Introduction

Definition: Natural Numbers, Integers
Natural numbers: \(\mathbb{N} = \{0, 1, 2, \ldots \} \).
Integers: \(\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots \} \).

Definition: Divisor
If \(a \in \mathbb{Z} \) can be written as \(a = bc \) where \(b, c \in \mathbb{Z} \), then we say \(a \) is divisible by \(b \) or \(b \) divides \(a \) (denoted \(b \mid a \)), or \(b \) is a divisor of \(a \).

Definition: Prime
We call a number \(p \geq 2 \) prime if its only positive divisors are 1 and \(p \).

Definition: Congruent
If \(d \geq 2 \), \(d \in \mathbb{N} \), we say integers \(a \) and \(b \) are congruent modulo \(d \) if \(d \mid (a - b) \) and write it \(a \equiv b \pmod{d} \).

Examples of Number Theory Questions

1. **What are the solutions to** \(a^2 + b^2 = c^2 \)?
 Answer: \(a = st \), \(b = \frac{s^2 - t^2}{2} \), \(c = \frac{s^2 + t^2}{2} \).

2. Fundamental Theorem of Arithmetic. Each integer can be written as a product of primes; moreover, the representation is unique up to the order of factors.

3. Theorem (Euclid). There are infinitely many prime numbers.

4. Suppose \((a, b) = 1 \), i.e. \(a \) and \(d \) have no common divisors except 1. Are there infinitely many primes \(p \equiv a \pmod{d} \)? Equivalently, are there infinitely many prime values of the linear polynomial \(dx + a \), \(x \in \mathbb{Z} \)?
 Answer: Yes (Dirichlet, 1837).

5. Are there infinitely many primes of the form \(p = x^2 + 1 \), \(x \in \mathbb{Z} \)?
 Not known, expect yes. It is known that there are infinitely many numbers \(n = x^2 + 1 \) such that \(n \) is either prime or has 2 prime factors.

6. What primes can be written as \(p = a^2 + b^2 \)? Answer: If \(p = 2 \) or \(p \equiv 1 \pmod{4} \).
 What numbers can be written as \(p = a^2 + b^2 \)?

7. For \(n \geq 3 \), what are the solutions to \(a^n + b^n = c^n \)?
 Answer: No solution! Fermat's Last Theorem.

8. Are there infinitely many primes \(p \) such that \(p + 2 \) is prime?
 Not known, expect yes.

9. Goldbach's Conjecture (1742). Every even number \(n \geq 4 \) can be written as \(n = p_1 + p_2 \).
 Is every odd number \(\geq 7 \) the sum of three primes? Yes for every \(n \) sufficiently large (Vinogruber, 1937).

10. Theorem (Friedlander and Iwaniec, 1998). There exists infinitely many primes of the form \(p = a^2 + b^4 \).
 Theorem (Heath and Brown). There exists infinitely many primes of the form \(p = a^3 + 2b^3 \).

11. **Prime Number Theorem (1896)**. Let \(\pi(x) = \sum_{p < x, \text{prime}} 1 \). Then \(\pi(x) \sim \frac{x}{\log x} \).

Pythagorean Triple

Definition: Pythagorean Triple
A Pythagorean triple \((a, b, c) \) is integers \(a \), \(b \), \(c \) satisfying \(a^2 + b^2 = c^2 \).
Corollary

Note: The exception is

Theorem

Consider the a line with slope

Proof:

Every primitive Pythagorean triple \((a, b, c)\) is called primitive if \(a, b, c\) have no common divisors > 1.

Observations

1. One of \(a, b, c\) in a primitive Pythagorean triple must be even, the other two must be odd.
2. Either \(a\) or \(b\) must be even.

 Proof: Suppose otherwise, i.e \(a\) and \(b\) are odd and \(c\) is even. Then \(a = 2m + 1, b = 2n + 1, c = 2k\). Then
 \((2m+1)^2 + (2n+1)^2 = (2k)^2 \Leftrightarrow 4m^2 + 4 + 4n^2 + 4n + 2 = 4k^2\). However, \(4(4m^2 + 4n^2 + 4n + 2)\) but \(4|4k^2\).

3. Assume \(b\) is even. \(a^2 = (c - b)(c + b)\). \((c - b)\) and \((c + b)\) are relatively prime.

 Proof: Suppose \(d|c - b\) and \(d|c + b\). Then \(d|a^2\), so \(d\) is odd. Also, \(d|(c - b) + (c + b) = 2c\) and \(d|(c + b) - (c - b) = 2b\), so \(d|2\gcd(c, b)\). So \(d|2\) since \((a, b, c)\) primitive. Since \(d\) is odd, \(d = 1\).

4. \((c - b)\) and \((c + b)\) are squares.

 Proof: \(a^2 = (c - b)(c + b)\) is a square. By fundamental theorem of arithmetic, \(a^2 = p_1^{2n_1}p_2^{2n_2} \cdots p_j^{2n_j}\). Since \((c - b)\) and \((c + b)\) are relatively prime, they are squares.

Theorem

Every primitive Pythagorean triple \((a, b, c)\) with \(b\) even and \(a\) and \(c\) odd is given by the formulas \(a = st\),
\[b = \frac{-s^2 + t^2}{2},\quad c = \frac{s^2 + t^2}{2},\]
where \(t > s \geq 1\) are relatively prime odd integers.

Proof: \((c - b)\) and \((c + b)\) are relatively prime, squares, and odd, so \(c - b = s^2, c + b = t^2\) for some \(t > s \geq 1\) relatively prime odd integers. Solving for \(a, b, c\), we get \(a = st, b = \frac{-s^2 + t^2}{2}, c = \frac{s^2 + t^2}{2}\).

Lemma

Consider the a line with slope \(m\) passing through \((-1, 0)\) of the unit circle. For every \(m \in \mathbb{Q}\), we get a rational solution
\[(x, y) = \left(\frac{1 - m^2}{1 + m^2}, \frac{2m}{1 + m^2}\right)\]. Conversely, given a point \((x_i, y_i)\) with rational coordinates on the unit circle, the slope of the line through \((x_i, y_i)\) and \((-1, 0)\) is a rational number.

Theorem

Every point on the unit circle \(x^2 + y^2 = 1\) whose coordinates are rational can be obtained from the formula
\[(x, y) = \left(\frac{1 - m^2}{1 + m^2}, \frac{2m}{1 + m^2}\right)\] by substituting rationals numbers for \(m\).

Note: The exception is \((-1, 0)\) which corresponds to the vertical line.

Corollary

Writing \(m = \frac{u}{v}\) and clearing dominators, we get \((x, y) = \left(\frac{u^2 - v^2}{u^2 + v^2}, \frac{2uv}{u^2 + v^2}\right)\). Then the solution to the Pythagorean triple is \((a, b, c) = (u^2 - v^2, 2uv, u^2 + v^2)\).

Greatest Common Divisors and the Euclidean Algorithm
Definition: Greatest Common Divisor
Given \(a, b \in \mathbb{N} \), \(a, b \geq 1 \), we call \(d \in \mathbb{N} \) the greatest common divisor of \(a \) and \(b \) if the following hold:
1. \(d \mid a \) and \(d \mid b \).
2. If \(d' \mid a \) and \(d' \mid b \), then \(d' \mid d \).
Denote such \(d \) by \(\text{gcd}(a, b) \) or \((a, b) \).

Euclidean Algorithm
Given \(a, b \in \mathbb{N} \), \(a > b \), can write
\[
\begin{align*}
a &= a_1 \cdot b + r_1 \quad (\star_1) \\
b &= a_2 \cdot r_1 + r_2 \quad (\star_2) \\
r_1 &= a_3 \cdot r_2 + r_3 \quad (\star_3) \\
&\vdots \\
r_{n-3} &= a_{n-1} \cdot r_{n-2} + r_{n-1} \quad (\star_{n-1}) \\
r_{n-2} &= a_n \cdot r_{n-1} + r_n \quad (\star_n) \\
r_{n-1} &= a_{n+1} \cdot r_n + 0 \quad (\star_{n+1})
\end{align*}
\]
Proof: The algorithm terminates because \(r_i < b \) by \((\star_1)\), \(r_2 < r_1 \) by \((\star_2)\), etc. Finally, \(r_n < r_{n-1} \) by \((\star_n)\).

Claim
\(r_n \), the last non-zero remainder, gives \(\text{gcd}(a, b) \).

Proof:
1. \(r_i \mid r_{i-1} \) by \((\star_{i+1})\), \(r_j \mid r_{j-1} \) by \((\star_n)\), \(r_i \mid r_{n-1} \) by \((\star_{n-1})\), etc. So \(r_i \mid b \) by \((\star_2)\) and \(r_j \mid a \) by \((\star_1)\).
2. Suppose some \(d \mid a \) and \(d \mid b \). Then \(d \mid r_1 \) by \((\star_1)\), \(d \mid r_2 \) by \((\star_2)\), etc. Finally, \(d \mid r_n \) by \((\star_n)\).

Linear Equations
Given \(a, b, c \in \mathbb{Z} \), what are the solutions to \(ax + by = c \), \(x, y \in \mathbb{Z} \)?

Claim
Let \(S = \{ ax + by : x, y \in \mathbb{Z} \} \). Then \(S = d \mathbb{Z} \equiv \{ dz : z \in \mathbb{Z} \} \) where \(d = \text{gcd}(a, b) \).

Factorization and the Fundamental Theorem of Arithmetic

Claim
If \(p \) is prime and \(p \mid ab \), then \(p \mid a \) or \(p \mid b \).

Theorem: Prime Divisibility Property
If \(p \) is prime and \(p \mid a_1 \cdots a_r \), then \(p \mid a_j \) for some \(j = 1, \ldots, r \).

Theorem: Fundamental Theorem of Arithmetic
Any integer \(n \geq 2 \) can be factored into a product of primes (not necessarily distinct) \(n = p_1 \cdots p_r \) in a unique way (up to order of factors).
CONGRUENCES

Theorem: Linear Congruence Theorem

Let \(a, c, m \in \mathbb{Z} \) and \(g = \gcd(a, m) \).

1. If \(g \nmid c \), then the congruence \(ax \equiv c \pmod{m} \) has no solutions.
2. If \(g \mid c \), then the congruence \(ax \equiv c \pmod{m} \) has exactly \(g \) congruent solutions. They are given by
 \[x = x_0 \frac{c}{g} + km, \quad k \in \mathbb{Z} \]
 where \((x_0, y_0)\) is a solution to \(ax - my = g \).

FERMAT’S LITTLE THEOREM

Theorem: Fermat’s Little Theorem

If \(p \) is prime and \(p \nmid a \), then \(a^{p-1} \equiv 1 \pmod{p} \).

EULER’S PHI FUNCTION AND MöBIUS INVERSION FORMULA

Definition: Arithmetic Function

An arithmetic function is a complex valued function defined on \(\{1, 2, \ldots\} \).

Examples

1. Möbius function:
 \[\mu(n) = \begin{cases}
 1 & \text{if } n = 1 \\
 0 & \text{if } \exists p \text{ such that } p^2 \mid n \\
 (-1)^k & \text{if } n = p_1 \cdots p_k \text{ distinct primes}
 \end{cases} \]
2. \(f(n) = 1 \forall n \).
3. Euler’s phi function:
 \[\varphi(n) = \# \{ j \mid 1 \leq j \leq n, (j, n) = 1 \} \]
4. Von Mangoldt function:
 \[\Lambda(n) = \begin{cases}
 \log p & \text{if } n = p^\alpha \text{ for some } p \text{ and } \alpha \\
 0 & \text{otherwise}
 \end{cases} \]

Definition: Multiplicative

An arithmetic function \(f \) is called multiplicative if \(f(m \times n) = f(m) f(n) \forall (m, n) = 1 \).

Definition: Completely Multiplicative

An arithmetic function \(f \) is called completely multiplicative if \(f(m \times n) = f(m) f(n) \forall m, n \).

Note

The product of two (completely) multiplicative functions is (completely) multiplicative.

Examples

1. \(f(n) = 1 \forall n \) is multiplicative and completely multiplicative.
2. The Möbius function \(\mu \) is multiplicative but not completely multiplicative.
3. The von Mangoldt function \(\Lambda \) is not multiplicative.
Lemma
\[\sum_{d \mid n} u(d) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{otherwise} \end{cases}. \]

Theorem: Möbius Inversion Formula
Suppose \(f \) and \(g \) are arithmetic functions. Then for all \(n \),
\[f(n) = \sum_{d \mid n} g(d) \iff g(n) = \sum_{d \mid n} u(d) f\left(\frac{n}{d}\right). \]

Lemma
If \(g \) is multiplicative, then \(f(n) = \sum_{d \mid n} g(d) \) is also multiplicative.

Lemma
Euler's phi function is defined as \(\varphi(n) = \# \{ j \mid 1 \leq j \leq n, (j, n) = 1 \} \). Then
\[\varphi(n) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right). \]

Euler's Formula and Chinese Remainder Theorem

Theorem: Euler's Formula
If \((a, m) = 1 \), then \(a^{\varphi(m)} \equiv 1 \pmod{m} \).

Note
Since \(\varphi(p) = p - 1 \), Euler's Formula generalizes Fermat's Little Theorem.

Theorem: Chinese Remainder Theorem
If \((m, n) = 1 \) and \(b, c \in \mathbb{Z} \), then \(x \equiv b \pmod{m} \) and \(x \equiv c \pmod{n} \) are simultaneously satisfied for a unique \(x \) with \(0 \leq x < mn \).

Theorem
There are infinitely many primes \(p \equiv 3 \pmod{4} \).

Mersenne Primes and Perfect Numbers

Theorem
If \(a^b - 1 \) is prime for some \(a, b \geq 2 \), then \(a = 2 \) and \(b \) is prime.

Definition: Mersenne Prime
A Mersenne prime \(p \) is a prime of the form \(p = 2^a - 1 \).

Definition
Define the arithmetic function \(\sigma \) as \(\sigma(n) = \sum_{d \mid n} d \).
Definition: Perfect Number
A number \(n \) is perfect if \(\sigma(n) = 2n \).

Theorem: Euclid's Perfect Number Formula
If \(2^p - 1 \) is prime, then \(2^{p-1}(2^p - 1) \) is perfect.

Theorem: Euler's Perfect Number Theorem
Any even perfect number \(n \) is of the form \(n = 2^{p-1}(2^p - 1) \) where \(2^p - 1 \) is a Mersenne prime.

Conjectures
1. There are no odd perfect numbers.
2. There are infinitely many Mersenne primes.

Theorem (Lagrange)
If \(p \) is prime, and \(f(x) = \sum_{j=0}^{n} a_j x^j \) with \((a_j, p) = 1 \), then \(f(x) \equiv 0 \pmod{p} \) has at most \(n \) incongruent solutions modulo \(p \).

POWERS MODULO \(m \) AND SUCCESSIVE SQUARING

Algorithm
To compute \(a^k \pmod{m} \),
1. Write \(k \) as sums of powers of 2 (binary expansion); so \(k = u_0 + u_1 2 + \cdots + u_r 2^r \) where each \(u_i = 0 \) or \(1 \).
2. Make a table of powers of \(a \pmod{m} \) using successive squaring: \(a^2 = A_1, A_2, \ldots, A_r \).
3. \(a^k = A_{u_1}^2 A_{u_2} A_{u_3} \pmod{m} \).

COMPUTING \(k \)th ROOTS MODULO \(m \)
Find \(x \) such that \(x^k \equiv b \pmod{m} \).

Algorithm
Assume \(\gcd(b, m) = 1 \) and \(\gcd(k, \phi(m)) = 1 \). To solve \(x^k \equiv b \pmod{m} \),
1. Compute \(\phi(m) \).
2. Find positive integers \(u \) and \(v \) such that \(ku - \phi(m)v = 1 \).
3. Compute \(b^u \pmod{m} \) by successive squaring.

POWERS, ROOTS, AND "UNBREAKABLE" CODES

Setup
1. Choose two large primes \(p \) and \(q \).
Introduction to Number Theory

2. Compute \(m = pq \) and \(\phi(m) = (p-1)(q-1) \).
3. Choose \(k \) such that \(\gcd(k, \phi(m)) = 1 \).
4. Publish \(k \) and \(m \).

Encryption
1. Convert message into a string of digits.
2. Break the string of digits into numbers less than \(m \). So the message is a list of numbers \(a_1, \ldots, a_r \).
3. Use successive squaring to compute \(b_i = a_i^k \mod m \) for each \(i = 1, \ldots, r \). The list \(b_1, \ldots, b_r \) is the encrypted message.

Decryption
1. Given the list \(b_1, \ldots, b_r \), solve \(x^k = b_i \mod m \).
2. Since \(\phi(m) \) is known, the original message \(a_1, \ldots, a_r \) can be recovered easily.

PRIMALITY TESTING AND CARMICHAEL NUMBERS

Definition: Witness
A number \(a \) is a witness for \(n \) if \(a^n \not\equiv a \mod n \).

Note
By Fermat's Little Theorem, if \(p \) is prime, \(a^p \equiv a \mod p \) for all \(a \). Hence, if \(n \) prime, \(n \) has no witnesses.

Definition: Carmichael Number
A Carmichael number is a composite number which has no witnesses.

Claim
1. Every Carmichael number \(n \) is odd.
2. Every Carmichael number is a product of distinct primes.

Theorem: Korselt's Criterion for Carmichael Numbers
\(n \) is Carmichael if and only if the following three conditions hold:
1. \(n \) is odd.
2. For all primes \(p|n, \quad p^2 \not| n \).
3. For all primes \(p|n, \quad (p-1) \not| (n-1) \).

Definition: Primitive Root
A primitive root of a number \(n \) is a number \(g \) such that \(g^j \not\equiv 1 \mod n \) \(\forall 1 \leq j \leq \phi(n)-1 \).

Lemma
Any prime number has a primitive root.

Lemma
Let \(p \) be an odd prime. Write \(p-1 = 2^k q \) where \(q \) is odd. Let \(\gcd(a, p) = 1 \). Then (at least) one of the following is true:
1. \(a^2 \equiv 1 \mod p \).
2. One of the numbers \(a^q, a^{2q}, q^q, \ldots, a^{2^{k-1}q} \) is congruent to \(-1\) modulus \(p \).
Theorem: Rabin-Miller Test for Composite Numbers
Let n be an odd integer and write $n - 1 = 2^k q$ with q is odd. If both of the following are true for some a not divisible by n, then n is composite:
1. $a^q \not\equiv 1 \pmod{p}$.
2. $a^{2^i q} \not\equiv -1 \pmod{n}$, $\forall 0 \leq i \leq k - 1$.

Definition: Rabin-Miller Witness
A Rabin-Miller witness for n is a number a for which the Rabin-Miller test proves n is composite.

Notes
- If p is prime, then p has no Rabin-Miller witnesses.
- If n is odd and composite, at least 75% of all numbers between 1 and $n - 1$ are Rabin-Miller witnesses for n.
- If the Generalized Riemann Hypothesis holds, Rabin-Miller can provide primality testing in polynomial time.

Powers Modulo p and Primitive Roots

Definition: Order
Let a and n be positive integers with $(a, n) = 1$. The least positive integer d such that $a^d \equiv 1 \pmod{n}$ is called the order of a modulo n, and a is said to belong to d.

Note
By Euler's formula, the order exists and is at most $\phi(n)$. In fact, the order d divides every k such that $a^k \equiv 1 \pmod{n}$.

Definition: Primitive Root
A primitive root modulo n is a number that belongs to $\phi(n)$.

Notation
$e_n(a)$ is the smallest exponent $e \geq 1$ such that $a^e \equiv 1 \pmod{n}$.

Lemma
\[n = \sum_{d \mid n} \phi(d). \]

Lemma
Let p be prime. For each $d \mid p - 1$, let $\psi(d)$ denote the number of a’s with $1 \leq a \leq p - 1$ and $e_p(a) = d$ (in particular, $\psi(p - 1)$ is the number of primitive roots modulo p). Then $\psi(d) = \phi(d) \forall d \mid p - 1$.

Theorem
Every prime p has a primitive root. More precisely, there are exactly $\phi(p - 1)$ primitive roots.

Artin’s Conjecture
2 is a primitive root for infinitely many primes.
Generalized Artin's Conjecture
Let $a \neq 1$ and not a perfect square. Then there are infinitely many primes p such that a is a primitive root modulo p.

Theorem
There are at most three numbers which are not primitive roots for infinitely many primes.

Claim
Let p be an odd prime; let g be a primitive root modulo p. Then there exists $x \in \mathbb{Z}$ such that $g' \equiv g + px$ is a primitive root modulo p' for all $j \geq 1$.

Theorem
n has a primitive root if and only if $n = 2$ or $n = 4$ or $n = p^j$ or $n = 2p^j$ where p is an odd prime and $j \geq 1$.

PRIMITIVE ROOTS AND INDICES

Definition: Index
Let g be a primitive root modulo p. Then g, g^2, \ldots, g^{p-1} represent all numbers $1, 2, \ldots, p-1 \pmod{p}$, i.e. for all $1 \leq a \leq p-1$, $a \equiv g^k \pmod{p}$ for a unique $k \pmod{p-1}$. Define $I(a) = k$ to be the index of a modulo p for the base g.

Theorem: Index Rules
- Product rule: $I(ab) \equiv I(a) + I(b) \pmod{p-1}$.
- Power rule: $I(a^k) \equiv kI(a) \pmod{p-1}$.

SQUARES MODULO p
Look at $x^2 \equiv a \pmod{p}$.

Note
$(p-b)^2 \equiv b \pmod{p}$.

Definition: Quadratic Residue, Quadratic Non-Residue
Let p be odd. A quadratic residue modulo p (QR) is a number congruent to a square modulo p. A quadratic non-residue modulo p (NR) is a number not congruent to a square modulo p.

Theorem
Let p be an odd prime. Then there are exactly $\frac{p-1}{2}$ quadratic residues modulo p and $\frac{p-1}{2}$ quadratic non-residues modulo p.

Note
Let g be a primitive root modulo p. Then $g^2, g^4, \ldots, g^{p-1}$ are quadratic residues modulo p and g, g^3, \ldots, g^{p-2} are quadratic non-residues modulo p.

9 of 16
Theorem
Let \(p \) be an odd prime. Then
1. The product of two quadratic residues modulo \(p \) is a quadratic residue modulo \(p \).
2. The product of a quadratic residue modulo \(p \) and a quadratic non-residues modulo \(p \) is a quadratic non-residue modulo \(p \).
3. The product of two quadratic non-residues modulo \(p \) is a quadratic residue modulo \(p \).

Definition: Legendre Symbol
\[
\left(\frac{a}{p} \right) = \begin{cases}
1 & \text{if } a \text{ is a QR } \mod p \\
-1 & \text{if } a \text{ is a NR } \mod p
\end{cases}
\]

Theorem
If \(p \) is an odd prime, then
\[
\left(\frac{a}{p} \right) \left(\frac{b}{p} \right) = \left(\frac{ab}{p} \right).
\]

Note
By Fermat's Little Theorem, \(a^{p-1} \equiv 1 \pmod{p} \). Then \(\left(\frac{a^{p-1}}{a} \right)^2 \equiv 1 \pmod{p} \), so \(a^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p} \).

Theorem: Euler's Criterion
Let \(p \) be an odd prime. Then \(a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p} \right) \pmod{p} \).

Theorem: Special Case of Quadratic Reciprocity
\[
\left(\frac{-1}{p} \right) = \begin{cases}
1 & \text{if } p \equiv 1 \pmod{4} \\
-1 & \text{if } p \equiv -1 \pmod{4}
\end{cases}
\]

Theorem
There are infinitely many primes \(p \equiv 1 \pmod{4} \).

Quadratic Reciprocity

Definition: Numerically Least Residue
Given \(a \in \mathbb{Z} \) and \(n \geq 1 \), define the numerically least residue of \(a \pmod{n} \) as that integer \(a' \) such that \(a \equiv a' \pmod{n} \) and \(-\frac{1}{2} n < a' \leq \frac{1}{2} n \).

Lemma: Gauss's Lemma
Let \(p \) be an odd prime and \((a, p) = 1 \). Let \(a_j \) be the numerically least residue of \(a \cdot j \pmod{p} \) for \(j = 1, 2, \ldots \). Then \(\left(\frac{a}{p} \right) = (-1)^l \) where \(l \) is the number of \(1 \leq j \leq \frac{1}{2} (p-1) \) such that \(a_j < 0 \).

Theorem: Law of Quadratic Reciprocity
If p and q are distinct odd primes, then
\[
\left(\frac{1}{q}\right)
\left(\frac{q}{p}\right) = (-1)^{\frac{3}{2}(p-1)(q-1)},
\]
i.e.
\[
\left(\frac{p}{q}\right) = \begin{cases}
-1, & \text{if } p \equiv q \equiv 3 \pmod{4} \\
\left(\frac{q}{p}\right), & \text{otherwise}
\end{cases}
\]

Corollary
\[
\left(\frac{2}{p}\right) = (-1)^{\frac{p-1}{2}},
\]
i.e. 2 is a QR if $p \equiv \pm 1 \pmod{8}$, 2 is a NR if $p \equiv \pm 3 \pmod{8}$.

Jacobi Symbol: A Generalization of Legendre Symbol
Let n be odd, $n = p_1 \cdots p_r$ (not necessarily distinct). Let
\[
\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right) \cdots \left(\frac{a}{p_r}\right)
\]
where the symbols on the right hand side are Legendre symbols. If $n = 1$, define
\[
\left(\frac{a}{n}\right) = 1 \quad \text{for all } a.
\]
If $\left(\frac{a}{n}\right) \neq 1$, define
\[
\left(\frac{a}{n}\right) = 0.
\]

Properties of the Jacobi Symbol
1. If $a \equiv a' \pmod{n}$, then $\left(\frac{a}{n}\right) = \left(\frac{a'}{n}\right)$.
2. $\left(\frac{a}{n}\right) = 1$ does not imply a is a QR modulo n.
3. $\left(\frac{a}{n}\right) = -1$ does imply a is a NR modulo n.
4. If $\left(\frac{a}{b}\right) = 1$, then $\left(\frac{ab}{n}\right) = \left(\frac{a}{n}\right) \left(\frac{b}{n}\right)$.
5. If $\left(\frac{a}{m}\right) = 1$ and m, n odd, then $\left(\frac{a}{mn}\right) = \left(\frac{a}{m}\right) \left(\frac{a}{n}\right)$.
6. $\left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}}$, $\left(\frac{2}{n}\right) = (-1)^{\frac{n-1}{4}}$.
7. If m, n odd and $\left(\frac{m}{n}\right) = 1$, then $\left(\frac{mn}{n}\right) = (-1)^{\frac{1}{2}(n-1)(n-1)}$.

Which Numbers Are Sums of Two Squares?

Lemma
Let p be a prime. Then p can be written as $p = a^2 + b^2$ if and only if $p = 2$ or $p \equiv 1 \pmod{4}$.

Theorem
Let $n \in \mathbb{N}$. Then n can be written as $n = a^2 + b^2$ if and only if every prime divisor p of n with $p \equiv 3 \pmod{4}$ appears to an even power in the standard factorization of n.

Corollary
A number c is the hypotenuse of a primitive Pythagorean triple if and only if c is a product of primes, each of which is congruent to 1 modulo 4.
Theorem: Lagrange
Every natural number is the sum of 4 squares.

Theorem: Legendre, Gauss
\(n \) is the sum of 3 squares if and only if \(n \neq 4^j (8k + 7) \), \(j, k \in \mathbb{N} \).

Theorem
Every natural number is the sum of 3 triangular numbers, 5 pentagonal numbers, 6 hexagonal numbers, etc.

Theorem: Waring's Problem (proved by Hilbert)
Every natural number can be written as a sum of 9 cubes, 19 biquadrates, etc.

Theorem: Fermat' Last Theorem for Exponent 4
The equation \(x^4 + y^4 = z^2 \) has no solutions in positive integers.

Square-Triangular Numbers

Example
Are there squares that are triangular numbers? Yes! 1 and 36.

Theorem
1. Every solution to \(x^2 - 2y^2 = 1 \) is obtained by raising \(3 + 2\sqrt{2} \) to powers, i.e. the solutions \((x_k, y_k) \) can be found by multiplying out \(x_k + y_k\sqrt{2} = (3 + 2\sqrt{2})^k \), \(k = 1, 2, \ldots \).

2. Every square-triangular number \(n^2 = \frac{m(m+1)}{2} \) is given by \(n = \frac{x_k - 1}{2} \), \(m = \frac{y_k}{2} \) where \((x_k, y_k) \) are solutions to \(x^2 - 2y^2 = 1 \).

Theorem: Pell's Equation Theorem
Let \(D \) be a positive integer that is not a perfect square. Then Pell's equation \(x^2 - Dy^2 = 1 \) always has solutions in positive integers. If \((x_1, y_1) \) is the solution with the smallest \(x_1 \), then every solution \((x_k, y_k) \) can be obtained by taking powers \(x_k + y_k\sqrt{D} = (x_1 + y_1\sqrt{D})^k \), \(k = 1, 2, \ldots \).

Diophantine Approximation

Theorem: Pigeonhole Principle (or Dirichlet Box Principle)
If there are more pigeons than pigeonholes, then there exists one hole that contains (at least) two pigeons.

Theorem: Dirichlet's Diophantine Approximation Theorem
Let \(D \) be a positive integer that is not a perfect square. Then there exists infinitely many pairs \((x, y) \in \mathbb{N}^2 \) such that \(|x - y\sqrt{D}| < \frac{1}{y} \).
Theorem: Dirichlet's Diophantine Approximation Theorem (version 2)
Let $\alpha > 0$ be an irrational number. Then there exists infinitely many pairs $(x, y) \in \mathbb{N}^2$ such that \[\left| \frac{x}{y} - \alpha \right| < \frac{1}{y^2}. \]

continued

Fractions and Pell’s Equation

Continued Fraction Expansion Algorithm
Given $\theta \in \mathbb{R}, \theta > 0$, let $a_0 = \lfloor \theta \rfloor$. If $\theta \neq a_0$, write $\theta = a_0 + \frac{1}{\theta_1}$ and let $a_1 = \lfloor \theta_1 \rfloor$. If $\theta \neq a_0 + \frac{1}{a_1}$, write $\theta_1 = a_1 + \frac{1}{\theta_2}$ and let $a_2 = \lfloor \theta_2 \rfloor$. Continue.

Notation
\[[a_0, a_1, \ldots, a_n] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}. \]

Definition: Convergents
Let $\theta \in \mathbb{R}, \theta > 0$. Define the n-th convergent to $b_n = \frac{b_n}{c_n} = [a_0, \ldots, a_n]$ in lowest terms.

Theorem
Let $\frac{b_n}{c_n} = [a_0, \ldots, a_n]$ (think of the a_i's as variables; want to solve for b_n and c_n). Then

- the numerators b_0, b_1, \ldots are given by the recursion formula \[\begin{cases} b_0 = a_0 \\ b_1 = a_1 a_0 + 1 \\ b_n = a_n b_{n-1} + b_{n-2}, \quad n \geq 2 \end{cases} \]
- the denominators c_0, c_1, \ldots are given by the recursion formula \[\begin{cases} c_0 = 1 \\ c_1 = a_1 \\ c_n = a_n c_{n-1} + c_{n-2}, \quad n \geq 2. \end{cases} \]

Theorem
\[b_{n-1} c_n - b_n c_{n-1} = (-1)^n \quad \text{for } n = 1, 2, \ldots. \]
Equivalently, \[\frac{b_n}{c_n} - \frac{b_{n-1}}{c_{n-1}} = (-1)^n \frac{1}{c_n c_{n-1}}. \]

Note
- $\frac{b_{n-1}}{c_{n-1}} - \frac{b_n}{c_n} = (-1)^n \frac{1}{c_n c_{n-1}}$. By the recursion formula, $c_n \to \infty$. Hence $\left(\frac{b_n}{c_n} \right)_{n=1}^\infty$ is a Cauchy sequence and therefore converges.
- Since $\theta = [a_0, \ldots, a_{n-1}, \theta_n] \forall n$ and $0 < \frac{1}{\theta_n} \leq \frac{1}{a_n}$, hence \[\frac{1}{a_n} > \frac{1}{a_{n-1}} + \frac{1}{\theta} \geq \frac{1}{a_{n-1}} + \frac{1}{a_n}, \quad \text{and so} \]
\[a_{n-2} + \frac{1}{a_{n-1}} > a_{n-2} + \frac{1}{a_{n-1}} + \frac{1}{\theta} \geq a_{n-2} + \frac{1}{a_n}. \]
By continuing to a_0, we see that θ is in between $\frac{b_n}{c_n}$ and $\frac{b_{n-1}}{c_{n-1}}$.
Therefore the sequence \(\left\{ \frac{b_n}{c_n} \right\}_{n=1}^\infty \) converges to \(\theta \).

- There exists a bijective correspondence between rational numbers and finite continued fractions. Also, there is a bijection between irrational numbers and infinite continued fractions.

Lemma

Let \(A=[a, b, b, b, \ldots] \) and \(B=[b, b, b, \ldots] \). Then \(A=a+\frac{1}{B} \) and \(B=b+\frac{1}{B} \).

Proposition

For any positive integers \(a \) and \(b \), we have \(\frac{2a-b}{2} + \frac{\sqrt{b^2+4}}{2} = [a, b, b, b, \ldots] \). In particular, \(\frac{b+\sqrt{b^2+4}}{2} = [b, b, b, \ldots] \) and \(\sqrt{a^2+1} = [a, 2a, 2a, 2a, \ldots] \).

Theorem: Periodic Continued Fractions Theorem

1. Suppose the number \(A \) has periodic continued fraction \(A=[a_1, \ldots, a_l, b_1, \ldots, b_m] \). Then \(A = \frac{r+s\sqrt{D}}{t} \) for some integers \(r, s, t, D \) with \(D > 0 \).
2. Let \(r, s, t, D \) be integers with \(D > 0 \) and \(D \) not a square. Then the number \(\frac{r+s\sqrt{D}}{t} \) has a periodic continued fraction.

Theorem

Let \(D \in \mathbb{Z}, D > 0 \), and \(D \) not a square. Let \(\sqrt{D} = [a, b_1, \ldots, b_m] \). Let \(\frac{B}{Y} = [a, b_1, \ldots, b_{m-1}] \). Then \((\beta, y) \) is the smallest solution in positive integers to Pell's Equation \(x^2 - Dy^2 = (-1)^m \).

Theorem

Let \(\sqrt{D} = [a, b_1, \ldots, b_m] \). Let \(\frac{B}{Y} = [a, b_1, \ldots, b_{m-1}] \). Then the smallest solution in positive integers to Pell's Equation \(x^2 - Dy^2 = 1 \) is given by \((x_1, y_1) = \begin{cases} (\beta, y) & \text{if } m \text{ even} \\ (\beta^2 + y^2D, 2\beta y) & \text{if } m \text{ odd} \end{cases}\).

IRRATIONAL AND TRANSCENDENTAL NUMBERS

Definition: Rational Number

A number \(x \) is rational if \(ax + b = 0 \) for some \((a, b) \in \mathbb{Z}, a^2 + b^2 > 0 \).

Definition: Algebraic Number

A number \(x \) is algebraic if there exists a polynomial \(P \) with integer coefficients such that \(P(x) = 0 \).

Definition: Transcendental Number

A number \(x \) is transcendental if it is not algebraic.
Note
The real numbers are uncountable, i.e. there is no bijection between \(\mathbb{N} \) and \(\mathbb{R} \). On the other hand, the set of algebraic numbers is countable because the set of finite tuples \((a_1, \ldots, a_j) \) is countable. Hence there exists transcendental numbers (in fact, uncountably many).

Lemma
\(\sqrt{2} \) is irrational.

Theorem: Liouville's Inequality
Let \(\alpha \) be a root of the polynomial \(f(x) = c_0 x^d + c_1 x^{d-1} + \cdots + c_{d-1} x + c_d \) with integer coefficients. Let \(D > d \). Then there are only finitely many rationals \(\frac{a}{b} \) such that \(\left| \frac{a}{b} - \alpha \right| \leq \frac{1}{b^D} \).

Note: Equivalent formulation is that there is a constant \(K_D \) such that \(\left| \frac{a}{b} - \alpha \right| \leq \frac{K_D}{b^D} \) for all \(\frac{a}{b} \in \mathbb{Q} \).

Lemma
Let \(\beta = \sum_{n=1}^{\infty} \frac{1}{10^n} \). Then for all \(D > 1 \) there are infinitely many rationals \(\frac{a}{b} \) such that \(\left| \frac{a}{b} - \beta \right| \leq \frac{1}{b^D} \).

Corollary
\(\beta \) is transcendental.

Binomial Coefficients and Pascal’s Triangle

Theorem
Let \(p \) be a prime. Then
1. \(\binom{p}{k} \equiv \begin{cases} 1 \pmod{p} & \text{if } k = 0 \text{ or } k = p \\ 0 \pmod{p} & \text{if } 1 \leq k \leq p-1 \end{cases} \)
2. \((A+B)^p \equiv A^p + B^p \pmod{p} \).

Fibonacci Numbers
Definition: Fibonacci Numbers
\(F_1 = 1 \), \(F_2 = 1 \), \(F_n = F_{n-1} + F_{n-2} \) for \(n \geq 2 \).

Theorem: Binet's Formula
\(F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right) \).

Note
\([T] = [1,1,\ldots] = \frac{1 + \sqrt{5}}{2} \). The \(n \)-th convergent is \(\frac{F_{n+1}}{F_n} \).
 GENERATING FUNCTIONS AND SUMS OF POWERS

Definition: Generating Function

A sequence \(\{a_n\}_{n=0}^{\infty} \) can be “packed” into a power series \(A(x) = \sum_{n=0}^{\infty} a_n x^n \). This is called the generating function for \(\{a_n\}_{n=0}^{\infty} \).

Examples

1. \(a_n = 1 \) \(\forall n \). Then \(G(x) = \sum_{n=0}^{\infty} x^n \) is the geometric series. \(G(x) - xG(x) = 1 \), so \(G(x) = \frac{1}{1-x} \).

2. \(a_n = n \) \(\forall n \). Then \(N(x) = \sum_{n=0}^{\infty} nx^n \). By differentiating \(G(x) \) and multiplying by \(x \), we get \(N(x) = \frac{x}{(1-x)^2} \).

3. \(a_n = n^2 \) \(\forall n \). Then \(S(x) = \sum_{n=0}^{\infty} n^2 x^n \). By differentiating \(N(x) \) and multiplying by \(x \), we get \(S(x) = \frac{x^2 + x}{(1-x)^3} \).

Example

The generating function for the Fibonacci sequence is \(F(x) = \frac{x}{1-x-x^2} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right) x^n \). This gives another proof to Binet’s Formula.

Theorem

Let \(F_k(n) = 1^k + 2^k + \cdots + n^k \).

- \(F_1(n) = 1 + \cdots + n = \frac{n^2 + n}{2} \).
- \(F_{k-1}(n) = (n+1)^k - 1 - \sum_{j=0}^{k-2} \binom{k}{j} F_j(n) \) (a linear recursive formula).