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Constructive aspects of Greek geometry

In the early 20t

geometry using predicate logic, which provides no natural treatment of
geometric constructions. This lead to a number of misconceptions about Greek
problems—they are existence proofs of geometric objects, they are logically
convertible with theorems, etc.

century, mathematicians, following Hilbert, axiomatized

In the late 1960s, logicians began to develop the framework to naturally express
constructions [Pambuccian, 2008]. This work lead to logical formulations of
Euclidean construction procedures [Mienpii and Von Plato, 1990], a clear
distinction between problems and theorems [Mienpii, 1997], formal systems for
Greek geometry involving constructions and diagrammatic inferences

[Avigad, Dean and Mumma, 2009], programable systems for Euclid’s
constructions [Beeson, 2010], and so on.

Historians of Greek mathematics, however, have largely neglected these
developments.



Theorems and problems

It is well known that propositions of elementary treatises, like the Elements or
the Spherics, are divided into theorems and problems. The distinction is discussed
by Pappus and Proclus, and we are told that a number of Greek mathematicians
held strong views favoring one type over the other.

Theorems Given some set of initial objects, a theorem asserts some property
that is true of these objects. (“If... then...”)

Problems Given some set of initial objects, a problem shows how to do
something (say, how to find, to draw, to set out) and then
demonstrates that what has been done is satisfactory. (“To do
such-and-such...”)

Some theorems can be intelligibly expressed as problems and the converse.

The first six books of the Elements presents a blend of theorems and problems. In
the Elements, constructions are used in both theorems and in problems, but they
are used in different ways in the two types of propositions. I will argue that
Euclid’s problems cannot be understood as simply auxiliary to theorems, but
constitute a mathematical project in their own right.



Using constructions to prove theorems

In a geometric theorem, it is sometimes the case that the properties of the
objects stated in the enunciation are sufficient to demonstrate the proposition,
but more often than not we have to introduce new objects and use their
properties in the argument.

These new objects are introduced using constructions. (In fact, the geometer
usually asserts that these objects must have been produced, using the same
grammatical forms, and often the same verbs as are used when the initially given
objects are set out.) These constructions can sometimes be carried out using the
postulates, or previously demonstrated problems, but Euclid also demonstrates
theorems with various types of constructive processes that cannot be so explained.



Using constructions to complete problems

A problem is solved by producing a specific geometric object that meets certain
conditions. A problem (a) shows how to produce the object using construction
postulates and previously established problems and then, (b) through deductive
argumentation, using first principles (all three) and previously established
theorems, shows why this object is the one we set out to produce.

This deductive argumentation sometimes requires new constructions in the
same way as a theorem. That is, the geometric objects that complete the problem,
together with the initial objects stipulated in the problem itself, are sometimes
not sufficient to show that this constructed object satisfies the requirements of
the problem. In such cases, we must construct new objects for the proof—as we
will see, this can be done using a variety of different means. (These
“unnecessary” objects are often simply rolled into the original construction
without any explicit mention that this is being done.)



Proclus’ division of a Greek proposition

Proclus (5*" cg) put forward the following six parts of a Greek proposition. (In
fact, they are usually only found so complete and clearly divided in Euclid’s
Elements 1.)

Introductory components

1 Enunciation (mpdtacig): A general statement of what is to be shown

(done).

2 Exposition (¢k0eoig): A statement setting out the given objects with letter
names.

3 Specification (Siopiopdc): A restatement in terms of the specific objects of
(1) what is to be shown (theorem), or of (2) what is to be done, including
any conditions of solvability (problem).




Proclus’ division of a Greek proposition

Proclus (5*" cg) put forward the following six parts of a Greek proposition. (In
fact, they are usually only found so complete and clearly divided in Euclid’s
Elements 1.)

Core components
4 Construction (katackeur]): Statements about the production of new objects
that will be required in the proof. (Often using Posts. 1—3 and problems, but
in theorems there are also counterfactual constructions in this section.)

5 Proof (dnédeiig): A logical argument that the proposition holds (has been
done). (Relies on the other assumptions and theorems.)

6 Conclusion (cupnénpacya): A restatement, in general terms, of what has
been shown (done).!

"Rare, except in the Elements.
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Elements 111.1, Observations

Assumptions: Some of the constructive steps are assumed without any
postulate. This is true elsewhere in the Elements, and in the Data
as well. For example, we can take a point or a line at random,
including a line that goes through a circle. We also assume that
constructed objects intersect in various ways without any axioms.

Constructions: Constructions are used in different ways for the problem itself
and for the proof.
Problem: These rely on the postulates and other problems.
Proof: These can be pure assumptions or counterfactual—
that is, not constructed in any previously
established problem or even impossible to actually
construct.

Structure: Problems, in general, have a different structure than Proclus’
schema. (The structure of Elements III.1 may be required by the
presence of counterfactual constructions.)
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Components of a Greek geometric problem

Ip
2p
3p

4p

Enunciation: General statement of what is to be done.
Exposition: Statement of what is given, usually using specific, letter names.

First Specification: Specific statement of what is to be done, often with
qualifications.

Solution: Construction of the geometric object which satisfies the
requirements of the problem.

Second Specification: Specific statement of what is to be shown.!
Construction: Construction of any new objects necessary to the proof.'

Proof: Argument that the solution meets the requirements of the
proposition; if necessary, using the new objects of the construction.

Conclusion: A restatement, in general terms, of what has been done.”

"May be absent.

*Rare, except in the Elements.
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Euclid’s problems are not...

[1] A series of practical instructions for using a straight-edge
and compass to draw points, lines, circles, etc.

m Circles, triangles, rectangles, etc., are drawn in full.

[2] A list of instructions for performing an optimal solution
for producing the sought objects.

m Obviously simpler constructions are overlooked in favor
of constructions that call on previously demonstrated
problems. The goal is to show feasibility, not elegance.

[3] A series of manual instructions for producing the
minimal graphical requirement for the sought objects.

m The construction of a problem is a series of references
to previously demonstrated problems and it produces
something new out of the objects produced in those
problems.




Euclid’s problems as routines

Each of Euclid’s problems presents a routine of constructive operations that acts
upon given objects and produces a new object according to well-defined rules.
Arbitrary points, lines (and later planes) can also be introduced at the geometer’s
discretion, in which case these objects are also given.

New objects are produced with Elements I.post.1—3, and previously demonstrated
problems. When a previously demonstrated problem is called upon, it acts as a
subroutine. That is, only the final, constructed object of the problem is involved
in the new construction—all of the steps required to produce this object are

simply black-boxed.

In this sense, a problem is similar to a theorem. A theorem uses the knowledge
claims of previously established theorems, while essentially ignoring their internal
arguments. Likewise, a problem introduces the objects constructed by previously
demonstrated problems without any reference to the actual mechanics of
construction.
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Problems as routines calling subroutines

Routine:

Subroutine:

A problem works with objects, or objects assumed as given,
and then performs a well-ordered series of new
constructions—each of which depends on either a postulate, or a
previously demonstrated problem—that results in the sought
object.

When a previously demonstrated problem is called in, it is
effectively treated as a black-boxed subroutine—no information is
given about how the construction is performed, and no

are found in the diagram. Euclid is directly
invoking geometric objects, which we must assume are
constructed using the same series of steps provided in the original

problem.

These constructions are not carried out by straight-edge and compass—although they
could be. They are carried out by directly invoking objects whose construction
has already been demonstrated.
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Constructive functions

Problems are constructive functions that take certain objects as given, including
arbitrary objects, and produce some new object as an output.

Lpost.r: A segment is produced from Point 4 to Point B.
JjoinSegment(4, B)

Lpost.2: A segment is produced from Point 4 though Point B, extending the
distance of an arbitrary segment /.

extendSegment(AB, ()
Lpost.3: A circle is produced around Point A and passing through Point B.

drawCircle(4, B)



The function of Elements 1.2 and 3

These problems allow us to move a given segment and place it at a given point,
and to cut off a given line equal to a given segment. We can express equivalent
ideas as follows:

Elem.1.2: A circle is produced around Point A with radius equal to Segment BC.
drawCircle(A, BC)
Elem.1.3: A Segment CD is cut off from the greater Segment AB.
cutSegment(AB, CD), where AB > CD

The fact that these propositions are built up from Elements 1.1 and the
postulates, means that we cannot simply move a circle as we do with a compass.
Hence, in making fully explicit figures, we will see a lot of background
clutter—especially from Elements I.2.



The function of Elements 1.2 and 3

These problems allow us to move a given segment and place it at a given point,
and to cut off a given line equal to a given segment. We can express equivalent
ideas as follows:

Elem.1.2: Point D is produced such that Segment AD = Segment BC, and
Segment AD is joined.

producePoint(4, BC)(D, E), joinSegment(A, D) or joinSegment(4, E)
Elem.1.3: A Segment CD is cut off from the greater Segment AB.
cutSegment(AB, CD), where AB > CD

The fact that these propositions are built up from Elements .1 and the
postulates, means that we cannot simply move a circle as we do with a compass.
Hence, in making fully explicit figures, we will see a lot of background
clutter—especially from Elements I.2.
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Issues with Elements I1.11

A number of scholars have argued that Euclid’s diagram
includes unnecessary objects (points D, G, and K) and does
not follow the steps of the construction given in the text. In
place of Euclid’s construction they propose a simpler set of
procedures, using straight-edge and compass that result in a . s
point which is mathematically—but not %

conceptually—equivalent to H.

Euclid’s construction, however, directs us to previous

problems and postulates. In order to see how the squares are
constructed, for example, we must look back to Elements ‘|
I.46, which leads us back through the various problems in a
systematic way. The only constructions allowed for in the - g
text is the series of subroutines that I have used in my \
figures. (There is some flexibility, since we can decide what
side to place the equilateral triangle on, and so on.)

o

o

19/26



Euclid’s approach to Elements I1.11

Furthermore, these simpler constructions do
not produce a point that divides the line such
that the square on one part is equal to the rectangle
formed by the whole and the other part. Of course,
the point that they find is the same point, but
the proposed construction does not exhibit the
geometrical properties that we seek.

In order for a Euclidean problem to be effected, it
must, at the very least, produce all of the objects
explicitly stated in the enunciation—while other
objects may also be necessary to either produce
these, or for the proof.

20/ 26



Constructions in theorems

When we turn to the use of constructions in theorems, however, we find that
they function in very different ways. Although the construction part of most
theorems employ construction steps that are each supplied by a postulate or a
previously established problem, such as Elements 1.5, others do not. In the first
few propositions we find, for example,

a. a triangle “fit on” (épapudlewv énf) another, points “placed on” (t10évan énf)

b.

each other (genitive absolute, Elements 1.4),

a counterfactual use of Elements 1.3 to produce a line that is assumed to be
equal to a line that it must actually be less than (perfect imperative,
Elements 1.6),

the assumption that a construction has been carried out (cvvictdvan), for
which no problem has been provided and which is counterfactual (perfect
imperative, Elements 1.7),

and, a triangle “fit on” another and points “placed on” each other, such that
lines either will “fit on” each other or will be “transposed” (rtapardooerv),
all of which are either imaginary or counterfactual (genitive absolute,
future, Elements 1.8).
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Overview

We must distinguish between constructions used to complete problems, and
constructions used to demonstrate theorems (or for the proof part of problems).

Constructions that complete, or solve, problems are well-formed routines that
use postulates and previously established problems, as subroutines, to produce
geometric objects. Constructions that are used to demonstrate theorems are not
bound by these constraints. Where possible Euclid does use
problem-constructions for this purpose, but he also employs a wider range of
constructive procedures, such as conceptual constructions, counterfactual
constructions, assumed constructions that have not already been established, and
so on.

Most commentators have sought to explain problems by appealing to their use in
theorems. But this will not do. The establishment of problems should be
understood as goal in its own right. The Elements is meant to provide the
fundamental tools necessary to do geometry—that is, writing new theorems, and
completing new problems. We should seek the motivation for Euclid’s problems in
their use in geometrical analysis.
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