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Abstract The contribution of visualisation to mathe-

matics and to mathematics education raises a number

of questions of an epistemological nature. This paper is

a brief survey of the ways in which visualisation is

discussed in the literature on the philosophy of math-

ematics. The survey is not exhaustive, but pays special

attention to the ways in which visualisation is thought

to be useful to some aspects of mathematical proof, in

particular the ones connected with explanation and

justification.

1 Foreword

It is a great honour to be asked to contribute to this

special issue in memory of Hans Georg Steiner. He was

a friend and mentor who had an enormous impact on

the field of mathematics education, as acknowledged in

the volume dedicated to him, Didactics of mathematics

as a scientific discipline, which appeared in 1994 to

mark both his 65th birthday and 20 years of work at

the Institut für Didaktik der Mathematik (IDM) in

Bielefeld.

I had the great pleasure and privilege of meeting

Hans Georg Steiner on several occasions, first in Bi-

elefeld in 1983 and then at international conferences

on mathematics education. I will always be grateful to

him, in particular, for the opportunity to further my

initial research on proof (Hanna, 1983) during two

study periods I spent at the IDM in Bielefeld, both

times at his invitation and with the support of the

Deutscher Akademischer Austauschdienst (DAAD).

2 Introduction

A number of mathematicians and logicians have

investigated the use of visual representations, in par-

ticular their potential contribution to mathematical

proofs (Brown, 1999; Davis, 1993; Giaquinto, 1992,

2005; Mancosu, 2005). Over the past 20 years or so

these investigations have gained in scope and status, in

part because computers have increased the possibilities

of visualisation so greatly. Such studies have been

pursued at many places, such as the Visual Inference

Laboratory at Indiana University and the Centre for

Experimental and Constructive Mathematics (CECM)

at Simon Fraser University in British Columbia. At

most of these institutions, the departments of philoso-

phy, mathematics, computer science and cognitive

science cooperate in research projects devoted to

developing computational and visual tools to facilitate

reasoning.

A key question raised by the intensified study of

visualisation is whether, or to what extent, visual rep-

resentations can be used, not only as evidence or

inspiration for a mathematical statement, but also in its

justification. Diagrams and other visual representations
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have long been welcomed as heuristic accompaniments

to proof, where they not only facilitate the under-

standing of a theorem and its proof, but can often in-

spire the theorem to be proved and point out

approaches to the construction of the proof itself. And

of course every mathematics educator knows that they

are essential tools in the mathematics curriculum.

It is only in the last two decades or so, however, that

visual representations have begun to be considered

seriously as substitutes for traditional proof. Today

there is still much controversy on the role of visual

representation in proof, and a number of researchers

are actively pursuing the topic. In their positions on

this issue these researchers span a broad range. At one

extreme are those who say that visual representations

can never be more than useful adjuncts to proof, as

part of their traditional role as facilitators of mathe-

matical understanding in general. At the other extreme

are those who claim that some visual representations

can constitute proofs in and of themselves, rendering

any further traditional proof unnecessary.

Between these two extremes one finds a variety of

positions that are more nuanced or perhaps simply less

clear. Some authors, for example, do not envisage a

visual representation constituting an entire proof, but

would maintain that an appropriate visual representa-

tion is acceptable as an integral component on which

the proof as a whole would stand or fall. Other authors

seem to be hesitant or inconsistent in their positions,

and to this extent the division of the rest of this paper

into three seemingly well-defined sections is of neces-

sity somewhat forced. This paper is a brief survey of

the ways in which visualisation and proof are discussed

in the literature on the philosophy of mathematics; it

does not look at the literature on visualisation and

proof in mathematics education.

3 Visual representations as adjuncts to proofs

Francis (1996), for example, maintains that the in-

creased use of computer graphics in mathematical re-

search does not obviate the need for rigour in verifying

knowledge acquired through visualisation. He does

recognize that ‘‘the computer-dominated information

revolution will ultimately move mathematics away from

the sterile formalism characteristic of the Bourbaki

decades, and which still dominates academic mathe-

matics.’’ But he adds that it would be absurd to expect

computer experimentation to ‘‘replace the rigour that

mathematics has achieved for its methodology over the

past two centuries’’. For Francis, then, visual reasoning

is clearly not on a par with sentential reasoning.

Other researchers have come to similar conclusions.

Palais (1999), for example, is a mathematician at

Brandeis University who worked on a mathematical

visualisation program called 3D-Filmstrip for several

years. Reporting on his use of computers to model

mathematical objects and processes, he observes that

visualisation through computer graphics makes it pos-

sible not only to transform data, alter images and

manipulate objects, but also to examine features of

mathematical objects that were otherwise inaccessible.

Palais concludes that visualisation can directly show

the way to a rigorous proof, but stops well short of

saying that visual representations can be accepted as

legitimate proofs in themselves.

4 Visual representations as an integral part of proof

Very few assert that proofs can consist of visual rep-

resentations alone, but a number of researchers do

claim that figures and other visual representations can

play an essential, though restricted, role in proofs.

Casselman (2000), for example, having explored the

use and misuse of pictures in mathematical exposition,

concludes that a picture can indeed form an essential

component of a proof.

Taking his cues from Tufte (1983, 1990, 1997),

Casselman first formulates eight suggestions for creat-

ing illustrations that foster mathematical understand-

ing. Two of these are that ‘‘... the figures themselves

should tell a story’’ and that one should ‘‘... ask con-

stantly whether the figures really convey the point they

are meant to’’ (Casselman, 2000, p. 1259). He goes on

to give several examples of good mathematical illus-

trations, most of which adhere to the principles of vi-

sual explanation set out by Tufte (1997). The most

striking is his comparison of the traditional picture for

proving the Pythagoras theorem (see Fig. 1) with 16

pictures taken from a computer-animated series based

upon the area-preserving property of shears. (This

series is now familiar to many students.) He considers

the animation to be measurably better than the tradi-

tional figure, which lacks explanatory power.

Casselman (2000) not only points out the impor-

tance of pictures for understanding, however, but

goes on to state that ‘‘In spite of disclaimers and for

better or worse, pictures—even if only internalized

ones—often play a crucial role in logical demonstra-

tion’’ (p. 1257) and can ‘‘convey information, some-

times a whole proof ‘‘ (p. 1260).

The term visualisation is most often applied to

public acts of communication: using a diagram or other

representation as a vehicle to convey a mathematical
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idea, to explain or convince. For Giaquinto (1992,

1993), however, visualisation is an individual experi-

ence that takes place in an internal mental space.

Giaquinto, a philosopher of mathematics, is concerned

with the epistemic aspects of this inner experience.

One of Giaquinto’s prime interests is the use of vi-

sual imagination to discover mathematical truths.

‘‘One discovers a truth by coming to believe it in an

epistemically acceptable way.’’ (Giaquinto, 1992, p.

382) This conception of discovery allows Giaquinto to

make two important claims. The first is that discovery

requires independence: One must come to believe on

one’s own terms; one cannot blindly accept another’s

assertion. The second is that epistemic acceptability

hinges upon a larger congruency: A discovery is not

valid if it conflicts with other independently acquired

beliefs.

Giaquinto differentiates between discovery and

demonstration. One can believe in a discovery without

having a valid justification (Giaquinto, 1992, p. 383).

Alternatively, one might read a justification of a claim

without being able to discover its truth. Thus he is

interested in studying the role of visualisation in dis-

covery without making any claim that it has a role in

the construction of proof. He cites a few examples,

among them the famous construction of the doubling

of the square in the slave boy episode of Plato’s Meno

(see Fig. 2), to show that ‘‘the visual way of reaching

the theorem illustrates the possibility of discovery

without proof’’ (Giaquinto, 2005, p. 77).

Borwein and Jörgenson of CECM examined the role

of visualisation in reasoning in general and in mathe-

matics in particular, posing to themselves the two

questions: ‘‘Can it contribute directly to the body of

mathematical knowledge?’’ and ‘‘Can an image act as a

form of ‘visual proof’?’’ They answer both these

questions in the positive, though they would insist that

a visual representation can be accepted as a proof only

if it meets certain criteria.

In arguing their position, Borwein and Jörgenson

(2001) cite the many differences between the visual

and the logical modes of presentation. Whereas a

mathematical proof has traditionally been presented as

a sequence of valid inferences, a visual representation

purporting to constitute a ‘‘visual proof’’ would be

presented as a static picture. They point out that such a

picture may well contain the same information as the

traditional sequential presentation, but would not show

an explicit path through that information and thus

would leave ‘‘the viewer to establish what is important

(and what is not) and in what order the dependencies

should be assessed.’’ For this reason these researchers

believe that successful visual proofs are rare, and tend

to be limited in their scope and generalizability. They

nevertheless concede that a number of compelling

visual proofs do exist, such as those published in

the book Proofs without words (Nelsen, 1993). As

one example, they present the heuristic diagram,

which aims to prove that the sum of the infinite series

1/4 + 1/16 + 1/64 + � � � = 1/3 (see Fig. 3).

Borwein and Jörgenson suggest three necessary (but

not sufficient) conditions for an acceptable visual

proof:

• Reliability: That the underlying means of arriving

at the proof are reliable and that the result is

unvarying with each inspection.

• Consistency: That the means and end of the proof

are consistent with other known facts, beliefs and

proofs.

• Repeatability: That the proof may be confirmed by

or demonstrated to others.

One might wonder whether these criteria would not

apply to proofs in general, not only to visual ones. One

might also object that the first criterion in particular,

Fig. 1 Euclid’s proof of the Pythagorean theorem

Fig. 2 Doubling the square
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lacking as it does a definition of ‘‘reliable,’’ does not

provide enough guidance in separating acceptable

from unacceptable visual proofs. Indeed, Borwein and

Jörgenson make no claim to have answered this ques-

tion definitively. Nevertheless, they would not only

assign to visual reasoning a greater role in mathematics

in general, but would also maintain that some visual

representations can constitute proofs.

Davis (1993) advocates a conception of theorem that

includes images, figures and computer graphics. He

offers a ‘‘wide definition’’ of visual theorems that in-

cludes (a) all the results of elementary geometry that

appear to be intuitively obvious, (b) all the theorems of

calculus that have an intuitive geometric or visual ba-

sis, (c) all graphical displays from which pure or ap-

plied mathematical conclusions can be derived almost

by inspection and (d) graphical results of computer

programs which the brain organizes coherently in a

certain way (Davis, 1993, p. 336).

By ‘‘theorem’’ Davis seems to mean the statement

of a mathematical result, not of a justifying argument.

Nevertheless, his discussion indicates that he often sees

a figure as being explanatory enough to make another

proof redundant. For example, he claims that the the-

orem that circles cannot be plane-filling inside a circle

is made trivial by a figure of a circle containing three

smaller free-floating circles (Davis 1993, p. 337–338).

In the case of fractals, Davis states that the ‘‘visual

theorem’’ gives us information about the mathematical

objects that may be difficult or impossible to put into

words. He says that the figure is ‘‘the passage from the

mathematical iteration to the perceived figure grasped

and intuited in all its stateable and unstateable visual

complexities’’ (Davis, 1993, p. 339).

Although Davis does not dwell on this point, in both

these cases he would appear to believe that the figure

must be accompanied by a verbal or formulaic pre-

sentation. A circle containing three circles, or a fractal

image, no matter how visually evocative, would not

constitute a piece of mathematics. Davis (1993) is

perhaps best read as asserting that a figure, because of

its explanatory value but in addition to it, could be an

integral part of proof.

5 Visual representations as proofs

Other researchers go further when challenging the idea

that visual representations are no more than heuristic

tools. Barwise and Etchemendy (1991, 1996) sought

ways to formalize diagrammatic reasoning and make it

no less precise than deductive reasoning. They

acknowledge that the notion of proof as a derivation,

consisting of a sequence of steps leading from premises

to conclusion by way of valid reasoning, and in par-

ticular the elaboration of this notion in mathematical

logic, have contributed enormously to progress in

mathematics. They claim, however, that the focus on

this notion has led to the neglect of other forms of

mathematical thinking, such as diagrams, charts, nets,

maps, and pictures, that do not fit the traditional

inferential model. They also argue that it is possible to

build logically sound and even rigorous arguments

upon such visual representations.

These two researchers proceeded from what they

call an informational perspective, building upon the

insight that inference is ‘‘the task of extracting infor-

mation implicit in some explicitly presented informa-

tion’’ (Barwise and Etchemendy, 1996, p. 180). This

view leads them to a criterion for the validity of a proof

in the most general sense: ‘‘As long as the purported

proof really does clearly demonstrate that the infor-

mation represented by the conclusion is implicit in the

information represented by the premises, the pur-

ported proof is valid’’ (p. 180).

The authors go on to say that whenever ‘‘there is

structure, there is information’’, and that a visual rep-

resentation, which may be highly structured, can carry

a wealth of information very efficiently. Because

information may be presented in both linguistic and

non-linguistic ways, they conclude that strict adherence

to inference through sentential logic is too restrictive,

inasmuch as sentential logic is only a linguistic repre-

sentation.

The question is how to extract the information

implicit in a visual representation in such a manner

as to yield a valid proof. Barwise and Etchemendy

show examples of informal derivations, such as the

use of Venn diagrams, and suggest that perfectly

valid visual proofs can be built in a similar fashion

upon the direct manipulation of visual objects.

Unfortunately, as they point out, the focus on sen-

Fig. 3 Visualising an infinite series
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tential derivation in modern mathematics has meant

that little work has been done on the development of

protocols for derivation using visual objects, so that

there is much catching up to do if visual proof is to

realize its considerable potential.

Though the view of these researchers is that proof

does not require sentential reasoning, they do not be-

lieve that visual and sentential reasoning are mutually

exclusive. On the contrary, much of their work has

been aimed at elaborating the concept of ‘‘heteroge-

neous proof.’’ Indeed, Barwise and Etchemendy (1991)

have developed Hyperproof, an interactive program

which facilitates reasoning with visual objects. It is

designed to direct the attention of students to the

content of a proof, rather than to the syntactic struc-

ture of sentences, and teaches logical reasoning and

proof construction by manipulating both visual and

sentential information in an integrated manner. With

this program, proof goes well beyond simple inspection

of a diagram. A proof proceeds on the basis of explicit

rules of derivation that, taken as a whole, apply to both

sentential and visual information.

Few philosophers of mathematics make the explicit

claim that diagrams or other visual representations can

constitute an independent method of justification. One

of the strongest advocates of this position is Brown

(1997, 1999), whose stance is closely related to his

Platonist view that mathematics deals with real objects

having an independent existence. For him ‘‘Some

‘pictures’ are not really pictures but rather are windows

to Plato’s heaven’’ (Brown, 1999, p. 39).

In this context, Brown presents a number of theo-

rems concerning sums and limits, and follows the

statement of these theorems with ‘‘picture-proofs’’.

Each of these consists of a single figure. He then gives a

traditional proof for comparison. Brown’s presentation

implies that he believes these figures alone constitute

proofs on the same level as the traditional arguments

that follow them, consistent with his stated position

(Brown, 1997, p. 169–172; Brown, 1999, p. 34–7).

It is not entirely clear how Brown comes to his

conclusion that some visual representations constitute

proofs. He seems to be using an analogy: just as proofs

can be convincing and explanatory, so too figures can

be convincing and explanatory. In essence, Brown ap-

pears to believe that a proof is anything that is both

convincing and explanatory – and thus that any visual

representation which satisfies those two criteria is a

proof.

Just by looking at them, however, one cannot even

understand how most of these ‘‘picture-proofs’’ func-

tion as representations of mathematical objects, much

less as valid mathematical arguments. Generally one

finds that one has to apply to them a reasoning process,

in the form of sentences, in order to understand the

theorem and be convinced of its validity. Brown fails to

make the case that this reasoning process, a traditional

mode of mathematical thinking, is unnecessary.

Folina (1999) provides useful and succinct criticisms

of Brown’s account, concluding that ‘‘... not every kind

of convincing evidence for a mathematical claim counts

as a proof. In particular, Brown does not show that a

picture, or anything ‘picture-like’, can be a proof. In

my view, he does not really argue for this’’ (p. 429.)

6 Summary and conclusions

This brief survey shows that we are still far from a

consensus on all potential roles of visualisation in

mathematics and mathematics education, and in par-

ticular on its role in proof. Its role as an important aid

to mathematical understanding is universally accepted,

however, and there is room for more effort aimed at

better ways to use visualisation in this role.

One can legitimately ask, in particular, in what ways

visualisation can be most useful to the aspects of

mathematical proof important to mathematics educa-

tion, particularly those connected with explanation and

justification.

As stated in the introduction, this paper set out to

survey recent work on visualisation and proof in the

literature on the philosophy of mathematics, not in the

literature on mathematics education. In the latter as

well, however, there is a large body of comment on the

important role of visualisation in mathematics educa-

tion. As examples one might cite the works summa-

rized in Presmeg (2006) and in particular the work of

Tall (2002), along with his papers of the last 20 years

(listed in http://www.davidtall.com/).

There are many research papers in mathematics

education that discuss in particular the role of both

diagrammatic reasoning and dynamic geometry in the

learning and teaching of proof—see, for example, the

special issue of Educational Studies in Mathematics on

proof in dynamic geometry environments edited by

Jones, Gutiérrez and Mariotti (2000). The papers in

this issue showed, through classroom research, that

dynamic software was very successful in enhancing the

ability of students to notice details, to conjecture, to

reflect on and interpret relationships and to offer ten-

tative explanations and proofs. The literature in

mathematics education lends support to the view that

emerges from the literature in mathematics itself, that

visualisation is a very important aid to mathematical

understanding.
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