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Abstract: This paper describes an application of statics to geo-
metrical proofs in the classroom. The aim of the study was to 
find out whether the use of concepts and arguments from statics 
can help students understand and produce proofs of geometrical 
theorems. The two theorems studied were: (1) that the medians 
in a triangle meet at a single point which is the centre of gravity 
of the triangle, and (2) the Varignon theorem, that the lines join-
ing the midpoints of successive sides of a quadrilateral form a 
parallelogram. The classroom experiment showed that most stu-
dents were successful in using arguments from statics in their 
proofs, and that they gained a better understanding of the theo-
rems. These findings lend support to the claim that the introduc-
tion of statics helps students produce proofs and grasp their 
meaning.     

Kurzreferat: Im folgenden Beitrag wird eine Studie beschrie-
ben, in der die Verwendung von Begriffen und Argumenten aus 
dem Bereich der Statik zur Förderung des Verständnis von geo-
metrischen Beweisen untersucht wurde. Dabei geht es einerseits 
um die Aussage, dass sich die Seitenhalbierenden eines Drei-
ecks in einem Punkt schneiden, welcher gerade der Schwer-
punkt des jeweiligen Dreiecks ist, und andererseits um das 
Varignon Theorem, nach dem man ein Parallelogramm erhält, 
wenn man die Mittelpunkte der Seiten eines Vierecks verbindet. 
Das Unterrichtsexperiment zeigte, dass die meisten Schüler bei 
der Anwendung der Argumente aus der Statik erfolgreich waren 
und ein besseres Verständnis bezüglich der geometrischen 
Aussagen aufbauten. Die Ergebnisse stützen die Vermutung, 
dass die Einführung von Statik für Schüler beim Beweisen hilf-
reich ist. 

ZDM-Classification: E53, G43, M10, M50 

1. The Context 
A mathematical proof, by definition, can take a set of ex-
plicit givens (such as, axioms, accepted principles or 
previously proven results), and use them, applying the 
principles of logic, to create a valid deductive argument. 
The deductive argument is no less compelling if the 
givens happen to come from the science of statics, as they 
do in the example below. In fact, the physical context, 
appealing as it does to physical intuition, has the advan-
tage of making the plausibility of the conclusion more 
readily apparent (Hanna and Jahnke, 2002; Uspinskii, 
1961). 

This paper investigates a novel approach to the effec-
tive teaching of proof: the use of concepts and models 
from physics. In this approach, proving is embedded in 
the context of physics. Ideas from physics that are already 
familiar to students, such as the concepts of balancing 
objects and of the centre of gravity, serve as tools for 
proving geometrical theorems, and students are prompted 
to create proofs based upon physical considerations. That 
is, students are encouraged to build a mathematical proof 

by taking as given one or more principles of physics. 
This idea can be made clear by the following example. 

Let us take as given the following three principles of 
statics: 
P1: The uniqueness of the centre of gravity (each system 

of masses has one and only one centre of gravity). 
P2: The lever principle (the centre of gravity of any two 

masses lies on the straight line joining the masses, and 
its distances from the masses are inversely propor-
tional to them). 

P3: The principle of substitution (if any two individual 
masses are replaced by a single mass equal to the sum 
of the two masses and positioned at the centre of 
gravity of the two masses, then the location of the 
centre of gravity of the total system of masses remains 
unchanged).  

These three principles can then be used in proving the 
following geometrical theorem:  

The medians of a triangle intersect at a single point and on each 
median this point is located two-thirds of the way from the ver-
tex. The point of intersection is known as the centre of gravity 
of the triangle, or the centroid.  

To produce a rather simple proof using arguments from 
physics, one would consider the vertices of the triangle as 
loaded with equal masses of unit weight and connected 
by rigid weightless rods. The centre of gravity of any side 
is the midpoint of that side (by P1 and P2). Therefore the 
unit masses at its ends can be replaced by a mass of 
weight 2 at its midpoint (by P3) without altering the cen-
tre of gravity of the entire triangle. If we then connect this 
midpoint with the third vertex to form a median, we can 
conclude that the centre of gravity of the whole triangle 
must lie on this median, and by P2 the median must be 
divided in the ratio 2:1 (Figures 1 and 2). Since this con-
struction can be repeated with the other two sides, the 
three medians must meet in one and the same point, the 
centre of gravity. (There are several geometric proofs of 
this interesting theorem, which is a corollary of the more 
general Ceva theorem). 
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Figure 1. Triangle with equal masses at the 

vertices A, B and C. 
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2. Previous research on teaching proof 
Several studies have suggested that success in helping 
students construct proofs and justify their thinking 
depend upon both the cognitive development of the 
students and the provision of a context meaningful to 
them. A meaningful learning context includes well-
chosen tasks, hands-on experiences, and opportunities for 
exploration and discussion with peers and teachers. 
Several researchers have investigated the learning of 
proof through the provision of heuristic examples (Reiss 
and Renkl, 2002), or within environments that provide 
many opportunities for students to explore ideas, investi-
gate, experiment, and make and test mathematical 
hypotheses (Balacheff, 1991; Ball, 1991; Lampert, 1990; 
Maher and Martino, 1996; Yackel and Cobb, 1996). 
These researchers have shown that such environments are 
quite effective in helping students learn how to prove. 
More recent studies have also shown the effectiveness of 
the opportunities for exploration provided by dynamic 
geometry software in particular (Goldenberg and Cuoco, 
1998; Hadas, Hershkowitz and Schwarz, 2000; Jones, 
2000; Marrades and Gutiérrez, 2000; Mariotti, 2000). 
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Figure 2. Masses at A and B are moved to the 

midpoint F of AB. 

Tall (1999) recommends using different types of proof to 
address different stages of cognitive development. The 
type he calls �“physical enactive proof�” entails carrying 
out a physical action to demonstrate the truth of some-
thing, thought experiments, imagining prototypical 
instances, and formal proof for university students at an 
advanced stage of cognitive development. He observes 
that the simpler representations of proof such as the use 
of physical demonstrations may be appropriate for almost 
any stage of cognitive development. 

Building upon this previous research, the present study 
seeks to determine the effectiveness of giving students 
opportunities for exploration in another fashion, through 
the application to proof of principles from statics, coupled 
with related hands-on experiments. In other words, it 
explores the use of principles from statics as an effective 
context for learning deductive proof.  

3. Research Design 
Following an earlier study on the use of ideas from phy-
sics in mathematical proof (Hanna, Jahnke, de Bruyn & 

Lomas, 2001), this second study was carried out in an 
Ontario mixed-grade 11 and 12 class during the second 
semester of the school year 2000-2001. There were 21 
students in the class, 13 female and 8 male. The youngest 
student was 16, the eldest 18; the average age was 16.8. 
Fourteen of the 21 students were in their eleventh year of 
schooling (third year of high school), having completed 
the grade 11 mathematics course in the first semester of 
the same school year. Of the 21 students attending the 
course, 19 (7 boys and 12 girls) agreed to participate in 
the study after signing assent forms and obtaining the 
consent of their parents. 

The majority of the students in the class were con-
sidered academically high achievers (though not neces-
sarily in mathematics) and had been placed in a program 
of studies designated as �“enhanced�”. The other students 
were chosen for this class on the basis of their high 
achievement in previous mathematics courses. Because 
the students in this class were expected to study topics 
that were not part of the regular curriculum, or to investi-
gate in greater depth some of the topics of the curriculum, 
the new unit was seen as course work which all were 
expected to complete.  

The teacher, in consultation with the researchers, 
designed a teaching unit consisting of four 75-minute 
periods. The first period introduced the lever principle, 
the concept of the centre of gravity as the location of the 
fulcrum or balancing point, and the substitution principle. 
The students answered questions on these new concepts 
by completing two worksheets, and worked through bal-
ancing objects with actual levers and other tasks related 
to levers. 

In the course of the lessons the teacher handed out six 
worksheets for the students to complete. The first two 
worksheets introduced the students to the three principles 
of statics mentioned above (the uniqueness of the Centre 
of Gravity, the Lever Principle, and the Substitution 
Principle). These worksheets helped the students develop 
an intuitive understanding of these fundamental concepts 
by asking them to describe fully systems of two, three, 
and four weights attached to a single rod about a fulcrum. 
During period 1 the students completed these first two 
worksheets working individually. These exercises were 
entirely numerical and did not involve any work with 
proofs. Responses to these first two worksheets are not 
included in our results. 

During period 2 the class first discussed the concepts of 
the existence and the uniqueness of the centre of gravity, 
as well as their responses to the work-sheet questions on 
the material taught during period 1. The students worked 
in groups of two or three to prove the concurrency and 
trisection of the medians in a triangle and then discussed 
their findings with the entire class.  

Towards the end of the second period students started 
working on a proof of the Varignon theorem (the mid-
points of the sides of any quadrilateral are vertices of a 
parallelogram), and on completing additional worksheets. 
During period 3, pairs of students completed their proof 
of the Varignon theorem and discussed it with the entire 
class. The students also answered a few questions on the 
use of arguments from statics in proving both the medi-
ans-in-a-triangle theorem and the Varignon theorem. 
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Period 4 was devoted to discussing the remaining work-
sheets and wrapping up the unit. At the end of this period 
the students also answered a questionnaire and were 
interviewed by the researchers. 

4. Data sources 
The data for this study was collected in a number of 
ways. Two of the researchers observed the classroom, 
making notes on the teachers�’ lectures and recording the 
activities of the student workgroups. All of the students�’ 
work was done on six separate worksheets, which were 
handed in to the teacher to mark. These worksheets pro-
vided the researchers with data that could be used to 
assess the students�’ understanding of the material. After 
the unit was complete, all the students were asked to fill 
out a questionnaire with 11 questions on various aspects 
of the material and its interpretation.  Each student was 
then interviewed by one of two researchers to clarify 
answers given on the questionnaires and fill in unan-
swered questions. These interviews were recorded and 
transcribed. 

For the purpose of this study only two sources of data 
proved essential: 
1) The last four students�’ worksheets, 3, 4, 5, and 6, 

which asked the students to first prove that the medi-
ans of a triangle are concurrent, once using the princi-
ples of statics developed in the class, and again using 
purely geometric considerations. The students were 
then asked to supply a geometrical proof that a 
Varignon quadrilateral is a parallelogram, followed by 
a statics-based proof of the same property. (These 
worksheets are reproduced in the appendix.)  

2) The questionnaires supplemented by the recordings of 
the interviews that provided minor changes in the 
answers to the questionnaires, and in a few places 
gave additional insight into the students�’ thinking. 

5. Findings and Discussion 

5.1 Tasks 
Worksheets 3 and 4, reproduced in the appendix, asked 
the students to provide two proofs of the Triangle Medi-
ans Theorem: �“The three medians of a triangle are 
concurrent (intersect in a single point). The point of inter-
section divides each median in a ratio 2 : 1.�” One proof 
was to be based on arguments from statics (as shown in 
figures 1 and 2), whereas the other was to be a traditional 
geometric proof (see appendix). 

Worksheet 5, also reproduced in the appendix, asked 
the students to provide two proofs, one based on statics 
and one geometric, of the theorem known as the Varignon 
Quadrilateral: �“The midpoints of the sides of any 
quadrilateral are vertices of a parallelogram.�” 

5.2 Student Performance 
Students�’ performance varied from proof to proof. Across 
all four proofs, students�’ responses were rated on a scale 
of 0 to 3. The rating scheme was as follows: 

0 �– very little of the proof is correct; contains isolated 
facts but shows little in the way of understanding;  

1 �– the proof is deficient and incomplete, while the proof 
may be complete in parts, there are serious or numerous 
errors;  

2 �– the proof contains a number of minor errors or omis-
sions but otherwise is reasonably organised and indi-
cates a good understanding of the problem;  

3 �– the proof is thorough and well organised, with at most 
very minor omissions or errors.  

Table 1 displays the number of students who obtained rat-
ings from 0 to 3 as well as those who did not respond or 
were absent (n/a). Inspection of Table 1 shows that very 
few students attained the maximum rating of 3 for the 
Triangle proof, and that more than half the class produced 
proofs that were judged to contain serious errors (ratings 
0 or 1). Performance was better on the quadrilateral 
Varignon theorem, where more students (9 and 11 stu-
dents in the case of the statics and the geometric proofs 
respectively) produced proofs that were acceptable or 
contained only minor errors (ratings 2 or 3). 

Table 1: Number of students who obtained ratings of 0 to 3, 
 and mean performance by question (N=19) 

Ratings  Question 
0 1 2 3 mean n/a

Triangle: Statics Proof 4 9 4 1 1.1 1 

Triangle: Geometric Proof 1 10 4 3 1.5 1 

Quadrilateral: Statics Proof 2 4 8 1 1.5 4 

Quadrilateral: Geometric Proof - 4 5 6 2.1 4 

n/a no answer (missing information) 

For both the Triangle Medians theorem and the quadrilat-
eral Varignon theorem, students�’ performance was 
slightly better on the geometric proof. Although the 
difference was insubstantial, this would seem to indicate 
that the shift from a traditional geometric to a statics con-
text did not make it easier for the students to build a 
deductive proof. This might not be surprising, given at 
least two factors that reduced the likelihood of such an 
effect: 1) the students were already familiar with the geo-
metric context, and 2) the teacher was more experienced 
teaching the geometric proof. It should be stressed that in 
both contexts, that of geometry and that of statics, the stu-
dents were engaged in providing deductive arguments, 
not empirical ones.    

Table 1 also indicates that the students were more suc-
cessful on the second theorem, the Varignon quadrilateral, 
on both the geometric and the statics proofs. This is 
probably due to a learning effect, as the students gained 
experience and understanding from their first proof and 
from the subsequent class discussion of the Triangle 
Medians theorem.     

5.3 Examples 
Some examples will serve to illustrate the students�’ work 
and the teacher�’s thinking in the assignment of rank.  

For the first proof, the statics proof of the Triangles 
Median Theorem, the majority of students (13 out of 18 
respondents) supplied only an incomplete argument (were 
rated 0 or 1). Student 17, who was given a rank of 1 by 
the classroom teacher, can be taken as typical. Student 17 
sometimes applies the Substitution and Lever Principles 
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correctly, but does not refer to these principles directly. 
Indeed, she shows the replacement of masses at A and B 
with 2 kg at F (Figures 1 and 2) on one diagram, but 
makes no clear reference to this in the text of the solution. 
The conclusion is incorrectly derived, in any case, 
because the argument states that the Uniqueness of the 
Centre of Gravity is a consequence of the division of each 
of the three medians in a 2:1 ratio. Also, the fact that the 
medians should have a common point of intersection is 
not specifically stated. 

In the geometric proof of the Triangles Median Theo-
rem, the majority of students (11 out of 18 respondents) 
were again unable to complete the proof. Student 6, with 
a rank of 1 assigned by the classroom teacher, was typi-
cal. He answered parts a) i) ii) (see worksheet 4 in the 
Appendix) almost correctly, only omitting the statement 
that EF||CB by the Triangle Side Splitting Theorem. 
However, he erroneously concluded that this proves that 
all three medians intersect at a single point. Moreover, he 
stated that G and G�’ are the same point in part c) because 
�“all 3 lines have to intersect at the same point,�” in other 
words, assuming concurrence or importing physical con-
siderations. 

The highest rank received for this problem was 3. We 
can again take Student 17 as representative. She provided 
excellent solutions to all parts, being one of only two stu-
dents to realize that parts a) i) and ii) without part b) does 
not prove that all three medians are concurrent. Minor 
mistakes are made in part i) when writing �“(SS~)�” for the 
Side-Angle-Side Similar Triangle Theorem instead of 
(SAS~); and neglecting to state the reason for the state-
ment �“EG/GB = FG/GC = 2/1�” in part a) ii).  

The performance of the students on the geometric proof 
of the Varginon Quadrilateral was quite good overall, and 
better than that on any other worksheet. A few students 
may be noted by way of example. Student 4 received a 
rank of 2. In his solution he demonstrated a clear under-
standing of the problem, with only a few small errors and 
omissions. Student 4 correctly demonstrated four pairs of 
similar triangles but omitted the relevant angles to prove 
that the line segments parallel. For example, after stating 
�“tri.AHE ~ tri.ADB,�” he should have stated that ang.AHE 
= ang.ADB by the similarity of these triangles and that 
HE||DB by the parallel theorem (see worksheet 5). 

Student 5 provides an example of the rating 3. Student 
5 was the only student who made use of the Triangle Side 
Splitting Theorem. This student provided a good solution, 
though the proof would have been clearer if he had stated 
which triangles were involved in each application of the 
Side Splitting Theorem. Moreover, the conditions used in 
each application of the theorem to prove line segments 
parallel, were not exactly the same as the conditions 
given in earlier classroom work, and student 5 failed to 
make these precise conditions explicit. 

The students performed better on the statics proof of 
the Varginon Quadrilateral than they did on the statics 
proof of the Triangles Median Theorem. Student 15, with 
a rank of 2, provides an example of the sort of answers 
the students gave on this problem. Student 15 correctly 
shows, in part i), that the Centre of Gravity lies on GE 
and also on HF, but fails to demonstrate that the centre of 
gravity is at the midpoint of these segments, which is 

what is required for the conclusion that she draws in part 
ii). Although she uses the principles of statics correctly, 
they are not explicitly named. 

5.4 Trends in Student Performance 
In general, the students did better on the Quadrilateral 
Theorem than on the Triangle Theorem as they got back 
into the swing of writing proofs. There was some 
improvement on both the statics-based proof and the geo-
metric proof. In the case of the statics-based proof this 
should not be surprising, as none of the students had ever 
written a statics-based proof before; it is also very 
unlikely that any of them had ever read one. 
 

Moreover, although the principles of statics introduced 
in this unit are intuitively obvious, they can also, by the 
same token, be an obstacle to learning. Fischbein (1999, 
p. 22) has observed that: 

... the intuitiveness of a certain property tends to obscure in the 
student�’s mind the mathematical importance of it. An apparently 
trivial property seems to discard the necessity and utility of 
mentioning it explicitly, of proving it or defining it. 

In addition, it does take some experience to see how cer-
tain principles of statics can be made to function in a 
mathematical argument. Our intuition of the principles 
themselves only develops as we see how they function 
and what they entail. Much like a mathematical axiom, 
these principles of statics are neither very helpful nor 
very informative outside the context of what they explain 
and imply. But, as discussed by de Villiers (1998) and 
Koedinger (1998), one would expect their importance and 
usefulness to become recognised as students acquire more 
experience in employing them as an integral part of prov-
ing.   

5.5 Students�’ responses to the questionnaires 
The students responded to a questionnaire put together 
based on the researchers�’ experience with a similar teach-
ing experiment in the previous year (Hanna et. al., 2001).  
On the whole the students seemed to find the physical 
arguments based on the three principles of statics interest-
ing, convincing and explanatory. Their responses also tell 
us something about what they think about proof in gen-
eral. The results, taken from the written questionnaires, 
are summarised in Table 2 on the following page. 

The students�’ written responses to the questionnaire 
were followed up with a recorded interview that was later 
transcribed. For the most part, the interviewers only 
focused on questions that had remained unanswered in 
the questionnaires. In some cases, though, the interviewer 
probed a student further about a questionnaire answer that 
was particularly interesting or unclear. 

Comments were recorded question by question and 
grouped around themes where possible. Most comments 
have simply been noted, and only interesting or divergent 
comments have been quoted. Almost all of the comments 
cited here are taken from the questionnaires. A few 
exceptions, taken from transcripts of the interviews, have 
been noted as such.   

The first set of questions give us some insight into what 
constitutes conviction in the minds of the students and 
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what makes a proof clear and memorable for them. 

Table 2: Responses to selected questions of the  
questionnaire (N=19) 

Question Responses 
1. Are the physical arguments convincing in the case of: 
Triangle Theorem? Yes (16) No (0) ?(3) 
Quadrilateral Theorem? Yes (14) No (2) ?(3) 

 

2.Which proof was clearer in the case of: 
Triangle Theorem? Physical (7) Geometric (8) ?(4) 
Quadrilateral Theorem? Physical (1) Geometric (13) ?(5) 

 

3.Which proof was easier to remember in the case of: 
Triangle Theorem? Physical (8) Geometric (6) ?(5) 
Quadrilateral Theorem? Physical (5) Geometric (9) ?(5) 

 

7. Do the proofs from physics help you understand the nature 
of proof? 

 Yes (11) No (1) ?(7) 
 

8. Do the physics proofs help you understand why the theo-
rems are true? 

 Yes (12) No (2) ?(5) 
�“?�”: no answer or don�’t know. 

Question 1: Are the arguments from physics 
convincing? If so, why?  
Almost all the students report that they found the argu-
ments from physics convincing in the case of Triangle 
Theorem. What is interesting is the wide variety of rea-
sons given.  The students�’ reasons fall broadly into three 
types; they saw the physical arguments as convincing 
because they were 1) easy to understand, 2) physically 
coherent, or 3) consistent with other known results or 
otherwise verifiable.  

Easy to Understand 
Student 9 states that, �“It was convenient and much easier 
to use the physics principles to prove the theorem.�” 
Student 4 agrees with this so long as �“Your concept is 
clear.�” Student 6 says that the arguments are convincing 
because �“They are not too abstract, so they�’re easier to 
understand.�” This is perhaps because, as Student 7 points 
out, �“[They] are logical and obvious.�” Student 18 claims 
that the Triangle Theorem in the physics context is con-
vincing because, �“It proved the theory and is easy to 
understand, even for people who don�’t really understand 
math.�” The drift of these answers seems to be that the 
arguments from physics carry conviction because they are 
transparent.  

Physically Coherent 
Student 12 found the Triangle Theorem convincing 
because it applies the laws of Physics. Students 5, 15 and 
16 were convinced by the cohesion of the physical princi-
ples. Student 15 stated that she was persuaded because 
she �“Understood the concept of transferring weights and 
determining the centre of gravity.�” This is similar to Stu-
dent 16, who claims that the theorem is �“very convinc-
ing�… because the idea of locating CGs [centres of grav-
ity] and moving weight masses around and whatnot 
makes sense.�” Student 5 sums up with the crux of the 

theorem itself: �“We know about the UCG [uniqueness of 
the centre of gravity] so they have to meet at one point.�” 
These students find the Triangles Theorem convincing 
because it makes use of principles that agree with their 
physical intuition. 

Consistent with Know Results 
A final grouping of students found the Triangle Theorem 
convincing because it agrees with either geometry or the 
results of experimentation.  On the one hand, some stu-
dents felt that the arguments from physics were convinc-
ing because they made the same claims as the purely geo-
metrical arguments. Students 1 and 4 state that the theo-
rem is persuasive because it is, �“Consistent with the 
mathematical proofs,�” and one arrives at �“The same 
answer in both methods.�” Student 13 seems to be 
expressing the same idea, if a little obscurely, with the 
statement that �“It is the same way to prove it only differ-
ent methods.�” 

On the other hand, other students felt that the argu-
ments were convincing because it would be possible to 
verify them physically.  Student 2 thought that the theo-
rem was credible because, �“It works with statics, and a 
more hands on application could be used to understand 
the theorem.�” Student 16 was similarly convinced by the 
possibility of physical verification stating that, �“Also it 
can be proven using weights and whatnot so that helps 
further understanding.�” Some similar notion of external 
verification must underlie Student 17�’s claim that the 
physical arguments are convincing because �“They lead to 
a valid answer.�” It should be noted that the students never 
actually did a physical verification of the Triangle Theo-
rem. They did not actually see a triangle balanced on its 
centre of gravity, because this demonstration was not 
done in class, but had only a mental image of the centre 
of gravity as the point at which the triangle could rest on 
a fulcrum and remain balanced. But a number of students 
still put forward the mere possibility of such a physical 
verification as grounds for conviction.  

A few students found the physical arguments in the 
Quadrilateral Theorem sufficiently confusing to be left 
uncertain or skeptical of the result, but again the over-
whelming majority found the arguments convincing. 
Most of the comments focused on how much more diffi-
cult Theorem 2 was when compared to Theorem 1. The 
comments again point out that conviction arises from 
coherency and consistency. Student 19 states that the 
theorem was convincing �“Because it relies on the first 
theorem,�” or, as Student 1, because it is �“Provable 
through the triangle medians theorem.�” Student 1 finds 
the theorem convincing because it is �“Provable�… using 
geometrical proofs.�” Student 12 was persuaded by the 
theorem�’s completeness, saying that �“Everything seemed 
balanced and precise. Nothing was left out.�” 

Questions 2 and 3: Which proof, the geometric one or 
the one based on arguments from physics was clearer? 
Which was easier to remember?  

 Clear 
The eight students, who thought that the geometric proof 
was clearer in the Triangle Median Theorem, said that 
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this was so because they had encountered such theorems 
before and had developed a certain degree of familiarity 
with geometric proofs. Seven students found the argu-
ments from physics clearer. A couple of these gave inter-
esting reasons. Student 1 said that �“The proof using the 
arguments from physics was simpler and it seemed more 
relevant than using geometric methods because it requires 
less �‘outside�’ (non-formal) explaining.�” In other words, 
the proof based on physical intuition was more to the 
point. Student 12 claimed that the physical argument was 
clearer because it was �“Much more in depth and follows a 
certain path.�” The interviewer followed up on this 
response and asked the student to expand upon it. The 
Student 12�’s response was that �“Geometry is equal in one 
side but physics is using laws of physics pertaining to the 
actual things we do in life. It�’s more in-depth mathe-
matics. It is just equal to two things and it seems equal.�” 
The point here seems to be that the arguments from phys-
ics are more convincing because the analogy is deeper. 
The student�’s claim appears to be that we have geometry 
on �“one side�” and �“the actual things we do in life�” on the 
other side. In the mind of this student, the arguments 
based on physical principles were related to both abstract 
geometry and physical reality and thus carried more 
weight and were more persuasive. The above mentioned 
students�’ claims seem to confirm observations made by 
Tall (1991) and Goldenberg (2001) that students tend to 
base their reasoning on holistic visual representations.   

Almost all of the students felt that the geometrical argu-
ments were clearer in the case of the Quadrilateral Theo-
rem, but here they gave more reasons. Again, most found 
the geometric argument clearer because they had more 
familiarity, but some found it more visually intuitive and 
concisely argued. Student 15 found it clearer because she 
could �“Visually understand it.�” Student 19 claimed that 
the geometric proof was clearer because �“It made more 
sense, it was visible and evident - You could write it in 
words.�” Student 2 found it �“More precise in terms of rea-
soning.�”  

A couple of students spoke up for the physical argu-
ment, however. Although Student 3 found the geometrical 
argument clearer based on familiarity, he acknowledged 
that �“The quadrilaterals were more easily proved with the 
physics stuff.�” Student 12 stated that the �“Physics argu-
ments were clearer since they were much easier to prove 
and required little knowledge.�” 

Memorable 
Slightly more students found it easier to remember the 
physical arguments than the geometrical arguments in the 
case of the Triangle Median Theorem. This was because 
the physical arguments were either 1) more recent, 2) 
shorter or 3) more intuitively obvious. 

Student 9 says that he found the physical arguments 
easier to remember: �“I think they were more fresh in my 
mind because it was new to me.�” Students 2 and 5 found 
the physical arguments easier to remember because there 
was �“Less�… to remember�” and they were less 
�“Involved.�” Student 15 found the physical argument eas-
ier �“Because it was more or less one single formula.�” A 
few students seemed to find that the physical principles 
made the proof intuitively obvious. Student 1 stated that 

�“The physics proof was easier because things can be 
assumed without proving. Using the unique centre of 
gravity theorem many things require less �‘proof�’ than 
using geometric methods.�” Student 16 is probably 
expressing a similar thought by claiming that it is �“Easier 
to remember because there isn�’t much to it, just moving 
masses around and finding CGs.�” Student 19 found the 
physical argument easier to remember �“Because it was 
just a known and given fact.�” 

 
A few more students found it easier to remember the 

geometrical proof than the physical one in the case of the 
Quadrilateral Theorem. For the most part this was 
because the geometric arguments were more familiar. In 
one case this was because the geometry was found to be 
intuitively obvious. Student 19 found the geometric proof 
easier to remember �“Because you don�’t have to remem-
ber it, you just see the similarities and prove it.�”  

Question 7: Do the proofs from physics help you under-
stand the nature of proof?  
All but one student reported that the proofs from physics 
helped them to understand the nature of proof, but the 
responses show that the majority students misread the 
question. Seven students took the question to be asking 
whether the proofs from physics helped them to gain 
insight into these particular theorems. Student 3 said that 
the physical proofs helped, �“Because of the visual 
aspect,�” while Student 5 found that, �“They help explain 
things like the medians.�” Student 4 wrote, �“The physics 
proofs also helped me to understand the nature of proof 
because I noticed some new points when I was using 
arguments from physics in both theorems and I learned 
that we can also look into these theorems by this way that 
we consider masses on each corner.�” Student 6 stated 
that, �“Because the physics arguments are easier to explain 
in everyday language, it�’s easier to understand exactly 
how the things have been proven.�” Student 17 said, �“The 
balance and weight that we used help aid my understand-
ing of proof. To figure out problems mathematically and 
to show it with the balance, proves the basic ideas of this 
theorem.�” Students 18 and 19 pointed out that the physi-
cal principles made the theorems obvious. Student 18 
said, �“Some physics have become common sense know-
ledge so it made sense,�” and Student 19 claimed that 
physical argument, �“Makes it easier to explain certain 
things.�” Although Student 9�’s comment was framed in 
terms of proofs in general, it should also most likely be 
read as a comment about these particular theorems. It 
reads, �“Because I grasp the physics part I understand the 
�“how�’s�” and the �“why�’s�” of proofs.�” Only Student 12 
read the question as we had intended and said that the 
physical arguments show, �“That proof is a step by step 
process.�” The responses to this question indicate that the 
students in this class were not yet at the stage of making 
statements about proofs in general. 

Question 8: Are These Proofs Explanatory?  
Question 8 was phrased as follows: Do the proofs from 
physics help you understand why the theorems are true, 
not just that they are true? 

Since explanation is one of the most important func-
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tions of proof in the classroom (Dreyfus and Hadas, 
1996; de Villiers, 1998; Hanna, 1990), it is instructive to 
examine the students�’ answers to this question and under-
stand what constituted an explanation for them. 

The vast majority of students found that the physical 
arguments helped them to understand why the theorems 
were true. Student 3 thought that the physical arguments 
helped because they �“Provide the visual aspect.�” Student 
6 had a similar reaction and wrote that the proofs from 
physics were helpful because �“You can visualize the 
stuff.�” A number of students said that they found them 
helpful because they could be related to experiences of 
the real world. Student 6 claimed that the physical proofs 
were helpful �“Because with the physics arguments you 
can visualize the stuff and relate it to your everyday 
experiences.�” Student 16 said that these arguments �“Help 
understanding of why they are true�… mainly because we 
know that the whole CG thing is true from real life 
experience.�” Student 12 finds them helpful because 
�“They compare math with everyday laws of gravity and 
other things.�” The only student who claimed that the 
physical arguments were not helpful in understanding 
why the theorems are true gave a very interesting answer. 
Student 1 wrote that �“The physics proofs don�’t help 
understand why the theorems are true but rather they 
show why the theorems are necessary. Doing the math 
proof seems like a waste of time, the physics arguments 
bring more application of the proofs.�” 

6. Summary 
This study investigated a novel application of statics to 
geometrical proof in the classroom, seeking to determine 
if and how it might help students understand and produce 
a proof of a geometrical theorem. The results show that in 
constructing their proofs most the students found the use 
of arguments from statics quite convincing but fewer 
found them clearer than geometric arguments. The results 
also show that the broader idea that concepts from statics 
can be used in proving mathematical theorems was more 
or less conveyed successfully. Also the use of arguments 
from physics seemed to have helped some students gain 
insights into the theorems they were asked to prove and 
helped them understand why the theorems were true. This 
investigation strengthens the belief that teaching 
geometrical proofs using concepts and principles from 
physics can make a significant contribution to creating 
the sort of rich context in which students can best learn 
proving. It appears to be a promising approach worthy of 
further exploration.  
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Appendix: 
Worksheets 3 to 6 asked the students to supply four 
proofs. The students broke up into workgroups of three or 
four students who worked together. The students were 
first asked to prove that the medians of a triangle are 
concurrent, once using the principles of statics developed 
in the class, and again using purely geometric considera-
tions. The students were then asked to supply a geometri-
cal proof that a Varignon quadrilateral is a parallelogram, 
followed by a statics-based proof of the same property. 
These worksheets were phrased as follows: 

Worksheet 3 
A. Triangle Medians Theorem. 

Theorem 1: The three medians of a triangle are concurrent 
(intersect in a single point). The point of intersection divides 
each median in a ratio 2 : 1.  

Statics proof of medians of a triangle theorem 

1. Given that D, E and F are the midpoints of their respective 
sides of triangle ABC, prove the triangle medians theorem using 
physical reasoning by applying the lever principle (LP), 
Substitution Principle (SP) and existence and uniqueness of the 
centre of gravity (UCG).  
Hint: locate the centre of mass on each of the three medians. 

Worksheet 4 
Traditional proof of medians of a triangle theorem 

2. Use the theorems developed in class (chapter 5 of your text-
book) to prove the medians of triangles theorem. You may use 
your own ideas to construct a proof or use the following sugges-
tions. 

a) Given  ABC with medians BE and CF intersecting at 
G. (Figure 3) 
i) Prove EF:CB = 1:2 
ii) Prove EG:GB = FG:GC = 1:2 
iii) What does this prove about two medians? Does this 

prove that all three medians are concurrent (intersect 
in a single point)? Why or why not? 

b) Suppose medians AD and BE, intersecting at G�’, were 
drawn instead of CF and BE and you were asked to do 
questions similar to a) i) and ii) (Figure 4). What would 
you be able to prove about DG�’:G�’A and EG�’:G�’B? 

c) Explain why G and G�’ must be the same point. 
d) What do these questions prove about the medians of a 

triangle? 
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Figure 3: BE and CF intersect at G 
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Figure 4: AD and BE intersect at G�’ 

Worksheet 5 

B. The Varignon Quadrilateral 

Definition. The quadrilateral constructed by joining the mid-
points of any given quadrilateral is called a Varignon quadrilat-
eral 

Theorem 2: The midpoints of the sides of any quadrilateral are 
vertices of a parallelogram. 

You will be asked to prove this theorem in two ways. 
Firstly to provide a proof using the traditional geometric 
theorems and methods, and secondly to prove it by means 
of the Statics principles you just learned. 
Traditional (Euclidean) proof of the Varignon Quadrilat-
eral 
1. Prove this theorem by using the methods and theorems you 
learned at the beginning of the course: Given that E, F, G, H are 
the midpoints of ABCD, prove that EFGH is a parallelogram by 
proving that its sides are parallel to diagonals AC and BD 
(Figure 5). 
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Figure 5: Quadrilateral ABCD with midpoints E, F, G, H 

Proof of the Varignon quadrilateral using Statics 
2. Prove that the midpoints of the sides of a quadrilateral are the 
vertices of a parallelogram by means of the principles of statics: 
Lever principle, Substitution principle and the existence and 
uniqueness of the centre of gravity. 

The following are some suggestions to follow in complet-
ing the proof, but they can be ignored if you find another 
way. 
Definition: A median of a quadrilateral is a line segment joining 
the midpoints of a pair of opposite sides of the quadrilateral. 

a) Assume equal masses, m, located at each of the verti-
ces A, B, C and D of the given quadrilateral (Figure 6). 
i) By applying the substitution principle show that the 

centre of gravity of ABCD is at the midpoint of each 
of the two medians of the quadrilateral ABCD. 

ii) How does i) prove that the medians of a quadrilat-
eral intersect each other at their respective mid-
points? 

iii) What do you now know about the Varignon quadri-
lateral EFGH? 

iv) Why do the midpoints of the sides of a quadrilateral 
form a parallelogram? 
 

H 

G 

F 

E 
A 

B 

C

D 

 
Figure 6: Quadrilateral ABCD with equal masses located 

at the vertices 

 


