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Introduction

In the 1920s, T. L. Heath pointed out that historians of mathematics have “given too
little attention to Aristarchus” (Heath 1921, vol. 2, 1). This is still true today. The Greek
text of Aristarchus’s On the Sizes and Distances of the Sun and the Moon has received
little attention; the Arabic editions virtually none.1 For these reasons, much of what this
text has to tell us about ancient and medieval mathematics and the mathematical sciences
has gone unnoticed.

When one considers that many of Aristarchus’s arguments are obscure and much of
his mathematics cumbersome, the persistent interest in this text during the medieval and
early modern periods is remarkable. It was edited and studied by Arabic scholars long
after all of its mathematical methods and most of its astronomical results had become
otiose. Copies of the Greek manuscripts were still being made by Latin scholars in the
17th century, well after the ascent of printed text.2

The work begins with a series of hypotheses that are at once crude and contradictory
and yet refreshingly bold. From these, by great labor, Aristarchus derives a few precise
statements about objects far outside our common purview, displaying an incisive ability
with theoretical modeling. The text is a fine example of that style of Greek mathematics
which produces, from seemingly intractable quagmires, results that are simple and clean.
All of these features must have delighted the many generations of mathematicians who
studied On Sizes. But perhaps they were struck by something simpler than the detailed
arguments and the actual results. Perhaps they were struck by the work’s fundamental,
unspoken claim. On Sizes implies, unequivocally, that the world is mathematical; not
just in a vague qualitative way, but in a precise quantitative way. It demonstrates that
by starting from a few simple and readily obtainable statements one can, through the

1 The text itself, an English translation and useful notes are provided by Heath (1913). Heath’s
edition is based principally on Vat. Gr. 204, the oldest Greek MS. A mathematical discussion of the
treatise is given by Neugebauer (1975, 634–643), who is predominantly interested in Aristarchus’s
astronomical results. Wall (1975) discusses On Sizes in his historiographic study of Aristarchus.
Newton (1977, 171–177 & 389–394) also studied the text, but it is not clear how closely he
followed the details of the argument. The treatise is also discussed by Panchenko (2001).

2 Noack (1992) has provided a thorough study of the history of the text.
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methods of mathematics, produce new knowledge of things that would otherwise be
beyond our grasp. This claim lies at the foundation of all the ancient exact sciences and
was as exciting in the medieval and early modern periods as it was in antiquity.

Aristarchus is securely dated to the early Hellenistic period by Ptolemy who associates
him with a summer solstice observation of 280 bce (Toomer 1984, 139). This date is
compatible with Archimedes’Sand Reckoner, which makes repeated mention of Aristar-
chus, discussing his methods and a number of his assumptions and results. Archimedes
is assumed to have known On Sizes, because he credits Aristarchus with finding the size
relation of On Sizes Prop. 9 (Heiberg 1973, vol. 2, 220). The difficulty is that two of the
hypotheses that Archimedes attributes to Aristarchus are different from what we find in
the treatise, but this will become less problematic when we have a better understanding
of Aristarchus’s approach.3

The first author who identifies Aristarchus as the author of On Sizes is Plutarch, in a
work that also associatesAristarchus with the heliocentric hypothesis, written around the
turn of the 2nd century ce. In On the Face Appearing in the Circle of the Moon, there are
three discussions of Aristarchus. The first of these mentions the Stoic philosopher Clean-
thes’ criticisms of “Aristarchus the Samian” for holding the impious view that the earth
could move (Cherniss and Helmbold 1968, 54). The second attributes to Aristarchus a
treatise called “On Sizes and Distances” and gives a statement of the results of Prop.
7 that is close in wording to the one immediately following the hypotheses in On Sizes
(Cherniss and Helmbold 1968, 74; cf. Heath 1913, 352). The third associates Aristarchus
with the results of Prop. 17 (Cherniss and Helmbold 1968, 120). By the time Pappus
was writing his Collection in the 4th century ce, On Sizes was traditionally attributed to
Aristarchus and was included as a canonical text in the field of mathematical astronomy
(Hultsch 1876–1878, vol. 2, 137). We, along with most who have written on Aristarchus,
believe that he was the author of On Sizes.4

On Sizes fits in well with what we know of the intellectual context of the early
Hellenistic period. From a philosophical perspective, it addresses questions that were
being raised by the Epicureans about the validity of sense perception as a criterion of
knowledge, especially with regard to the size of the sun. In terms of the current concen-
tric sphere cosmology, in which the size of the cosmos was determined by the distance
of the sun from the earth, it makes the claim that we can know the overall size of the
cosmos and the sizes of the principal bodies within it. Moreover, the deductive structure
of the treatise agrees with other texts in the exact sciences of this period. Indeed, the
similarities between On Sizes and the geometric part of Archimedes’ Sand Reckoner are

3 Wall (1975, 206–210) argues that all references to Aristarchus’s work in Sand Reckoner may
be to On Sizes. We see no reason, however, not to believe that Aristarchus wrote more than one
book and that Archimedes simply takes what he needs for his own ends.

4 Bowen and Goldstein (1994, 700, n. 20) have raised the possibility of a much later date
for the text of On Sizes. Their primary argument is the claim that On Sizes fits better with the
intellectual context of the first centuries around the turn of the era. They do not, however, provide
the details of this argument. Rawlins (1991, 69, n. 6) also believes that On Sizes is a later work.
He bases his opinion on the claim that Hyp. 6, discussed below, could never be held by a “serious
astronomer.”
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striking. They address the same sorts of problems; they use the same sorts of geometric
models and the same toolbox of mathematical methods to arrive at their solutions.5

The Greek text

The structure of the treatise

On Sizes is a work of deductive applied mathematics. It is structured like other applied
mathematical texts of the early Hellenistic period, such as the two texts of Autolycus
on spherical astronomy or Euclid’s scientific works. Unlike these texts, however, the
project of On Sizes is computational. Hence, the goal of the text is to develop geometric
diagrams of the earth and the luminaries, and then to introduce numerical parameters to
derive bounds on the sizes and distances of the sun and the moon.

The treatise begins with six assumptions. There is no caption for these given in the
manuscripts but within the text they are referred to by the term “hypothesis” (ØpÒϑesij).6

There are two types of hypotheses, arranged in two groups. The first three are geometric,
in that they make assumptions about the celestial world that allow the mathematician
to construct a geometric diagram. They are not physical in the ancient sense of the
term. That is, they are not about the nature of the objects concerned, but treat the exter-
nal aspects of these bodies in such a way as to establish the possibility of a definite
geometric model. They are as follows (Heath 1913, 352):

1. That the moon receives its light from the sun.
2. That the earth has the ratio of a point and a center to the sphere of the moon.7

3. That, when the moon appears to us halved, the great circle dividing the dark and the
bright portions of the moon points toward (neÚein e„j) our eye.8

Only Hyps. 2 & 3 are explicitly used in the course of an argument. Nevertheless,
all three are implied in the geometric configuration of a number of propositions. Con-
sider Table 1, which exhibits the deductive structure of the work. An explicit use of an
hypothesis is indicated by a bullet, while an implicit use in the diagram is indicated by
an i.

While Hyps. 1 & 3 are relatively straightforward, Hyp. 2 warrants some comment.
It was usual in Greek astronomical texts to claim that the size of the earth relative to the

5 Although Erhart and Erhard Siebold [1942,1943] have questioned the authenticity of Sand
Reckoner, following Neugebauer (1942) few scholars have taken this doubt seriously. Indeed,
Archimedes is generally taken as an important source for our knowledge of Aristarchus’s activity
(Christianidis J., Dialetis D. and K. Gavroglu 2002).

6 Heath (1913, 353) supplies the caption.
7 Other remarks in the treatise as well as the three explicit uses of this hypothesis make it clear

that “the sphere of the moon” is the sphere in which the moon moves.
8 That is, the dividing circle lies in the same plane as our eye. In the text, this hypothesis is

poorly formed. Despite being supported by the Greek MSS, Pappus and the Arabic editions, the
adjective mšgiston, “greatest,” modifying tÕn. . . kÚclon should be excised. Prop. 2 proves that
this circle is not a great circle. Moreover, Prop. 5, the only proposition that uses Hyp. 3, cites it as
referring to “the circle” not “the great circle.”



216 J. L. Berggren and N. Sidoli

Table 1. Logical structure of On Sizes. A proposition in the column headings is supported by each
unit marked with a bullet in the row headings to the left. An i indicates that the unit is implicit in
the geometric configuration of the proposition

1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g 12g 13g 14g 15g 16g 17g 18g

1a 2a 3a 4a 4ca 5a 6a 6ca 7a 8a 9a 10a 11a 12a 13a 14a 15a 16a 17a

H1 i i i i i i i i
H2 • i i i • •
H3 • i i
H4 •
H5 • •
H6 • • • •
1g1a •
2g2a i i •
3g3g • i
4g4a •
5g4ca •
6g5a •
7g6ca • • •
8g6a

9g7a • • •
10g8a

11g9a

12g10a •
13g11a • •
14g12a •
15g13a • • •
16g14a

17g15a •
18g16a

sphere of the fixed stars was as a center point to a sphere; Euclid makes this claim at
the beginning of his Phenomena (Berggren and Thomas 1996, 52–53). The assumption
of Aristarchus’s text, however, is much stronger.9 Hyp. 2 requires that the size of the
earth be negligible in comparison to the size of the lunar orbit. This hypothesis in used
in the derivation of three propositions (Props. 3, 13 & 14), and it is implicit in the geo-
metric configuration of a number of others; see Table 1.10 If one accepts the view that
the text is a piece of deductive mathematics, this hypothesis has a number of more or
less problematic implications. It rules against observing daily lunar parallax. It denies
the possibility of relating the lunar distance to the radius of the earth and establishing
terrestrial distances for the luminaries. Finally, it implies that no extended terrestrial

9 Al-T. ūsı̄ (1940,2), in fact, reverted to the weaker, and logically insufficient assumption relat-
ing the earth to the sphere of the zodiac. An older Arabic version, by Thābit ibn Qurra, states the
same hypothesis as the Greek [124r]; see page 24 for a discussion of this text.

10 The statement by Newton (1977, 175) that “we may doubt that Aristarchus intends for the
second hypothesis to be taken literally” is not supported by a careful reading of the text.
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shadow will fall on the orbit of the moon. The problems with this final consequence
are serious, for it is directly contrary to Hyp. 5. Moreover, the propositions that rely on
Hyp. 5 are all predicated on the assumption that the earth does, indeed, cast an extended
shadow on the path of the moon (Props. 13–15).

The next three hypotheses are computational. They make assumptions about the
physical world which allow the application of numerical parameters to the geometric
models. These are then used to derive numerical solutions to the problems at hand. They
are as follows (Heath 1913, 352):

4. That, when the moon appears to us halved, its distance from the sun is less than a
quadrant by a thirtieth of a quadrant [87◦].

5. That the breadth of the shadow is two moons.11

6. That the moon subtends a fifteenth part of a zodiacal sign [2◦].

As indicated in Table 1, Hyp. 4 & 5 are used only once. Hyp. 6, on the other hand, is
used four times.12 The treatise as a whole demonstrates how relative sizes and distances
can be inferred from these numerical parameters.

The direct relationship between the computational hypotheses and the primary results
of the treatise is stated by Aristarchus himself. Immediately following the computational
hypotheses, Aristarchus gives a short summary of the logical structure of the text, which
points out how key propositions are related to each other and to the hypotheses (Heath
1913, 352–354). He frames this passage in terms of the statements of the theorems; in
effect, he says that Prop. 7 results from Hyp. 4, and Prop. 9 from Prop. 7, while Prop.
15 is derived from Prop. 7 and Hyps. 5 & 6. This short summary is a rare example of a
Greek mathematician discussing his results in terms of their logical requirements.

Following the summary, Heath’s edition of the text proceeds with seventeen propo-
sitions presented in the deductive style that appears to have been traditional for applied
mathematics texts of the early Hellenistic period. In fact, the numbering of the proposi-
tions varies in the different manuscripts.13 On the whole, however, the MSS do not treat

11 The use of this hypothesis in context is more straightforward than the statement. It means
the width of the earth’s shadow falling on the moon’s orbit appears to us as twice the angular span
of the moon. The Arabic expression is clearer, “The breadth of the earth’s shadow is the magnitude
of two moons” (al-T. ūsı̄ 1940, 2).

12 This reading of the logical dependence disagrees with Heath in three places, each for the
same reason. In each instance, Heath refers the reader to a previous proposition for the repetition
of a short argument which is made in the course of proving that proposition. In Prop. 11, Heath
(1913, 387) refers to Prop. 4 because the step in question is also shown in Prop. 4. The step,
however, is not the result of Prop. 4. Aristarchus’s remark, “then it is clear from the forgoing
proof . . . ,” indicates that he intends us to supply the same argument as in Prop. 4, which involves
a direct appeal to Hyp. 6. A similar situation occurs in Prop. 14. Here, Heath (1913, 403) appeals
to Prop. 11. In fact, however, the step is not a result of Prop. 11; it too requires a direct application
of Hyp. 6 and then a trigonometric lemma assumed elsewhere in the text. (For a discussion of
these lemmas and Aristarchus’s style of trigonometry, see page 224, below.) Finally, in Prop. 14,
Heath (1913, 403) refers to Prop. 13 for an argument relying on Hyp. 5.

13 For example, in Vat. Gr. 204, Prop. 1 is numbered 1 & 2, divided according to the two claims
of the enunciation [109r]. Prop. 5 is taken as the first part of the following proposition; Prop. 8 as
the last part of the proceeding. There are, hence, only 16 propositions.
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Heath’s Props. 5 & 8 as separate propositions; they are either corollaries or lemmas to
the neighboring theorems.14 Since neither of them have diagrams it is clear that they
would not generally have been considered theorems by ancient and medieval authors. It
is only in the hands of European mathematicians that these passages became separate
propositions. Since Aristarchus probably did not number his text, however, such consid-
erations are only of interest for trying to unravel the text history. The Arabic versions do,
however, include one final proposition not found in the Greek sources (Prop. 17a). The
correlation of the numbers is given in Table 1; the numbers for the Arabic text are those
of the printed text of al-T. ūsı̄ (1940); for example, 5g4ca is the fifth Greek proposition
and the corollary to the fourth Arabic proposition. We use the proposition numbers in
Heath (1913) to refer to the propositions

When we consider the logical structure of the text using a table, we see that On Sizes
exhibits structural characteristics similar to those of other systematic mathematical texts,
and breaks into logical sections producing certain results. In two places, a series of sev-
eral propositions act as lemmas for a final proposition (Props. 1–7, Props. 12–15). Some
theorems are key results (Props. 7 & 15), while others appear to be trivial and isolated
(Props. 8 & 11).

The table shows that the first six propositions all lead up to Prop. 7 and then are never
used again. We may take this opening section, then, as a derivation of Prop. 7, the fun-
damental distance relation. As Prop. 7 shows, for the purposes of On Sizes, Aristarchus
assumes a geocentric cosmos,15 so that Prop. 7 states that the solar distance, Ds , is
greater than 18 and less than 20 times the lunar distance, Dm; 18Dm < Ds < 20Dm.
Prop. 7 is one of the most important theorems in the book. It is used twice in the extant
Greek text as well as in the final Arabic proposition (Props. 9, 15 & 17a).

Proposition 8 is peculiar for a number of reasons. It states that during a total solar
eclipse the sun and the moon are tangential to a cone, whose vertex is “at our eye” (Heath
1913, 382).16 Its logical isolation from the rest of the text is conspicuous in Table 1,
and it is justified by a direct appeal to “observation” (™k tη̃j thr»sewj) making this
the only place where the text mentions observation. As Neugebauer has pointed out,
this proposition bears an interesting relationship to Prop. 3 (Neugebauer 1975, 635).
Proposition 3 simply assumes that the cone tangent to the sun and the moon can have its
vertex “at our eye” (Heath 1913, 361). Moreover, Prop. 9 makes the same assumption,
and Prop. 13 asserts the equality of the angular span of the sun and moon based on the
fact that the vertex of their tangent cone is “in our eye” (Heath 1913, 383 & 397–399).
None of these three propositions makes any mention of eclipses or depends on the actual
claim of Prop. 8, and in the case of Prop. 13 we are dealing with a situation around
opposition. Moreover, they all express the geometric configuration in the same words. It
seems likely that Prop. 8 is based on the same unstated assumption as Props. 3, 9 & 13

14 In Tabriz 3484 there is a rare case where Prop. 8 is separately numbered as the first of two
sevens (Chavoshı̄ 2005, 177).

15 As we know from Archimedes, in another treatise Aristarchus assumed a heliocentric cos-
mos (Heiberg 1973, vol. 2, 218). Nevertheless, both the figure and text of Prop. 7 make it clear
that the cosmos of On Sizes is geocentric (Heath 1913, 376–378).

16 As Heath (1913, 383, n. 2) points out, this rules against the possibility of an annular eclipse.
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concerning the angular span of the luminaries. Perhaps, Prop. 8 is meant to be a claim
about the implications of this assumption for the physical phenomena of solar eclipses.
In the ancient and medieval sources, this proposition is not separately numbered. There
is a real possibility that this proposition was interpolated into the Greek text by an editor
who wished to discuss certain aspects of solar eclipses.

Propsositions 9 & 10 are results of Prop. 7. Prop. 9, based on similar triangles, simply
asserts that the inequalities relating the radii of the luminaries are the same as those of the
distances.17 Propsosition 10 states bounds on the ratio between the volumes, based on
the inequalities between the diameters. Prop. 10 is an important result, but it is not very
useful. Propsosition 9, which is used three times, is one of the more fruitful theorems
(Props. 10, 13 & 17).

In the current state of the text, Prop. 11 is another oddity. It relates the lunar diameter,
dm, to the lunar distance, Dm. It shows that 2/45Dm > dm > 1/30Dm. Since this does not
seem like an inherently exciting result, and because it is never used again in the text,
it is possible that Prop. 11 is a later addition by a mathematically able commentator.
On the other hand, it is also possible that this theorem served some role in Aristarchus’s
project. It is the only theorem that relates a size to a distance, and it may have been
meant to provide a metric link between these two features of the cosmos. It should also
be pointed out that this proposition is inconsistent with Hyp. 2 and Prop. 17. Hyp. 2
states that the size of the earth is immeasurably small relative to the size of the lunar
orbit, while Prop. 17 shows that the moon is considerably smaller than the earth. Hence
the moon must be immeasurably small relative to its orbit, yet Prop. 11 proves a definite
numerical relationship between the moon and its sphere.

Thus far, the treatise has begun with a tight sequence of theorems (Props. 1–7) fol-
lowed by another sequence (Props. 8–11), which harvests the consequences of Prop.
7 but also contains two structurally isolated theorems (Props. 8 & 11). These are fol-
lowed by Props. 12–15, another continuous run of theorems. Proposition 15, the goal of
this series, is the final logically important proposition in the treatise. It relates the solar
diameter, ds , to the terrestrial diameter, de, by proving that 19 : 3 < ds : de < 43 : 6.
Proposition 15 is used twice in the Greek text and also in the final Arabic proposition
(Props. 16, 17 & 17a). It is also an intrinsically important result because it relates the
size of the sun to something more accessible, the size of the earth. The demonstration
of this result is not simple and involves a number of auxiliary theorems that introduce
interesting theoretical objects and unspecified assumptions.

Although Prop. 12 implicitly relies on two of the early propositions in the exposi-
tion of the geometric diagram, it is logically a direct result of Hyp. 6. It introduces a
numerical approximation for the size of the diameter of the circle that divides the light
and dark portions of the moon. This circle, implied by Hyp. 1 and established by Prop.
2, becomes a locally important theoretical object in the derivation of Prop. 15. We call it
the dividing circle, its diameter, in the plane of the moon’s orbit, the dividing line.18 For

17 While the enunciation is about diameters the proof itself is about radii. The mathematical
equivalence was too obvious to warrant notice.

18 This terminology follows the Arabic, (al-T. ūsı̄ 1940, 12). Neugebauer (1975,
639) calls the dividing line the terminator.
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E

Fig. 1. Diagrams for the dividing circle, endpoint circle, and endpoint chord

the purposes of Props. 13 & 14, the endpoints of the dividing line are considered to move
on a single circle within the earth’s shadow (toà kÚklou, kaϑ’ oá fšretai t¦ ¥kra
tÁj diamštrou toà dior…zontoj ™n tÍ sel»nV tÒ te skierÕn kaˆ tÕ lamprÒn), which
intersects the edges of the shadow (Heath 1913, 392). This is a simplifying assumption.
In fact, the two endpoints do not move on the same curve and because both the sun and
the moon move, and at different speeds, the determination of the shape of the curves
described by the endpoints is nontrivial. The only situation in which the endpoints of
the dividing line would actually describe a single circle is if the sun and the moon were
diametrically opposite and moved in the same direction at the same angular velocity.
In that case, however, the moon and the earth’s shadow would not move relative to one
another and the endpoints of the dividing line would never cross the earth’s shadow.

In order for the endpoints to cross the shadow, the moon must move rapidly relative
to the sun, as is observed. Consider Fig. 1(a), in which ABC is the shadow cone of
the earth. There are various possibilities that could explain Aristarchus’s simplifying
assumptions. For example, if we set the moon moving faster than the sun in the same
direction, then the dividing line, ef , will not remain parallel to itself, but its endpoints
will describe two curves that are close to each other in the vicinity of the earth’s shadow,
ABC. Perhaps these two curves are approximated by a single circle. Another possibility
is that Aristarchus is momentarily holding the sun still while the moon moves through
the terrestrial shadow. In this case, the endpoints of the dividing line, ef , will form two
curves that will approach nonconcentric circles as the rays of light falling on the moon
approach parallel; that is, as the sun is considered to be infinitely far away from the
moon. Perhaps Aristarchus is approximating these curves by a single circle.

Although we cannot be certain of his actual assumptions, something like these
considerations must lie behind his simple claim that there is such a circle and that it
intersects the earth’s shadow. We will call this circle the endpoint circle, because it is
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supposed to be formed by the motion of the endpoints of the dividing line. Consider
Fig. 1(b). Aristarchus’s endpoint circle intersects the shadow of the earth in two points,
which are joined by the chord EF . We call this chord the endpoint chord. The relation-
ship of the endpoint chord to the lunar diameter is the subject of Prop. 13, and this chord
also plays an important role in Prop. 14. Hence, this series of propositions introduces
two purely theoretical geometric objects, the endpoint circle and the endpoint chord,
whose only functions are to facilitate the derivation of the size relation between the sun
and the earth.

Prop. 16, an immediate result of Prop. 15, states the volume relationship between the
sun and the earth. Props. 17 & 18 complete the picture with the two size relationships
between the earth and the moon.

The Arabic editions contain a further proposition, Prop. 17a , which relates the lunar
distance, Dm, to the distance between the moon and the vertex of the earth’s shadow,
Dm v .19 It proves that 71:37 < Dm:Dm v < 3:1, a result that, like Prop. 11, appears to be
of no particular interest on its own. There are at least three ways of interpreting this addi-
tional theorem; it was included in the Greek text from which the Arabic scholars worked
and goes back to Aristarchus, it was a scholium in a Greek MS and was brought into
the text by later scholars, or it was an original result added by an Arabic mathematician.
These possibilities will be discussed further below.

It may be helpful for readers to have a summary listing of the primary results. The
numerical results are stated in terms of a relation between two magnitudes; this relation
may be expressed either as a pair of inequalities (Prop. 7, 9 & 11) or ratio inequalities
(Prop. 10, 15–18 & 17a). Nevertheless, the functional similarity of these expressions
was understood in practice. Indeed as we will see, transformations between inequalities
of simple parts and ratio inequalities were part of Aristarchus’s basic computational
methods. Hence, every relation in On Sizes may be expressed as a pair of numerical
ratios bounding a ratio of magnitudes, n1:n2 < A:B < n3:n4, as we will do below.

Consider Fig. 2. Where Ds is the solar distance, Dm the lunar distance, Dm v the
distance between the center of the moon and the vertex of the terrestrial shadow at mid-
eclipse, ds the solar diameter, de the terrestrial diameter, and dm the lunar diameter, On
Sizes establishes the following relations:

Prop. 7: 18 : 1 < Ds : Dm < 20 : 1
Prop. 9: 18 : 1 < ds : dm < 20 : 1
Prop. 10: 5832 : 1 < ds

3 : dm
3 < 8000 : 1

Prop. 11: 1 : 30 < dm : Dm < 2 : 45
Prop. 15: 19 : 3 < ds : de < 43 : 6
Prop. 16: 6859 : 27 < ds

3 : dm
3 < 79507 : 216

Prop. 17: 108 : 43 < de : dm < 60 : 19
Prop. 18: 1259712 : 79507 < de

3 : dm
3 < 216000 : 6859

Prop. 17a: 71 : 37 < Dm : Dm v < 3 : 1

A number of historians have claimed that Aristarchus failed to give the distances of
the luminaries, despite the title of the treatise (Panchenko 2001, 24; Neugebauer 1975,

19 The text and translation of al-T. ūsı̄’s version of this proposition is given in Appendix A.
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Fig. 2. Diagram of the relations determined by On Sizes

636; Tannery 1912, 386). The tacit assumption must be that the only proper way to do
so would be to relate these distances to earth radii, since Aristarchus does, in fact, state
the ratios of these distances in terms of one another.

Panchenko (2001, 24–25) attempts to show that the distances, in terms of earth radii,
can be easily deduced from the treatise as it stands. His procedure, however, pays no
attention to Aristarchus’s mathematical methods; he simply asserts mean figures where
Aristarchus works with upper and lower bounds and he makes a distinction between
“our eye” and the center of the earth which is almost entirely absent from the text and
is ruled out by Hyp. 2.20 These considerations allow Panchenko (2001, 25) to give nice
round numbers for the distances and to assert that Aristarchus is engaged in a “kind of
‘Pythagorean’ play” involving “the number which marks the famous Metonic luni-solar
cycle.” A comparison of the mathematical methods in these two texts, however, leads
one to the belief that it is Panchenko, not Aristarchus, who is involved in number play.
If indeed any simple numerical results underly Aristarchus’s approach, they are hidden.
The focus of Aristarchus’s text is on quantitative bounds and their logical relation to
numerical and geometric assumptions about the cosmos.

Nevertheless, it is possible to use the approach Panchenko suggests andAristarchus’s
mathematical methods to derive numeric ratios bounding the ratios of the distances of
the luminaries and the earth’s diameter. We proceed as follows.

We apply the equality of terms operation21 to the results of Props. 11 & 17 to yield

57 : 8 < Dm : de < 215 : 1822. (1)

We then apply the same operation to (1) and Prop. 7 to yield

513 : 4 < Ds : de < 2150 : 9. (2)

Arguments like this could also help explain the presence in the text of Prop. 11, which
otherwise might seem unmotivated. Similar considerations can be used to understand

20 In fact,Aristarchus also introduces this difference in Props. 13 & 14; however, this distinction
is problematic and deserves a separate discussion; see page 232.

21 The operations on ratios, and their usage inAristarchus’s computations, are discussed below;
see page 225.

22 Panchenko (2001, 24) wants Dm : de to be a simple 9 : 1, but it is clear that the bounds are
too crude to secure this mean value, given Aristarchus’s methods.
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Prop. 17a . Ratio operations on Props. 17a & (1) can be used to get bounds on the ratio
de :(Dm+Dm v). Similarity of triangles would then give bounds onds :(Ds+Dm+Dm v).

In this way, all the significant relations between the labeled lines in Fig. 2 would
be determined, so that all the metric characteristics of the terrestrial shadow would be
known. It is, however, not immediately obvious why this would be an important goal.
Moreover, any claim about the incompleteness of the extant work must contend with
the fact that the text itself gives a summary of its results which includes nothing beyond
the current content of the Greek text.23 While it is certainly possible to generate results
beyond those in the text using ancient methods, and while some of these results may
seem more satisfying to us than the relations Aristarchus proves, we must admit the
real possibility that On Sizes served a purpose within its own context, which was fully
satisfied by the theorems established in it.

In order to try to understand this context, it will be helpful to draw on another impor-
tant ancient source for information aboutAristarchus. In the Sand Reckoner,Archimedes
tells us that the sphere in which the sun moves is called the cosmos “by most astronomers”
(ØpÕ. . . tîn ple…stwn ¢strolÒgwn ) (Heiberg 1973, vol. 2, 218). Since Archimedes
was certainly in position to know such things, we should accept that the majority of
astronomers in Aristarchus’s time were working within a concentric sphere model of the
cosmos. Moreover, in this model, the distances between any spheres beyond that of the
sun were so insignificant that the sphere of the sun could effectively be taken as that of
the whole cosmos. In this framework, On Sizes may be taken as addressing the concerns
and issues of an ongoing cosmological tradition.

Aristarchus can be read as arguing that the scale and scope of the cosmos is deter-
mined on the basis of a few simple observations through the methods of mathematics. In
particular, he shows that, although the sphere of the sun may be insensibly distant from
that of the fixed stars, the sphere of the moon must be much closer to us. Moreover, this
reading makes some sense of Aristarchus’s interest in the terrestrial shadow. In a cosmos
the size of the solar distance, the terrestrial shadow becomes an important feature. In
particular, one may be interested to know how far its vertex extends, so as to know the
lower limit of the distance of those celestial bodies that are never obscured by it.

Mathematical methods

On Sizes presents us with a number of aspects of Greek mathematics that we would
otherwise know little about, and assumes a background knowledge of lemmas and opera-
tions that are not demonstrated in surviving texts. In other words, On Sizes gives us access
to an entire tradition of Greek mathematics so well-established that a working mathema-
tician could simply assume a knowledge of its foundation on the part of his readership.

23 Neugebauer (1975, 636, n. 4) himself pointed out this difficulty.
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Fig. 3. Diagrams for the trigonometric lemmas used by the Hellenistic astronomers

Trigonometry

For Greek mathematicians, trigonometry was always concerned with the actual men-
suration of triangles. In its mature form, which was in use at least as early as the mid-
second century bce, it was based on the use of chord tables and the functional relations
they expressed. Before the development of these methods, however, some Hellenistic
mathematicians approached trigonometric problems by using a group of lemmas to pro-
duce ratio inequalities that relate angle ratios to side ratios in right triangles.24 This
tradition of approximating trigonometric solutions is attested by both Aristarchus and
Archimedes.

The first two lemmas are given a general enunciation by Archimedes. In the Sand
Reckoner, in the course of a proof that the apparent diameter of the sun is greater than
the side of a regular 1000-gon inscribed in a celestial great circle, Archimedes asserts a
pair of ratio inequalities relating angles and sides in right triangles under the same height
(Heiberg 1973, vol. 2, 232). Consider Fig. 3(a). He states, in effect, that if BD > BC,
then

β : α < BD : BC, (T.L. 1)

and

β : α > AD : AC. (T.L. 2)

The earliest text we have that demonstrates the first lemma is Euclid’s Optics (Heiberg
1895, 164–166).25 The second lemma is first proved, in a trivial variant, T.L. 2a, by
Ptolemy in his treatment of the chord table, Alm. I 10. Consider Fig. 3(b). Ptolemy
shows that if AD > AC, then26

�

AD :
�

AC > AD : AC. (T.L. 2a)

24 Knorr (1985) collected and studied all of the variant proofs of two of these lemmas that are
extant in the Greek mathematical corpus.

25 When Knorr (1985, 370) studied these lemmas he still believed that the version attributed
by Heiberg to Euclid was the earlier text. Following Jones, however, he later came to view the
version attributed by Heiberg to Theon of Alexandria as earlier (Knorr 1991, 195, n. 7). Jones
(1994) and Knorr (1994) present the case for this position.

26
�

AD :
�

AC= β : α so that T.L. 2a is an immediate consequence of T.L. 2. Ptolemy, however,
does not base his proof of this lemma on a previous proof of T.L. 2 (Toomer 1984, 54–55).
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Aristarchus also uses a third trigonometric lemma, T.L. 3. Consider Fig. 3(a). The
lemma Aristarchus requires amounts to the statement that if BD > BC, then

BD : BC > (90◦ − α) : (90◦ − β). (T.L. 3)

We are not aware of any ancient proof of this lemma. Heath gives a proof based on the
ancient demonstrations of the other lemmas (Heath 1913, 377, n. 1).27

The trigonometric lemmas are used in five propositions (Props. 4 [T.L. 1 & 2], 7
[T.L. 3 & 2a], 11 [T.L. 1 & 2a], 12 [T.L. 2a] & 14 [T.L. 1]). Aristarchus never makes any
general reference to the enunciation of the lemmas, he simply asserts their results based
on his current diagram, assuming their application as part of his mathematical toolbox.
Given the practice of Greek mathematicians, this is a strong argument that there was a
tradition of using these theorems which was well enough known that Aristarchus could
simply assume a readership with knowledge of their validity. The existence of this tra-
dition is also attested by Archimedes’ Sand Reckoner, which employs a similar style of
trigonometry. We will see an example of Aristarchus’s trigonometry below.

Operations on ratios and inequalities

Although Greek geometers appear to have had little interest in the arithmetical opera-
tions that formed the core of medieval Arabic and early modern Latin algebraic methods,
they nevertheless employed a group of operations that feature in almost every bit of inter-
esting mathematics of the Hellenistic period. These operations were generally performed
on ratios; that is, proportions and ratio inequalities. As On Sizes shows, however, Greek
mathematicians did convert between proportions and ratio inequalities, on the one hand,
and equalities and inequalities of magnitudes, on the other. Because they had a strong
tendency to work with unit fractions, however, these transformations are only found in
On Sizes when simple parts are involved.

The most complete surviving foundation for the theory of ratios of general magni-
tudes is Elem. V, while a number of propositions relating to ratio and proportion are
proved independently for whole numbers in Elem. VII.28 The Euclidean text of Elem. V
defines six of the operations for ratios and proves four of them for proportions. This ratio
theory was almost certainly meant to provide a foundation for a set of current practices,
not to create new practices or enumerate all existing ones. It is certainly the case that the
operational practice of the Hellenistic geometers was broader than that covered in the
Elements.

Some of the more interesting uses of ratio manipulation, which are not justified in
the Elements, are practiced by mathematicians who probably worked around the time of,
or fairly shortly after, the composition of that book and were, in all likelihood, not much
under its influence. Aristarchus and Archimedes are key witnesses to this early tradition.

27 A further lemma, attributed to Apollonius by Ptolemy in Alm. XII 1, should perhaps be
included among these (Toomer 1984, 558–559). Although there is no evidence that it was ever
used in trigonometric calculation, its subject matter and proof structure indicate that it belongs in
the same tradition.

28 For recent studies of the foundations of ratio theory in Elem. V see Acerbi (2003), Vitrac
(1990–2001, vol. 2, 35–68) and Mueller (1981, 118–151).
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In practice, the operations on ratios were invoked by set expressions that marked
them as operations. They were consistently referred to by a specific word or phrase,
grammatically either a dative of means, an adverb or a prepositional phrase. For our
purposes it is not necessary to give an extensive account of these operations.29 We may
simply list them as follows:

1. Inversion (Elem. V def. 13):30

A : B � C : D �⇒ B : A � D : C.31

2. Alternation (Elem. V def. 12 & Elem. V 16):

A : B � C : D �⇒ A : C � B : D.

3. Composition (Elem. V def. 14 & Elem. V 18):

A : B � C : D �⇒ (A + B) : B � (C + D) : D.

4. Separation (Elem. V def. 15 & Elem. V 17):

A > B and A : B � C : D �⇒ (A − B) : B � (C − D) : D.

5. Conversion (Elem. V def. 16):

A > B and A : B � C : D �⇒ A : (A − B) � C : (C − D).32

6. Equality of Terms33 (Elem. V def. 16 and Elem. V 22 & 23):

A1 : A2 � B1 : B2 and . . .

An−1 : An � Bn−1 : Bn �⇒

A1 : An � B1 : Bn,

29 There are a number of summaries of the six operations on ratios. See for example Heath
(1926, vol. 2, 134–136 & 164–184), Dijksterhuis (1987, 52–54), Netz (1999a, 139–140), Vitrac
(1990–2001, vol. 2, 50–56 & 61–65) and Taisbak (2003, 44–45).

30 Although the Elements only discusses the operations in terms of proportions, they were used
in practice for ratio inequalities as well.

31 We are aware of no ancient proof that the inequality reversed under inversion, but this was
well understood in practice.

32 Conversion is defined but not proved in the Elements. It was probably understood by ancient
authors as a shorthand for successive applications of separation, inversion and composition. This
would explain why changing the inequality required no comment.

33 The literal expression is “ratio through an equal,” (di’ ‡��� lÒgoj). Heath (1926, 136)
takes the expression to refer to the equal number of intervening terms. Vitrac (1990–2001, vol. 2,
52) intends something similar by the phrase “rapport à égalité de rang.” We use the expression
equality of terms to avoid any confusion that might arise from the more literal through equality or
the traditional Latin ex æquali.
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and

A1 : A2 � B1 : B2 and A2 : A3 � B3 : B1 �⇒ A1 : A3 � B3 : B2.

Aristarchus uses these operations in a number of interesting ways. Due to the nature
of the mathematical problems, he applies the operations to ratio inequalities whereas
the Elements only discusses them in terms of proportions. In Prop 4, the first numerical
proposition, the mathematics is simple enough that he can work with inequalities the
entire time. In Prop. 7, he transforms the inequalities to ratio inequalities in order to
carry out manipulations, then is able to transform these back into inequalities involving
simple parts. In Prop. 11, he stays with simple parts but has to double one, giving the
only real common fraction in the text, 2/45 (dÚo me′) (Heath 1913, 386). In most of the
later propositions, the numeral relationships can no longer be expressed in simple parts,
so Aristarchus works entirely with ratio inequalities.

The basic problem-solving strategy is to use a combination of geometric construction
and ratio manipulation to derive numerical bounds. In this sense, Aristarchus uses the
operations on ratio to achieve the same kinds of results that a medieval or early modern
mathematician would obtain through arithmetic operations.

Aristarchus’s language shows that he was fully aware of the structural similarity
between inequalities and ratio inequalities. In a number of places, he performs a ratio
manipulation at the same time as a transformation, so that it is impossible to tell whether
he intends the operation to occur on the inequality or the ratio inequality. In at least one
case, he performs a ratio manipulation directly on an inequality.34

This text also makes it clear that Greek mathematicians knew that the operation of
equality of terms is the same as taking the ratio of the product of the antecedents to the
product of the consequents. In fact, Aristarchus uses this feature of the equality of terms
operation as an important computational technique. The first time this occurs, in Prop.
13,Aristarchus explicitly says that the final ratio is the ratio of one product (sunhgmšnoj)
to another (Heath 1913, 398).35 Following this, in Props. 14, 15, 17 & 17a , he simply
asserts the operation and carries out the multiplication.

This text shows that the strict lines that are sometimes said to have been drawn
between ratios and simple parts, between ratio manipulation and arithmetic, were not
always as strict in practice as a work like the Elements might lead us to believe.

On Sizes Prop. 4

In order to work through a concrete example of Aristarchus’s mathematical prac-
tices, we give an account of his demonstration of Prop. 4. In this proposition, Aristarchus
argues that the dividing circle is not perceptibly different from a great circle. Because the
sun is much larger than the moon, it is shown, in Prop. 2, that the light side of the moon
is greater than a hemisphere. Proposition 3 proves that maximum difference between the
dividing circle and a great circle occurs when the visual cone which contains both the

34 See page 228 below.
35 See page 246 for further discussion of this expression.
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Fig. 4. Diagram for Prop. 4 (Heath 1913, 364). There is no X or BX in any MS. The line BC

appears in the Arabic MSS but not in the Greek

sun and the moon has its vertex at “our eye.” Hence, for Prop. 4, we only need a figure
containing our eye and the moon.

Consider Fig. 4. Let our eye be A and the center of the moon B.36 Let a plane have
been drawn through A and B, cutting the moon in the great circle ECDF and the visual
cone in lines AC, AD and the dividing circle in DC. Then the circle with diameter DC

and perpendicular to AB is the dividing circle. Let FE ‖ DC, and let
�

HG =
�

GK =
1/2

�

FD. Let KB, BH , KA, AH and BD have been joined. Since, by the Hyp. 6, the moon
subtends 1/15 of a zodiacal sign, ∠CAD = 1/15Zsign [= 2◦].37 But 1/15Zsign = 1/180C,
hence ∠CAD = 1/180 4R = 1/45R. And ∠BAD = 1/2∠CAD, hence ∠BAD =
1/45(1/2R) [= 1◦]. Now since ∠ADB is right, ∠BAD : 1/2R > BD : DA [T.L. 1].38

Hence, BD < 1/45 DA. So, BG � 1/45 BA [BG = BD and DA < BA], and, by
separation, BG < 1/44 GA.

Since BG < 1/44 GA, then BH � 1/44 AH [BH = BG and AH > AG]. But
BH : AH > ∠BAH : ∠ABH [T.L. 2], so ∠BAH < 1/44∠ABH . Moreover, ∠KAH =
2∠BAH and ∠KBH = 2∠ABH , therefore ∠KAH < 1/44∠KBH . But ∠KBH =
∠DBF = ∠CDB = ∠BAD [by construction, Elem. I 29, Elem. VI 8], therefore
∠KAH < 1/44∠BAD. But ∠BAD = 1/45(1/2R); hence, ∠KAH < 1/3960R [= 1/44◦,
1/2 × 1/45 × 1/44 = 1/3960]. But a magnitude seen under such an angle is imperceptible

36 See Heath (1913, 364–371) for text and translation.
37 Aristarchus uses three units of angular measure: the circle, the right angle and a zodiacal

sign. We denote these by C, R and Zsign. An estimate of 2◦ for the angular size of the moon is large.
In this proposition, however, an overestimate for the apparent size of the moon only underscores
the results of the proof. It should be noted that Aristarchus is reported to have had another figure
for the apparent size of the sun which is much closer to our current value. In the Sand Reckoner,
Archimedes reports that Aristarchus found that the apparent diameter of the sun was 1/720 of a
circle, that is 1/2◦ (Heiberg 1973, vol. 2, 248).

38 This is Aristarchus’s first use of a trigonometric lemmas and it is not immediately obvi-
ous. Cut off DX = DB. Then since DA > DX, DA : DX > ∠DXB : ∠DAB [T.L. 1]. But
DX = BD and ∠DXB = 1/2R, therefore, by inversion, BD : DA < ∠BAD : 1/2R.
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to our eye.39 And
�

KH =
�

DF . Moreover,
�

KH is viewed straight on, whereas
�

DF will
generally be viewed obliquely and, hence, appear smaller still.40

The mathematical methods of On Sizes

Proposition 4 shows the two most interesting features ofAristarchus’s computational
approach. The first is the use of ratio manipulation to produce new numeric relations.
The second is the application of the trigonometric lemmas to convert a relation involving
angles to one involving segments and conversely.

Most of the mathematical manipulation in this proposition is done on simple parts.
The majority of these are basic conversions between the various units of measure; the
circle, right angle and zodiacal sign. The first ratio manipulation is an inversion and
is glossed over by Aristarchus the first time he uses a trigonometric lemma (see note
38). The second ratio operation is quite interesting. Here, the operation is applied to an
inequality; or, perhaps, the inequality, because it involves simple parts, is being treated
as a ratio inequality. That is, since BG < 1/45 BA, we assert BA : BG > 45 : 1, so
that, by separation, GA : BG > 44 : 1, from which we claim BG < 1/44 GA. Whether
Aristarchus thought of this operation as performed on the ratio inequality or directly
on the inequality is immaterial. What is important is that he worked in a tradition that
understood inequalities and ratio inequalities as interchangeable.41 Because ratio opera-
tions were an important tool, these were transfered to inequalities as well. Nevertheless,
the transformation between ratios and parts almost always occurs when multiples or
simple parts are involved.42

Trigonometric calculation shows that ∠KAH ≈ 0.0178◦, while Aristarchus gives
an upper bound of ∠KAH < 0.0227◦, expressed as 1/3960R. Ostensibly, the only piece
of numerical information thatAristarchus uses in this derivation is Hyp. 6 on the assumed
angular size of the moon, ∠DAC = 2◦. In fact, however, the usage of T.L. 1 is also
significant. Because of the need to derive a ratio inequality involving BD, Aristarchus

39 The angular span would be ≈ 0.0227◦.
40 Neugebauer (1975, 639–640) considers the final part of Prop. 4 to be “slightly garbled.” He

finds it strange that arc DF has been not been laid off to one side of line BA, as it would appear
at half moon. Aristarchus, however, probably chooses this arrangement because he wants to show
that arc DF is still “imperceptible” when it is seen straight on, under its greatest possible angular
span. The argument Aristarchus gives about arc DF appearing under a smaller angle from A than
arc HK is rather odd because, as Neugebauer points out, arc DF cannot be seen at all from A.
The intent, however, is clear and our loose summary of the conclusion captures the general sense
of the argument.

41 The remarks by Fowler (1987, 246–248) on Aristarchus’s On Sizes are useful but he goes too
far in his claim that the techniques for manipulating ratio inequalities are completely distinct from
those for manipulating simple parts. In particular, the statement, “when the language of ratios is
in use, it is not mixed with the language of multiples or parts, even in the most obvious cases,” is
misleading (Fowler 1987, 247).

42 One exception to this tendency is found in Archimedes’ Sand Reckoner, in which he infers
from 1/200R : α < 100 : 99 that α > 99/20,000R (Heiberg 1973, vol. 2, 232).



230 J. L. Berggren and N. Sidoli

is compelled to introduce a 45◦ angle. This angle then furnishes the primary numerical
element in the comparison of ∠KAH and ∠BAD. An angle closer to 1◦ would have
given a better approximation but would not have produced a relation involving BD.43

Since Aristarchus thinks his upper bound is sufficiently small, a better approximation is
unnecessary in this case.

Although this approximation is satisfactory for Prop. 4, where it makes the case
stronger, the same procedure for handling Hyp. 6 is used again in Props. 11, 12 & 14. In
these theorems, however, the requirement of working with 45◦ and a relation involving
line BD highlights some of the drawbacks to Aristarchus’s geometric method of approx-
imation. Trigonometric calculation shows that these propositions should be sensitive to
small changes in the value of the lunar disk, so that bounding a 1◦ angle with a 45◦ angle
is too crude to give accurate results. In fact, however, Hyp. 6 is only used for computing
upper bounds. Hence, even in these later propositions, Aristarchus probably has no need
to use a better approximation than 45◦ because this would only cause his upper bound
to get larger while his lower bound stayed the same.44

In order to derive quantitative information involving ∠KAH from the fact that
∠BAD = 1◦, Aristarchus has to transform a quantitative relation involving ∠BAD and
another given angle into a relation involving sides. He manipulates this relation involving
sides from one triangle to another and then transforms it back into a relation involving
angles, both of these transformations being made with the trigonometric lemmas. Hence,
the trigonometric lemmas serve a function inAristarchus’s trigonometry similar to that of
the chord table in later Greek trigonometry; they allow the geometer to transform state-
ments relating angles to statements relating sides. The trigonometric lemmas, however,
are ratio inequalities; hence, each time one is used some accuracy is lost.

Although we have referred some of the steps in Prop. 4 to propositions in Euclid’s
Elements, we should not think that Aristarchus himself thought of these steps as sup-
ported by specific theorems. The Elements was probably composed either during or
slightly before Aristarchus’s time. In all likelihood, Aristarchus’s toolbox is a loosely
defined body of geometric knowledge, including an understanding of how proportions
and ratio inequalities can be manipulated. Aristarchus also assumes the reader has the
mathematical background to follow steps that have no justification in any theoretical
text that we possess. In particular, the trigonometric lemmas and the basic operations
on inequalities and ratio inequalities are the elementary mathematics that a reader of his
text can be expected to know.

Four other theorems in On Sizes (Props. 7, 11, 12 & 14), along with a theorem in
the Sand Reckoner, fill out the rest of our evidence for trigonometric calculation before
the development of chord tables (Heath 1913, 376–380, 386–391, 402; Heiberg 1973,
232). With regard to trigonometric procedures, these four theorems offer little we have
not already seen. Again, we encounter the same basic mathematical tools: use of the
trigonometric theorems to transform between given angle and side relations, manipula-
tions of proportions and ratio inequalities, and the transformation of ratio inequalities

43 See note 38, above.
44 These issues are further discussed in Appendix B.
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into simple inequalities. We find that angles are expressed in various units whereas sides,
being given no units, are simply compared.

All of this work in early Hellenistic trigonometry takes place in the context of math-
ematical astronomy, as in fact does nearly all known Greek trigonometry. An important
difference should, however, be noted. Whereas Hipparchus and Ptolemy use mathe-
matics to serve the needs of an astronomy that is, at least ostensibly, based on careful
observation and geared toward practical as well as theoretical concerns, Aristarchus and
Archimedes use astronomical problems as a domain in which to demonstrate the power
of mathematics to address questions about the physical world.

Neugebauer (1975, 643) has pointed out the striking similarity between the ap-
proaches of On Sizes and the Sand Reckoner. These texts are meant to display both the
mathematical skills of their authors and the power of mathematics generally to analyze
complex problems with some precision. They are committed to mathematical precision
before astronomical accuracy. From our perspective, looking back after the development
of trigonometric functions, the methods of the Hellenistic mathematicians appear to lack
elegance. Yet these methods were, in fact, a significant advance for applied mathemat-
ics. By using the fundamental properties of the right triangle, mathematicians were able
to assert relations between angles and sides. These approximations could, at least in
principle, be made to fit the given value more or less tightly at the geometer’s discretion.

The role of hypotheses

One of the most striking features of On Sizes is the use of simple hypotheses to derive
numerical results. As well as the six hypotheses stated at the beginning of the text, there
are a number of implicit assumptions. From the perspective of the intellectual context of
the text, the most important of these are the fundamental unstated assumptions about the
structure of the cosmos and the celestial bodies. Aristarchus can take it for granted that
the sun and moon are spheres moving on concentric, spherical orbits about a central,
spherical earth. This was presumably the common opinion among mathematical authors
in his time.

There are other unstated assumptions which have more bearing on the development
of the argument. In Props. 3, 9 & 13. Aristarchus assumes that the cone tangent to the
sun and the moon can have its vertex at our eye. Presumably, this is based on the obser-
vational claim that they both appear under the same angular span. Also in Prop. 4, we are
told that an angle which is 1/3960 of a right angle is imperceptible to us. This assumption
is quite reasonable since this angle is ≈ 0; 1, 21, 48◦ = 0.02272◦; nevertheless, it is
based on an unstated assumption about the limits of our visual abilities.

These two assumptions, along with the six explicit hypotheses, are related in some
way to observation. The nature of this observational basis, however, is sometimes prob-
lematic. The distance relation of Prop. 7 is based on the claim that the angular distance
between the luminaries is 87◦ at quadrature (Hyp. 4). Indeed, the derived distances are
quite sensitive to small changes in this angle. In fact, however, given a more current value
for this angular separation (≈ 89; 50◦) and the margin of error for ancient observational
practices, it should not have been possible to distinguish between the actual angular
separation and a right angle. Aristarchus is probably taking what he considers to be the
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Fig. 5. Simplified diagram of Prop. 14

greatest possible value for the angular separation and showing that under this limiting
assumption, the distances and sizes are still very large.

The assumed angular diameter of the moon (Hyp. 6), and hence of the sun, presents
a somewhat different problem. Being called upon in four propositions, this is ostensibly
the most important numerical parameter in the text. The value which is chosen, however,
is much too large. Moreover, according to Archimedes, a better value, one quarter of that
assumed in On Sizes, was known to Aristarchus (Heiberg 1973, vol.2, 248). The usual
explanation is that Aristarchus found, or adopted, the superior value later in his career.
Although this reading is certainly possible, it is not necessary. Considerations internal to
the treatise itself may provide other explanations. In fact, changing the size of the lunar
disk produces little effect in the final result, and this only in the upper bound of the ratio
Ds : Dm.45 The numbers involved, however, are more manageable throughout the entire
calculation when one uses 2◦ as opposed to 1/2◦. This means, as Neugebauer (1975, 643)
believed, that 2◦ could well have been chosen simply as a convenient numerical parame-
ter. This fact further supports the view that the treatise is intended less as a contribution to
technical astronomy than as a cosmological demonstration of the power of mathematics.

We have already mentioned that there is a contradiction between Hyps. 2 & 5, which
relate the sizes of the earth and its shadow individually to the lunar orbit. Nevertheless,
these issues deserve further reflection. Hyp. 2 states that the size of the earth is negligible
compared to the sphere of the lunar orbit. This hypothesis functions in two different ways
in the text. On the one hand, it is a rather innocent assumption, allowing us to ignore
lunar parallax; it is so used in Prop. 3. On the other hand, in Prop. 13 & 14, it is used as
part of the computational apparatus to apply the assumed angular span of the moon to
the angle at the center of the earth.

In Prop. 13, the primary numerical consideration is Hyp. 5; namely, the fact that
the angular span of the moon is taken as subtending half the earth’s shadow. The angle,
however, is seen from the center of the earth. This means that the surface of the earth,
which casts the shadow, and the position of the observer, at the center of the earth, are
now found together in the same figure. The implication of Hyp. 2, however, is that there
can be no geometric distinction between “our eye” and the center of the earth.

The situation becomes more pronounced in Prop. 14. Consider Fig. 5. Where B is
the center of the earth, MP the moon lying within the earth’s shadow, and C the center
of the moon, Aristarchus asserts that BC : CM > 45 : 1. This statement, following from

45 See Appendix B.
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both Hyps. 2 & 6, is one of the theorem’s two numerical arguments.46 The second is the
claim that ON < 2MP , which is a direct result of Hyp. 5. For both of these numerical
conditions to hold as expressed, we must at the same time believe that the earth is as a
point to the sphere of the moon and that this point somehow casts an extended shadow
on that sphere. In other words, Aristarchus was willing to maintain two contradictory
hypotheses simultaneously, in order to obtain numerical results.

We have already noted that Props. 13 & 14 contain a number of simplifying assump-
tions; in particular the presupposition of two purely theoretical objects, the endpoint
circle and the endpoint chord. These objects are invoked in order to produce a geometric
configuration that is susceptible to trigonometric computation. These are another sort
of presupposition, although not hypotheses in the strict sense. Moreover, they are the-
oretical as opposed to observational. Here again, Aristarchus is willing to make some
suppositions, which cannot be strictly accurate, in order to obtain his desired result. This
means, as we stated earlier, thatAristarchus is doing something much more mathematical
than astronomical. He is advancing hypotheses for the sake of the argument.

These realizations about Aristarchus’s use of hypotheses are of considerable histori-
cal importance, especially as they relate toArchimedes’discussion of the wayAristarchus
worked with hypotheses. Archimedes’ Sand Reckoner is a work cut from the same cloth
as On Sizes. It begins with a number of hypotheses, two of which are explicitly based
on the preceding work of Aristarchus. From these assumptions, Archimedes proceeds
to develop an upper bound for the size of a greatly expanded cosmos, to fill this cosmos
with sand and then to exhibit a number, exceeding the number of these grains of sand,
stated in his new system of numeration, specifically designed to handle such large num-
bers. Because he wants a cosmos that is as large as possible, he introduces a heliocentric
hypothesis, which he attributes to Aristarchus.

Archimedes tells us that “Aristarchus brought out writings of certain hypotheses, in
which it results from the suppositions that the cosmos is many times” larger than usual
(Heiberg 1973, vol. 2, 218). These hypotheses are (a) that the earth revolves around a
stationary sun and (b) that the size of the earth’s orbit is as a point to the sphere of the
fixed stars. Archimedes is not quite satisfied with Aristarchus’s expression for the rela-
tionship of the terrestrial orbit to the cosmos because he wants to use it for computational
purposes; nevertheless, an examination of the role of Hyp. 2 in On Sizes makes it clear
that this is just the sort of hypothesis that Aristarchus would use for establishing the geo-
metric characteristics of his diagrams. It is clear, then, that these other writings explored
the structural implications of making certain nonstandard assumptions about the geo-
metric configuration of the cosmos. On the whole, in terms of method and approach this
work was probably quite similar to On Sizes.

The evidence of the Sand Reckoner supports this and Archimedes almost certainly
intends the text as a nod to Aristarchus, whom he mentions by name no less than ten
times. Moreover, On Sizes and Sand Reckoner are closer to each other than they are to
any other text in the surviving mathematical corpus. In all likelihood, Archimedes wrote
Sand Reckoner as a sort of tribute to a predecessor he admired, using the same general
approach and mathematical methods. Although Sand Reckoner has a playful air, there

46 The proportion is implied by Hyp. 6 and T.L.1, in the same way as in Prop. 4. See page 228.
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are also serious elements, such as the discussion of an instrument for measuring the solar
disk (Heiberg 1973, vol. 2, 222–226). Even the goal of Sand Reckoner, computing an
upper bound for the number of grains of sand that would fill a vast cosmos, can broadly
be construed as part of the same program as On Sizes. Although the number itself is
inconsequential, the very fact that it is calculated is a testament to the idea the cosmos
can be known through computation.

This is the sort of context in which we should situate Aristarchus’s heliocentric
hypothesis. It seems that, at the beginning of the Hellenistic period, Aristarchus spe-
cialized in a form of mathematical cosmology that drew specific numeric results from a
small set of assumptions. The assumptions could be more or less true; nevertheless, the
aim of the project was to show that different sets of hypotheses had definite implications
for the structure of the cosmos.

The Arabic Text

Historical remarks on the Arabic versions

The survival of the Greek text of On Sizes is likely due to its role in the curriculum
used to train astronomers in Alexandria in the 4th century of our era. It was one of
a body of works known as the Little Astronomy, which mostly dealt with the mathe-
matics of the celestial sphere and the consequences of the motion of that sphere for a
central, spherical earth.47 As such, it was the subject of a brief commentary by Pappus
around the beginning of the 4th century (Hultsch 1876–1878, 554–560; Heath 1913,
412–414). Together these texts were intended to bring the student of mathematical sci-
ences from a knowledge of Euclid’s Elements to the point where he could begin to study
Ptolemy’s Almagest. The whole of this corpus was translated into Arabic, by various
individuals, mostly in the 9th century. These works formed the core of a somewhat
variable canon of works which, because of its position in the curriculum, was known
to Arabic authors as the Middle Books, and by at least the 13th century included some
original Arabic works.48 Among those who made translations, revisions and additions
to this corpus were Ish. āq ibn H. unayn, al-Kindı̄, Qust.ā ibn Lūqā, the Banū Mūsā, Thābit
ibn Qurra and Nas.ı̄r al-Dı̄n al-T. ūsı̄.

At least two Arabic versions of On Sizes are known. The most common is the edi-
tion made by al-T. ūsı̄ sometime in the 13th century. This was done as part of his
larger project to produce new editions of the canonical works of Greek mathematics and

47 This collection included the surviving works of Autolycus, Euclid’s Phaenomena, the two
Spherics of Theodosius and Menelaus, and Hypsikles’ adaptation of Babylonian numerical meth-
ods for the calculation of rising times.

48 The claim by Mogenet (1950, 166) that the formation of the Arabic collection was the work
of al-T. ūsı̄ is refuted by al-Samaw↩ al who refers to a lost 9th century commentary on this collec-
tion by Qust.ā ibn Lūqā, On the Middle [Books] which Must be Read Before the Almagest (Sezgin
1978, 66). Moreover, T. ūsı̄ himself, in the introduction to his edition of the Archimedean’Lemmas,
quotes a passage by the 10th century scholar al-Nasawı̄ referring to the Middle Books (al-T. ūsı̄
1940, 2; Schoy 1926, 32, n. 1).
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astronomy, probably in the 1240s during his Ismā↪ı̄lı̄ period in Alamūt (Ragep 1993,
12–13). Sezgin (1978, 75) lists thirteen manuscripts of this edition in European and
Middle Eastern libraries and it is the only version that has been printed (al-T. ūsı̄ 1940).49

Although for a number of other texts in his edition of the Middle Books T. ūsı̄ names the
translator and states what he knows of the text history, in the case of On Sizes he is silent
on these matters.

The other version of the text is known from a single, privately owned manuscript,
usually called the Kraus MS, because it was sold by the bookseller H. P. Kraus (Lorch
2001, 28; Kheirandish 1999, vol. 1, xxvii; Kraus 1974, 45, no. 18).50 The colophon of
this text states that it is a revision by Thābit ibn Qurra, and hence complied

in the late 9th century [f. 133r]. A comparison of the two versions shows that this is
an earlier edition of the treatise, one that is, in places, textually different from that of
al-T. ūsı̄.

We do not know who translated On Sizes from Greek into Arabic, but the sec-
ondary literature, nonetheless, agrees that the translator was Qust.ā ibn Lūqā.51 The
earliest attribution to Qust.ā in these sources is that by Uri (1787, 208) in his catalog of
the Bodleian collection of Eastern MSS. This assertion has the advantage over almost
all others in being quite clear about its manuscript basis; that is, Arch. Selden. A. 45, f.
142v–150r (= Uri no. 875). We have consulted the MS in question, however, and like
the other T. ūsı̄ MSS we have seen, it contains no information about the translator. The
Kraus MS, likewise, is silent on the question of the translator. Qust.ā is indeed a likely
candidate for the translator, and al-T. ūsı̄ tells us explicitly that Qust.ā’s translations were
the basis for his editions of a number of other treatises in the Middle Books.52 Moreover,
as just noted, al-Samaw↩al tells us that Qust.ā wrote a commentary on some version of
the whole collection (Sezgin 1978, 182). Nevertheless, we should reserve judgment on
this question until we have a better knowledge of the manuscript evidence.

Remarks on Thābit’s revision

As the colophon suggests, this text is meant to be a mathematical improvement over
the source translation. Since we do not know what, if any, translation Thābit used as he
composed his text, it is impossible to state whether the differences between this text and
the Greek are due to Thābit or to an earlier Arabic scholar. Since Thābit’s text was to be

49 Chavoshı̄ (2005) has also published a facsimile of one of the MS of this version.
50 The MS contains ten treatises of the Middle Books. The text of On Sizes is on 124r–133r,

of which the penultimate folio is missing, although the foliation is continuous. 132v breaks off in
the middle of an alternate proof to Prop. 15, also found in T. ūsı̄, while 133r begins with Prop. 17a

in progress.
51 Heath (1913, 320) simply states as a fact that Qust.ā was the translator; Sezgin (1978, 75),

more prudently says “perhaps” he was the translator. Noack (1992, 37–38, n. 6) again takes Qust.ā
as the translator and supports this with a note cataloging a long list of scholars who asserted this
to be true and largely left the matter at that.

52 The Latin tradition contains some references to other possible Arabic translators but these
are obscure and inconclusive (Noack 1992, 40–41).
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understood as a correction, we will assume that the substantial changes are his, while
admitting that this may not hold in every case. Since the oldest Greek manuscripts were
copied from one or two prototypes in Byzantium in the 9th and 10th centuries, we should
admit the possibility that the Baghdad mathematicians had access to a somewhat differ-
ent version of the Greek text, which was attested in at least one Greek MS in Baghdad
by the end of the 9th century.

The general tendency of Thābit’s revision is to flesh out the text in a number of ways.
For example, the astronomical significance of a geometric object may be added in the
course of an argument, or certain mathematical details may be adduced as justification.
Proof structure is also reorganized in a number of places, especially when a diagram has
been redrawn. All these changes were presumably made for mathematical, and didactic,
reasons. The text is also made lengthier by the fact that all numbers are written out
longhand, whereas the Greek often uses numerals.

There are three places where Thābit’s text includes substantial additional material.
One of these is based on a scholium found in a number of the Greek MSS, a second
is a complete reworking of a scholiast’s argument to explain the reduction of a ratio
inequality involving large numbers to one with more manageable numbers, and the third
is the addition of a final theorem, not found in our Greek sources.

The first of these occurs in Prop. 3, where Aristarchus assumes, without proof, that
if pairs of tangents to a circle are drawn from two external points, the chord joining
pairwise points of tangency will be less when the intersection of the pair of tangents is
closer to the circle. A scholium attempting to prove this statement is found in Vat. Gr.
204, f. 110r (Fortia d’Urban 1810, vol. 1, 114–118).53 Thābit’s edition includes both the
argument and the diagram of the scholium [f. 125v], the scholium diagram having been
included within the diagram for the proposition.

The second occurs at the end of Prop. 15, where Thābit appends an alternate argu-
ment for the reduction of a ratio inequality [f. 132v]. A rambling justification of this
reduction is given in a scholium in Vat. Gr. 204, on a page packed with notes [117r;
Fortia d’Urban 1810, 190–193]. Thābit’s approach is nicer than that of the scholium,
doing more in fewer steps.

Finally, Thābit’s text ends with a theorem not found in the extant Greek MSS, Prop.
17a . The theorem has its own figure and relies on the two most important results of the
text, Props. 7 & 15.Although this theorem could have been added by anArabic scholar, it
is at least as likely that it was found in the Greek sources, either as an additional theorem
or an interesting scholium.

The text in the Kraus MS itself contains a fair number of copyist’s errors, particularly
in the numbers and geometric letter names. The diagrams, on the other hand, are as good
as any we have seen in the manuscripts of On Sizes, Arabic or Greek. They are clearly the
work of someone with a sound grasp of the mathematics involved.54 It may be significant
that these diagrams were drawn as the text was being copied, as can be seen from the

53 Heath (1913, 362) brackets the phrase “according to the lemma,” which is likely a reference
to the scholium.

54 Kheirandish (1999, xxvii) is also of the opinion that this MS was prepared by an expert.
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Fig. 6. Vat. gr. 204 diagrams for Prop. 13 [f. 115r–115v]

fact that text wraps around them closely.55 The fact that the geometric letter names, in
Arabic, are not derived by a strict system of transliteration from the Greek suggests that
Thābit reworked the diagrams, and a comparison of the diagrams for Prop. 13 makes a
strong argument that this is, indeed, what happened.

The diagrams for Prop. 13 present a real mathematical difficulty. As well as the
issues we have already raised with regards to Prop. 13, the geometric requirements for
Aristarchus’s diagram contains a further simplifying assumption, which cannot strictly
be true and yet is maintained for the sake of the argument. Consider Fig. 1 (page 220)
and Fig. 6. Proposition 13 requires that the moon be entirely within the shadow of the
earth. The geometry of the diagram, however, also stipulates that the dividing line be on
the lunar hemisphere facing the earth, such that a tangent drawn from the center of the
earth to the moon will intersect the endpoint chord where it intersects the cone of the
terrestrial shadow.56 Clearly, it is not possible to draw a diagram satisfying both these
requirements.

55 This can be contrasted with cases where we know the diagrams were drawn after the text was
complete, because a number of the diagrams do not fit into the boxes left for them. This practice
is confirmed, for example, by a translation of Ptolemy’s Flattening the Surface of the Sphere in
which empty boxes have been left by the copyist (Anagnostakis 1984).

56 It fact, however, since the moon is much smaller than the earth (Prop. 9), the dividing line
must be on the hemisphere which faces away from the earth (Prop. 2). On the other hand, following
Prop. 4, we may take it to be perceptibly equivalent to a great circle.
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There are at least two ways to approach this complication, neither of which is fully
satisfactory. Either, (1) the moon may be drawn so that it sticks out of the terrestrial
shadow, or (2) the moon may be made tangent to the surface of the shadow cone, so that
the intersection of the endpoint line and the tangent drawn from the center of the earth
will not fall on the surface of the shadow. Either of these configurations violates one of
the conditions of the proposition.

The MSS of the Greek tradition take the first route, as best seen in Vat. Gr. 204; see
Fig. 6.57 The Greek MSS use two diagrams for Prop. 13. In many of the extant diagrams
the quality of the diagrams is quite poor and it is clear the copyists had some difficulty
with the mathematics involved. Even in Vat. Gr. 204, which is the most competently
drafted, the lines in the moon do not appear to have been drawn with due consideration
for the mathematical argument. It was only with the publication of Commandino’s Latin
translation that European scholars were furnished with a composite, mathematically
sound diagram, and they have used it ever since. (Commandino 1572, 22v ff.).58

Thābit took the other course. He gives a single figure and makes the moon tan-
gent to the cone of the terrestrial shadow; see Fig. 7. Since the diagram is well drawn,
the intersection of the tangent drawn from the center of the earth to the moon cannot
fall on the line of the terrestrial shadow. Indeed, the entire endpoint line falls inside
the shadow. The MSS of the T. ūsı̄ tradition, however, do not preserve the precision of
Thābit’s drawing. For example, in Arch. Selden. A. 45, the moon again protrudes from
the terrestrial shadow [f. 147r], while in Tabriz 3484, it floats freely, entirely within the
shadow (Chavoshı̄ 2005, 179).

It is likely that Thābit’s Greek sources, as ours, preserved figures that were unsatis-
factory from a mathematical perspective. Hence, he set out to correct them on the basis
of the geometric requirements of the text. In the case of Prop. 13, he made a single
combined diagram, changed the lines in the moon, and reordered the letter names; all of
which, in turn, led to minor differences in the proof of the theorem.

This brief discussion sheds some light on what it meant for Thābit to make an
improvement of the text. We will examine three propositions in more detail below, to
give a sense of Thābit’s practices in the preservation of this text.

Remarks on T. ūsı̄’s edition

There are a number of reasons for believing that al-T. ūsı̄ made his edition using the
Thābit revision, or some text closely related to it. Whereas T. ūsı̄’s general tendency is to
make his edition more concise, all substantial additions found in Thābit’s text are also
in T. ūsı̄’s. Also, a number of Thābit’s rearrangements to proof structure are reproduced
by T. ūsı̄. Moreover, and most telling, the letter names agree in every case between the

57 Noack (1992, Taf. VI A, XI B, XII B, XIII A, XIV B & XXV) reproduces a number of the
Greek diagrams. A nice color image of the first diagram in Vat. Gr. 204 can be seen online at
http://www.ibiblio.org/expo/vatican.exhibit/exhibit/d-mathematics/Greek math2.html.

58 The figure given by Heath (1913, 394) follows Wallis (1688, fig. 23), who in turn uses
Commandino’s diagram.
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Fig. 7. Krause MS diagram for Prop. 13 [f. 131r]

two Arabic versions even though they have not been systematically transliterated from
the Greek.

On the whole, T. ūsı̄’s text differs less from Thābit’s than Thābit’s from the Greek. T. ūsı̄
has made very few structural changes and added very little to the text. In the few cases
where he adds material, this is because Thābit’s version is deficient from a mathematical
perspective. On the whole, T. ūsı̄’s object seems to have been to make a less prolix version
of the treatise. He has trimmed the text using a number of different means; stylistically
he uses considerable ellipsis, he condenses mathematical argument wherever possible
and he eliminates repetition in proof structure. On the level of convention, he represents
many numbers with numerals. These observations agree with those of Rashed (1996, 9,
12–27) regarding T. ūsı̄’s edition of the Banū Mūsā’s Treatise on Measuring Plane and
Spherical Figures, a work also found in his Middle Books.

It will be useful to make a few detailed comparisons of the three versions of the trea-
tise – the Greek, Thābit and T. ūsı̄. This will provide instantiations of the generalizations
made above.
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Comparison of the three versions

The first difference appears in the titles of the treatises. The Greek title is On the
Magnitudes and Distances of the Sun and the Moon, while Thābit has On the Volumes
and Distances of the Two Luminaries, the Sun and the Moon. T. ūsı̄, on the other hand,
has omitted the names as obvious, using only On the Volumes and Distances of the Two
Luminaries. The striking feature of the Arabic titles is the word “volume” (jirm, ),

which is repeated throughout the treatise. The word jirm (body, mass, or bulk) is not
a common translation for the Greek version’s “magnitude” (mšgeϑoj), which can be
used for a geometric quantity of any dimension, whereas jirm generally denotes a three-
dimensional measure. In any case, the phrase “magnitudes of the sun and the moon”
only appears in the title of the Greek work, while jirm appears frequently in the Arabic
(Props. 10, 16 & 18).

Structural differences

The structural difference that appears almost immediately is that of the formal divi-
sions of the propositions. The six traditional divisions of a Greek proposition were first
articulated by Proclus in late antiquity in his commentary to Elements I (Friedlein 1873,
203–207; Netz 1999b). The enunciation states the proposition in general terms. It is
followed by the exposition, which sets out some specific lettered objects satisfying the
conditions of the enunciation. The specification then asserts the proposition for these
specific lettered objects. The bulk of the proposition is given over to any auxiliary con-
struction and the actual proof, which establishes that the assertion is true for the specific
objects set out. Finally, the conclusion reasserts the general claim of the proposition.

In general, we can identify these categories of exposition in Aristarchus but they are
more loosely differentiated and less regularly ordered than we find in the Elements. For
example, Aristarchus will give some of the construction intermixed with the exposition,
state the specification after the construction or introduce construction steps in the proof
as needed. Moreover, he rarely gives a conclusion.

Nevertheless, we may use the framework of this structure to compare the three
versions. In the following, we give some examples of differences in the exposition and
specification that are typical.

Prop. 7 The Greek includes the construction in the exposition but omits the specifica-
tion of the first part, although the second specification is given. Thābit has added a
specification for the first part of the theorem and is followed in this by T. ūsı̄.

Prop. 11 The Greek gives the exposition followed by a brief specification, “I say that it
is according to the enunciation” (lšgw Óti g…gnetai t¦ di¦ tÁj prot£sewj) (Heath
1913, 386). Thābit has fleshed this out to a full specification and is followed in this
by T. ūsı̄.

Prop. 13 This complicated theorem is in three parts; the first two demonstrate upper
and lower bounds for two ratio inequalities, the third gives just a lower bound. In the
Greek text, the construction is included in the exposition and followed immediately
by the proof of the first part. The second part, however, is introduced by its own
specification. There is again no specification for the third part. In the Thābit text, the
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proposition begins abruptly, the proceeding theorem having no statement of proof
(qed). Following the enunciation, there is a general specification for the whole prop-
osition [130r]. There are three more

specifications but there is some disorganization. For example, there is no specifica-
tion for the first half of part two, but there is for the second. T. ūsı̄ basically follows
Thābit; however, he gives the statement of proof for the forgoing proposition and
drops the general specification.

Prop. 14 In the Greek, the exposition has been abridged to “let it be the same diagram
as before” with no specification (Heath 1913, 398). Thābit sets out “the things in
the figure” , gives one statement of exposition and then a full

specification [131r]. T. ūsı̄ follows Thābit.
Prop. 15 The proposition is in two parts. The Greek gives a full exposition in the begin-

ning but only states the specification for the second part. Thābit sets out the “things
in the previous figure” and then gives a bit of exposition [131v]. This is followed by
a full specification for both parts; the second specification is given again to intro-
duce the second part of the proof. T. ūsı̄ follows Thābit but his statement of the first
specification is more concise.

These comparisons again show that T. ūsı̄ made his edition on the basis of the Thābit
revision. There are no significant textual additions in the T. ūsı̄ text that are not based on
the Thābit text. All differences between the Arabic versions can be explained by T. ūsı̄’s
tendency to abridge the text.

While the Arabic versions show some divergence from the Greek with regard to
expositions and specifications, the three texts are very close in the expression of the
conclusions. The one significant difference is in the statements of proof at the end of a
theorem. Aristarchus never gives the final assertion of proof that became canonical in
later Greek mathematical writing, “which was to be shown” (Óper œdei de‹xai). Thābit,
on the other hand, always gives this assertion as “and that is what we wanted to prove”

and T. ūsı̄ shortens it to “and that is what we wanted” .

These data support two conclusions. The first is that of Netz (1999b), who argues
that the traditional division of Greek propositions was likely a framework developed by
Proclus to describe canonical texts such as the Elements; it was not an absolute struc-
ture, which working mathematicians strove to maintain. The second is that al-T. ūsı̄’s
practice of condensing his text tended to eliminate the repetitious elements of Greek
proof structure.

Specific differences

The prefatory material, consisting of the hypotheses and the brief sketch of the struc-
ture of the treatise, is the section where we find the closest agreement between the three
versions. The one conspicuous exception is Hyp. 2, which T. ūsı̄ reformulated to read,
“The measure of the earth with respect to the sphere of the signs

is the measure of the center and point” (al-T. ūsı̄ 1940, 2). Since Thābit, following the
Greek, expresses this in terms of the size of the earth compared to the lunar orbit, T. ūsı̄
probably thought the error was a simple slip and corrected it to the more commonly held
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position. He apparently did not notice that the hypothesis concerning the lunar orbit is
actually required in three places; see Table 1.

We turn now to a discussion of a few specific propositions which may be taken as
illustrative of some of the points we have made about the differences between the three
versions.

To facilitate comparison, where possible we change the Arabic letter names to those
found in Heath (1913). As we have said, however, most of the lettering has been reor-
ganized from what one would expect if Thābit were using the standard transliteration of
Greek letter names. For the three propositions discussed below (Props. 4, 7 & 13), Thābit
has relabeled his figure in such a way that the letter names introduced in his enunciations
follow the Arabic, abjad order.

Prop. 4

We have already discussed this theorem at length (see page 228). It shows that the
dividing circle in the moon is virtually identical with a great circle. A comparison of the
three different versions of this theorem, will exhibit some of the typical differences in
the texts: changes in the argument between the Greek and Thābit and simplification in
mathematical expression between Thābit and T. ūsı̄.

The details of the proof vary between the Greek and Thābit. Consider Fig. 4. The
Greek argument runs as follows: by hypothesis (Hyp. 6), the moon stands on 1/15Z, so
∠CAD = 1/15Z. But 1/15Z is 1/180C, so ∠CAD = 1/180C. Hence, ∠CAD = 1/180 4R =
1/45R (Heath 1913, 367).

Thābit, on the other hand, with no reference to the hypothesis, states that the moon
subtends 1/15Z = 1/45 3Z so ∠CAD = 1/45R. The argument is then garbled by claiming
that, since ∠BCA = R, then ∠CAB = 1/45(1/2R) [126r]. In fact, the size of ∠CAB

depends only on ∠CAD and the fact that ∠BCA is right should be asserted at the begin-
ning of the following section, as it is in the Greek. Moreover, the line BC, on which
this argument depends, does not appear in the Greek diagrams or text. T. ūsı̄, on the other
hand, follows Thābit through this argument. It seems probable that Thābit drew a new
diagram for this theorem and then wrote a slightly different proof, which used a line in
his diagram that does not appear in the Greek.

A step of the construction can be taken as an example of the way al-T. ūsı̄
renders Thābit’s text more concise. Where Thābit says “Let us join line DC

so that the circle, whose diameter is DC standing on line AB at right angles
, is less...”, T. ūsı̄ simplifies with “We draw DC,

and the circle, whose diameter is DC, with AB perpendicular to it , is

less...” (al-T. ūsı̄ 1940, 6; 126r).

Prop. 7

This key proposition provides bounds for the solar distance in terms of multiples of the
lunar distance. There are differences between Thābit and the Greek in terms of both
structure and argument. The diagram in the earliest Greek manuscripts is somewhat
poorly drawn and it is likely that Thābit reworked it [Vat. Gr. 204, f. 113v]. The letter



Aristarchus’s On the Sizes and Distances of the Sun and the Moon 243

names he uses follow the abjad order of his exposition with the result that not single letter
corresponds to what we would expect from strict transliteration. T. ūsı̄ follows Thābit in
these structural changes. We will get a sense for the structural differences by looking at
the exposition and construction.

[Greek:] Let A be the center of the sun,
B that of the earth. Let AB be joined
and produced. Let C be the center of the
moon when halved; let a plane be ex-
tended through AB and C, and let the
section made by it in the sphere on which
the center of the sun moves be the great
circle ADE. Let AC, CB be joined and
BC produced to D. Then because the
point C is the center of the moon when
halved, the angle ACB will be right. Let
BE be drawn from B at right angles to
BA. Then . . . (Heath 1913, 377)

[Thābit:] Let the point of our eye be point
B, and let the center of the sun be point A.
We join BA and let us produce the plane
passing through line AB and the center
of the moon, when the moon is halved
in light. Hence, the section, which is pro-
duced by it in the sphere of the sun, is a
great circle; let it be circle AXE.59 And
let line XBE pass through point B,60 and
let BA stand on it at right angles. Hence,
the center of the moon, when it is halved
in light, is located between the lines AB,
BE, EA.61 Let it be point C, and let us
join lines BC, CA. I say . . . [127r]

The differences between the two texts are numerous. As seen in Fig. 8, the diagram
has been redrawn and the argument rewritten. The “center of the earth” has become “our
eye.” The Greek labels the center of the moon when it is introduced; Thābit waits until
the end of the exposition. Thābit gives the great circle of the sun’s orbit a different name,
based on a point that is not found in the Greek diagram or used in the Greek text. The
Greek draws the lines BC, CA in the middle of the passage and asserts that they are per-
pendicular to one another. Thābit draws them at the end and makes no claims about them.

T. ūsı̄ follows Thābit with subtle differences. “Our eye” becomes “the eye.” He omits
words like “point” and “line” where the object is mathematically obvious. In one place,
he adds the word “arc” to distinguish the object in question from lines.62 The jussive of
geometric operations tends to become the imperfect. There are, however, no substantial
differences in this passage between T. ūsı̄ and Thābit.

This close correspondence between the Kraus MS and T. ūsı̄’s edition is not main-
tained in all places. In some cases, al-T. ūsı̄ supplies steps in the mathematical argument
that have gone awry in the earlier text. The following example shows a case of textual
corruption in Thābit that is revealed by a comparison with T. ūsı̄’s text.

Toward the end of the first part of the theorem, the text of Thābit’s revision loses its
way. Two of the numbers are wrong and some of the argument has gone missing.

[Thābit:] So, the ratio of line FG to line GE is greater than the ratio of nine to five.
Hence, if we compose, line FG to line GE will be greater than the ratio of twelve to five,

59 Point X is not labeled in the Greek diagram.
60 Where the MS has , we read .
61 EA is not actually a line. T. ūsı̄ corrects this by writing “arc EA” (al-T. ūsı̄ 1940, 8).
62 See note 61.
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which is equal ( ) to the ratio of thirty six to two, which is equal to the ratio of eighteen

to one. [127v]

The two italicized numbers are incorrect, although correctable on the basis of the
mathematics involved. By a simple slip “nine” was written in place of “seven”

. In fact, the MS has with a caret under the , indicating that the error

may have been caught.
It is a little less easy to explain the “two” which should read “fifteen.” The written

forms of these numbers are quite different and the mathematical statement it makes is
clearly false. The situation, however, becomes clear when we see how al-T. ūsı̄ handles
this text.

[T. ūsı̄:] So, the ratio of FG to GE is greater than the ratio of seven to five, and by com-
position the ratio of FE to GE is greater than twelve to five, that is the ratio of thirty
six to fifteen. And the ratio of GE to EH is greater than the ratio of fifteen to two, so by
equality [of terms] the ratio of FE to EH is greater than the ratio of thirty six to two, that
is the ratio of eighteen to one. (al-T. ūsı̄ 1940, 8)

Ratios are twice asserted between 36 and another number, 15 and 2. A copyist has
simply dropped the text between the two occurrences of 36. This indicates that T. ūsı̄
made his edition on the basis of an MS that had not suffered this parablepsy, and he
may well have relied on various sources. Perhaps the Thābit revision was standard in
the compilations of Middle Books which circulated prior to al-T. ūsı̄’s edition. It is worth
noting that in both places in Prop. 7 where T. ūsı̄ supplies arguments that are missing in
the Kraus MS, the missing steps are found in the Greek.

Prop. 13

This lengthy and technically important proposition relates the endpoint chord to three
other lines. The first part of the theorem compares it to the diameter of the moon, the
second to the diameter of the sun and the third to the line that is the sun’s diameter
produced to the extended cone of the terrestrial shadow (line RQ in Fig. 8).

A F

G
H

E

D

C

K

B

L

X

Fig. 8. A modified diagram for Prop. 7. In all MSS, the orbit of the sun, AE, is complete. Point
X, on the left, does not appear in the Greek MSS, nor is it used in the Greek proof. It is, however,
used in the proof of both Arabic versions, although it is not labeled in the Krause MS
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As already noted the diagram in the Arabic versions has been redrawn and, because
the lines in the moon are different, this has produced minor changes in the proof; see
Fig. 9. As with Prop. 7, it is clear that other aspects of the theorem have been somewhat
rewritten on the basis of the new figure; there is some reordering of the exposition and
demonstration and the details of a number of mathematical arguments are different. We
will look a three examples, all of which show Thābit’s tendency to flesh out mathematical
arguments and T. ūsı̄’s tendency to make these arguments more concise.

In the first part of Prop. 13, Aristarchus simply asserts that 7921 : 4050 > 88 : 45
(Heath 1913, 397). It is usual for modern commentators to explain this step with recourse
to continued fractions (Heath 1913, 397, n. 1; Tannery 1912, 385; Fortia d’Urban 1810,
vol. 2, 86), but it appears that no late ancient or medieval scholar understood the step in
this way.63 There is a loquacious scholium in a number of the Greek MSS which points
out that 7921 : 4050 = 881/90 : 45, so that 7921 : 4050 > 88 : 45 (Fortia d’Urban 1810,
vol. 1, 166–169). Thābit, however, is much more to the point.

[Thābit:] The ratio of seven thousand nine hundred twenty-one to four thousand fifty
is greater than the ratio of eighty-eight to forty-five; and that is because when we make
the ratio of eighty-eight to forty-five like seven thousand nine hundred twenty to some
number, that number will be greater than four thousand fifty. [130r–v]

The ratio 7921 : 4050 has been derived through the equality of terms operation. It is
then reduced by an approximation which is slightly smaller. The ratio 88 : 45 is selected
because two geometrically related lines have just been shown to have a greater ratio
than 89 : 45. Since, 89 : 45 > 7921 : 4050, Aristarchus takes a ratio slightly smaller by
diminishing the first term by one. He can then check that this is a lower bound, as Thābit
describes. Whether or not Aristarchus actually proceeded in this manner is irrelevant.
What matters is that it is possible to make sense of the numbers in the text without
recourse to continued fractions. Thābit, and al-T. ūsı̄ following him, apparently thought
these numbers were obvious on the basis of geometric considerations and simple arith-
metic.64

The next example is fairly typical of the types of differences we find between the
three texts. Consider Fig. 9. In the third part of Prop. 13, Aristarchus makes an argument
which relies on the geometry of certain lines in the sun.

[Greek:] . . . WU has to UA a greater ratio than that which 89 has to 90. But, as WU is
to UA, so is UA to SA, because SA, UW are parallel. (Heath 1913, 399)

Thābit fleshes this out with a full geometric argument.

[Thābit:] The ratio of line UW to UA is greater than the ratio of eighty nine to ninety.
And the ratio of UW to UA is as the ratio of line UA to line AS, because the angles of

63 It is worth noting that in order to argue that Aristarchus proceeded by means of continued
fractions one would have to accept his having used a slightly different algorithm in the two cases
where this type of step is found; see Appendix B.

64 For the large-number ratio which is approximated in Prop. 15 (Heath 1913, 407), Thābit has
a different explanation [132v]. It involves ratio operations and arithmetic, but again no continued
fractions. He is followed in this by T. ūsı̄ (al-T. ūsı̄ 1940, 18).
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Fig. 9. A detail of the diagram for Prop. 13

triangle AWU are equal to the angles of triangle SAU – and that is because line SA is
parallel to line UW and the angles SUA, UWA are right.

T. ūsı̄ then takes Thābit’s argument and simplifies it considerably.

[T. ūsı̄:] The ratio of UW to UA is greater than the ratio of 89 to 90. And the ratio UW

to UA is as the ratio of UA to AS, since the triangles AUW , SUA are similar. (al-T. ūsı̄
1940, 15)

This series of passages shows quite well the sorts of changes that the medieval editors
tended to make in their texts. Thābit generally expanded the mathematical argumenta-
tion to give more justification than he found in the Greek. In this case, he did so on the
basis of a reconstructed figure. He probably decided what the Greek diagram should
have looked like on the basis of mathematical considerations of the Greek text. In fact,
neither line AU nor AV are found in the Kraus MS, although they appear the Tūsı̄ MSS
that we have seen.

The final example we will look at involves a multiplicative use of the equality of
terms operation, which Aristarchus introduces in Prop. 13 and uses a number of times
in the remainder of the treatise.

Consider Fig. 9.At the very end of Prop. 13,Aristarchus shows thatds : QR > 89 : 90,
and that endpoint chord: ds > 22 : 225. He then uses equality of terms to argue that the
ratio endpoint chord : QR is much greater than

[Greek:] the result from (Ð sunhgmšnoj œk) 22 and 89 to that from 90 and 225; that is
1958 to 20,250. (Heath 1913, 398)

The term used for “result” is not an established technical term for the product
of a multiplication. The expression is probably ellipsis for “the number that results”
(Ð sunhgmšnoj ¢riϑmÒj).65 It should be noted that Aristarchus later uses the Euclid-
ean technical term for product, where, toward the end of Prop. 15, he performs a similar
equality of terms operation and expresses the product as “the number comprised by . . . ”
(Ð periecÒmenoj ¢riϑmÕj Øpo . . . ) (Heath 1913, 406).

Thābit was apparently struck by this lack of technical vocabulary and decided to
specify the operation in some detail; first giving a vague description in the terminology

65 Wallis (1688, 75), for example, translates it as such.
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of ratios and then introducing the Arabic technical term for product. His version of the
passage states that the ratio endpoint chord : QR is much greater than

[Thābit:] that which is from the antecedents, one of them to the other – they are

twenty-two and eighty-nine – to that which is from the consequents, one of them to the
other – they are two hundred twenty-five and ninety.66 That which is from the product

of the antecedents, one of them by the other, is one thousand nine hundred

fifty-eight; and that which is from the product of the consequents, one of them by the
other, is twenty thousand two hundred fifty. [130v]

As usual, al-T. ūsı̄ simplified the passage, writing in a more straightforward technical
idiom. He asserts that the ratio endpoint chord : QR is much greater than

[T. ūsı̄:] the ratio of the result from the product of one of the consequents by the other –
that is 22 by 89, which is 1958 – to the result of the product of one of the antecedents by
the other – that is 225 by 90, which is 20,250. (al-T. ūsı̄ 1940, 15)

The examples drawn from these three propositions may be taken as substantiations
of the general claims made above about the differences between the three treatises.

Conclusion

On Sizes has played a variety of roles in quite different contexts throughout its long
history. Probably the context we know least about is that of its composition. In fact, On
Sizes itself should be taken as an important source for our understanding of the mathe-
matical sciences of the early Hellenistic period. As do certain works of Archimedes, it
shows a usage of hypotheses assumed simply for the sake of the argument, not because
they are absolutely held to be true. Indeed, On Sizes exhibits an adroit use of assump-
tions, some of which are even contradictory, in order to derive computational results.
Moreover, along with Archimedes’ Sand Reckoner, it attests to ratio operations that
are much more arithmetical than we would expect from the Elements and to a form of
trigonometry that predated the construction of chord tables. This helps to give a more
rounded picture of mathematical practices roughly contemporary with, or shortly after,
the composition of the Elements.

At some point in Greek antiquity, On Sizes was collected together with other elemen-
tary works of mathematical astronomy and, after the Almagest had become canonical,
served as part of a course of instruction intermediate between the Elements and the Alma-
gest. Although the extent to which these subjects were actually so taught, for whom and
by whom, remains largely unknown, in Pappus’ Collection we find On Sizes included in
a variable group of texts which were taught in the “field of astronomy” (tÕn ¢strono-
moÚmenon tÒpon (Hultsch 1876–1878, 474.))

66 The MS has “two hundred twenty.” We read this with where mathematically required.
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This corpus of texts in the exact sciences was incorporated into Arabic scientific
culture in the 9th century by the Baghdad mathematicians. On Sizes itself was made into
a serviceable Arabic text by one of the most remarkable of these men, Thābit ibn Qurra.
Apparently, Thābit thought the Greek text, and particularly the diagrams, required math-
ematical revision and he undertook this work in what was, at this time, a common genre
for the Arabic adaptation of a Greek treatise. In fact, assuming that the main features
of the Byzantine version we know were shared by the version Thābit used, On Sizes
becomes a good source for understanding the genre of revision as it was practiced in
↪Abbāsid Baghdad.

In the 13th century, Nas.ı̄r al-Dı̄n al-T. ūsı̄ produced a new edition of the Middle Books,
which now played an important role in mathematical education in the Islamic world.
Although the canon was still based on Greek classics, it had for some time now also
included original works by the Baghdad mathematicians. T. ūsı̄ sought to bring this corpus
into better conformity with the mathematical practice of his time, applying the standards
of contemporary mathematical language and correcting any errors that had entered the
manuscript tradition. Again, because we posses the text of Thābit’s revision, On Sizes
is an important source for our knowledge of T. ūsı̄’s practices in making this collection.
Indeed, On Sizes can be taken as an example of the technical aspect of the acquisition
and assimilation of Greek scientific writings into an Islamic context (Sabra 1987).

It was in these collections of mathematical astronomy, both Arabic and Greek, that
European scholars first encountered On Sizes. Little survives of these early transmission
efforts and the first printing of a Latin translation included our text tucked away in an
eclectic volume by Georgio Valla of 24 works in philosophy, medicine, music theory,
and mathematics (Noack 1992, 47–52). The first significant Latin text is the transla-
tion and commentary made by Commandino (1572) near the end of this life (Noack
1992, 53–65). The work appears as an independent treatise based around redrawn and
mathematically coherent diagrams and accompanied by commentary fleshing out the
mathematical argument. This publication has shaped the way the treatise has been read
ever since. In fact, Wallis (1688) included Commandino’s translation, diagrams, and
comments in his edition of the Greek text. The interest with which On Sizes was still
read in the 16th and 17th centuries is underlined by the fact that the first critical edition,
made on the basis of a number of important manuscripts, was established by Wallis,
himself an important contributer to the new mathematics of the 17th century. In this
way, we find an author of current developments in mathematical techniques using the
latest methods of textual criticism to establish a text that, by that time, could only have
been of historical interest.
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Appendix A: On Sizes 17a

Al-T. ūsı̄’s Text

We edit the T. ūsı̄ text of this theorem because a key folio is missing from the Kraus
manuscript. The text is established on the basis of two MSS:

B: Bodleian Library, Arch. Selden. A. 45, ff. 149v–150r
T: Tabriz National Library 3484, 184.

〉〈

Fig. 10. B, fol. 150r. Point is not found in B, but is in T. Point appears in neither MS.
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Fig. 11. Diagram for On Sizes 17a

English Translation

(17) The ratio of the distance of the vertex of the shadow cone from the center of
the moon, when the moon is on the axis (sahm) of the cone containing the earth and the
sun, to the distance of the center of the moon from the center of the earth is greater than
the ratio 71 to 37 and less than the ratio 3 to one.

Let the center of the sun be A and the center of the earth B. We join AB and let a
plane pass through it; hence there results in the sun the great [circle] ED, and in the
earth the great [circle] ZH , and in the cone the lines GD, GE. And let the center of the
moon be T . We join DA, ZB, and we extend them to K , L. And since the ratio of DK to
ZL is less than the ratio of 43 to 6 [Prop. 15], the ratio of AG to GB is like that. And by
inversion, the ratio of BG to GA is greater than the ratio of 6 to 43. And by separation,
the ratio of GB to BA is greater than the ratio of 6 to 37. And it happened that the ratio
of AB to BT was greater than the ratio of 18 to one [Prop. 7]. And through equality, the
ratio of GB to BT is greater than the ratio of the product of 6 by 18, which is 108, to the
product of 37 by one. And by separation, the ratio of GT to BT is greater than 71 to 37.

And again, the ratio of DK to ZL is greater than the ratio of 19 to three [Prop. 15].
So the ratio of AG to GB is like that. By inversion, the ratio of BG to GA is less than
the ratio of 3 to nineteen. And by separation, the ratio of GB to BA is less than the
ratio of 3 to 16. And the ratio of AB to BT is again less than 20 to one [Prop. 7]. So
through equality, the ratio of GB to BT is less than 60 to 16, that is than 15 to 4. And
by separation GT to T B is less than the ratio of 12 to 4, that is than 3 to one, which is
what we wanted.

Appendix B: The size of the lunar disk

Hyp. 6, which asserts the size of the lunar disk, primarily affects the numerical results
in Props. 12–15.67 We have used a computer to test the effect of varying the size of the
lunar disk while carrying through the computations using the same mathematical steps
as Aristarchus. This has shown that, in fact, the results of Prop. 15 have little dependence
on the size of the lunar disk. In particular, the lower bound, 15a , is independent of the
lunar disk. The upper bound, 15b, however, is also fairly stable. For instance, if we set

67 Although the lunar disk is also used in Prop. 4, this has no computational effect on the
theorems that follow.
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the lunar disk to 10◦ we get 8 : 1, and if to 1/10◦ we get 897 : 128 (≈ 7); whereas 2◦ gives
43 : 6 (≈ 7.16).

To see why the lower bound is independent of the size of the solar disk it may be
helpful to look at a chart of the internal dependencies of Props. 12–15. Props. 12 & 14
only assert one numerical statement in each case, a lower bound. Proposition 13 asserts
five numerical statements: two pairs of bounds and one lower bound. Proposition 15
asserts a pair of bounds. We number the parts of this sequence as follows: 12, 13a , 13b,
13c, 13d , 13e, 14, 15a and 15b.

12 13a 13b 13c 13d 13e 14 15a 15b

H6 • •
7 ◦ ◦
9 ◦
12 • •
13a ◦ ◦
13b •
13c ◦
13d •
13e •
14 •

In the table, a bullet shows that a result in the column headings depends, computa-
tionally, on a result in the row headings. Hence, the table shows that the third part of
Prop. 13 depends on Prop. 9 and the first part of Prop. 13. A computation that is affected
by the size of the lunar disk is indicated by solid bullet, •. An empty bullet, ◦, represents
a computation that is independent of the size of the lunar disk. Computations that are
a direct result of the geometry of the figure are ignored. As can be seen, 15a , the lower
bound of Prop. 15, is independent of Hyp. 6.

To understand why the upper bound is also stable, it will be necessary to look at some
of the details. Since we know that Aristarchus elsewhere postulated a solar disk of 1/2◦,
we will use this as an example. We carry through all calculations using rational numbers.
There are two steps where we cannot claim to know Aristarchus’s computational algo-
rithm. These are the reductions of ratios in large numbers to more manageable numbers
in Props. 13 & 15, which modern commentators have explained with continued fractions
(Heath 1913, 397 & 407).68 Although we are unconvinced of the usefulness of contin-
ued fractions to explain ancient and medieval mathematical practice, we have employed
them for the sake of this exercise. To get the exact numbers Aristarchus obtains, we have
to handle the fractions slightly differently in the two cases. In Prop. 13, we derive four
terms of the continued fraction expansion and round to the third, whereas in Prop. 15 we
take three terms and round to the second. For the calculations using a lunar disk of 1/2◦,
we have taken three terms and simply dropped the rest. We summarize the differences
with the following table.

68 See the specific comparisons of the three versions, Prop. 13.
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2◦ ratio 2◦ value 1/2◦ ratio 1/2◦ value
12 89 : 90 0.99 359 : 360 0.10
13a 2 : 1 2.00 2 : 1 2.00
13b 88 : 45 1.96 179 : 90 1.99
13c 1 : 9 0.11 1 : 9 0.11
13d 22 : 225 0.10 179 : 1800 0.10
13e 979 : 10125 0.10 64261 : 648000 0.10
14 675 : 1 675.00 10800 : 1 10800.00
15a 19 : 3 6.33 19 : 3 6.33
15b 43 : 6 7.17 176 : 25 7.04

The ratio columns give whole number ratios as found following Aristarchus’s meth-
ods. The value columns give decimal equivalents for ready comparison. It can be seen
that the only result that significantly differs between lunar disks of 2◦ and 1/2◦ is Prop.
14, which being different by two orders of magnitude should seriously effect the final
upper bound.

The reason that it does not lies in the use of the operation of conversion. When the
result of Prop. 14 is used in Prop. 15 it is first subjected to conversion. Since, this ratio
is a multiple, n : 1, conversion gives a ratio of the form n : (n − 1). Hence, where n is
sufficiently large, as far as its effects on future computations are concerned, this ratio
will equal one. For the numbers involved in these computations, this ratio is always
sufficiently close to unity to have a negligible effect on the final result. In fact, Prop. 13e,
which varies much less than Prop. 14 has as much effect on the final upper bound of
Prop. 15b.
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