Each order of an orbit has either 1 or \(p \) \(p \)-tuples. Now \((e, \ldots, e) \) has orbit \(|(e, \ldots, e)| \). Since orbits partition \(X \), there exists some other orbit that has one element as well. Call the element in this orbit \(g_1 \). \(m \cdot (g_1, \ldots, g_p) = (g_1, \ldots, g_p) \) for all \(m \in \mathbb{Z}_p \), so \(g_1 = \cdots = g_p \) and \(g_1 \cdot \cdots \cdot g_p = (g_1)^p = e \). Therefore \(x = g_1 \) is the desired element.

Remark
Recall that \(N_{G}(A) = \{ g \in G | g^{-1} a g \in A \} \) and \(C_{G}(A) = \{ g \in G | g a = a g \ \forall a \in A \} \) for a subgroup \(A \subseteq G \). In general, if \(A \triangleleft G \) then \(N_{G}(A) = G \).

The Sylow Theorems

Theorem: Sylow Theorem 1

Let \(|G| = k p^{m}\) where \(p \) is prime and \(p \nmid k \). Then \(G \) contains a subgroup of order \(p^{m} \).

Proof: Let \(X \) be the collection of subsets of \(G \) of \(p^{m} \) elements. Use induction on \(|G|\). Induction hypothesis: \(G \) has a subgroup of order \(p^{m} \).

- If \(|G|=1\), then \(G = \{ e \} \), therefore vacuously true.
- If \(|G|=2\), then \(G = \{ e, a \} \), therefore \(G \) is its own subgroup of order \(2^1 \).
- Now let \(|G|=n=k p^{m}\). Assume induction hypothesis for all \(|G| < k p^{m}\).
 - Case 1: If \(p \) is a factor of \(|Z(G)|\), then Cauchy’s Theorem implies \(Z(G) \) has an element of order \(p \) (since \(Z(G) \) is a group); call it \(g \). \(g \) generates a subgroup of order \(p \); call it \(N \). Since \(N \subseteq Z(G) \), \(x^{n} = x \) for \(x \in N \), \(\forall x \in G \), and \(\forall n \in N \), \(\forall x \in G \), so \(N \triangleleft G \). Now \(\frac{|G|}{|N|} = \frac{k p^{m}}{p} = k p^{m-1} \), so by induction hypothesis \(\frac{|G|}{|N|} \) has a subgroup, say \(\frac{p}{N} \), of order \(p^{m-1} \).
 - Case 2: If \(p \) is not a factor of \(|Z(G)|\), then let \(g_{1}, \ldots, g_{r} \) be representatives of distinct conjugacy classes of \(G \setminus Z(G) \). By the class equation, \(|G| = |Z(G)| + \sum_{i} \frac{|G|}{|C_{G}(g_{i})|} \). \(p \) cannot be factor of all \(\frac{|G|}{|C_{G}(g_{i})|} \) or else \(p \) is a factor of \(|Z(G)|\). Therefore there exists a \(g_{i} \) such that \(\frac{|G|}{|C_{G}(g_{i})|} = k p^{m} = \frac{k}{l} p^{m} \) where \(\text{gcf}(l, p) = 1 \). By the Orbit-Stabilizer Theorem, \(\frac{|G|}{|C_{G}(g_{i})|} = \left| \text{conjugacy class of } g_{i} \right| \). Let \(H = C_{G}(g_{i}) \). Then \(|H| = l p^{m} \neq k p^{m} \) since \(g_{i} \not\in Z(G) \), so \(|H| \nmid |G| \). By induction hypothesis, \(H \) has a subgroup of order \(p^{m} \), which is also a subgroup of \(G \).

Definition: Sylow \(p \)-Subgroup

Let \(|G| = k p^{m}\) where \(p \) is prime and \(p \nmid k \). A subgroup of \(G \) of order \(p^{m} \) is called a Sylow \(p \)-subgroup.

Theorem: Sylow Theorem 2

Let \(|G| = k p^{m}\) where \(p \) is prime and \(p \nmid k \). Any two Sylow \(p \)-subgroups are conjugate, i.e. there exists \(g \in G \) such that \(g^{-1} P g = Q \) for all \(P \) and \(Q \) subgroups of order \(p^{m} \).

Theorem: Sylow Theorem 3

Let \(|G| = k p^{m}\) where \(p \) is prime and \(p \nmid k \). If \(n_{p} \) is the number of Sylow \(p \)-subgroups, then \(n_{p} \equiv 1 \mod p \) and \(n_{p} | k \).

Proof: Let \(H_{1}, \ldots, H_{t} \) be the subgroups of \(G \) of order \(p^{m} \). Now let \(H_{1} \) act on \(\{ H_{1}, \ldots, H_{t} \} \) by conjugation (i.e. \(h \cdot H_{j} = h^{-1} H_{j} h \)). Then \(\text{Stab}_{g} \left(H_{j} \right) = K_{j} = H_{j} \cap H_{i} \) (**). Now \(K_{j} = H_{1} \), so \(O(H_{1}) = H_{1} \). Now if \(j \neq 1 \), \(|K_{j}| \) is a smaller power of \(p \) than \(p^{m} \). Then the Orbit-Stabilizer Theorem implies \(|O(H_{j})| = \text{multiples of } p \) since they are factors of \(|H_{j}| \). Since \(t \) is the number of subgroups being acted on, so \(t = 1 + (\text{multiples of p}) \equiv 1 \mod p \). Hence the number of Sylow \(p \)-subgroups is \(n_{p} \equiv 1 \mod p \).

Now let \(G \) act on \(\{ H_{1}, \ldots, H_{t} \} \) by conjugation. Suppose \(H_{r} \) (for some \(r \)) is not in the orbit of \(H_{1} \). Now let \(H_{r} \) act on \(\{ H_{1}, \ldots, H_{t} \} \) by conjugation. The \(G \)-orbit of \(H_{1} \) is partitioned into \(H_{r} \)-orbits, the size of which are multiples of \(p \) by
the Orbit-Stabilizer Theorem since \(H \) is not in \(H_1 \)'s orbit. So the \(G \)-orbit of \(H_1 \) has \(0 \mod p \) elements in it, which contradicts \(n_p \equiv 1 \mod p \). Hence \(H \) cannot exist and the \(G \)-orbit of \(H_1 \) is \(\{ H_1, \ldots, H_r \} \). In other words,
\[
O(H_i) = \{ g \cdot H_i \mid \forall g \in G \} = \{ g^{-1}H_ig \mid \forall g \in G \} = \{ H_1, \ldots, H_r \} .
\] So given any \(H_1 \) and \(H_j \), \(H_1 = g^{-1}H_ig \) and \(H_j = g^{-1}H_jg \), so \(g^{-1}H_ig = g^{-1}H_jg \Rightarrow H_1 = (g, g^{-1})H(g, g^{-1}) = g^{-1}H_ig \) for \(g \equiv g, g^{-1} \). Therefore Any two Sylow \(p \)-subgroups are conjugate.

Now, Orbit-Stabilizer Theorem implies \(|O(H_i)| = \frac{|G|}{|\text{Stab}_G(H_i)|} \) and so \(t = n_p \) is a factor of \(|G| = kp^m \). Since we know \(t \equiv 1 \mod p \), \(t \) is not a factor of \(p^m \), hence \(t \) is a factor of \(\frac{k}{p} \). Therefore \(n_p | k \).

\(** \) \(K_j = \text{Stab}_G(H_j) = \{ h \in H \mid h^{-1}H_jh = H_j \} \), so \(K_j \subseteq H_1 \). \(H_i \cap H_j \subseteq K_j \), hence \(K_jH_j \subseteq H_j \) and so \(K_jH_j \) is a subgroup. Also, \(H_j \cap K_jH_j \) since \(H, k = H_j \). So by the 2nd Isomorphism Theorem,
\[
\frac{K_jH_j}{H_j} \cong \frac{K_j}{K_j \cap H_j} .
\]

So
\[
|K_jH_j| = \left| \frac{K_j}{K_j \cap H_j} \right| |H_j| = p^p, \text{ but } H_j \subseteq K_j, H_j \text{ and } |H_j| = p^m \text{, so } K_jH_j = H_j . \text{ We have } K \subseteq H_i \cap H_j \subseteq K_j, \text{ so } K_j = H_i \cap H_j .
\]

Lemma

If \(H, K \) are subgroup of \(G \), and \(HK = KH \), then \(HK \) is a subgroup.

Proof: Let \(h, k, h, k \in HK \). Then \(h, k, h^{-1}h^{-1} = h, k, h, k \in HK \). Also, \(e \in H K \). So the the Subgroup
Criterion, \(HK \) is a subgroup.

Corollary (of Sylow Theorem 2)

If \(n_p = 1 \), i.e., \(H \) is the only Sylow \(p \)-subgroup of \(G \), then \(H \cong G \).

The Fundamental Theorem of Finitely Generated Abelian Groups

Theorem: The Fundamental Theorem of Finitely Generated Abelian Groups

Let \(G \) be abelian and finitely generated. Then \(G \cong \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_s} \oplus \mathbb{Z}^\prime \) where \(m_i | m_{i+1} \), \(m_1, \ldots, m_s \in \mathbb{Z} \), \(m_1, \ldots, m_s \geq 0 \), \(\mathbb{Z}^\prime = \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \) \(s \) times. Here \(m_1, \ldots, m_s \) are called torsion coefficients, and \(s \) is the rank.

Theorem

\(\mathbb{Z}_{n} \oplus \mathbb{Z}_{m} = \mathbb{Z}_{nm} \) if and only if \(\gcd(n, m) = 1 \).

Definition: Canonical Form

We say \(\mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_s} \oplus \mathbb{Z}^\prime \) is a group written in canonical form iff \(m_i | m_{i+1} \).

Question

How to to between canonical form and generators-and-relations form?

- Given canonical form \(\mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_s} \oplus \mathbb{Z}^\prime \), let \(x_i = \left(\begin{array}{c} 0, \ldots, 0, 1, 0, \ldots, 0 \end{array} \right)_{s-i} \) for \(i = 1, \ldots, t \), and
- \(y_j = \left(\begin{array}{c} 0, \ldots, 0, 1, 0, \ldots, 0 \end{array} \right)_{s-j} \) for \(j = 1, \ldots, s \). Then \(\langle x_1, \ldots, x_t, y_1, \ldots, y_s \rangle \) is abelian, \(x_i \in \mathbb{Z}^\prime \) for \(i = 1, \ldots, t \) is the generators-and-relations form.

- Given generators-and-relations form, use the following steps.
AUTOMORPHISMS

Definition: Automorphism
An automorphism is an isomorphism from a group G to itself.

Definition: Automorphism Group
$\text{Aut}(G)$ is the set of all automorphisms of G.

Claim
For $|G|<\infty$ (i.e. finite groups), $\text{Aut}(G)$ is a group under function composition.

Proof: Let $f_1,\ldots, f_n \in \text{Aut}(G)$.
- $f_i(x)=x$ is the identity since $(f_i \circ f_j)(x)=f_i(f_j(x))=f_i(x)$ and $(f_i \circ f_j)(x)=f_i(f_j(x))=f_i(x)$.
- Let $f_i \in \text{Aut}(G)$. f_i^{-1} exists and is 1:1 onto since f_i is 1:1 onto on a finite set to itself. We know $f_i(ab)=f_i(a)f_i(b)$ since f_i a homomorphism, so $f_i^{-1}(f_i(a)f_i(b))=f_i^{-1}(f_i(a))=a b = f_i^{-1}(f_i(a))f_i^{-1}(f_i(b))$. Hence f_i^{-1} is a homomorphism, 1:1 and onto, so $f_i^{-1} \in \text{Aut}(G)$.
- $(f_i \circ (f_i \circ f_j))(x)=(f_i(f_i(f_j(x))))=((f_i \circ f_j) \circ f_i)(x)$, so associativity holds.
- Let $f_i, f_j \in \text{Aut}(G)$. Then $f_i \circ f_j$ is 1:1 since f_i and f_j are, and $f_i \circ f_j$ is onto since f_i and f_j are.

Therefore, $\text{Aut}(G)$ is a group.

Definition: Characteristic
H is characteristic (as a subgroup of G), denoted $H \text{ char } G$, iff $f(H)=f$, $\forall f \in \text{Aut}(G)$.

Theorem
1. Characteristic subgroups are normal.
2. If H is the only subgroup of a given order, then $H \text{ char } G$.
3. If $K \text{ char } H$ and $H \cong G$, then $K \cong G$.

Definition: Inner Automorphism
$\text{Inn}(G)$ is the set of inner automorphisms of G. An inner automorphism is a function f such that $f(x)=g^{-1}xg$ for a fixed g.

Claim
$f_g \in \text{Inn}(G)$ is an isomorphism.
Proof: f_g is 1:1 since L_g and R_g are. f_g is onto since only use g’s that give onto f_g’s. f_g is a homomorphism since $f_g(ab) = g^{-1} a b g = g^{-1} a g g^{-1} b g = f_g(a) f_g(b)$.