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VISUALISATION AND PROOF: A BRIEF SURVEY 
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Ontario Institute for Studies in Education/University of Toronto 
The contribution of visualisation to mathematics and to mathematics education raises 
a number of questions of an epistemological nature. This paper is a brief survey of 
the ways in which visualisation is discussed in the literature on the philosophy of 
mathematics. The survey is not exhaustive, but pays special attention to the ways in 
which visualisation is thought to be useful to some aspects of mathematical proof, in 
particular the ones connected with explanation and justification.   

FOREWORD 
Let us start by wishing Happy Retirement to David, the relentless teaser of brains, 
who inspired so many students and colleagues to pursue diverse and often rather wild 
ideas in mathematics education, and showed amazing tolerance for the many ways of 
carrying out research in that field. In his well-deserved retirement we also wish David 
good health, happiness and a continuing enjoyment of the world’s wonders. We 
recommend taking the scenic route, always. Since one of David’s many interests is 
the use of visualisation, we hope the following brief survey will be of interest to him.  

INTRODUCTION  
A number of mathematicians and logicians have investigated the use of visual 
representations, in particular their potential contribution to mathematical proofs 
(Brown, 1999; Davis, 1993; Giaquinto, 1992, 2005; Mancosu, 2005). Over the past 
twenty years or so these investigations have gained in scope and status, in part 
because computers have increased the possibilities of visualisation so greatly. Such 
studies have been pursued at many places, such as the Visual Inference Laboratory at 
Indiana University and the Centre for Experimental and Constructive Mathematics 
(CECM) at Simon Fraser University in British Columbia. At most of these 
institutions, the departments of philosophy, mathematics, computer science and 
cognitive science cooperate in research projects devoted to developing computational 
and visual tools to facilitate reasoning. 
A key question raised by the intensified study of visualisation is whether, or to what 
extent, visual representations can be used, not only as evidence or inspiration for a 
mathematical statement, but also in its justification. Diagrams and other visual 
representations have long been welcomed as heuristic accompaniments to proof, 
where they not only facilitate the understanding of a theorem and its proof, but can 
often inspire the theorem to be proved and point out approaches to the construction of 
the proof itself. And of course every mathematics educator knows that they are 
essential tools in the mathematics curriculum. 
It is only in the last two decades or so, however, that visual representations have 
begun to be considered seriously as substitutes for traditional proof. Today there is 
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still much controversy on the role of visual representation in proof, and a number of 
researchers are actively pursuing the topic. In their positions on this issue these 
researchers span a broad range. At one extreme are those who say that visual 
representations can never be more than useful adjuncts to proof, as part of their 
traditional role as facilitators of mathematical understanding in general. At the other 
extreme are those who claim that some visual representations can constitute proofs in 
and of themselves, rendering any further traditional proof unnecessary. 
Between these two extremes one finds a variety of positions that are more nuanced or 
perhaps simply less clear. Some authors, for example, do not envisage a visual 
representation constituting an entire proof, but would maintain that an appropriate 
visual representation is acceptable as an integral component on which the proof as a 
whole would stand or fall. Other authors seem to be hesitant or inconsistent in their 
positions, and to this extent the division of the rest of this paper into three seemingly 
well-defined sections is of necessity somewhat forced.  

VISUAL REPRESENTATIONS AS ADJUNCTS TO PROOFS  
Francis (1996), for example, maintains that the increased use of computer graphics in 
mathematical research does not obviate the need for rigour in verifying knowledge 
acquired through visualisation. He does recognize that “the computer-dominated 
information revolution will ultimately move mathematics away from the sterile 
formalism characteristic of the Bourbaki decades, and which still dominates 
academic mathematics.” But he adds that it would be absurd to expect computer 
experimentation to “replace the rigour that mathematics has achieved for its 
methodology over the past two centuries”. For Francis, then, visual reasoning is 
clearly not on a par with sentential reasoning. 
Other researchers have come to similar conclusions. Palais (1999), for example, is a 
mathematician at Brandeis University who worked on a mathematical visualisation 
program called 3D-Filmstrip for several years. Reporting on his use of computers to 
model mathematical objects and processes, he observes that visualisation through 
computer graphics makes it possible not only to transform data, alter images and 
manipulate objects, but also to examine features of mathematical objects that were 
otherwise inaccessible. Palais concludes that visualisation can directly show the way 
to a rigorous proof, but stops well short of saying that visual representations can be 
accepted as legitimate proofs in themselves. 

VISUAL REPRESENTATIONS AS AN INTEGRAL PART OF PROOF  
Very few assert that proofs can consist of visual representations alone, but a number 
of researchers do claim that figures and other visual representations can play an 
essential, though restricted, role in proofs. Casselman (2000), for example, having 
explored the use and misuse of pictures in mathematical exposition, concludes that a 
picture can indeed form an essential component of a proof.  



   

   103 

  

Figure 1: 
Pythagoras 

Figure 2: 
Doubling the 

square 

Taking his cues from Tufte (1983, 1990 & 1997), Casselman 
first formulates eight suggestions for creating illustrations that 
foster mathematical understanding. Two of these are that “… 
the figures themselves should tell a story” and that one should 
“… ask constantly whether the figures really convey the point 
they are meant to” (Casselman, 2000, p. 1259). He goes on to 
give several examples of good mathematical illustrations, 
most of which adhere to the principles of visual explanation 
set out by Tufte (1997). The most striking is his comparison 
of the traditional picture for proving the Pythagoras theorem 
(see Figure 1) with 16 pictures taken from a computer-
animated series based upon the area-preserving property of 

shears. (This series is now familiar to many students.) He considers the animation to 
be measurably better than the traditional figure, which lacks explanatory power.  
Casselman (2000) not only points out the importance of pictures for understanding, 
however, but goes on to state that “In spite of disclaimers and for better or worse, 
pictures—even if only internalized ones—often play a crucial role in logical 
demonstration” (p. 1257) and can “convey information, sometimes a whole proof ” 
(p. 1260). 
The term visualisation is most often applied to public acts of communication: using a 
diagram or other representation as a vehicle to convey a mathematical idea, to explain 
or convince. For Giaquinto (1992, 1993), however, visualisation is an individual 
experience that takes place in an internal mental space. Giaquinto, a philosopher of 
mathematics, is concerned with the epistemic aspects of this inner experience.  
One of Giaquinto’s prime interests is the use of visual imagination to discover 
mathematical truths. “One discovers a truth by coming to believe it in an 
epistemically acceptable way.” (Giaquinto, 1992, p. 382) This conception of 
discovery allows Giaquinto to make two important claims. The first is that discovery 
requires independence: One must come to believe on one’s own terms; one cannot 
blindly accept another’s assertion. The second is that epistemic acceptability hinges 
upon a larger congruency:  A discovery is not valid if it 
conflicts with other independently acquired beliefs. 
Giaquinto differentiates between discovery and 
demonstration. One can believe in a discovery without 
having a valid justification (Giaquinto, 1992, p. 383). 
Alternatively, one might read a justification of a claim 
without being able to discover its truth. Thus he is interested 
in studying the role of visualisation in discovery without 
making any claim that it has a role in the construction of 
proof. He cites a few examples, among them the famous 
construction of the doubling of the square in the slave boy 
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Figure 3 

episode of Plato’s Meno (see Figure 2), to show that “the visual way of reaching the 
theorem illustrates the possibility of discovery without proof” (Giaquinto, 2005, p. 
77).  
Borwein and Jörgenson of CECM examined the role of visualisation in reasoning in 
general and in mathematics in particular, posing to themselves the two questions: 
“Can it contribute directly to the body of mathematical knowledge?” and  “Can an 
image act as a form of ‘visual proof’?” They answer both these questions in the 
positive, though they would insist that a visual representation can be accepted as a 
proof only if it meets certain criteria.  
In arguing their position, Borwein and Jörgenson (1997) 
cite the many differences between the visual and the 
logical modes of presentation. Whereas a mathematical 
proof has traditionally been presented as a sequence of 
valid inferences, a visual representation purporting to 
constitute a “visual proof” would be presented as a static 
picture. They point out that such a picture may well 
contain the same information as the traditional sequential 
presentation, but would not show an explicit path through 
that information and thus would leave “the viewer to 
establish what is important (and what is not) and in what 
order the dependencies should be assessed.”  For this reason these researchers believe 
that successful visual proofs are rare, and tend to be limited in their scope and 
generalizability. They nevertheless concede that a number of compelling visual 
proofs do exist, such as those published in the book Proofs without words (Nelsen, 
1993). As one example, they present the heuristic diagram which aims to prove that 
the sum of the infinite series 1/4 + 1/16 + 1/64 + ... = 1/3  (See Figure 3).  
Borwein and Jörgenson suggest three necessary (but not sufficient) conditions for an 
acceptable visual proof: 

• Reliability: That the underlying means of arriving at the proof are reliable and 
that the result is unvarying with each inspection  

• Consistency: That the means and end of the proof are consistent with other 
known facts, beliefs and proofs  

• Repeatability: That the proof may be confirmed by or demonstrated to others  
 
One might wonder whether these criteria would not apply to proofs in general, not 
only to visual ones. One might also object that the first criterion in particular, lacking 
as it does a definition of “reliable,” does not provide enough guidance in separating 
acceptable from unacceptable visual proofs. Indeed, Borwein and Jörgenson make no 
claim to have answered this question definitively. Nevertheless, they would not only 
assign to visual reasoning a greater role in mathematics in general, but would also 
maintain that some visual representations can constitute proofs. 
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Davis (1993) advocates a conception of theorem that includes images, figures and 
computer graphics. He offers a “wide definition” of visual theorems that includes (a) 
all the results of elementary geometry that appear to be intuitively obvious, (b) all the 
theorems of calculus that have an intuitive geometric or visual basis, (c) all graphical 
displays from which pure or applied mathematical conclusions can be derived almost 
by inspection and (d) graphical results of computer programs which the brain 
organizes coherently in a certain way (Davis, 1993, p. 336). 
By “theorem” Davis seems to mean the statement of a mathematical result, not of a 
justifying argument. Nevertheless, his discussion indicates that he often sees a figure 
as being explanatory enough to make another proof redundant. For example, he 
claims that the theorem that circles cannot be plane-filling inside a circle is made 
trivial by a figure of a circle containing three smaller free-floating circles (Davis 
1993, p. 337-8). In the case of fractals, Davis states that the “visual theorem” gives us 
information about the mathematical objects that may be difficult or impossible to put 
into words. He says that the figure is “the passage from the mathematical iteration to 
the perceived figure grasped and intuited in all its stateable and unstateable visual 
complexities” (Davis, 1993, p. 339). 
Although Davis does not dwell on this point, in both these cases he would appear to 
believe that the figure must be accompanied by a verbal or formulaic presentation. A 
circle containing three circles, or a fractal image, no matter how visually evocative, 
would not constitute a piece of mathematics. Davis (1993) is perhaps best read as 
asserting that a figure, because of its explanatory value but in addition to it, could be 
an integral part of proof. 

VISUAL REPRESENTATIONS AS PROOFS  
Other researchers go further when challenging the idea that visual representations are 
no more than heuristic tools. Barwise and Etchemendy (1991, 1996) sought ways to 
formalize diagrammatic reasoning and make it no less precise than deductive 
reasoning. They acknowledge that the notion of proof as a derivation, consisting of a 
sequence of steps leading from premises to conclusion by way of valid reasoning, and 
in particular the elaboration of this notion in mathematical logic, have contributed 
enormously to progress in mathematics. They claim, however, that the focus on this 
notion has led to the neglect of other forms of mathematical thinking, such as 
diagrams, charts, nets, maps, and pictures, that do not fit the traditional inferential 
model. They also argue that it is possible to build logically sound and even rigorous 
arguments upon such visual representations. 
These two researchers proceeded from what they call an informational perspective, 
building upon the insight that inference is “the task of extracting information implicit 
in some explicitly presented information” (Barwise and Etchemendy, 1996, p. 180). 
This view leads them to a criterion for the validity of a proof in the most general 
sense: “As long as the purported proof really does clearly demonstrate that the 
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information represented by the conclusion is implicit in the information represented 
by the premises, the purported proof is valid” (p.180). 
The authors go on to say that whenever “there is structure, there is information”, and 
that a visual representation, which may be highly structured, can carry a wealth of 
information very efficiently. Because information may be presented in both linguistic 
and non-linguistic ways, they conclude that strict adherence to inference through 
sentential logic is too restrictive, inasmuch as sentential logic is only a linguistic 
representation. 
The question is how to extract the information implicit in a visual representation in 
such a manner as to yield a valid proof. Barwise and Etchemendy show examples of 
informal derivations, such as the use of Venn diagrams, and suggest that perfectly 
valid visual proofs can be built in a similar fashion upon the direct manipulation of 
visual objects. Unfortunately, as they point out, the focus on sentential derivation in 
modern mathematics has meant that little work has been done on the development of 
protocols for derivation using visual objects, so that there is much catching up to do if 
visual proof is to realize its considerable potential.  
Though the view of these researchers is that proof does not require sentential 
reasoning, they do not believe that visual and sentential reasoning are mutually 
exclusive. On the contrary, much of their work has been aimed at elaborating the 
concept of “heterogeneous proof.” Indeed, Barwise and Etchemendy (1991) have 
developed Hyperproof, an interactive program which facilitates reasoning with visual 
objects. It is designed to direct the attention of students to the content of a proof, 
rather than to the syntactic structure of sentences, and teaches logical reasoning and 
proof construction by manipulating both visual and sentential information in an 
integrated manner. With this program, proof goes well beyond simple inspection of a 
diagram. A proof proceeds on the basis of explicit rules of derivation that, taken as a 
whole, apply to both sentential and visual information. 
Few philosophers of mathematics make the explicit claim that diagrams or other 
visual representations can constitute an independent method of justification. One of 
the strongest advocates of this position is Brown (1997, 1999), whose stance is 
closely related to his Platonist view that mathematics deals with real objects having 
an independent existence. For him “Some ‘pictures’ are not really pictures but rather 
are windows to Plato’s heaven” (Brown 1999, p. 39). 
In this context, Brown presents a number of theorems concerning sums and limits, 
and follows the statement of these theorems with “picture-proofs”. Each of these 
consists of a single figure. He then gives a traditional proof for comparison. Brown’s 
presentation implies that he believes these figures alone constitute proofs on the same 
level as the traditional arguments that follow them, consistent with his stated position 
(Brown 1997, p. 169-172; Brown 1999, p. 34-7).  
It is not entirely clear how Brown comes to his conclusion that some visual 
representations constitute proofs. He seems to be using an analogy: just as proofs can 
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be convincing and explanatory, so too figures can be convincing and explanatory. In 
essence, Brown appears to believe that a proof is anything that is both convincing and 
explanatory – and thus that any visual representation which satisfies those two 
criteria is a proof.  
Just by looking at them, however, one cannot even understand how most of these 
“picture-proofs” function as representations of mathematical objects, much less as 
valid mathematical arguments. Generally one finds that one has to apply to them a 
reasoning process, in the form of sentences, in order to understand the theorem and 
be convinced of its validity. Brown fails to make the case that this reasoning process, 
a traditional mode of mathematical thinking, is unnecessary. 
Folina (1999) provides useful and succinct criticisms of Brown’s account, concluding 
that “... not every kind of convincing evidence for a mathematical claim counts as a 
proof. In particular, Brown does not show that a picture, or anything ‘picture-like’, 
can be a proof. In my view, he does not really argue for this” p. 429. 

CONCLUSION 
This brief survey shows that we are still far from fully understanding and agreeing 
upon the role of visualisation in mathematics and mathematics education. While one 
can expect differences of opinion to continue to exist on the role of visualisation in 
proof, there is certainly room for more effort aimed at better ways to use visualisation 
in its universally accepted role as an important aid to mathematical understanding. 
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