Topological Spaces and Continuous Functions

TOPOLOGICAL SPACES

Definition: Topology

A topology on a set X is a collection T of subsets of X, with the following properties:

1. $\emptyset, X \in T$.
2. If $u_\alpha \in T, \alpha \in A$, then $\bigcup_{\alpha \in A} u_\alpha \in T$.
3. If $u_i \in T, i=1,\ldots,n$, then $\bigcap_{i=1}^n u_i \in T$.

The elements of T are called open sets.

Examples

1. $T=\{\emptyset, X\}$ is an indiscrete topology.
2. $T=2^X$ = set of all subsets of X is a discrete topology.

Definition: Finer, Coarser

T_1 is finer than T_2 if $T_2 \subset T_1$. T_2 is coarser than T_1.

BASIS FOR A TOPOLOGY

Definition: Basis

A collection of subsets B of X is called a basis for a topology if:

1. The union of the elements of B is X.
2. If $x \in B_1 \cap B_2$, $B_1, B_2 \in B$, then there exists a B_3 of B such that $x \in B_3 \subset B_1 \cap B_2$.

Examples

1. B is the set of open intervals (a, b) in \mathbb{R} with $a < b$. For each $x \in \mathbb{R}$, $x \in (x - \frac{1}{2}, x + \frac{1}{2})$.
2. B is the set of all open intervals (a, b) in \mathbb{R} where $a < b$ and a and b are rational numbers.
3. Let T be the collection of subsets of \mathbb{R} which are either empty or are the complements of finite sets. Note that $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$. This topology does not have a countable basis.

Claim

A basis B generates a topology T whose elements are all possible unions of elements of B. That is, the topology generated by B is the collection of arbitrary unions of the subsets of B.

Proof: Have to prove that if $u_1 \cup \cdots \cup u_n \in T$ then $u_1 \cap \cdots \cap u_n \in T$. By induction, it suffices to prove that if $u_1 \cup u_2 \in T$ then $u_1 \cap u_2 \in T$. If $x \in u_1 \cap u_2$, then there exists $u_1 = \bigcup \alpha \in A \cup B_1$ and $u_2 = \bigcup \beta \in B_2 \cap B_3$. Also there exists B_3 such that $B_3 = \bigcup \gamma \in B_3 \cap B_4$. For $y \in B_3 \cap B_4$ such that $x \in B_3 \cap B_4$, so $x \in B_{a,y}$ such that $B_{a,y} \cup B_{a,y}$. So $u_1 \cap u_2 = \bigcup \beta \in B_{a,y}$.

Examples

1. S, the standard topology on \mathbb{R}, is generated by the basis of open intervals (a, b) where $a < b$.
2. The open sets of F are complements of finite sets and \emptyset.

1 of 29
3. A basis for another topology on \(\mathbb{R} \) is given by half open intervals \((a,b)\) with \(a < b \). It generated the lower limit topology \(L \).
4. The open intervals \((a,b)\) with \(a \) and \(b \) rational is a countable basis. It generateds the same topology as \(S \).

Claim: \(S \) is finer than \(F \), and \(L \) is finer than \(S \).

Proposition
Suppose \(\beta \) and \(\beta' \) are bases for topologies \(T \) and \(T' \) on the same space \(X \). If they have the property that for every \(B \in \beta \) and \(x \in \beta \) there exists \(B' \in \beta' \) such that \(x \in B' \subseteq B \), then \(T' \) is finer than \(T \).

Proof: If \(B \in \beta \) and \(x \in \beta \), there exists \(B_x' \) such that \(x \in B_x' \subseteq B \) and \(B_x' \in \beta' \). \(B = \bigcup_{x \in B} B_x' \in T' \). So every \(B \in \beta \) is in \(T' \).

Definition: Sub-Base
A sub-base for a topology on \(X \) is a collection \(\beta \) of subsets on \(X \) satisfying \(\bigcup_{B \in \beta} B = X \).

We build a basis by taking all finite intersections of the elements of \(\beta \).

The Subspace Topology

Relative Topology
Given a topology \(T \) on \(X \) and a subset \(Y \) of \(X \), \(T \) induces a topology \(T_Y \) on \(Y \) called the relative topology.

\[T_Y = \{ t \cap Y \mid t \in T \} \]

Check that \(T_Y \) is a topology:
1. \(\emptyset = \emptyset \cap Y \), \(X = X \cap Y \).
2. Let \(S_a \in T_Y \), \(S_a \cap T_a \cap Y \). So \(\bigcup S_a = (\bigcup T_a) \cap Y \).
3. \(S_1 \cap \cdots \cap S_n = (T_1 \cap Y) \cap \cdots \cap (T_n \cap Y) = (T_1 \cap \cdots \cap T_n) \cap Y \).

Closed Sets and Limit Points

Definition: Closed
A subset \(A \subset X \) a topological space is closed if \(A^c \) is open.

Properties of Closed Sets
1. \(\emptyset \), \(X \) are closed.
2. If \(A_\beta \in \beta \in B \) is closed, then \(\bigcap_{B \in \beta} A_\beta \) is closed.
 Proof: \(\left(\bigcap_{B \in \beta} A_\beta \right)^c = \bigcup_{B \in \beta} A_\beta^c \) is open.
3. If \(A_1, \ldots, A_n \) are closed, then \(\bigcup_{i=1}^n A_i \) is closed.

Examples
Consider the standard topology on \(\mathbb{R} \).
1. Let \(x \in \mathbb{R} \). \(\{ x \} \) is closed.
2. \(I = [a, b] \) is closed.

Definition: Interior, Closure

Let \(X \) be a topological space. Let \(A \subset X \). The interior of \(A \), denoted \(\overset{\circ}{A} \), is the largest open set in \(A \). The closure \(\overline{A} \) is the smallest closed set containing \(A \).

Proposition

\(x \in \overset{\circ}{A} \) if and only if there exists an open \(U \) such that \(x \in U \subset A \).

Proof:

(\(\Rightarrow \)) \(x \in \overset{\circ}{A} \), take \(U = A \).

(\(\Leftarrow \)) If \(x \in U \subset A \), \(U \) open, then \(\overset{\circ}{A} \cup U = A \) is open and contained in \(A \). So \(U \subset \overset{\circ}{A} \) and \(x \in \overset{\circ}{A} \).

Proposition

\(x \in \overline{A} \) if and only if for all open \(U \), \(x \in U \), \(U \cap A \neq \emptyset \).

Proof:

(\(\Rightarrow \)) If \(x \in \overline{A} \), \(x \in U \) and \(U \cap A = \emptyset \), then \(U \) is closed and contains \(A \). So \(A \cap U \) is closed and contains \(A \), but \(x \notin A \cap U \) which is smaller than \(A \).

(\(\Leftarrow \)) Now suppose \(x \in U \), \(U \cap A \neq \emptyset \). Consider \(A^c \), which is open. If \(x \in A^c \), then \(A \cap A^c \neq \emptyset \). Contradiction. So \(x \in \overline{A} \).

Definition: Limit Point

Let \(A \subset X \). \(x \) is a limit point of \(A \) iff every open set \(U \), \(x \in U \), intersects \(A \) in a point different from \(x \).

Proposition

Let \(A' \) be the set of limit points of \(A \). Then \(\overline{A} = A \cup A' \).

Proposition

\(f : X \to Y \) is continuous if and only if \(f(\overline{A}) \subset \overline{f(A)} \) for all \(A \subset X \).

Proof:

(\(\Rightarrow \)) Suppose \(f \) is continuous and \(x \in \overline{A} \). To prove \(f(x) \in \overline{f(A)} \), it suffices to prove that if \(V \) is open, \(f(x) \in V \), then \(V \cap f(A) \neq \emptyset \). Now \(f^{-1}(V) \) is open and \(x \in f^{-1}(V) \) so \(f^{-1}(V) \cap A \neq \emptyset \). So \(V \cap f(A) \neq \emptyset \).

(\(\Leftarrow \)) Suppose \(C \in Y \) is closed. Then \(f(f^{-1}(C)) \subset C \), and \(f(f^{-1}(C)) \subset \overline{f(f^{-1}(C))} \subset C \). So \(f^{-1}(C) = \overline{f^{-1}(C)} \). Hence \(f^{-1}(C) \) is closed.

Lemma

\(A \) is closed if and only if \(A = \overline{A} \).

Definition: Hausdorff

A topological space \(X \) is a Hausdorff space if given any two points \(x, y \in X \), \(x \neq y \), there exists neighbourhoods \(U_x \) of \(x \), \(U_y \) of \(y \) such that \(U_x \cap U_y \neq \emptyset \).

Definition: T_1
A topological space \(X \) is a T₁ if given any two points \(x, y \in X, x \neq y \), there exists neighbourhoods \(U_x \) of \(x \) such that \(y \notin U_x \).

Proposition

If the topological space \(X \) is T₁ or Hausdorff, points are closed sets.

Continuous Functions

Definition: Continuity

Let \(X \) and \(Y \) be topological spaces. A function \(f: X \to Y \) is continuous if \(f^{-1}(U) \) is open in \(X \) for every open set \(U \) in \(Y \).

Definition: Neighbourhood

An open set containing \(x \) is called a neighbourhood of \(x \).

Definition: Continuity Pointwise

Let \(X \) and \(Y \) be topological spaces. A function \(f: X \to Y \) is continuous at \(x \in X \) iff \(f^{-1}(U(f(x))) \) contains a neighbourhood of \(x \) for all neighbourhoods \(U(f(x)) \) of \(f(x) \).

Theorem

Let \(X \) and \(Y \) be topological spaces. \(f: X \to Y \) is continuous if and only if it is continuous at every \(x \in X \).

Proof:

- \((\Rightarrow)\) Let \(x \in X \) and \(U(f(x)) \) be a neighbourhood of \(f(x) \). Then \(f^{-1}(U(f(x))) \) is a neighbourhood of \(x \).
- \((\Leftarrow)\) Let \(U \subset Y \) be open. Let \(x \in f^{-1}(U) \). Then \(f(x) \in U \), so \(f^{-1}(U) \) contains a neighbourhood \(V_x \) of \(x \).
 \[
 \bigcup_{x \in f^{-1}(U)} V_x = f^{-1}(U)
 \]
 is open.

Example

\(f(x) = \begin{cases} 0 & \text{if } x \leq 0 \\ 1 & \text{if } x \geq 0 \end{cases} \) is continuous in the lower limit topology of \(\mathbb{R} \), but not in the standard topology.

Identifying Some Continuous Function

Let \(X \) and \(Y \) be topological spaces.

1. \(\text{Id}: X \to X \) is continuous.
 Proof: \(\text{Id}^{-1}(U) = U \).
2. If \(f: X \to Y \) is continuous and \(f(x) \) is a constant function, then \(f: X \to Y \) is continuous.
3. If \(f: X \to Y \) is continuous and \(A \subset X \) has the relative topology, then \((f|A): A \to Y \) is continuous.
 Proof: \((f|A)^{-1}(U) = f^{-1}(U) \cap A \).
4. If \(f: A \to Y \) is continuous, then \(f: A \to Y \) is continuous.
5. If \(f(X) \) is given the relative topology in \(Y \) and \(f: X \to Y \) is continuous, then \(f: X \to f(X) \) is continuous.
 Proof: If \(U \) is open in \(f(X) \), there exists \(V \) open in \(Y \) such that \(U = V \cap Y \) so \(f^{-1}(U) = f^{-1}(V) \) is open.

Proposition

If \(f: X \to Y \) is continuous and \(g: Y \to Z \) is continuous, then \(g \circ f: X \to Z \) is continuous.
Proof: If U is open in Z, then $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ is open.

Proposition

Let $\pi_i, i=1,2$ be the projection on the i-th factor (so $\pi_1((y_1,y_2)=y_1$ and $\pi_2(y_1,y_2)=y_2$). The π_i's are continuous.

Proof: If U is open in Y_1, $\pi_i^{-1}(U)=U \times Y_2$ which is open.

Proposition

$f: X \to Y_1 \times Y_2$ is continuous if and only if $\pi_i \circ f = f_i$ is continuous for $i=1,2$.

Proof:

(\Rightarrow) f and π_i are continuous, so $\pi_i \circ f$ is continuous.

(\Leftarrow) $\pi_i \circ f$ is continuous means given U_i, $(\pi_i \circ f)^{-1}(U_i)$ is open, but $f^{-1}(U_1 \times U_2)=(\pi_1 \circ f)^{-1}(U_1) \cap (\pi_2 \circ f)^{-1}(U_2)$ is open (using basis, etc.).

Proposition

The product topology is the coarsest topology with the property that $f: X \to Y_1 \times Y_2$ is continuous if and only if $f_i: X \to Y_i$ is continuous.

Proof: $\text{Id}: Y_1 \times Y_2 \to Y_1 \times Y_2$ is continuous. So $\pi_i \circ \text{Id}$ is continuous if U_1 is open in Y_1 and U_2 is open in Y_2. Now $U_1 \times Y_2$ is open in $Y_1 \times Y_2$ and $Y_1 \times U_2$ is open in $Y_1 \times Y_2$.

Proposition

$f: X \to Y$ is continuous if and only if $f^{-1}(C)$ is closed for all closed C in Y.

Proof: $f^{-1}(C) = [f^{-1}(C)^c]^c$.

Definition: Homeomorphism

A 1-1 onto map $f: X \to Y$ whose inverse $f^{-1}: Y \to X$ is also continuous is called a homeomorphism. X and Y are said to be homeomorphic.

Proposition

Suppose X is Hausdorff or T_1, and x is a limit point of X. Then any neighbourhood U of x contains infinitely many distinct points of X.

Proof: Suppose U is a neighbourhood of x, and U has only n distinct points x_1,\ldots,x_n where $x_i \neq x$. Then there exists U_i, a neighbourhood of x such that $x_i \notin U_i$. Then $U \cap U_1 \cap \cdots \cap U_n$ is a neighbourhood of x and $U \cap U_1 \cap \cdots \cap U_n$ has only x in it. Contradiction.

Definition: Convergence of Sequences

The sequence $x_i, i \in \mathbb{N}$ converges to x in X if for any neighbourhood U of x, there exists N such that $x_i \in U$ for all $i > N$. x is called a limit point of $x_i, i \in \mathbb{N}$, written as $\lim x_i = x$ or $x_i \to x$.

Proposition

If X is Hausdorff, then the limit points are unique; that is, if $x_i \to x$ and $x_i \to y$, then $x = y$.

5 of 29
Proof: Assume otherwise. Then there exists neighbourhoods \(U_x \) of \(x \) and \(U_y \) of \(y \) such that \(U_x \cap U_y = \emptyset \). So \(x_i, i \in \mathbb{N} \) can't converge to both \(x \) and \(y \).

Proposition

Suppose \(X \) is Hausdorff and \(x \to x \). Then \(\{ x \} \) is closed.

Proposition

Suppose \(x \in X \) and \(x \) is not a limit point of \(X \), then \(\{ x \} \) is open.

Definition: Open Cover

Let \(U_\alpha, \alpha \in A \) be open sets in \(X \). Then \(\bigcup \alpha \in A U_\alpha \) is called an open cover if \(X = \bigcup \alpha \in A U_\alpha \).

Proposition

Let \(f: X \to Y \) be a function. Let \(U_\alpha, \alpha \in A \) be an open cover. Then \(f \) is continuous if and only if \(f|U_\alpha \) is continuous for all \(\alpha \in A \).

Proof: Suppose \(f|U_\alpha \) is continuous for all \(\alpha \in A \) and \(V \subset Y \) is open. Then \(f^{-1}(V) = \bigcup \alpha \in A (f|U_\alpha)^{-1}(V) \).

\((f|U_\alpha)^{-1}(V) \) is open in \(U_\alpha \), so it is open in \(X \). Hence \(f^{-1}(V) \) is open in \(X \).

Pasting Lemma

Suppose \(A, B \subset X \) are closed, \(f: A \to Y \) and \(g: B \to Y \), and \(f=g \) on \(A \cap B \). Let \(h \) be defined on \(A \cup B \), \(h=f \) on \(A \) and \(h=g \) on \(B \). Then \(h:A \cup B \to Y \) is continuous.

Proof: Let \(C \subset Y \) be closed. \(g^{-1}(C) \) is closed in \(B \) and \(f^{-1}(C) \) is closed in \(A \), so \(h^{-1}(C) = f^{-1}(C) \cup g^{-1}(C) \) is closed since \(A \cup B \) is closed.

Proposition

\(f: X \to Y \) is continuous if and only if \(f^{-1}(U) \) is open for every element \(U \) of a basis \(B \) of the topology on \(Y \).

Proof: If \(U \) is open in \(Y \), then \(U = \bigcup \alpha \in A V_\alpha \) for some collection \(V_\alpha \) of basis elements in \(B \). Then \(f^{-1}(U) = f^{-1}(\bigcup \alpha \in A V_\alpha) = \bigcup \alpha \in A f^{-1}(V_\alpha) \), which is an union of open sets, so open.

The Product Topology

Examples: Product Spaces

1. \(X, Y \) sets. \(X \times Y = \{(x, y) | x \in X, y \in Y \} \).
2. \(X_\alpha \) sets indexed by \(\alpha \in A \). The product \(\prod \alpha \in A X_\alpha \) is functions from \(A \) to \(X_\alpha \) such that \(\alpha \) goes into \(X_\alpha \).

Definition: Product Topology

Let \(X, Y \) be sets with topologies \(T_X \) and \(T_Y \). We define a topology \(T_{X \times Y} \) on \(X \times Y \) called the product topology by taking as basis all sets of the form \(U \times W \) where \(U \in T_X \) and \(W \in T_Y \).
Note: $\bigcup_{\alpha \in A} X_\alpha \times \bigcup_{\beta \in B} Y_\beta = \bigcup_{(\alpha, \beta) \in A \times B} X_\alpha \times Y_\beta$. So a basis for T_X and a basis for T_Y generate a basis for $T_{X \times Y}$.

Examples

1. Standard \times standard on \mathbb{R}^2; basis is open rectangles.
2. Standard \times standard \times standard on \mathbb{R}^3; basis is open cubes.

Definition: Box Topology

Let $X_\alpha, \alpha \in A$ be topological spaces. A basis of open sets of a topology on $\prod_{\alpha \in A} X_\alpha$ is $\prod_{\alpha \in A} U_\alpha$ where U_α is open in X_α. The topology it generates is called the box topology.

Note: If we allow $U_\alpha \neq X_\alpha$ for finitely many $\alpha \in A$, we get the product topology.

Remarks

- Box topology is finer than the product topology.
- For fixed $a \in A$, $\pi_a: \prod X_\alpha \rightarrow X_a$ is continuous.

Proposition

The product topology is the unique topology with the property that $f: Y \rightarrow \prod_{\alpha \in A} X_\alpha$ is continuous if and only if $\pi_a \circ f: Y \rightarrow X_a$ is continuous for each $a \in A$.

Proposition

If $X_\alpha, \alpha \in A$ are Hausdorff, so is $\prod_{\alpha \in A} X_\alpha$ with the product or box topology.

Proof: If $x, y \in \prod_{\alpha \in A} X_\alpha$ and $x \neq y$, then $x_\alpha \neq y_\alpha$ for some $\alpha \in A$. Let U_x and U_y be open sets in X_α such that $x_\alpha \in U_x$ and $y_\alpha \in U_y$ and $U_x \cap U_y = \emptyset$. Then $U_x \times \prod_{\alpha \neq \alpha_0} X_\alpha$ and $U_y \times \prod_{\alpha \neq \alpha_0} X_\alpha$ separate x and y.

Proposition

If $A_\alpha \subseteq X_\alpha$ is closed, so is $\prod_{\alpha \in A} A_\alpha \subseteq \prod_{\alpha \in A} X_\alpha$.

Proof: Let $x \in (\prod_{\alpha \in A} A_\alpha)^c$. Then $x_\alpha \in (A_\alpha)^c$ for some α_0. So $x \in (A_{\alpha_0})^c \times \prod_{\alpha \neq \alpha_0} X_\alpha = (\prod_{\alpha \in A} A_\alpha)^c$ is an open set.

The Metric Topology

Definition: Metric

A metric on a set X is a function $d: X \times X \rightarrow \mathbb{R}_+$ such that for all $x, y, z \in X$:

1. $d(x, y) = d(y, x)$.
2. $d(x, y) = 0$ iff $x = y$.
3. $d(x, y) + d(y, z) \geq d(x, z)$ (triangle inequality).

Definition: Metric Space

A metric space is a set X with a distance function d.

7 of 29
Definition: Open Ball
The open ball of radius $r > 0$ around $x \in X$ is $B_r(x) = \{ y \in X | d(x, y) < r \}$.

Lemma
If $y \in B_s(x)$, then $B_y(s) \subset B_s(x)$ for $s < r - d(x, y)$.
Proof: If $z \in B_y(s)$, then $d(x, z) \leq d(x, y) + d(y, z) < d(x, y) + s < d(x, y) + r - d(x, y) = r$.

Proposition
The open balls are a basis of a topology on X.
Proof: Let $z \in B_s(x) \cap B_t(y)$. Let $\epsilon = \min(r - d(x, z), s - d(y, z))$. Then $B_\epsilon(z) \subset B_s(x) \cap B_t(y)$.

Example
Let X be any non-empty set. Set $d(x, y) = 1$ if $x \neq y$ for all $x, y \in X$, and $d(x, x) = 0$. Then $B_1(x) = \{ x \}$. This metric generates the discrete topology.

Definition: Metrizable
A topological X is metrizable if there exists a metric d on set X that induces the topology of X.

Proposition
A metric space is Hausdorff.
Proof: If $x \neq y$, then $d(x, y) > 0$. So $B_{d(x, y)}/3(x) \cap B_{d(x, y)}/3(y) = \emptyset$, since if $z \in B_{d(x, y)}/3(x) \cap B_{d(x, y)}/3(y)$ then $d(x, z) < 1/3 d(x, y)$ and $d(y, z) < 1/3 d(x, y)$, but $d(x, y) \leq d(x, z) + d(z, y) < 2/3 d(x, y)$, so contradiction.

Examples
• If X has at least 2 points, then the indiscreet topology is not metrizable.
• The topology F (complements of finite sets on \mathbb{R}) is not Hausdorff and not metrizable.

Example
On \mathbb{R}, $d(x, y) = |x - y|$ is a metric on \mathbb{R} which gives the standard topology.

Proposition
If d_1 and d_2 are metrics on X, and for each $x \in X$, $r_1, r_2 \in \mathbb{R}$, there exists $s_1, s_2 \in \mathbb{R}$ such that $B_{r_1}(x) \subset B_{s_1}(x)$ and $B_{r_2}(x) \subset B_{s_2}(x)$, then these two metrics generate the same topologies.

Proposition
If d_1 and d_2 are metrics on X and there exists $c_1, c_2 > 0$ such that $c_1 d_1(x, y) \leq d_2(x, y) \leq c_2 d_1(x, y)$ for all $x, y \in X$, then these two metrics generate the same topologies.
Definition: Bounded
A metric space X is bounded (or has finite diameter) if there exists $k > 0$ such that $d(x, y) \leq k$ for all $x, y \in X$.

Constructing a Bounded Metric
Start with a metric d on X. We can produce a new metric with diameter 1 which gives it the same topology. Let $\tilde{d}(x, y) = \min\{d(x, y), 1\}$. Then $B_d^\delta(y) \subseteq B_1^\delta(x)$ and $B_1^\delta(y) \subseteq B_d^\delta(x)$, so the topologies are the same. \tilde{d} gives the standard bounded metric.

Example: Uniform Topology
If $X_\alpha, \alpha \in A$ are bounded metric spaces with bounded diameters (say ≤ 1), then $\prod X_\alpha$ has $d(x, y) = \sup_\alpha d(x_\alpha, y_\alpha)$.

This gives the uniform topology.

Remark
The Sequence Lemma is true if X satisfies the First Countability Axiom: For any $x \in X$, there exists $U_x, n \in \mathbb{N}$ open neighborhoods of x such that if V is a neighborhood of x, $V \supseteq U_x$ for some $n \in \mathbb{N}$.

Theorem
Let X be a metric space. Then $f : X \to Y$ is continuous if and only if $f(x_n) \to f(x)$ whenever $x_n \to x$.

Definition: Uniform Convergence
Let X and Y be metric spaces. $f_n: X \to Y$ converges uniformly to $f: X \to Y$ if given $\varepsilon > 0$ there exists $N > 0$ such that for all $n > N$, $d (f_n(x), f(x)) < \varepsilon$ for all $x \in X$.

Proposition

Let X and Y be metric spaces. If $f_n: X \to Y$ converges uniformly to $f: X \to Y$ and f_n continuous, then f is continuous.

Proof: Given $x_0 \in X$ and $\varepsilon > 0$, we have to find $\delta > 0$ such that $d (f(x_0), f(y)) < \varepsilon$ whenever $d(x_0, y) < \delta$. Find $N > 0$ such that $d (f(x_i), f_n(x_i)) < \frac{\varepsilon}{3}$ for all $n > N$ and all $x_i \in X$. Now fix $n > N$. f_n is continuous, so there exists $\delta > 0$ such that $d(x_0, y) < \delta \Rightarrow d(f_n(x_0), f_n(y)) < \frac{\varepsilon}{3}$. So

$$d(f(x_0), f(y)) \leq d(f(x_0), f_n(x_0)) + d(f_n(x_0), f_n(y)) + d(f_n(y), f(y)) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

The Quotient Topology

Definition: Quotient Map

Let X and Y be topological spaces and $f: X \to Y$ a continuous surjective (onto) map. Then f is a quotient map if moreover $f^{-1}(U) \subseteq X$ is open if and only if $U \subseteq Y$ is open.

Definition: Open Map

$f: X \to Y$ is open iff $f(U) \subseteq Y$ is open for all open $U \subseteq X$.

Proposition

$\pi: X \times Y \to X$ is an open map.

Proof: Let $U \subseteq X \times Y$ be open. Then $U = \bigcup_{i \in I} (U_i \times V_i)$, so $\pi(U) = \bigcup_{i \in I} U_i$ which is open in X.

Proposition

If $f: X \to Y$ is continuous, surjective, and open, then f is a quotient.

Proof: If $f^{-1}(U) \subseteq X$ is open, then $U = f(f^{-1}(U))$ is open in Y.

Definition: Equivalence Relation

A equivalence relation on a set X, (X, \sim), satisfy:

1. $x \sim y \Leftrightarrow y \sim x$,
2. $x \sim x$,
3. $x \sim y, y \sim z \Rightarrow x \sim z$,

for all $x, y, z \in X$.

Note: X is partitioned into equivalent classes. X/\sim is the set of equivalent classes.

Remark

Let $f: X \to Y$ be surjective. Let $x_1 \sim x_2 \Leftrightarrow f(x_1) = f(x_2)$. Then X/\sim is in 1-1 correspondence with Y.

10 of 29
Proposition
Given \((X, \sim) \), there is a unique topology on \(X/\sim \) which makes the natural map \(f : X \to X/\sim \) a quotient map and \(X/\sim \) a quotient space.

Proof: \(U \subset X/\sim \) is open if and only if \(f^{-1}(U) \) is open in \(X \).

Lemma
Let \(\{0,1\} \) have the topology \(\{\emptyset, \{0\}, \{0,1\}\} \). Let \(U \subset X \) be open. Then \(\Phi : X \to \{0,1\}, \Phi(x) = \begin{cases} 0 & \text{if } x \in U \\ 1 & \text{if } x \in U^c \end{cases} \) is continuous.

Proposition
Let \(f : X \to Y \) be surjective and continuous. Then \(f \) is a quotient map if and only if given \(g : Y \to Z \), \(g \) is continuous if and only if \(g \circ f \) is continuous for all \(g \) and \(Z \).

Proof:
\((\Rightarrow)\) Suppose \(f \) is a quotient map. Assume \(g : Y \to Z \) is continuous, so \(g^{-1}(V) \subset Y \) open for all \(V \subset Z \), and so \((g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) \subset X \) is open since \(f \) is continuous. Assume \(g \circ f \) is continuous, so \((g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) \subset X \) is open, and so \(g^{-1}(V) \subset Y \) is open since \(f \) is open.

\((\Leftarrow)\) It remains to show that if \(f^{-1}(V) \) is open in \(X \), then \(V \) is open in \(Y \). Let \(\Psi : Y \to \{0,1\}, \Psi(y) = \begin{cases} 0 & \text{if } y \in V \\ 1 & \text{if } y \in V^c \end{cases} \). \(\Psi \) is continuous if and only if \(\Psi \circ f \) is continuous, which it is since \(f^{-1}(V) \) is open.

Proposition
Let \(f : X \to Y \). Let \(\sim \) be the equivalence relation of \(X \) where \(x_1 \sim x_2 \iff f(x_1) = f(x_2) \). Then \(f \) is continuous if and only if the natural map \(\hat{f} : X/\sim \to Y \) is continuous.

Proposition
If \(f : X \to Y \) is a quotient map, then \(\hat{f} : X/\sim \to Y \) is a homeomorphism.

Proof: \(\hat{f} \) is 1-1, onto, and continuous (since \(f \) is continuous). Let \(\rho : X \to X/\sim \), which is continuous. Then \(\hat{f}^{-1} \circ \rho = \rho \) is continuous, and \(\hat{f}^{-1} \) is continuous since \(f \) is a quotient map.

Definition: Retraction
Let \(A \subset X \) and \(f : X \to A \). If \(f|A = Id_A \) and \(f \) is continuous, then \(f \) is called a retraction.

Proposition
A retraction is a quotient map.

Proof: If \(U \) is open in \(A \), \(f^{-1}(U) \) is open in \(X \) since \(f \) is continuous. It remains to show that if \(f^{-1}(U) \) is open in \(X \), then \(U \) is open in \(A \). Now \(U = f^{-1}(U) \cap A \) since \(f|A = Id_A \), so \(U \) is open in \(A \) since it is the intersection of an open set in \(X \) with \(A \).

Connectedness and Compactness
Definition: Separation

Let \(X \) be a topological space. A separation of \(X \) is a pair of nonempty open sets, \(U_1 \) and \(U_2 \), such that \(U_1 \cup U_2 = X \) and \(U_1 \cap U_2 = \emptyset \).

Definition: Connected

\(X \) is connected if there is no separation of \(X \).

Theorem

If \(f : X \to Y \) is continuous and \(X \) is connected, then so is \(f(X) \).

Proof: Suppose \(f(X) \) is not connected. Let \(V_1 \) and \(V_2 \) open in \(f(X) \) be a separation. Then \(f^{-1}(V_1) \) and \(f^{-1}(V_2) \) is a separation of \(X \).

Proposition

Suppose \(Y \subset \mathbb{R} \). If there exists \(a, b \in Y \) and \(c \notin Y \) such that \(a < c < b \), then \(Y \) is not connected.

Proof: \((-\infty, c) \cap Y \) and \((c, \infty) \cap Y \) is a separation if \(Y \).

Corollary

If \(f : X \to \mathbb{R} \) is continuous and \(X \) is connected, and \(f(x_1) = a \), \(f(x_2) = b \), \(a < c < b \), then there exists \(x \in X \) such that \(f(x) = c \).

Proof: \(f(X) \) is connected, so it contains \(c \).

Theorem

The non-empty connected sets in \(\mathbb{R} \) are precisely the intervals.

Proof: Suppose \(Y \subset \mathbb{R} \) is a connected set. Let \(a = \text{glb} \ Y \) and \(b = \text{lub} \ Y \). \(Y \) is the interval between \(a \) and \(b \), perhaps within the endpoints. Suppose \(U_1 \) and \(U_2 \) is a separation of \(Y \). Let \(a_1, b_1 \in U_1 \), \(a_2, b_2 \in U_2 \), \(a < a_1 < b_2 < b \). Then we can find \(a_2 \) and \(b_2 \) such that \([a_2, b_2] \) is separated by \([a_2, b_2] \cap U_1 \) and \([a_2, b_2] \cap U_2 \). Let \(c = \text{lub} \ [a_2, b_2] \cap U_1 \). Then \(c \notin U_2 \) since \(U_2 \) is open neighborhood \([a_2, b_2] \cap U_2 \). Also \(c \notin U_1 \) since there exists \(c + \varepsilon \in U_1 \), so \(c \notin \text{lub} \ [a_2, b_2] \cap U_1 \). Similarly \(c \notin U_2 \) since there exists \(c - \varepsilon \in U_2 \), so \(c \notin \text{lub} \ [a_2, b_2] \cap U_1 \). Hence by the openness of \(U_1 \) and \(U_2 \), \(c \) can't be anywhere. Contradiction. So the intervals are connected.

Corollary

Let \(I \) be an interval in \(\mathbb{R} \). If \(f : I \to X \) is continuous, then \(f(I) \) is connected.

Theorem

Suppose \(X_\alpha \subset X \), \(\alpha \in \mathcal{A} \) are connected, and there exists \(p \in X_\alpha \), \(\forall \alpha \in \mathcal{A} \). Then \(\bigcup_{\alpha \in \mathcal{A}} X_\alpha \) is connected.

Proof: Suppose \(U_1 \) and \(U_2 \) is a separation. Then \(p \) is in \(U_1 \) or \(U_2 \); say \(U_1 \). Then \(X_\alpha \subset U_1 \), \(\forall \alpha \in \mathcal{A} \), for if \(U_2 \cap X_\alpha \neq \emptyset \) then \(U_1 \cap X_\alpha \) and \(U_2 \cap X_\alpha \) separate \(X_\alpha \).

Definition: Path Connected
X is path connected if given $x, y \in X$, there exists a continuous map $f : I \to X$ such that $f(0) = x$ and $f(1) = y$.

Theorem
If X is path connected, then X connected.

Theorem
If $A \subset X$ is connected and $A \subseteq B \subseteq \overline{A}$, then B is connected.

Proof: Suppose U_1 and U_2 separate B. Then $U_1 \cap A \neq \emptyset$ and $U_2 \cap A \neq \emptyset$. So $U_1 \cap A$ and $U_2 \cap A$ separate A.

Theorem
The product of a finite number of connected spaces is connected.

Proof: It is sufficient to prove for two. Fix a point $(a, b) \in X \times Y$. Then $\{(x, b) \mid x \in X\}$ is connected. So for an arbitrary point (x_0, y_0), $\{(x, b) \mid x \in X\} \cup \{(x_0, y) \mid y \in Y\}$ is connected. Hence their union $X \times Y$ is connected.

Components and Local Connectedness

Definition: Component
Given X and $x \in X$, let the component of x, C_x, be the largest connected set containing x, i.e. the union of all connected sets containing x.

Proposition
For $x, y \in X$, either $C_x = C_y$ or $C_x \cap C_y = \emptyset$.

Proof: If $C_x \cap C_y \neq \emptyset$, then let $z \in C_x \cap C_y$. Now $z \in C_x \implies C_z = C_x$ and $z \in C_y \implies C_z = C_y$. So $C_z = C_x$ and $C_z = C_y$, so $C_x = C_y$.

Theorem
The connected components of X partition X.

Definition: Path Component
Given X and $x \in X$, let the path component of x $(PC)_x = \{y \mid y$ can be joined to x by a path $\}$.

Theorem
The path components of X partition X. In fact, they partition the connected components of X, i.e. $(PC)_x \subseteq C_x$.

Definition: Local Connectivity
X is locally connected at x iff for each neighborhood U_x of x there is a connected neighborhood V_x of x such that $V_x \subseteq U_x$.

X is locally connected iff X is locally connected at each point $x \in X$.

Theorem
If a space X is locally connected, then the connected components of X are open.
Proof: Let \(x \in C_x \). Then any \(U_x \) contains \(V_x \). Now each \(V_x \subseteq C_x \), so \(C_x \) is open.

Lemma
If a space \(X \) is locally connected, then for each open \(U \subseteq X \), \(U \) is connected.

Theorem
A space \(X \) is locally connected if and only if for every open set \(U \subseteq X \), each component of \(U \) is open in \(X \).

Definition: Local Path Connectivity
\(X \) is locally path connected at \(x \) iff for each neighborhood \(U_x \) of \(x \) there is a path connected neighborhood \(V_x \) of \(x \) such that \(V_x \subseteq U_x \).

\(X \) is locally path connected iff \(X \) is locally connected at each point \(x \in X \).

Theorem
A space \(X \) is locally path connected if and only if for every open set \(U \subseteq X \), each component of \(U \) is open in \(X \).

COMPACT SPACES

Definition: Open Cover
Let \(U_\alpha \subseteq X \), \(\alpha \in A \) be open sets such that \(\bigcup_{\alpha \in A} U_\alpha = X \). \(\{ U_\alpha \}_{\alpha \in A} \) is an open cover of \(X \).

Definition: Subcover
If \(B \subseteq A \) and \(\{ U_\alpha \}_{\alpha \in B} \) is still a cover, then \(\{ U_\alpha \}_{\alpha \in B} \) is called a subcover of \(\{ U_\alpha \}_{\alpha \in A} \).

Definition: Compact
\(X \) is compact iff every open cover of \(X \) has a finite subcover.

Theorem
If \(X \) is compact and \(f : X \to Y \) is continuous, then \(f(X) \) is compact.

Proof: Let \(\{ U_\alpha \}_{\alpha \in A} \) be an open cover of \(f(X) \) . Let \(V_\alpha \) be open in \(Y \) and \(V_\alpha \cap f(X) = U_\alpha \). Then \(f^{-1}(V_\alpha) = f^{-1}(U_\alpha) \) is open in \(X \). \(\{ f^{-1}(U_\alpha) \}_{\alpha \in A} \) is an open cover of \(X \), so there exists \(\alpha_1, \ldots, \alpha_n \) such that \(f^{-1}(U_{\alpha_1}) \cup \cdots \cup f^{-1}(U_{\alpha_n}) = X \), but then \(U_{\alpha_1} \cup \cdots \cup U_{\alpha_n} = f(X) \).

Proposition
A compact set in \(\mathbb{R} \) is bounded.

Proof: Cover \(\mathbb{R} \) by \(\{ (z-1, z+2), z \in \mathbb{Z} \} \). A finite collection of these is bounded.

Proposition
A compact subset \(A \) of a Hausdorff space \(X \) is closed.

Proof: Suppose there exists \(p \in \overline{A} - A \). Let \(x \in A \). Let \(U_x \) and \(V_x \) be neighbourhoods of \(x \) and \(p \) respectively such
Suppose \(U_i \cap V_i = \emptyset \) \(\{ U_i \}_{i \in A} \) form an open cover of \(A \). Now let \(U_{x_1}, \ldots, U_{x_n} \) be a finite subcover and \(U = U_{x_1} \cup \cdots \cup U_{x_n} \) and \(V = V_{x_1} \cap \cdots \cap V_{x_n} \). Then \(U \cap V = \emptyset \). But \(p \in V \) and \(V \cap A = \emptyset \). Contradiction. Hence \(p \notin A - A \) and \(A = \bar{A} \) so \(A \) is closed.

Theorem
Compact sets are closed and bounded in \(\mathbb{R} \), \(\mathbb{R}^n \), or any metric space.

Theorem
If \(f : X \to \mathbb{R} \) is continuous and \(X \) is compact, then \(f \) achieves its maximum and minimum, i.e. its lub and glb.

Proof: lub and glb are in \(\text{sup}(f(X)) \).

Definition: Finite Intersection Property
A collection of (nonempty) sets \(\{ B_i \}_{i \in A} \) has the finite intersection property if for every finite sub-collection \(\{ B_{i_1}, \ldots, B_{i_n} \} \) \(B_{i_1} \cap \cdots \cap B_{i_n} \neq \emptyset \).

Theorem
\(X \) is compact if and only if every collection of closed subsets of \(X \) with the finite intersection property has nonempty intersection.

Proof:
(\(\Rightarrow \)) Assume \(X \) is compact. Let \(\{ C_i \}_{i \in A} \) be a collection of closed sets, so \(\{ C^c_i \}_{i \in A} \) are open. \(\{ C^c_i \}_{i \in A} \) does not cover \(X \) if there is no finite subcover, that is \(\bigcup_{i \in A} C^c_i \neq X \iff \bigcap_{i \in A} C_i \neq \emptyset \).

(\(\Leftarrow \)) Let \(\{ U_i \}_{i \in A} \) be an open cover. Suppose \(\{ U_i \}_{i \in A} \) has no finite subcover. Then \(U_{i_1} \cap \cdots \cap U_{i_n} \neq \emptyset \) for all finite sub-collection, so \(\bigcap_{i \in A} U_i \neq \emptyset \) and hence \(\bigcup_{i \in A} U_i \neq X \). Contradiction since \(\{ U_i \}_{i \in A} \) is an open cover.

Theorem
If \(X \) is compact and \(A \subseteq X \) is closed, then \(A \) is also compact.

Proof: Let \(\{ U_\beta \}_{\beta \in B} \) be an open cover of \(A \), \(U_\beta = V_\beta \cap A \), \(V_\beta \) open in \(X \). Then \(\{ V_\beta \}_{\beta \in B} \cup A^c \) is an open cover of \(X \), so there exists a finite collection \(\beta_1, \ldots, \beta_n \) such that \(V_{\beta_1}, \ldots, V_{\beta_n}, A^c \) cover \(X \). Hence \(U_{\beta_1}, \ldots, U_{\beta_n} \) cover \(A \).

Theorem
If \(X \) is compact and Hausdorff, and \(A, B \) are closed sets in \(X \) such that \(A \cap B = \emptyset \), then there exists open sets \(U \) and \(V \), \(A \subseteq U \), \(B \subseteq V \), such that \(U \cap V = \emptyset \).

Proof: Let \(x \in A \). There exists neighbourhoods \(U_x \) of \(x \) and \(V_x \) of \(B \) such that \(U_x \cap V_x = \emptyset \). Let \(U_{x_1}, \ldots, U_{x_n} \) be a finite subcover of \(A \). Let \(U = \bigcup_{i=1}^n U_{x_i} \) and \(V = \bigcap_{i=1}^n V_{x_i} \). Then \(U \) and \(V \) are open and \(U \cap V = \emptyset \).

Theorem
Suppose \(X \) is compact. Let \(\{ C_i \}_{i \in N} \) be a collection of non-empty, closed, and nested sets (i.e. \(C_1 \supseteq C_2 \supseteq \cdots \)). Then \(\bigcap_{n \in N} C_n \neq \emptyset \).
Proof: X is compact, so $\left\{ C_n \right\}_{n \in \mathbb{N}}$ has the finite intersection property. Suppose $\bigcap_{n \in \mathbb{N}} C_n \neq \emptyset$. Then there exists a finite subsequence n_i, \ldots, n_k such that $\bigcap_{i=n_i}^{n_k} C_{n_i} = \emptyset$, but $\bigcap_{i=n_i}^{n_k} C_{n_i} = C_{n_i}$. Contradiction.

Theorem

Suppose X is compact and Y is Hausdorff. If $f : X \to Y$ is bijective and continuous, then f is a homeomorphism.

Proof: We need $f^{-1} : Y \to X$ to be continuous. Let $C \subset X$ be closed. Then C is compact. So $f(C) \subset Y$ is compact, and so closed. Now $(f^{-1})^{-1}(C) = f(C)$. Hence if $C \subset X$ be closed, then $(f^{-1})^{-1}(C)$ is closed. Therefore f^{-1} is continuous.

Lemma: Tube Lemma

Suppose Y is compact. Let $x_0 \in X$ and U be an open set in $X \times Y$ such that $x_0 \times Y \subset U$. Then there exists a neighborhood W of x_0 such that $W \times Y \subset U$.

Proof: For each $y \in x_0 \times Y$, there exists a product neighborhood $U_{x_0, y} \times U_y$ contained in U. Since Y is compact, there is a finite collection y_1, \ldots, y_n such that U_{y_1}, \ldots, U_{y_n} cover Y. Let $W = \bigcap_{i=1}^{n} U_{x_0, y_i}$. Now $W \times U_{y_i} \subset U_{x_0, y_i} \times U_{y_i}$ for each $i = 1, \ldots, n$, so $W \times \bigcup_{i=1}^{n} U_{y_i} = W \times Y \subset U$.

Theorem

Finite product of compact spaces is compact.

Proof: Note that it suffices to prove $X \times Y$ is compact if X and Y are compact. Let $\left\{ U_a \right\}_{a \in A}$ be an open cover of $X \times Y$. For each fixed $x \in X$, let $U_{x, 1}, \ldots, U_{x, n}$ be a finite cover of $x \times Y$. Let $U_x = \bigcup_{j=1}^{n} U_{x, j}$. U_x is open, so by the tube lemma, there exists a neighborhood W_x of x such that $W_x \times Y \subset U_x$. Since X is compact, there exists x_1, \ldots, x_m such that W_{x_1}, \ldots, W_{x_m} cover X. So $W_{x_1} \times Y, \ldots, W_{x_m} \times Y$ cover $X \times Y$. Since each tube $W_{x_i} \times Y$ is covered by $\left\{ U_{x_i, j} \right\}_{j=1}^{n}$, a finite number of open sets of $X \times Y$, $\bigcup_{j=1}^{n} \left[U_{x_i, j} \right]_{j=1}^{n}$ is a finite subcover of $\left\{ U_a \right\}_{a \in A}$. Hence $X \times Y$ is compact.

Theorem

$[a, b] \subset \mathbb{R}$ is compact.

Proof: Let $\left\{ U_a \right\}_{a \in A}$ be an open cover of $[a, b]$. Let $c \in (a, b)$, where $c = \inf \left\{ x \in \mathbb{R} \left| x \in \bigcup_{a \in A} U_a \right. \right\}$. Then $c \neq a$, and there exists an open set containing b.

Theorem

$\prod_{j=1}^{n} [a_j, b_j] \subset \mathbb{R}^n$ is compact.

Theorem: Heine-Borel Theorem

$X \subset \mathbb{R}$ is compact if and only if X is closed and bounded.
Local Compactness

Definition: Local Compactness

*\(X \) is locally compact at \(x \) if there is a compact subset \(C \) of \(X \) which contains a neighborhood of \(x \).

*\(X \) is locally compact if it is locally compact at every \(x \in X \).

Example

\(\mathbb{R} \) is locally compact.

Definition: One-Point Compactification

Let \(Y \) be compact and Hausdorff. Suppose \(X \subseteq Y \) such that \(Y - X = \{ \infty \} \) is one point and that \(\overline{X} = Y \). Then we call \(Y \) a one-point compactification of \(X \).

Theorem

Let \(X \) be locally compact and Hausdorff, but \(X \) is not compact. Then \(X \) has a one-point compactification. Moreover, if \(Y_1 \) and \(Y_2 \) are both one-point compactification of \(X \), then \(\text{Id}_X \) extends to a homeomorphism \(h: Y_1 \to Y_2 \) which takes \(\infty_{Y_1} \) to \(\infty_{Y_2} \).

Proof:

Let \(Y = X \cup \{ \infty \}, \infty \notin X \). Define the topology on \(Y \) as follows: \(U \subseteq X \) is open iff

- \(U \subseteq X \) and \(U \) is open in \(X \), or
- \(U = A' \) where \(A \subseteq X \) is compact.

\(Y \) is Hausdorff: Take two points \(x_1 \) and \(x_2 \) in \(Y \). If \(x_1, x_2 \in X \), done. Otherwise, let \(x \in X \) and \(\infty \in Y \). There exists \(U_x \) open and \(C \) such that \(x \in U_x \subseteq C \subseteq X \) (since \(X \) be locally compact). \(\infty \in C \) which is open. So \(U_x \cap C \neq \emptyset \).

\(Y \) is compact: Let \(\{ U_{\alpha} \}_{\alpha \in A} \) be an open cover of \(Y \). \(\infty \) is in some \(U_{\alpha} \) and \(U_{\alpha}' \) is compact. Note that \(\{ \infty \} \) is closed (since \(Y \) Hausdorff). \(X \) is open, so \(X \cap U_{\alpha} \) is open for all \(\alpha \in A \). Then \(\{ X \cap U_{\alpha} \}_{\alpha \in A} \) is an open cover of \(X \), and hence of \(U_{\alpha}' \). So a finite collection \(U_{\alpha_1}, \ldots, U_{\alpha_n} \) covers \(U_{\alpha}' \), and \(U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_n} \) covers \(Y \).

\(\overline{X} = Y \), i.e. \(\infty \in \overline{X} \): Let \(U_{\infty} \) be an open set containing \(\infty \). Then \(U_{\infty} = A' \), where \(A \subseteq X \) is compact and \(A \neq X \), so \(U_{\infty} \cap X \neq \emptyset \).

Corollary

Let \(X \) be Hausdorff. Then \(X \) is locally compact if and only if given \(x \in X \) and neighborhood \(U_x \) of \(x \), there exists a neighborhood \(V_x \) of \(x \) such that \(V_x \) is compact and \(V_x \subseteq U_x \).

Proof:

(\(\rightarrow \)) \(X \) is locally compact and Hausdorff, so \(X \subseteq Y \) where \(Y \) is compact and Hausdorff by one-point compactification. Given \(U_x \), \(U_x'' = \overline{U_x} \) is closed in \(Y \) and thus so compact. So there exists \(V_x \) and \(N(\overline{U_x}) \) neighborhoods of \(x \) and \(U_x \) such that \(V_x \cap N(\overline{U_x}) = \emptyset \). So \(V_x \subseteq U_x \) and \(\emptyset \notin \overline{V_x} \). Hence \(\overline{V_x} \) is compact and \(\overline{V_x} \subseteq U_x \).

(\(\leftarrow \)) Take \(C = \overline{V_x} \) compact. Then \(x \in V_x \subseteq U_x \). This is just the definition of local compactness.

Corollary

If \(X \) is locally compact and Hausdorff, and \(A \subseteq X \) either open or closed, then \(A \) is locally compact and Hausdorff.

Corollary

\(X \) is homeomorphic to an open subspace of a compact Hausdorff space if and only if \(X \) is locally compact and Hausdorff.
LIMIT POINT COMPACTNESS

Definition: Limit Point Compact

X is limit point compact if every infinite subset of X has a limit point.

Theorem

If X is compact, then X is limit point compact.

Proof: Suppose X is not limit point compact. Then there exists an infinite subset $A \subset X$ which has no limit points. So for all $x \in X$, there exists U_x such that $U_x \cap A$ is at most one point, i.e. $x \notin A \Rightarrow U_x \cap A = \emptyset$ or $x \in A \Rightarrow U_x \cap A = \{x\}$. Now $(U_x)_{x \in X}$ is an open cover of X but has no finite subcover since A is infinite.

Definition: Sequentially Compact

X is sequentially compact if every sequence $(x_i)_{i \in \mathbb{N}}$ has a convergent subsequence $(x_{n_i})_{i \in \mathbb{N}}$ such that n_i is strictly increasing and x_{n_i} converge.

Definition: Cauchy Sequence

In a metric space, a sequence $(x_i)_{i \in \mathbb{N}}$ is a Cauchy sequence if given $\varepsilon > 0$, there exists $N > 0$ such that $d(x_n, x_m) < \varepsilon$ for all $n, m > N$.

Definition: Complete

X is complete if every Cauchy sequence converges.

Lemma

If a subsequence of a Cauchy sequence converges, then so does the sequence.

Definition: Totally Bounded

A metric space is totally bounded if for all $\varepsilon > 0$, there is a finite cover of X by ε-balls.

Definition: Lebesgue Number

Let $(U_a)_{a \in A}$ be an open cover of X. Then $\delta > 0$ is a Lebesgue number for $(U_a)_{a \in A}$ if given $x \in X$, $B_\delta(x) \subset U_a$ for some $a \in A$.

Lemma: Lebesgue Number Lemma

Let X be complete and totally bounded. If $(U_a)_{a \in A}$ be an open cover, then there exists a Lebesgue number $\delta > 0$ for $(U_a)_{a \in A}$.

Proof: Suppose not, i.e. for all δ, there exists x_δ such that $B_\delta(x_\delta) \not\subset U_a$ for any $a \in A$. Pick a sequence $\delta_n \rightarrow 0$ (e.g. $\delta_n = \frac{1}{2^n}$) and $x_{\delta_n} \in X$ as above. Since X totally bounded, consider finite covers of X by balls of radius $\frac{1}{2^i}$, for each $i = 1, 2, \ldots$. Inductively construct a subsequence $(x_{\delta_n})_{n \in \mathbb{N}}$ such that the tail is in one ball of radius $\frac{1}{2^i}$ for $i = 1, 2, \ldots$. The resulting sequence is Cauchy, and hence converges since X complete. So $x_{\delta_n} \rightarrow x$, $x \in U_a$ for some $a \in A$, and $B_\delta(x) \subset U_a$. Now, for i large enough, $\delta_n < \frac{\varepsilon}{2}$ since $\delta_n \rightarrow 0$, and that $x_{\delta_n} \in B_\delta(x)$. So $B_\delta(x_{\delta_n}) \subset B_\delta(x) \subset U_a$ by the
triangle inequality. Contradiction.

Theorem
If \((X, d)\) is a metric space, then the following are equivalent:
1. \(X\) is compact.
2. \(X\) is limit point compact.
3. \(X\) is sequentially compact.
4. \(X\) is complete and totally bounded.

Proof:
(1 \(\Rightarrow\) 2) Done.

(2 \(\Rightarrow\) 3) Let \(\{x_i\}_{i \in \mathbb{N}}\) be a sequence. If \(\{x_i\}_{i \in \mathbb{N}}\) is a finite set (finitely many different elements), then there is a constant subsequence which converge. So assume \(A=\{x_i| i \in \mathbb{N}\}\) is infinite and let \(x \in X\) be a limit point of \(A\). Then we can find infinite sets \(S_i, i \in \mathbb{N}\) such that \(S_i+1 \subseteq S_i\) and points \(x_i \in S_i\) with \(n_i+1 \geq n_i\) such that \(d(x_i, x) < \frac{1}{i}\) (possible since \(B_{\frac{1}{i}}(x) \cap S_i\) with \(S_i = A\) is an infinite set). Then \(x_i \to x\) since given \(\varepsilon > 0\) there exists \(M > 0\) such that \(\frac{1}{M} < \varepsilon\), and so for \(i > M\) \(d(x_i, x) < \frac{1}{n_i} < \frac{1}{M} < \varepsilon\).

(3 \(\Rightarrow\) 4) Take any Cauchy sequence \(\{x_i\}_{i \in \mathbb{N}}\). Since \(X\) is sequentially compact, there is a subsequence \(\{x_{i_n}\}_{n \in \mathbb{N}}\) which converges. So the Cauchy \(\{x_{i_n}\}_{n \in \mathbb{N}}\) converges by lemma, and hence \(X\) is complete. Now suppose \(X\) is not totally bounded. Let \(\varepsilon > 0\) be such that the \(\varepsilon\)-balls do not have a finite subcover. For \(x_1, \ldots, x_n\) such that \(d(x_i, x_j) \geq \varepsilon\ \forall i,j \leq n\), there exists \(x_{n+1}\) such that \(x_1, \ldots, x_n, x_{n+1}\) have the same property (i.e. \(d(x_i, x_j) \geq \varepsilon\ \forall i,j \leq n+1\)). So we can construct an infinite sequence \(\{x_i\}_{i \in \mathbb{N}}\) such that \(d(x_i, x_j) \geq \varepsilon\ \forall i \neq j\). This sequence has no convergent subsequence, for if it did, then given \(\frac{\varepsilon}{2}\) there exists \(M\) such that \(d(x_i, x_j) < \frac{\varepsilon}{2}\ \forall i < M\), but then \(d(x_i, x_j) > \varepsilon\ \forall i > M\), so contradiction.

(4 \(\Rightarrow\) 1) Let \(\{U_i\}_{i \in \mathbb{N}}\) be an open cover of \(X\). Let \(\delta > 0\) be a Lebesgue number for the cover. Let \(B_{\delta}(x_1), \ldots, B_{\delta}(x_k)\) be a finite covering of \(\delta\)-balls. Then for each \(i=1, \ldots, k\), \(B_{\delta}(x_i) \subseteq U_{i_\alpha}\) for some \(\alpha_i \in A\). Hence \(U_{i_\alpha}, \ldots, U_{i_\alpha}\) is a finite subcover.

Corollary
If \(X\) is compact metric space, then any open cover has a Lebesgue number.

Definition: Uniform Continuity
Let \(X\) and \(Y\) be metric spaces. \(f:X \to Y\) is uniformly continuous if given \(\varepsilon > 0\), there \(\delta > 0\) such that \(d_Y(f(x), f(y)) < \varepsilon\) whenever \(d_X(x, y) < \delta\) for all \(x, y \in X\).

Theorem
Let \(X\) and \(Y\) be metric spaces. If \(X\) is compact and \(f:X \to Y\) is continuous, then \(f\) is uniformly continuous.

Proof: Given \(x \in X\), there exists \(\delta_x > 0\) such that \(y \in B_{\delta_x}(x) \Rightarrow d_Y(f(x), f(y)) < \frac{\varepsilon}{2}\) since \(f\) continuous. Then \(y, z \in B_{\delta_x}(x) \Rightarrow d_Y(f(y), f(z)) < \varepsilon\) by the triangle inequality. Now the open cover \(\{B_{\delta_x}(x)\}_{x \in X}\) has a Lebesgue number \(\delta > 0\).
The Tychonoff Theorem

Definition: Maximal
A collection of sets D with the finite intersection property is maximal if for any $D' \supset D$, $D' \neq D$, D' does not have the finite intersection property.

Lemma
Given a collection C of sets with the finite intersection property, there exists D such that $C \subset D$ and D is maximal.

Proof: Construct D using Zorn's Lemma.

Lemma
Let D be a maximal collection of sets in X with the finite intersection property. Then:
1. If $A_1, \ldots, A_n \in D$, then $A_1 \cap \cdots \cap A_n \in D$.
2. If $A \cap U \neq \emptyset \ \forall U \in D$, then $A \in D$.

Lemma
Suppose that D is a maximal collection of sets in $\prod X_{\alpha}$, where each X_{α} is compact. Then $\bigcap A \in D$ is nonempty.

Proof: Note that closure the projection $\pi_{\alpha}(A)$ is closed in a compact space X_{α}, so $\bigcap A \in D$ is compact. So there exists some $x_{\alpha} \in \pi_{\alpha}(A) \ \forall A \in D$, so for any neighborhood U_{α} of x_{α}, $\pi_{\alpha}(A) \neq \emptyset \ \forall A \in D$, and so $x_{\alpha} = (x_{\alpha})_{\alpha \in \alpha}$. Let $V_a = \pi_{\alpha}^{-1}(U_{\alpha}) = U_{\alpha} \times \prod_{\beta \neq \alpha} X_{\beta}$, then $V_a \in D$. Therefore finite intersections of V_a's is in D, i.e., $V_{a_1} \cap \cdots \cap V_{a_n} = U_{a_1} \times \cdots \times U_{a_n} \times \prod_{\beta \neq a_1, \ldots, a_n} X_{\beta} \in D$, and so $x \in A$ for every A, so $\bigcap A \neq \emptyset$.

Theorem: Tychonoff’s Theorem
If X_{α} is compact for all $\alpha \in \mathcal{A}$, then $\prod_{\alpha \in \mathcal{A}} X_{\alpha}$ is compact.

Countability and Separation Axioms

The Separation Axioms

Definition: Regular
Let X be a topological space where one-point sets are closed. Then X is regular if a point and a disjoint closed set can be separated by open sets.

Definition: Normal
Let X be a topological space where one-point sets are closed. Then X is normal if two disjoint sets can be separated by open sets.
Remark
Normal \Rightarrow regular \Rightarrow Hausdorff.

Proposition
If X is regular and U is a neighborhood of x, then there exists a neighborhood V of x such that $\overline{V} \subset U$.

Proof: U^c is closed. So there exist open sets V_1 and V_2 such that $x \in V_1$, $U^c \subset V_2$, $V_1 \cap V_2 = \emptyset$. So $x \in \overline{V_1} \subset U$.

Proposition
If X is normal and U is a neighborhood of a closed set A, then there exists a neighborhood V of A such that $\overline{V} \subset U$.

Proof: U^c is closed. So there exist open sets V_1 and V_2 such that $A \subset V_1$, $U^c \subset V_2$, $V_1 \cap V_2 = \emptyset$. So $A \subset \overline{V_1} \subset U$.

The Urysohn Lemma

Theorem: Urysohn Lemma
Let X be normal, A and B closed such that $A \cap B = \emptyset$. Let $[a, b] \subset \mathbb{R}$. Then there exists a continuous function $f : X \to [a, b]$ such that $f(A) = a$ and $f(B) = b$.

Proof: It is sufficient to take $[a, b] = [0, 1]$ (since they are homeomorphic). Now for every rational $q \in (0, 1)$, construct open sets $U_q \subset X$ such that if $0 < p < q < 1$ then $\overline{U_p} \subset U_q$, and that $A \subset U_0$, $A \subset \bigcup_{p=1}^{q} U_p$, $B \cap U_p = \emptyset$. Let $U_1 = X - B \supset A$ and U_0 be an open set containing A with $U_0 \subset U_1$. Let $\phi : \mathbb{N} \to \mathbb{Q} \cap [1, 2]$ where $\phi(1) = 0$, $\phi(2) = 1$. Suppose $U_{\phi(i)}$, \ldots, $U_{\phi(n)}$ are constructed. $\phi(n+1)$ is between two closest neighbors, $\phi(i)$ and $\phi(j)$, on the list. Since $\phi(i) < \phi(j)$, $\overline{U_{\phi(i)}} \subset U_{\phi(j)}$, so can pick $U_{\phi(n+1)}$ to be a neighborhood of $\overline{U_{\phi(j)}}$ (that is $\overline{U_{\phi(n+1)}} \subset U_{\phi(j)}$). Hence by induction, define $U_q \subset \mathbb{R}$ for all rationals $q \in (0, 1)$.

Now define $f(x) = \inf_{q \in \mathbb{Q} \cap [0, 1]} \{ x \in U_q \}$. Then $f(A) = 0$ and $f(B) = 1$. It remains to prove the continuity of f. First note that $x \in U_q \Rightarrow f(x) \leq r$ and $x \notin U_q \Rightarrow f(x) \geq r$. Now let U be an open neighborhood of $f(x) \in [0, 1]$. Then there exists open interval (q_1, q_2) such that $f(x) \in (q_1, q_2) \subset U$. Now $f^{-1}((q_1, q_2)) \supset U_{q_1} \supset U_q$, which is open and contains x, and that $f(U_{q_1} \cap \overline{U_q}) \subset (q_1, q_2)$. Therefore f is continuous.

The Tietze Extension Theorem

Theorem: Tietze Extension Theorem
Let X be normal, $A \subset X$ be closed, and $f : A \to [a, b]$ or $f : A \to \mathbb{R}$ be continuous. Then f may be extended to a continuous map defined on all of X.

Proof:
For $f : A \to [a, b]$, it is sufficient to show for $[a, b] = [-1, 1]$. Build a collection g_1, g_2, \ldots of approximates to f such that $f - g_1 - g_2 - \cdots$ converges to 0 uniformly. That is $g = \sum g_n \to f$ on X.

- Let $B_1 = f^{-1}([-1, -\frac{1}{2}])$, $C_1 = f^{-1}([-\frac{1}{2}, \frac{1}{2}])$, $D_1 = f^{-1}((\frac{1}{2}, 1])$. Then B_1 and D_1 are closed and disjoint. By the Urysohn lemma, we can find $g_1 : X \to [-\frac{1}{2}, \frac{1}{2}]$ such that $g(B_1) = -\frac{1}{2}$, $g(D_1) = \frac{1}{2}$, and that $|f(x) - g_1(x)| < \frac{1}{4}$ $\forall x \in A$. We get obtain $f - g_1 : A \to [-\frac{1}{4}, \frac{1}{4}]$.

- Now by letting $B_2 = (f - g_1)(([-1, -\frac{1}{2}])$, $C_2 = (f - g_1)^{-1}([-\frac{1}{2}, \frac{1}{2}])$, $D_2 = (f - g_1)^{-1}((\frac{1}{2}, 1])$, we can get $g_2 : X \to \frac{1}{2}([-\frac{1}{2}, \frac{1}{2}])$ by Urysohn lemma, with $g(B_2) = \frac{1}{4}(-\frac{1}{4})$, $g(D_2) = \frac{1}{4}(\frac{1}{4})$, and
\[f(x) - g_i(x) - g_j(x) < \frac{1}{i^2} \quad \forall x \in A. \]

- By induction, let \(B_x := (f - g_1 - \cdots - g_{n-1})^{-1}((\frac{1}{3})^{n-1}[-1, -\frac{1}{3}]) \), \(C_x := (f - g_1 - \cdots - g_{n-1})^{-1}((\frac{1}{3})^{n-1}[\frac{1}{3}, 1]) \), and \(D_x := (f - g_1 - \cdots - g_{n-1})^{-1}((\frac{1}{3})^{n-1}[\frac{1}{3}, 1]) \). Then we can get \(g_x : X \to ((\frac{1}{3})^{n-1}[-\frac{1}{3}, \frac{1}{3}]) \) by Urysohn lemma, with \(g(B_x) = (\frac{1}{3})^{n-1}(\frac{1}{3}) \), \(g(C_x) = (\frac{1}{3})^{n-1}(\frac{1}{3}) \), and \(|f(x) - g_i(x) - \cdots - g_j(x)| < \frac{1}{i^2} \quad \forall x \in A. \)

- Now take \(g = \sum g_i \). It is the extension we are looking for.

For \(f : A \to \mathbb{R} \), it is sufficient to show for \(f : A \to (-1, 1) \). Now, there exists \(g : X \to [-1, 1] \) such that \(g = f \) on \(A \) by the first part of the proof. Let \(B = g^{-1}((-1 \cup 1)) \). Then \(A \) and \(B \) are disjoint closed sets. By Urysohn lemma, there exists \(\phi : X \to [0, 1] \) such that \(\phi(A) = 1 \) and \(\phi(B) = 0 \), hence \(\phi f = f \) on \(A \), and \(\phi g = 0 \) on \(B \). Then \(\phi g : X \to (-1, 1) \) is the extension we are looking for.

Definition: Separates Points

Suppose \(\{f_\alpha\}_{\alpha \in A} \) is a collection of functions such that \(f_\alpha : X \to [0, 1] \). Let \(f : X \to \prod_{A} [0, 1] \) be defined by \((f(x))_\alpha = f_\alpha(x) \). Suppose that for \(x \neq y \), there exists an \(\alpha \) such that \(f_{\alpha}(x) \neq f_{\alpha}(y) \) (hence \(f \) is 1-1). We say \(f \) separates points.

Theorem

Suppose \(X \) is normal and has a countable basis. Then there exists a countable collection of continuous functions \(f_i : X \to [0, 1] \) such that, given \(x_0 \in X \) and a neighborhood \(U_{x_0} \) of \(x_0 \), there exists \(i \) such that \(f_i(x_0) = 1 \) and \(f_i \equiv 0 \) outside \(U_{x_0} \).

Remark

If we have such functions, then \(f \) separates points since given \(x, y \in X \), there exists \(U_x \) such that \(y \notin U_x \) by normality.

The Urysohn Metrization Theorem

Definition: Completely Regular

A space \(X \) is completely regular if one-point sets are closed (\(T_1 \)), and if given a point \(p \in X \) and a closed set \(A \subset X \) such that \(p \notin A \), there exists a continuous function \(f : X \to [0, 1] \) such that \(f(p) = 1 \) and \(f(A) = 0 \).

Theorem: Urysohn Metrization Theorem

If \(X \) is completely regular (or normal) and second countable (countable basis), then \(X \) is metrizable.

Proof: Let \(B_a \) and \(B_m \) be basis elements such that \(\overline{B_a} \subset B_m \). There exists a continuous function \(f_{n,m} : X \to [0, 1] \) such that \(f_{n,m}(\overline{B_a}) = 0 \) and \(f_{n,m}(B_m) = 1 \) by Urysohn lemma. In a regular space, given a point \(x \in X \) and a neighborhood \(U \) of \(x \), there exists another neighborhood \(V \) of \(x \) such that \(x \in \overline{V} \subset U \). Hence given \(x, y \in X \) there exists \(B_a \) and \(B_m \) such that \(x \in B_m \subset B_a \), \(y \notin B_a \), and so \(f_{n,m} \) separates points. Now \(\mathbb{N} \times \mathbb{N} \to \mathbb{N} \) is 1-1 and onto, so \(\prod f_{n,m} : X \to [0, 1]^{\mathbb{N}} \) is 1-1. \([0, 1]^{\mathbb{N}} \) is metrizable.

Remark

If \(X \) is normal but not second countable, take \(\prod f : X \to [0, 1]^{\mathbb{N}} \) where \(f \in C^0(X, I) \) (continuous function from \(X \) to \(I \)). If \(X \) is compact Hausdorff (hence normal), this is a homeomorphism.

The Stone-Čech Compactification
Theorem
Let \(X \) be completely regular (or normal). Then there exists a compactification of \(Y \) of \(X \) (i.e. \(Y \) is compact Hausdorff and \(X = Y \)) with the property that any bounded continuous function \(f : X \to \mathbb{R} \) extends uniquely to a function \(g : Y \to \mathbb{R} \). \(Y \) is called the Stone-Čech Compactification.

Proof: Let \(B(X, \mathbb{R}) \) be the set of all bounded continuous functions \(f : X \to \mathbb{R} \). For each \(f \in B \) let \(I_f = [-\alpha_f, \alpha_f] \) contain the image of \(f \). Let \(Z = \prod_{f \in B(X, \mathbb{R})} I_f \), which is compact Hausdorff by Tychonoff theorem. Define \(h : X \to \prod_{f \in B(X, \mathbb{R})} I_f \) by \((h(x))_f = f(x) \). Let \(Y = h(X) \) be the compactification. Now let \(i : Y \to Z \) be the inclusion, \(i|X = h \), then \(\pi_f \circ i \) extends \(f \) uniquely.

Corollary
Let \(X \) be completely regular and \(W \) be compact Hausdorff. If \(\phi : X \to W \) is a continuous function, then \(\phi \) extends to Stone-Čech.

Proof: \(W \to I^d \) is an imbedding, so \(X \to W \to I^d \) is continuous. Hence each coordinate extends.

Metrization Theorems and Paracompactness

Definition: Refine
A collection \(B \) of subsets of \(X \) is said to refine \(A \) if \(\bigcup_{U \in B} U = \bigcup_{U \in A} U = X \) and for each \(U \in B \) there exists \(U \in A \) such that \(B \subseteq A \).

Definition: Local Finiteness
An open cover \(A \) of \(X \) is called locally finite if for any \(x \in X \), \(x \in U \) for finitely many \(U \in A \).

Definition: Paracompactness
\(X \) is paracompact if every open cover \(A \) of \(X \) has a locally finite open refinement.

Theorem
Every metrizable space is paracompact.

Definition: Partition of Unity
Given a locally finite cover \(A \), a partition of unity is a collection of continuous functions \(\phi_U : X \to [0,1] \) such that \(\phi \neq 0 \) on \(U \) and \(\sum \phi_U(x) = 1 \) for all \(x \in X \).

Complete Metric Spaces and Function Spaces

COMPLETE METRIC SPACES

Definition: Cauchy Sequence
Let \((Y, d) \) be a metric space. A sequence \((y_n)_{n \in \mathbb{N}} \) in \((Y, d) \) is Cauchy if given \(\varepsilon > 0 \) there is an \(N > 0 \) such that
Definition: Complete
A metric space (Y, d) is complete if every Cauchy sequence converges.

Definition: Standard Bounded Metric
The standard bounded metric associated to d is $\tilde{d}(x, y) \equiv \min\{d(x, y), 1\}$.

Definition
If Y is metric and A is a set, Y^A is the set of functions from A to Y.

Definition: Bounded
Let Y be metric. A function $\phi: A \to Y$ is bounded if $\text{diam}(\phi(A))$ is finite. Let $B(A, Y)$ denote the set of bounded functions from A to Y.

Note: If Y has a bounded metric, then all functions are bounded.

Definition: Sup Metric
Let (Y, d) be a metric space and $\phi_1, \phi_2 \in B(A, Y)$. The sup metric on Y^A is $\rho(\phi_1, \phi_2) = \sup \{d(\phi_1(a), \phi_2(a)) \mid \forall a \in A\}$.

Definition: Uniform Metric
Let (Y, d) be a metric space and let \tilde{d} be the standard bounded metric. The uniform metric on Y^A is $\bar{\rho}(\phi_1, \phi_2) = \sup \{\tilde{d}(\phi_1(a), \phi_2(a)) \mid \forall a \in A\}$.

Remark
$\rho(\phi_1, \phi_2) < 1 \Leftrightarrow \bar{\rho}(\phi_1, \phi_2) < 1$, in which case $\rho = \bar{\rho}$.

Proposition
Let $f_n \in B(A, Y)$. Then $f_n \to f$ in the uniform metric if and only if $f_n \to f$ uniformly.

Theorem
If (Y, d) is complete, then $(Y^A, \bar{\rho})$ is complete.

Proof: Let $(f_n)_{n \in \mathbb{N}}$ be Cauchy in Y^A. Then given $\varepsilon > 0$, $\bar{\rho}(f_n, f_m) = \sup \{\tilde{d}(f_n(a), f_m(a)) \mid \forall a \in A\} < \frac{\varepsilon}{2}$ for all $n, m > N_0$. So $(f_n(a))_{n \in \mathbb{N}}$ is Cauchy for all $a \in A$, and hence $f_n(a) \to f(a)$. So $\bar{\rho}(f_n, f) = \sup \{\tilde{d}(f_n(a), f(a)) \mid \forall a \in A\} < \frac{\varepsilon}{2} < \varepsilon$ for all $n > N_0$, so $f_n \to f$.

Proposition
Suppose A is a topological space and Y a metric space. Let $C(A, Y)$ be the set of continuous functions from from A to Y. Then $C(A, Y)$ is closed in $B(A, Y)$ with the uniform metric.

Corollary
If \(Y \) is complete, then \(C(A,Y) \) is also complete with the uniform metric. If \(Y \) is complete and \(A \) is compact, then \(C(A,Y) \) is complete in the sup metric.

Definition: Completion

Let \((X,d_X)\) and \((Y,d_Y)\) be metric spaces. Let \(i:X \to Y\) be an isometric embedding, that is \(d_X(x_1,x_2)=d_Y(i(x_1),i(x_2))\). \(Y\) is the completion of \(X\) if \(\overline{i(X)}=Y\) and \(Y\) is complete.

Theorem

Every metric space has a completion.

Proof: Embed \((X,d_X)\) into \(C(X,\mathbb{R})\) (bounded) with the sup topology as follows. Fix \(x_0 \in X\); let \(a \in X\). Define \(\phi_a(x)=d(x,a)-d(x,x_0)\). Then \(\phi_a(x)\leq d(a,x_0)\) be the triangle inequality (hence bounded). Let \(i:X \to C(X,\mathbb{R})\) be given by \(i(a)=\phi_a\). Now, \(\rho(i(a),i(b))=\sup_{x \in X}|\phi_a(x)-\phi_b(x)|=\sup_{x \in X}|d(x,a)-d(x,b)+d(x,x_0)|=\sup_{x \in X}|d(x,a)-d(x,b)|\leq d(a,b)\) by triangle inequality. However, taking \(x=a\), \(|d(a,a)-d(a,b)|=d(a,b)\). Hence \(\rho(i(a),i(b))=d(a,b)\), so \(i\) is an isometry. Let \(Y=\bar{i(X)}\).

Peano Space-Filling Curve

Corollary

There exists a continuous and onto map \(\phi:I \to I \times I\).

Compactness in Metric Spaces

Theorem

A metric space is compact if and only if it is complete and totally bounded.

Definition: Equicontinuous

Let \(X\) be a topological space, \(Y\) a metric space. The set of functions \(F \subseteq C(X,Y)\) is equicontinuous at \(x_0 \in X\) if given \(\varepsilon > 0\) there exists a neighborhood \(U_{x_0}\) of \(x_0\) such that \(d(f(x), f(y)) < \varepsilon\) for all \(f \in F\) and for all \(x,y \in U_{x_0}\).

\(F\) is equicontinuous if it is equicontinuous at each \(x_0 \in X\).

Examples

- Suppose that \(F \subseteq C^1(I,\mathbb{R})\) and \(|f'(x)| < 1\) \(\forall f \in F, x \in I\), then \(F\) is equicontinuous.
- If \(d(f(x), f(y)) < C(d(x,y) \alpha)\) for some fixed \(C\) and fixed \(\alpha\), then \(F\) is equicontinuous.

Proposition

If \(F \subseteq C(X,Y)\) is totally bounded in the uniform metric, then \(F\) is equicontinuous.

Note: \(d\) itself may or may not be bounded.

Proof: Let \(\varepsilon > 0\) be given. Assume \(\varepsilon < 1\). There exists \(f_1,\ldots,f_k\) such that \(B_{\varepsilon/3}(f_i)\) cover \(F\). Since each \(f_i\) is continuous, there exists a neighborhood \(U_{x_0}\) of \(x_0\) such that \(d(f_i(x), f_i(y)) < \varepsilon/3\) for all \(x,y \in U_{x_0}\). Given \(f \in F\), \(f \in B_{\varepsilon/3}(f_i)\) for some \(i\). Now \(d(f(x), f(y)) \leq d(f(x),f_i(x))+d(f_i(x),f_i(y))+d(f_i(y),f(y))\), and since
Let Corollary bounded, be given. Given any Proof: Let bounded. \(f \in B_{\text{sup}}(f) \Rightarrow d(f(y), f(y)) \leq \frac{\varepsilon}{3} \), so \(d(f(x), f(y)) \leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \). So \(F \) is equicontinuous.

Proposition

If \(X \) and \(Y \) are compact and \(F \subset C(X,Y) \) is equicontinuous, then \(F \) is totally bounded.

Proof: Let \(0 < \varepsilon < 1 \) be given. Since \(F \) equicontinuous, let \(U_a \) be neighborhoods of \(a \in X \) such that \(d(f(x), f(y)) \leq \frac{\varepsilon}{3} \) for all \(x, y \in U_a \). \(X \) is compact, so let \(\{U_{a_i}\}_{i=1}^n \) cover \(X \). Let \(\{V_{\text{ii}}(y_i)\}_{i=1}^n \) be a finite cover of \(Y \) of \(\frac{\varepsilon}{3} \) - balls centered at \(y_i \). Now consider the set of functions \(\alpha \) where \(\alpha : \{1, \ldots, k\} \to \{1, \ldots, l\} \). If there is \(f \in F \) such that \(f(x) \in V_{\text{ii}}(y_{\alpha(i)}) \) for each \(i = 1, \ldots, k \), choose one label it \(f_a \). Then we get a finite collection of \(\varepsilon \) - balls \(\{B_{\varepsilon}(f_a)\} \). Now let \(f \in F \). For each \(i = 1, \ldots, k \), choose \(\alpha(i) \) such that \(f(x) \in V_{\text{ii}}(y_{\alpha(i)}) \). Let \(x \in X \), then \(x \in U_{a_i} \) for some \(a_i \). So \(d(f(x), f_{\alpha(i)}(x)) \leq d(f(x), f_{\alpha(i)}) + d(f_{\alpha(i)}, f_{\alpha(i)}(x)) \leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \). Hence \(\{B_{\varepsilon}(f_a)\} \) cover \(F \), so it is totally bounded.

Definition: Pointwise Bounded

\(F \in Y^X \) is pointwise bounded if \(\{f(x)\}_{f \in F} \) is a bounded set in \(Y \) for each \(x \in X \).

Theorem: Ascoli’s Theorem, Classical Version

Let \(X \) be compact. Let \(F \subset C(X,\mathbb{R}^n) \). \(F \) has a compact closure if and only if \(F \) is equicontinuous and pointwise bounded.

Proof: Let \(G \) denote the closure of \(F \).

- \(F \subset G \) and \(F \) is equicontinuous and pointwise bounded.

- No \(G \) is closed in the complete space \(\mathbb{R}^n \) and hence is complete. Let \(\varepsilon > 0 \) and \(x_0 \in X \) be given. Since \(F \) is equicontinuous, choose \(U_{x_0} \) such that \(d(f(x), f(y)) \leq \frac{\varepsilon}{3} \) for all \(x, y \in U_{x_0} \). Given \(g \in G \), choose \(f \in F \) such that \(\rho(f, g) \leq \frac{\varepsilon}{3} \). Then \(d(g(x), g(y)) \leq \frac{\varepsilon}{3} \) for all \(x, y \in U_{x_0} \) by triangle inequality. Hence \(G \) is equicontinuous. Now let \(x_n \in X \) be given. Given any \(g_1, g_2 \in G \), choose \(f_1, f_2 \in F \) such that \(\rho(f_1, g_1) \leq 1 \) and \(\rho(f_2, g_2) \leq 1 \). Since \(F \) is pointwise bounded, \(d(f_1(x_0), f_2(x_0)) \leq M \) for all \(x_0 \in X \), and hence \(d(g_1(x_0), g_2(x_0)) \leq M + 2 \). So \(G \) is pointwise bounded. Now, for each \(a \in X \), choose \(U_a \) such that \(d(g(x), g(y)) \leq \frac{\varepsilon}{3} \) for all \(g \in G \), \(x, y \in U_a \). Since \(X \) compact, cover it with \(U_a, \ldots, U_a \). Since \(G \) is pointwise bounded, \(\bigcup_{a=1}^k \{g(a)\}_{g \in G} \) is bounded, so suppose it lies in \(B_{\varepsilon}(0) \subset \mathbb{R}^n \). Then \(g(X) \subset B_{\varepsilon}(0) \forall g \in G \). Let \(Y = \overline{B_{\varepsilon}(0)} \), which is compact. Then \(G \subset C(X,Y) \) is totally bounded under \(\rho \).

- \(G \) is compact since it is complete and totally bounded.

Corollary

Let \(X \) be compact. Let \(F \subset C(X,\mathbb{R}^n) \). \(F \) is compact if and only if \(F \) is closed and bounded under the sup metric, and equicontinuous.

- If \(F \) is compact, it is closed and bounded. Since \(\overline{F} = F \), it is equicontinuous.

- If \(F \) is closed, so \(\overline{F} = F \). \(F \) is bounded under the sup metric, so it is pointwise bounded. Also, \(F \) is equicontinuous.
So \(F \) has a compact closure. But \(F \) is closed, so \(\bar{F} = F \) is compact.

Compact-Open Topology

Definition: Compact-Open Topology
Let \(X \) and \(Y \) be topological spaces. Describe a basis for \(C(X, Y) \) as follows. \(S(K, U) \equiv \{ f \in C(X, Y) | f(K) \subseteq U \} \) is open if \(U \subseteq Y \) is open and \(K \subseteq X \) is compact.

Definition: Evaluation Map
The map \(ev : C(X, Y) \times X \to Y \) defined by \(ev((f, x)) = f(x) \) is called the evaluation map.

Theorem
If \(C(X, Y) \) has the compact-open topology and \(X \) is locally compact Hausdorff, then \(ev : C(X, Y) \times X \to Y \) is continuous.

Proof: Let \((f, x) \in C(X, Y) \times X \) and a neighborhood \(V \subseteq Y \) of \(ev((f, x)) = f(x) \) be given. By the continuity of \(f \), \(f^{-1}(V) \) is open and contains \(x \). Since \(X \) is locally compact Hausdorff, there exists a neighborhood \(U \) of \(x \) such that its compact closure \(\bar{U} \subseteq f^{-1}(V) \), and hence \(f(\bar{U}) \subseteq V \). Let \(K = \bar{U} \). Then \((f, x) \in S(K, V) \times U \) is open, and \(ev(S(K, V), U) \subset V \).

Definition
Given a function \(f : Z \times X \to Y \), it gives rise to a function \(F : Z \to Y^X \) defined by \(F(z)(x) = f(z, x) \).

Conversely, given \(F : Z \to Y^X \), there is a corresponding function \(f : Z \times X \to Y \) given by \(f(z, x) = F(z)(x) \).

\(F \) is the map induced by \(f \).

Theorem
Give \(C(X, Y) \) the compact-open topology. If \(f : Z \times X \to Y \) is continuous, then \(F : Z \to C(X, Y) \) is continuous.

Conversely, if \(F : Z \to C(X, Y) \) is continuous and \(X \) is locally compact Hausdorff, then \(f : Z \times X \to Y \) is continuous.

Proof:
(\(\Rightarrow \)) Suppose \(f : Z \times X \to Y \) is continuous. Let \(z \in Z \) and \(F(z) \in S(K, U) \) in \(C(X, Y) \) be given. By continuity of \(f \), \(f^{-1}(U) \subseteq Z \times X \) is open and contains \(z \times K \). Since \(K \) is compact, the tube lemma implies there is a neighborhood \(W \) of \(z \) such that \(W \times K \subseteq f^{-1}(U) \). Hence \(F(W)(K) = f(W, K) \subseteq U \), so \(F \) is continuous.

(\(\Leftarrow \)) Suppose \(F : Z \to C(X, Y) \) is continuous. Then \(j : Z \times X \to C(X, Y) \times X \) given by \(j(z, x) = (F(z), x) \) is continuous. Then \(ev : C(X, Y) \times X \to Y \) is continuous since \(C(X, Y) \) has the compact-open topology and \(X \) is locally compact Hausdorff. Therefore, \(ev \circ j : Z \times X \to Y \) given by \((ev \circ j)(z, x) = ev(F(z), x) = F(z)(x) = f(z, x) \) is continuous.

Baire Spaces and Dimension Theory

Baire Spaces

Definition: Baire Space
Baire space is a space in which the intersection of a countable collection of open and dense sets is dense. That is, if \(\{ U_n \}_{n \in \mathbb{N}} \) are open and dense sets, \(\bigcap_{n \in \mathbb{N}} U_n \) is dense.
Proposition

X is a Baire space if and only if the countable union of closed sets without interior has no interior, i.e. if $\{A_i\}_{i \in \mathbb{N}}$ are closed and $\operatorname{int}(A_i) = \emptyset$ $\forall i \in \mathbb{N}$ then $\operatorname{int}\left(\bigcup_{i \in \mathbb{N}} A_i \right) = \emptyset$.

Proof:

(⇒) A_i' is open. If $U \neq \emptyset$ is open, then $U \not\subset A_i'$ since $\operatorname{int}(A_i) = \emptyset$. So $U \cap A_i' \neq \emptyset$, hence A_i' is dense (since $\overline{T} = X$).

Since X is a Baire space so $\bigcap_{i \in \mathbb{N}} A_i'$ is dense, i.e. $U \cap \bigcap_{i \in \mathbb{N}} A_i' \neq \emptyset$ for all open U. Therefore $U \not\subset \bigcup_{i \in \mathbb{N}} A_i$, so $\bigcup_{i \in \mathbb{N}} A_i$ has no interior.

Definition: Residual

A set A in a Baire space X is residual if it contains the intersection of a countable family of open and dense sets.

Proposition

If A and B are residual, $A \cap B$ is residual.

If A_i is residual, $\bigcap_{i \in \mathbb{N}} A_i$ is residual.

Theorem: Baire Category Theorem

If X is compact Hausdorff or complete metric, then X is a Baire space.

Proof: Suppose $\{A_i\}_{i \in \mathbb{N}}$ is a family of closed sets with no interior. Want: $\bigcup_{i \in \mathbb{N}} A_i$ has no interior, i.e. given any open set U there is a point $x \in U$ and $x \not\in \bigcup_{i \in \mathbb{N}} A_i$.

We wish to construct U_i such that $U_i \subset U_{i-1}$, $U_i \cap A_i = \emptyset$, $\bigcap_{i \in \mathbb{N}} U_i \neq \emptyset$. Then let $x \in \bigcap U_i$, so $x \in U_i \forall i$ and $x \in U_0$. Then $x \not\in \bigcup_{i \in \mathbb{N}} A_i$, and hence $x \not\in \bigcup_{i \in \mathbb{N}} A_i$.

A_i has empty interior, so there exists U_0 such that $x \in U_0$ and $x \not\in A_i$. Since X is normal, there exists U_1 such that $x \in U_1$, $U_1 \subset U_0$, and $U_1 \cap A_i = \emptyset$. Now assume U_i is constructed. A_{i+1} has empty interior, so there exists $x_{i+1} \in U_i \not\subset A_{i+1}$, hence there exists U_{i+1} such that $x_{i+1} \in U_{i+1}$, $U_{i+1} \subset U_i$, and $U_{i+1} \cap A_{i+1} = \emptyset$ since X is normal.

If X is compact Hausdorff, $\{U_i\}_{i \in \mathbb{N}}$ is a family of non-empty nested compact sets, so $\bigcap_{i \in \mathbb{N}} U_i \neq \emptyset$.

If X is complete metric, add $\operatorname{diam} U_i \leq \frac{1}{i}$. Then x_i is Cauchy, so $x_i \to x$. Now $x \in \bigcap U_i \forall i$, so $x \in \bigcap_{i \in \mathbb{N}} U_i \neq \emptyset$.

Fact

$\mathbb{Q} \subset \mathbb{R}$ is not residual. Given any $q \in \mathbb{Q}$, $U_q = \mathbb{R} - \{q\}$ is open and dense. But $\left(\bigcap_{q \in \mathbb{Q}} U_q \right) \cap \mathbb{Q} = \emptyset$, so \mathbb{Q} does not contain the intersection of a countable family of open and dense sets.

Theorem

Consider $F \subset C(I, \mathbb{R})$ where $F = \{ f \in C(I, \mathbb{R}) \mid f$ is not differentiable at any point $x \in I \}$. Then F is residual in $C(I, \mathbb{R})$.

Proof: Construct a countable family of open dense sets in $C(I, \mathbb{R})$ whose intersection is contained in F. To be differentiable, $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ exists. Construct the family $\{f_k\}_{k \in \mathbb{N}}$ where the limit is larger than k for h small enough.
Proposition
Any open set in a Baire space is a Baire space.

Proof: Let $U \subset X$ be open. Let $\{A_i\}_{i \in \mathbb{N}}$ be closed subsets of U with empty interior. $A_i = a_i \cap U$ where a_i closed in X. $a_i \cap U$ has no interior, for if it did, let $v \in V \subset \text{int}(a_i \cap U)$, but $V \cap U \neq \emptyset$ and is open, and that $V \cap U \subset \text{int}(A_i)$, so contradiction. Hence $\{a_i \cap U\}_{i \in \mathbb{N}}$ are closed in X with no interior. Since X is a Baire space, $\bigcup (a_i \cap U)$ has no interior. Therefore, $\bigcup A_i$ have no interior in U.

Theorem
Let X be a Baire space and (Y, d) be a metric space. Let $f_n: X \to Y$ be a sequence of continuous functions that converge pointwise for all $x \in X$. Then $f = \lim f_n$ is continuous on a dense set of points in X.

Proof: Let $A_n(\varepsilon) = \{x | d(f_n(x), f_m(x)) \leq \varepsilon \quad \forall n, m > N\}$. $A_n(\varepsilon)$ is closed. $\bigcup_n A_n(\varepsilon) = X$. Now for any open $U \subset X$, $\bigcup (A_n(\varepsilon) \cap U) = U$, so at least one $A_n(\varepsilon) \cap U$ has interior. Let $U_1 = \bigcup \text{int}(A_n(\varepsilon))$ is open and dense. Let $\varepsilon = \frac{1}{n}$. Then $\Lambda = \bigcap U_{1/n}$ is residual.

Claim: f is continuous at each point of Λ. Let $x \in \Lambda$ and fix $\varepsilon > 0$. Take $\frac{1}{4n} < \varepsilon$. Then $x \in U_{1/4n}$ and $x \in \text{int} \left(A_n \left(\frac{1}{4n} \right) \right)$ for some N so there exists $U_s \subset A_n \left(\frac{1}{4n} \right)$. So for every $y \in U_s$ and for all $n, m > N$, $d \left(f_n(y), f_m(y) \right) < \frac{1}{4n} \Rightarrow d \left(f_n(y), f(y) \right) \leq \frac{1}{4n}$. Choose $m > N$. There exists V_s such that $y \in V_s \Rightarrow d \left(f_m(x), f_m(y) \right) \leq \frac{1}{4n}$. Then for $x, y \in U_s \cap V_s$, $d \left(f(x), f(y) \right) \leq d \left(f_m(x), f(x) \right) + d \left(f_m(x), f_m(y) \right) + d \left(f_m(y), f(y) \right) \leq \frac{1}{4n} + \frac{1}{4n} + \frac{1}{4n} = \frac{3}{4n} < \varepsilon$. 29 of 29