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Abstract

This paper is a contribution to our knowledge of Greek geometric analysis. In particular, we investi-
gate the aspect of analysis know as diorism, which treats the conditions, arrangement, and totality of
solutions to a given geometric problem, and we claim that diorism must be understood in a broader sense
than historians of mathematics have generally admitted. In particular, we show that diorism was a type of
mathematical investigation, not only of the limitation of a geometric solution, but also of the total
number of solutions and of their arrangement. Because of the logical assumptions made in the analysis,
the diorism was necessarily a separate investigation which could only be carried out after the analysis was
complete.
! 2009 Elsevier Inc. All rights reserved.

Résumé

Cet article vise à contribuer à notre compréhension de l’analyse g!eom!etrique grecque. En particulier, nous
examinons un aspect de l’analyse désigné par le terme diorisme, qui traite des conditions, de l’arrangement
et de la totalité des solutions d’un problème géométrique donné, et nous affirmons que le diorisme doit être saisi
dans un sens plus large que celui précédemment admis par les historiens des mathématiques. En raison des sup-
positions logiques faites dans l’analyse, le diorisme était nécessairement une recherche indépendante qui ne pou-
vait être effectuée qu’une fois l’analyse achevée.
! 2009 Elsevier Inc. All rights reserved.
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1. Introduction

This paper investigates an aspect of ancient Greek geometry known as the diorism
(dioqirl!o1),1 which is little discussed in modern scholarship, but which served an impor-
tant role in the ancient problem-solving art known as the field of analysis.2 In its most basic
form, a diorism provides a discussion of the possibilities of solving a particular geometric
problem, usually in the form of some limit to its solvability. Hence, diorism is a feature of
problematic analysis, which Pappus describes as “the supplying of what is proposed”
(s"o poqirsij"om sot

_
pqosa0!emso1), in contrast to theoretic analysis, which is “the investi-

gation of the truth” (sò fgsgsijòm sἀkg0ot
_
B) [Jones, 1986, 83].

A Greek geometric problem is solved by the construction of some geometric object.
A problem proposes a certain construction, shows how to do it, and then demonstrates that
it has been done. Hence, there is generally not a clear linguistic distinction between a prob-
lem and its solution. Solving a problem in Greek geometry means doing what one set out to
do, and this is usually expressed by saying that the problem itself has been done. When we
read about certain attributes of a problem in a Greek mathematical text, we are sometimes
reading about attributes of what we would call the solution, that is, attributes of the geo-
metric construction that solves the problem. If the production of the problem is limited in
some way, or if it can be effected by a number of different objects, these issues are handled
in a section of the proposition called the diorism. According to Pappus, in his general
description of various aspects of the field of analysis,

Diorism is the preliminary treatment of when, how and in how many ways the problem
will be possible. [Jones, 1986, 85]

Most of the diorisms that we find in the ancient texts are more or less straightforward spec-
ifications of certain limits to the solvability of a given problem and, hence, diorism itself has
often been treated briefly by modern scholars.3 As we will see below in an example from
Apollonius’s Cutting off a Ratio, however, the diorism could also be quite involved, treat
multiple solutions, and contain internal propositions.

1 In fact, there are two, at best only vaguely related, uses of dioqirl!o1 in Greek mathematics
[Mugler, 1958, 141–142]. Diorism as the part of the division of a proposition put forward in
Proclus’s commentary on the Elements I, however, does not concern us in this paper [Friedlein,
1873, 203–210; Morrow, 1970, 159–164; Netz, 1999]. Mahoney [1969, 327–329] reads the two
meanings of diorism as closely related, but his reasons for doing so are not clearly stated.
2 See Jones [1986, 377–379] for a discussion of ὁ ἀmaktólemoB sópoB, and related terminology, as
the name of a particular field of intellectual activity. Although ancient authors used the term
analysis, ἀmάktriB, in a fairly restricted sense for that part of an argument in which the
mathematician assumed what was to be done and made arguments on the basis of this supposition
[Mugler, 1958, 57–58], while Pappus, at least, used the field of analysis, ὁ ἀmaktólemoB (sópoB), for
the more general range of mathematical activity in which such arguments were produced or the
works that were written to facilitate this activity, modern authors have had a tendency to conflate
the two into the single term analysis. While we generally distinguish between the two, we also
occasionally use analysis in the broader sense, especially when discussing modern scholarship.
3 For examples, only about one page of the 144-page monograph on analysis by Hintikka and
Remes [1974, 58–59] treats diorism, Behboud [1994, 71] in his study of the logical structure of
problematic analysis only mentions diorism once, and Berggren and Van Brummelen [2000, 3]
eliminate the diorism from their discussion of one of Archimedes’ analyses.
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That diorism played an important role in the field of analysis is made clear by the fact
that one of Apollonius’s motivations for the organization of Conics IV is that its proposi-
tions are “useful both for the syntheses of problems and for the diorisms” [Heiberg, 1891–
1893, Vols. 2, 4]. The subject of Conics IV is, primarily, the number and arrangement of the
meeting points of a conic section with another conic section, opposite sections, or with a
circle.4 Since many of the most interesting and difficult problems in Greek geometry were
solved by finding the intersections of conic sections with other conic sections or circles, it is
intuitively clear that the subject matter of Conics IV would be useful for the diorisms of
such problems.5 Apollonius, however, wanted to make sure that this point was not lost
on his readers. A sentence later he returns to the matter, stating,

. . .For even if it is possible to fully exhibit (rasὰ . . . ἄpodίdor0ai) the diorism without
these [propositions of Book IV], there are surely still some things that are more readily
grasped through them, such as that it might be produced (ἂm cέmoiso) in various ways or
in so many ways, or again that it might not be produced.6 While such prior knowledge
(pqócmxriB), contributes a sufficient starting point for the investigations (sὰB fgsήreiB),
the theorems are also useful for the analysis of diorisms. [Heiberg, 1891–1893, Vols. 2, 4]

This passage makes a number of points about the role of diorism, which we will examine
further in this paper.7 The diorism, as well as stating the limit to the solvability of a prob-
lem, may state how many solutions there are and how they are arranged.8 Moreover, the
diorism itself was sometimes treated using analysis, and this was done frequently enough
so that Apollonius organized a book of his Conics in such a way as to be useful for this
process. We will examine an example of one of these extended diorisms below, in the sec-
tion on Apollonius’s Cutting off a Ratio.

After setting out the current, standard model of analysis, we will investigate a number of
the diorisms preserved in the ancient texts. We will argue that the word diorism was used by
ancient geometers to signify a type of mathematical argument, or investigation, regularly
undertaken during the course of doing analysis, but which was distinguished from both
the analysis proper and the synthesis. As we will argue, there were both practical and
logical reasons for this distinction. An analysis, since it is the investigation of a single,

4 Apollonius calls a branch of a hyperbola simply a “hyperbola” (ὑpeqbokή) and what we would
regard as a complete hyperbola he calls “opposite [sections]” (ἀmsireίlemai). See Heath [1921, Vol.
2, 157–158] and Fried and Unguru [2001, 117–139] for rather different assessments of the contents of
Conics IV. Fried [2002, xi–xxvi] also gives a nice overview of the whole book. None of these
accounts, however, takes special notice of Apollonius’s claim that Book IV will be useful for treating
diorisms, nor makes any attempt to understand the book in this light.
5 See Knorr [1986] for discussions of many such problems.
6 The grammatical subject, which is contained in the verbs, and which we have translated vaguely
as it, is presumably either the problem or the object that solves the problem, if, indeed, these were
not thought of as the same.
7 Fried reads Apollonius as attributing this passage to Nicoteles as part of his overall criticism of
Conon’s investigations of the number of points at which conic sections meet [Fried, 2002, xii].
Apollonius, however, believes that Nicoteles was wrong to make the criticism that these studies are
useless for diorisms and here, beginning with the phrase raὶ cὰq eἰ, he gives the reason that he
believes Nicoteles was mistaken.
8 The fact that diorism also concerns the number of solutions has been noted already by Toomer
[1990, lxxxv] and Fried and Unguru [2001, 287]; however, these scholars have not developed the full
implications of this broader conception of diorism.
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assumed solution, is not the place to explore the more general questions of whether or not
there is a limit to the possible solutions, more than one solution, and so on. A synthesis, on
the other hand, since it is the construction of an actual solution, must be carried out under
the restrictions of any limitations, or divided into cases according to the number of possible
solutions. As we will argue, the diorism was a type of analytical investigation, in which the
geometer used certain properties of the objects constructed in the analysis to determine the
overall properties of the solutions. Hence, in the diorism, the mathematician engaged in
activities such as specifying the limits of a solution, dividing the possible cases of solution,
and elaborating all the possible solutions.

Indeed, this broad range of activities is expressed by the variety of terms used to render
dioqirl!o1 in the Arabic translation of Apollonius’s Conics. In the translation of the pre-
face to Conics I, the translator has rendered the Greek term dioqirl!o1 with two different
Arabic words, (taḥd#ıd, “specification”) and (tafṣ#ıl, “elaboration” or “diversifica-
tion”), and the closely related Greek term dioqirsir!o1 with yet another Arabic term,
(qismah, “division” or “distribution”) [Rashed, 2008a, 253].9 In the preface to Conics IV,
the translator uses a related term, (taqs#ım, “division” or “sectioning”), three times to
translate the Greek dioqirl!o1 [Rashed, 2009, 119]. Finally, in the preface to Conics V,
Apollonius tells us that this book will also be of use in diorisms. He says that the propo-
sitions relating to minimum lines are important,

. . .Because of our opinion that a student ( ) of this science requires them in the com-
prehension of the division ( ) and elaboration ( ) of problems, and in their synthe-
sis. [Toomer, 1990, 5; Rashed, 2008b, 225]

The translation of this passage is problematic.10 The Arabic words that we have trans-
lated with “division” and “elaboration” are both used elsewhere in the text to render
dioqirlóB [Rashed, 2008a, 253; Rashed, 2009, 119]. As Hogendidjk [1985, 43, n. 4] points
out, the translators seem not always to have understood what the Greek term meant. In
fact, what the translators may have understood is that the term diorism represents a range
of mathematical activities, and they may have attempted to describe these different activi-
ties with different words.11 In this passage, Apollonius is probably using problem to refer to
the geometric objects that solve the problem and he is claiming that the propositions on the
minimum lines drawn from certain specified points to conic sections will be relevant to

9 See Hogendijk [1985, 42, n. 4] for a discussion of these terms.
10 The phrase has been translated variously with “Divisones et dioqirloὺB Problema-
tum” by Halley [1710, 2, 1], “der Eintheilung und Determination der Aufgaben” by Nix [1889,
20–21], “division (into cases) and the diversification of problems” by Hogendidjk [1985, 43, n. 4],
“analysis and determination of problems” by Toomer [1990, 4], and “la détermination et l’analyse
des problèmes” by Rashed [2008b, 224]. In the absence of the Greek text for Conics V, and before we
have a fully articulated understanding of the Arabic translators’ views of the mathematical meaning
of the term dioqirlóB, we think it best to translate the Arabic and not try to guess at the lost Greek.
Hence, for the time being we have chosen to translate rather literally.
11 For example, the repeated use of to translate dioqirlóB in the preface to Conics IV [Rashed,
2009, 119], where the term is clearly being used to refer to a study of the number and distribution of
the intersections of conic sections in the diorisms of problems that are solved by the intersection
of conics, may indicate that the translator was attempting to make explicit this particular aspect of
diorism. See Section 5 for further discussion of this topic. This issue may have some bearing on
Rashed’s frequency argument that the use of in the preface of Conics V must be a translation
of dioqirlóB [Rashed, 2008b, 495].
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certain aspects of these objects, one of which is almost certainly a translation of diorism,
and also to the synthetic construction of these objects. In the course of this paper, we will
see why the Arabic translators, rightly, saw diorism as a range of mathematical activities
that they believed was not well conveyed by a single Arabic word.

2. The standard model of analysis

Most modern discussions of the field of analysis begin with a treatment of Pappus’s
description at the beginning of Collection VII, and, indeed, many of them develop an anal-
ysis of Pappus’s remarks as a logical interpretation of geometric analysis.12 We will not fol-
low this course for two reasons. The first is that Pappus was not the author of any of the
works that he regarded as belonging to the field, nor one of its most creative practitioners.
His study of the field of analysis, Collection VII, which is essential to our understanding,
was based on his reading of the texts of the masters. Indeed, as Acerbi [2007, 442] stresses,
Pappus’s account was written some five centuries after the last of those works he discusses
and his vision of the field of analysis and its purpose may well have been different from that
of the authors he treats. Hence, we believe it is possible to learn about the field of analysis
by directly reading the works of the Hellenistic geometers.13 The second reason is that we
do not believe that Pappus intended his remarks in the opening passages of Collection VII
to be read as a comprehensive treatment of the subject. As Berggren and Van Brummelen
[2000, 9] point out, Pappus spoke rather vaguely, and he meant these remarks to introduce
a broad field expounded in a number of treatises that he expected his reader to be able to
read.14 Pappus, no doubt, expected his readers to learn about the field of analysis primarily
from the works he discussed, and only secondarily from his treatment of them.

The ancient field of analysis, as it has been transmitted to us, covered a range of math-
ematical approaches using a number of different types of argumentation. Only three of the
treatises that Pappus considered to be part of the field have survived: Euclid’s Data, in
Greek, Apollonius’s Conics, partly in Greek and partly in Arabic, and Apollonius’s Cutting
off a Ratio, in Arabic. Of these, the Data contains no analyses as such, although it was writ-
ten for sake of doing analysis, and the Conics contains relatively few analyses, although
parts of it were written for the sake of doing analysis and the final, apparently analytical
book has been lost, while in Cutting off a Ratio everything that can be presented using anal-
ysis is so presented.

Thus, whereas modern scholars have a tendency to regard ancient analysis as the produc-
tion of a particular type of proposition having a certain structure, ancient mathematicians
apparently regarded the field of analysis as a set of methodological approaches to doing
mathematics along with all of the mathematical apparatus developed to facilitate these
practices.15 Nevertheless, the structure of an ancient analysis that has been articulated by

12 See, for some examples, Cornford [1932, 43–47], Robinson [1936], Hintikka and Remes [1974,
7–21], and Behboud [1994, 53–57].
13 Berggren and Van Brummelen [2000] also take this approach.
14 On the other hand, Acerbi [2007, 442–449] argues that, by the elimination of some passages as
spurious, Pappus’s account can be read as a fairly accurate description of both problematic and
theoretic analysis.
15 Acerbi [2007, 439–534] gives a broader account of analysis than is generally found in modern
scholarship. It should be noted, however, that he does not discuss the special function of diorism in
analysis.
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modern scholars is useful and we will refer to it frequently. There seems, now, to be a gen-
eral consensus on the structure of what we will call an analyzed proposition, as first put for-
ward by Hankel [1874, 137–150].16

In the first place, an analyzed proposition is divided into two parts, an analysis and a
synthesis. It is the presence of the analysis that makes these propositions analyzed propo-
sitions; the synthesis is in no way distinguishable from a normal problem.17 In some cases,
the synthesis is omitted. Presumably, in these cases the geometer regarded the production of
the synthetic argument as too simple to warrant further attention.18 In the works of the
Hellenistic geometers, an analyzed proposition is usually presented with two different dia-
grams, one for the analysis and one for the synthesis.19 This practice, which probably orig-
inated from oral presentation, makes it quite clear that the two different parts of the
proposition start from different sets of assumed geometric objects and relations.

The analysis is divided into two parts. In the first of these, which modern scholars gen-
erally call the transformation, the geometer assumes that the objects required by the prob-
lem have already been constructed, or in the case of theoretic analysis, that the sought
relations obtain.20 The transformation proceeds by constructing auxiliary objects and using
straightforward deductive argumentation, as canonically expressed by Euclid’s Elements, to
show that these new objects imply some configuration of objects, or some construction,
that the geometer takes to be sufficiently manageable—such as the intersection of two given
conic sections, that a given area is applied to a given line falling short by a square, or that a
line has a given ratio to a given line.

In the second part of the analysis, which modern scholars generally call the resolution, the
geometer uses the mathematical apparatus of Euclid’s Data to show that if the sufficiently
manageable objects that were derived in the transformation are given, then the objects that
solve the problem are also given.21 In the language of theData, this means that if we assume
the objects derived in the transformation are given, then it will be possible “to supply”
(poqίrar0ai) the objects that complete the problem [Menge, 1896, 2]. The procedures of
proof used in theDatamake it clear that objects are suppliedwhen they are geometrically con-
structed. This accords well with the use of this idiom in the field of analysis. In the resolution,
the geometer shows that if some set of readily obtainable objects are given, then the objects
that complete the problem are fully determinate, that is, constructible on this basis.

16 Berggren and Van Brummelen [2000, 9–13] provide a useful description of the four-part division
of an analyzed proposition from which we have drawn guidance.
17 Here, we use the term problem in the technical sense of a proposition of Greek geometry that sets
out to perform a specific construction and then demonstrates that this construction is valid.
18 In the case of theoretic analyzed propositions, in which all of the steps of the analysis were known
to be convertible, it is also possible that the analysis was taken as a full proof. See Acerbi [2007,
485–497] for a discussion of a number of theoretic analyzed propositions of this type.
19 For example, all of the analyzed propositions of Apollonius’s Cutting off a Ratio and most of
those of Archimedes’ Sphere and Cylinder II are of this type. Moreover, the synthesis is often
accompanied by auxiliary figures or objects. For example, the analyzed propositions of Apollonius’s
Conics have a number of different figures for the syntheses and the syntheses in Cutting off a Ratio
introduce objects that are not necessary in the analyses.
20 Hintikka and Remes [1974, 24] call this part the “analysis proper” and Fournarakis and
Christianidis [2006, 47] call it the “hypothetical part.” Nevertheless, it is clear that, although the
views of analysis put forward by these authors differs from ours, they identify this part of the
argument as a particular component of an analyzed proposition in the same way that we do.
21 Acerbi [2007, 455] appropriately calls this section the “catena dei dati” (“chain of givens”).
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The synthesis, which also has two parts, is then a sort of reversal of this process. This is not
necessarily in a strictly logical sense, but rather in the sense that the set of objects that are taken
as a starting point, and the objects that are provided on this basis, are essentially the opposite
of those in the analysis. The first part of the synthesis is the construction, inwhich the geometer
begins with some basic construction – such as two conic sections intersecting at a point or an
area applied to a given line and falling short by a square – and then proceeds to construct the
objects that complete the problem on this basis. The construction proceeds in essentially the
same direction as the resolution. That is, starting with the objects achieved at the end of
the transformation, we construct the objects that solve the problem. Finally, the proof dem-
onstrates that the objects so constructed have the properties stipulated in the enunciation of
the problem. The proof proceeds in roughly the opposite direction from the transformation.
That is, starting with the geometric properties of the given objects, together with those of the
auxiliary objects introduced in the construction, we demonstrate that the objects so con-
structed have the properties that were assumed at the beginning of the transformation.

This schematic is, however, an idealization that is not always found so well structured in
the ancient sources and was probably rarely so precisely implemented by the ancient math-
ematicians. Nevertheless, these divisions of the analyzed proposition are useful interpretive
categories, which may also be applied to the somewhat “irregular” propositions that we
generally encounter in our sources.

As an example, we take an analyzed proposition from Pappus’s Collection IV, which
treats a neusis problem.22 In the course of discussing a number of the classical problems
of Greek geometry, Pappus gives a solution to the problem of trisecting an angle by means
of a particular neusis construction. His approach is divided into two parts. In Collection IV
Prop. 31, he gives an analyzed proposition that provides the construction of a certain neusis
line. Then, in the next proposition, which is a straightforward synthetic problem, he uses
this neusis line to trisect a given angle. In this way, he transforms the problem of trisecting
a given angle into a problem that can be more readily handled, namely that of constructing
a particular neusis line. Here, we will only consider the analyzed problem of constructing
the neusis line. In the conclusion, we will return to this problem and examine the broader
question of the relationship between the original problem and its transformed solution
using the ideas developed in this paper about the role of diorism in ancient analysis.

In Collection IV Prop. 31, Pappus solves the following problem. Considering Fig. 1,
where rectangle ABGD is given and line BG extended, the problem is to pass a line through
point A and intersecting side GD, such that the extended segment EZ is equal to some given
line [Hultsch, 1876, Vol. 1, 172–174].

The transformation proceeds by assuming that the problem has already been solved; that
is, that line EZ is also given in magnitude.23 Then two auxiliary lines are constructed such
that DH k EZ and ZH k ED [Elements I 31]. Then, since EZ is given in magnitude, DH is

22 A neusis was a category of construction in Greek geometry in which a line was passed through a
given point in such a way that some segment of it was cut off between two given objects so as to have
a given length. For example, see Knorr [1986, 178–194] for a discussion of Archimedes’ use of neusis
constructions.
23 According to Definitions 1 and 4 of the Data, a line may be said to be given in either in magnitude
or in position [Menge, 1896, 2; Taisbak, 2003, 17]. Where it is given in both magnitude and position,
we simply say it is given. In this case, it is given in magnitude, by the analytic assumption, but it is
not yet given in position, because, although we know the position of A, we do not yet know the
position of either E or Z.
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given in magnitude. (1) Since point D is given, point H is on the circumference of a circle
given in position [Data Def. 4]. (2) Moreover, since (BG ! GD) is given and is equal to
(BZ ! ED),24 (BZ ! ED) = (BZ ! ZH) is given. Therefore, point H is on a given hyper-
bola [Conics II 12]. Point H, however, is also on the circumference of a given circle. There-
fore, it is given.

In this proposition, the transformation uses the auxiliary construction of lines ZH and
DH to change the problem into that of the construction of line DH. It then breaks into
two short parts; (1) shows that H lies on a given circle and (2) shows that it also lies on
a given hyperbola. Because of this structure, there are trivial resolution steps mixed into
the transformation. That is, there are trivial statements about what objects are given and
on what basis. In this example, however, there is no general resolution, probably because
it is so obvious. Nevertheless, on the basis of the construction found in the text, we can
reconstruct one as follows. Since point H is given, line HZ is given in position [Data 28],
and hence point Z is given [Data 25]. Therefore, line AZ is given [Data 26].

The synthesis, as is often the case, begins with a new diagram. The construction is as fol-
lows. In Fig. 2, let the given rectangle be ABGD and the given line M. Line AD is extended
and cut off so that DK =M [Elements I 3]. Through point D, a hyperbola is drawn with
asymptotes AB and BG [Conics II 4], and, with center D and distance DK, circle KH is
drawn [Elements I post. 3], cutting the hyperbola at H. Through point H, line HZ is drawn
such that HZ k DG [Elements I 31], and it meets BG extended at Z. Line AZ is joined.

A

B G

E

D

H

Z

Fig. 1. Collection IV Prop. 31, analysis.

A

B G

E

D
H

Z

K

L

C

M

Fig. 2. Collection IV Prop. 31, synthesis.

24 Since triangle AED is similar to triangle ABZ, BA : BZ = ED : AD, but BA = GD and AD = BG;
hence (BG ! GD) = (BZ ! ED). In this paper, we use the expression (AB ! CD) for the rectangle
contained by lines AB and CD and the expression AB2 for the square on line AB. In the texts discussed
in this paper, these expressions always refer to geometric objects, and no reference to arithmetic
operations is intended by our convention.
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The proof, then, is to show that EZ =M. Line HD is joined and line HL is drawn such
that HL k KA [Elements I 31]. Then (BZ ! ZH) = (BG ! GD) [Conics II 12], so that, since
ZB : BG = GD : DE [Elements VI 4], and ZB : BG = GD : ZH [Elements VI 22], therefore,
line ED is equal to line ZH, and DEZH is a parallelogram. Therefore, line EZ is equal to
line DH [Elements I 33], that is EZ =M.

This example may be used to illustrate a number of features that are common in the
analyses that survive in our sources. (a) The analysis is an analysis of a specific figure
and the synthesis is the construction of a different, although closely related, figure. (b)
Although the division between the analysis and the synthesis is quite distinct, that between
the transformation and the resolution, on the one hand, and the construction and the
proof, on the other, can be less absolute and the steps of these are often interwoven. (c)
A particular section may be very brief, or missing, presumably if the geometer regarded
it as sufficiently obvious. (d) Finally, the direction of the argument in the analysis and syn-
thesis, mentioned by Pappus in his general description of the field of analysis and much dis-
cussed by modern scholars,25 is opposite only in the loose sense that they have opposite
premises and goals, not in the strict sense that one is the logical reversal of all of the steps
of the other.26

In the example given, as in many of the analyzed propositions in our sources, there is
no diorism. Indeed in this case, it can be shown that the problem can always be com-
pleted by a single line, so that it was not necessary to include any diorism in a formal
exposition of the problem.27 Although the diorism is not always present in ancient
analyzed propositions, it is clear that when it is present, it must follow the resolution.
Modern scholars have often stated the purpose of the diorism in purely logical terms,
for example as establishing the “reversibility of certain one-way implications” or the
“necessary . . . conditions of solvability” [Mahoney, 1969, 328–329; Hintikka and Remes
1974, 58–59]. This, however, does not fully explain its role within the constructive
framework of ancient problem solving. An analysis begins by assuming that some
specific object solves the proposed problem and then proceeds by an investigation of
the properties and implications of this particular object.28 Hence, it cannot itself develop
a study of the overall possibilities of solvability; it cannot present an assessment of the
general limits of solvability or show that there may be multiple solutions that are
arranged in various ways. Nevertheless, as we will see below, the geometric properties
of the auxiliary objects introduced in the analysis can be utilized to this effect. In this
paper, we will examine various examples of how ancient geometers produced diorisms
as investigations of the auxiliary objects used in the analysis.

We will argue that the standard division of an analyzed proposition should include a
diorism, although in practice this section is often missing:

25 See Jones [1986, 83–85] for the text of Pappus’s description. There are a number of translations
and readings of this passage, as for example, Mahoney [1969, 322], Hintikka and Remes [1974,
8–10], and Jones [1986, 82–84]. The most recent translation, and comprehensive analysis, of
Pappus’s description is given by Acerbi [2007, 439–446].
26 Acerbi [2007, 454–463] has also insisted on this point.
27 We will return to the issues raised by this problem in Section 5.
28 Although Hintikka and Remes [1974, 32] and Behboud [1994, 58–59] have different logical
accounts of ancient analysis, they do agree that the analysis is an investigation of a specific
instantiation of geometric objects.
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1. Analysis
(a) Transformation
(b) Resolution

2. Diorism

3. Synthesis
(a) Construction
(b) Proof

Both the diorism and the synthesis may be absent—the synthesis in the case where the
geometer believes its production is too obvious to warrant full treatment, and the diorism
in the case where the problem always has a single solution. As we saw above, the reso-
lution may be so brief as to appear to be missing, we will see below that the same is true
of the transformation.29 Finally, as we will show in this paper, since the diorism is a
study of the solutions, insofar as they are solutions, it can also be longer than the other
two parts and contain internal propositions.

In fact, we will argue in this paper that these three parts of a complete analyzed prop-
osition, whether or not they are all found in the final written work, are reflective of three
stages of mathematical investigation that the mathematician should have gone through in
the course of any complete investigation of a problem. In the analytic stage, the mathe-
matician assumes the existence of a single solution and derives from this various auxiliary
constructions that will be of use in affecting the actual solution and which can be used to
investigate the overall possibilities for solution. In the diorismic stage, the mathematician
uses the auxiliary objects of the analytical stage to show that a single solution is always
possible, or if not, how it is limited or how many solutions there may be and how they
are arranged. Finally, in the synthetic stage, the mathematician must effect a construction
that solves the problem, stating at the outset any restrictions that are necessary or divid-
ing the construction into cases according to the total possibility of solutions. In Section 4,
we will argue that one of the principal motivations behind Apollonius’s systematic
approach in Cutting off a Ratio was his desire to produce a paradigmatic case of the ana-
lytical treatment of a relatively simple problem in which each of these three stages is
exhaustively carried out. We turn now to examples of diorism in ancient authors.

3. Analysis and diorism

In this section, we examine diorisms in two of the most canonical mathematical authors
of the Hellenistic period, Archimedes and Apollonius. As noted above, the auxiliary con-
structions and assumptions used in an analysis could sometimes be used to show that a
solution was only possible under certain circumstances. This limitation might be due to
some inherent geometric property of the given objects, or to the arrangement of the objects.
In this section, we will look at two diorisms that characterize limitations to the solvability
of the problem inherent in the objects themselves, while in the following section we will dis-
cuss more generalized diorisms, which are due to the arrangement of the objects under
consideration.

29 Compare the discussions of Collection IV Prop. 31 (above) and Cutting off a Ratio 1.1 (below).
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Thepresentationof themost common typeof diorism, that is, the specificationof the limits,
or possibilities, of solvability, could be carried out in twoways. In general, it occurs within the
context of an analyzed proposition, after the analysis and before the synthesis.We will exam-
ine one example of this type from Archimedes’ Sphere and Cylinder. In some cases, however,
the diorism is due to a specific property of the objects under discussion that is significant
enough to be presented in a separate proposition. A number of the diorisms given in the
Elements are of this type.30 Even in these cases, however, although the text simply refers to
this other proposition, the discovery of the property itself was probably often made in the
course of the analysis. The deductive structure of the ancient treatises generally prevents us
from being certain of the geometer’s heuristic process; nevertheless, we will present an exam-
ple from Apollonius’s Conics, in which we are fairly sure that this is what happened.

3.1. Diorism in Sphere and Cylinder II 7

In order to understand the role of diorismwithin a standard analyzed proposition, wemay
look at the case of Archimedes’ Sphere and Cylinder II 7. This problem demonstrates how

To cut a section from a given sphere with a plane, such that the section has a given ratio
to the cone that has the same base and height as the section. [Heiberg, 1910–1915, Vol. 1,
206]

In Fig. 3, assuming that the plane through line AG that is perpendicular to line BD cuts
sphere ABG such that the ratio of spherical segment ABG to cone ABG is some given ratio,
the transformation is as follows. Using a relation between spherical segments and cones
that stand on the same base, put forward in Sphere and Cylinder II 2, a cone is constructed
equal to spherical segment ABG by finding H such that (ED + DZ) : DZ = HZ : ZB
[Elements VI 12]. This transforms the situation into one in which the ratio of cone ABG
to cone AHG is given; that is, BZ : HZ is given [Elements XII 14]. The resolution is then
simply a matter of showing that, on this basis, lines DZ and AG are also given.

The means of constructing point H, however, reveals a limit to the solvability of the
problem, which Archimedes states in the diorism.

ZH

A

B
E D

G

Fig. 3. Sphere and Cylinder II 7, analysis.

30 For example, consider the relationship of Elements I 20 to I 22, Elements VI 27 to VI 28, or
Elements XI 20 to XI 22 and 23. As Fried and Unguru [2001, 284–293 and 298–306] have pointed
out, it is probably in reference to theorems of this sort, which state inherently interesting properties
that will later be used to limit the scope of problems, that Apollonius, in the preface to Conics I,
states that Conics VII contains diorismic theorems [Heiberg, 1891–1893, Vol. 1, 4].
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Since the sum of ED, DZ31 has to DZ a greater ratio than the sum of ED, DB to DB,32

while BD is twice ED, therefore the sum of ED, DZ has to DZ a greater ratio than that
which three has to two.33 Since the ratio of the sum of ED, DZ to DZ is the same as the
given, therefore it is necessary that the ratio given for the synthesis be greater than that
which three has to two. [Heiberg, 1910–1915, Vol. 1, 208]

The construction of pointH as the vertex of the cone equal to spherical segmentABG then
provides necessary and sufficient conditions for solving the problem. The necessary condition
is demonstrated in the diorism,while the synthesis shows that, given the condition stated in the
diorism, the construction set out in the analysis is sufficient to solve the problem.

Again, the synthesis is clearly distinguished from the analysis by the fact that it is based
on a new diagram. The fact that a new diagram was used, despite being essentially the same
as the first, reveals an essential characteristic of the problem solving art. Ancient geometers
started the synthesis by starting over with a new figure. The synthesis begins from a differ-
ent set of given objects and redrawing the diagram makes this quite clear. Moreover,
although the finished texts always refer to the diagrams as having already been drawn, geo-
metric practice, both in teaching and in research, almost certainly involved actually draw-
ing out the diagrams and then reasoning about them. Thus, in working through an
analyzed proposition, a Greek geometer probably thought of the constructive process of
the synthesis as different enough from that of the analysis to require a new diagram.

In Fig. 4, the construction is as follows. Where sphere ABGD, about center E, and ratio
QK : KL > 3 : 2 are given, point Z is determined by setting QL : LK = ED : DZ [Elements
VI 12]; hence point Z falls between points D and B. Line AG is drawn perpendicular to
BD at Z [Elements I 11], and a plane is passed through line AG perpendicular to line
BD. The proof then proceeds by constructing cone AHG equal to the spherical segment
ABG, in the same way as in the transformation and then shows that this cone has the given
ratio, QK : KL > 3 : 2, to cone ABG.

In this case, the diorism expresses in a straightforward way a limit made clear by the aux-
iliary construction used in the transformation. Indeed, this way of motivating the diorism

ZH

A

B
E D

G
Q L K

Fig. 4. Sphere and Cylinder II 7, synthesis.

31 Here and following, the expression we have translated as “the sum of ED, DZ” (rtmaluóseqoB ἡ
EDZ) would more literally be rendered as “both of EDZ,” that is, ED and DZ taken together.
32 Eutocius explains this as follows [Heiberg, 1910–1915, Vol. 3, 190]. Since DB > DZ, ED :
DZ > ED : DB [Elements V 8], and by composition, (ED + DZ) : DZ > (ED + DB) : DB [extension
of Elements V 18]. The extension of Elements V 18 to ratio inequalities was provided, much later, by
Pappus, in the beginning of Collection VII, along with similar extensions of the other fundamental
operations on proportions [Jones, 1986, 128–130].
33 Since ED is the radius, and BD the diameter, of circle ABGD.
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may be one of the reasons that this proposition was presented as an analyzed proposition.
We cannot know whether or not Archimedes thought along the following lines; neverthe-
less, it is clear that he had some way of thinking about these things that lead to the same
conclusion. Intuitive considerations of the figure will lead to the nonrigorous conclusion
that there is no upper limit to the given ratio. As line AG approaches point D, the spherical
segment approaches the sphere itself, while the cone under the same hight becomes indef-
initely small.34 Hence, since one term always approaches an upper limit, which happens to
be the volume of the sphere, while the other term approaches a lower limit of zero, there is
no upper limit to the ratio. In the other direction, however, as line AG approaches point B,
the fact that the lower limit to both objects is zero, that they are always approaching this
limit, and that the segment is always greater than the cone will lead to the nonrigorous con-
clusion that there is some limiting ratio greater than, or equal to, the ratio of equal to equal.

The transformation of the problem into one of comparing cones, however, by setting
(ED + DZ) : DZ = HZ : ZB, reveals this upper limit by a simple consideration of the
geometry of the circle. Since the upper limit to the given ratio, however, is based on the
trivial fact that the diameter of a circle is twice its radius, it does not warrant separate treat-
ment. Hence, it was included in the diorism of the analyzed proposition. In the next section,
we look at a pair of propositions in which the investigation of the diorism almost certainly
lead to a significant geometric result, which was then written up in a separate theorem, dis-
tinct from the final solution to the problem.

3.2. Diorism in Conics II 51, 52, and 53

The second book of Apollonius’s Conics ends with a series of problems, most of which
are carried out using analysis-style arguments. From the prospective of the standard model,
the structure of a number of these propositions is somewhat loose;35 nevertheless, the last
five propositions, Conics II 49–53, form a group that treats the construction of tangents to
conic sections. Conics II 49 shows how to draw a tangent to a conic section from a given
point not within the section; Conics II 50 shows how to construct a tangent that makes a
given angle with the axis of the section; and the final three propositions, Conics II 51–53,
show how to construct a tangent to a given conic section that makes a given angle with the
diameter that passes through the point of tangency. In fact, the enunciation for the overall
project of these last three propositions is stated at the beginning of Conics II 51 as follows:

34 In other words, although the manuscript figures depict point Z between E and B, it may fall
anywhere on the segment BD; for example consider the following diagram:

35 For example, Conics II 45 is a sort of sketch that is a corollary to II 44, while Conics II 48 is
actually a proof of the completeness of the solution given in II 47. As we will see in the following
section, this proof of the completeness of a solution, which we call the enumeration, is a part of the
complete analysis of a problem as set out in Apollonius’s Cutting off a Ratio.
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To draw a tangent to a given conic section that contains, with the diameter drawn
through the point of tangency, an angle equal to a given acute [angle]. [Heiberg,
1891–1893, Vol. 1, 289]

Since the tangent at an axis is perpendicular to that axis, this upper limit to the given ratio is
stated in the enunciation of the problem by the assertion that the given angle must be acute.
For the parabola and the hyperbola, there is no lower limit to acute angles contained by a tan-
gent and the diameter at the point of tangency, and hence there is no diorism for these two
figures. The problem is solved for the parabola and the hyperbola using analyzedpropositions
inConics II 51. This is followed, however, by a theorem,Conics II 52, establishing, in the case
of an ellipse, the lower limit for the angle between a tangent and the diameter through the
point of tangency. This theorem is then used inConics II 53, a purely synthetic problem,which
gives the solution for an ellipse given an acute angle with a stated lower limit.

The existence of a limit to the solvability of the problem in the case of the ellipse is intu-
itively obvious. Consider Fig. 5.36 It is clear that as the point of tangency, K, approaches
point A, the angle EKH is acute but approaches a right angle, while as K approaches G,
it is again acute and approaches a right angle. Since it cannot be arbitrarily small, there
must be some least value between the two right-angle upper limits. Conics II 52 demon-
strates that this least angle is not less than the supplement to the angle contained by the
lines joining the endpoints of the major axis with those of the minor axis. That is, in
Fig. 5, angle EKH = angle AGH. The proof of Conics II 52, however, involves an auxiliary
circle, the motivation for which is not entirely clear in the context of Conics II 52 alone.
This theorem, however, follows the analyzed proposition Conics II 51, which introduces
a similar circle in the analysis of the problem for the hyperbola. Although Conics II 53,
which solves the problem for the ellipse, provides no analysis, if we reconstruct an analysis
for this problem, along the lines of that given for the hyperbola in Conics II 51, we will
understand the motivation for introducing the auxiliary circle and see how the limit to
the solvability of the problem may have been derived.

In Fig. 6, we begin, as usual, by assuming that the problem has been solved and that a
specific angleHKE has been constructed equal to some given angle, so that its complement,
angle QKE, is also given. The goal of the analysis is, then, to show that the geometry of the
ellipse together with the assumption that angle QKE is given implies that triangle QKE is

BE
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Q

G

Z

H

K

L

Fig. 5. Conics II 52, diagram 1.

36 The labeling of this figure has been altered to agree with that in Conics II 53 in order to facilitate
comparison with the discussion below. The line KL, shown in gray, is not found in the manuscript
figures, but has been added for the sake of our discussion.
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given in form. According to Euclid’s Data, rectilinear figures are said to be given in form
when each of the angles are given and the sides have given ratios to one another. Angles, on
the other hand, are said to be given when it is possible “to supply” equals [Menge, 1896, 2].
In the context of the constructive geometry of the Data, this means that it must be shown
how it is possible to construct angles equal to these. Hence, we must show that it is possible
to construct a triangle similar to triangle QKE.

The triangleQKE, however, as well as containing a given angle atK, can be cut by the per-
pendicular KL so that, by the property of the tangent to an ellipse asserted in Conics I 37,

transverse side : upright side ¼ ðQL! LEÞ : KL2:

In this way, the problem is transformed into the construction of a triangle satisfying the
two conditions that both this proportion and angle QKE are given.

Since only angle QKE of the triangle is given, we begin by constructing the segment of a
circle containing this angle. InFig. 7, we set out some given lineMP and construct the circle
MNPR such that angle MNP = angle QKE [Elements III 33]. We then assume that the
transformed problem has been solved; that is, that triangle MCP has been set out similar
to triangle QKE such that

transverse side : upright side ¼ ðMS ! SPÞ : CS2:
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Q

Fig. 6. Conics II 53, reconstructed analysis, ellipse.

M

C
N

I

O S P

YF

TR

Fig. 7. Conics II 53, reconstructed analysis, circle.
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Then if line CS is extended to meet the circle at T, by Elements III 35, (MS ! SP) =
(CS ! ST), so that

transverse side : upright side ¼ ðCS ! ST Þ : CS2

¼ ST : CS:

Since the ellipse is given, the ratio of the transverse side to the upright side is given, hence
ST : CS is given. Then it remains to be shown that this can be determined in the circle.

The resolution can be reconstructed as follows. Since ST : CS is given, by composition,
TC : CS is given [Data 6], and thus, since YC is half of TC, YC : CS is given [Data 8], and
by separation, YS : CS is given.37 Where F is the center of the circle, FO = YS is given, and
hence SC is given [Data 2]. Then, the point C will be determined by a parallel line when we
set out point I such that FO : OI = YS : SC, which is given.38

With point C given, the triangle MCP is given. Hence, the original problem is solved by
constructing triangle QKE similar to triangle MCP, that is, by setting out angle QEK sim-
ilar to angle MPC [Elements I 23].

This analysis, however, also serves to reveal a limit to the solvability of the problem. By
transforming the problem in this way, it is clear that no solution will exist if line OI is
greater than line ON. Hence, the lower limit to the given angle is obtained when triangle
QKE, in Fig. 6, is similar to triangle MNP, in Fig. 7. By considering, once again, the prop-
erties of the ellipse, and comparing Figs. 5–7, we will see how Apollonius almost certainly
discovered the least angle that a tangent can make with a diameter for a given ellipse.

In the limiting case, since MO = OP (Fig. 7),39 and hence QL = LE (Figs. 5 and 6), from
the property of the tangent to an ellipse asserted in Conics I 37,

transverse side : upright side ¼ ðQL! LEÞ : KL2 ¼ QL2 : KL2:

Ontheother hand, a basic propertyof the ellipse, asserted inConics I 21, states that the ratio of
the upright side to the transverse side is that of the square of an ordinate to the rectangle con-
tained by the two parts of the diameter cut by the ordinate. That is, as shown in Fig. 5,

transverse side : upright side ¼ ðAE ! EBÞ : EG2 ¼ AE2 : EG2;

hence,

QL2 : KL2 ¼ AE2 : EG2;

QL : KL ¼ AE : EG:

Thus, triangle AEG is similar to triangle QLK and tangent QK is parallel to line AG.

37 Although no theorem for this step is demonstrated in the Data, a proof along the lines of those we
find for the other ratio operations would be fairly simple and the mathematical fact was well known
in practice. In this case, we have the analytic complement to Elements V 17.
38 In the synthesis of the problem as set out in Conics II 53, however, it is not sufficient to simply
state that YS : SC is given, it must also be constructed [Heiberg, 1891–1893, Vol. 1, 310–316]. This is
realized by constructing an auxiliary figure, line WJ, cut at point A0, such that WA0 : A0J =
transverse side : upright side. Then, if line WJ is bisected at V, from the argument given above it is
clear that VA0 : A0J = YS : SC. When Apollonius introduces these objects, he actually uses
inequalities, because, having already established the limit to the solvability of the problem in the
previous proposition, he now gives a construction for all the possible solutions Heiberg [1891–1893,
Vol. 1, 314].
39 That is, S and O will coincide.
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Although we cannot be certain that this is the derivation Apollonius made, we are con-
fident that he must have worked along these general lines. This reconstruction follows that
given for the hyperbola in Conics II 51 and it furnishes a motivation for all of the mathe-
matical objects we find in Conics II 52 and 53. It appears, however, that Apollonius con-
sidered that the limit to the solvability of the problem in the case of the ellipse was
based on a property of the ellipse that is itself interesting enough to demand special treat-
ment. Hence, instead of presenting the full analysis, diorism, and synthesis of an analyzed
proposition, such as we saw in Sphere and Cylinder II 7, Apollonius wrote up the limit of
solvability as a theorem, in Conics II 52, and then simply solved the problem with a syn-
thesis, in Conics II 53. Conics II 52, which states the least angle that a tangent can make
with the diameter through the point of tangency, is almost certainly an example of the type
of proposition that Apollonius calls a diorismic theorem [Heiberg, 1891–1893, Vol. 1, 4;
Fried and Unguru, 2001, 284–293].

The material that we have examined thus far was written in the context of generally syn-
thetic treatises and hence, although some analyzed propositions are present, they are part
of the overall deductive strategy of the work and are not meant to provide a full treatment
of the analytic path taken by the geometer. In the next section, we will turn to a treatise that
we believe was written as a programatic introduction to analysis, and hence gives a much
more systematic survey of the analytical approach.

4. Diorism in Apollonius’s Cutting off a Ratio

There are no known Greek sources for Apollonius’s Cutting off a Ratio, but an Arabic
translation is extant in two manucripts, Aya Sofia 4830 and Bodliean Arch. Seld. 32.40 A
Latin translation of Bodliean Arch. Seld. 32, which was begun by Edward Bernard, was
completed and published by Halley [1706], and this has served as the basis for what little
modern study there has been of this text.41

Because it exhaustively solves a simple, and seemingly pointless, problem using a style of
mathematics far removed from our own, most modern readers will probably agree with
Hogendijk [1986, 224] that the text of Cutting off a Ratio is “long and dreary.”Nevertheless,
since the treatise is the only complete work, beyond Euclid’s Data, devoted to the field of
ancient analysis and was originally written by one of the great practitioners of that disci-
pline, it is deserving of more attention from historians than it has hitherto received. Indeed,
as we will show in this section, Cutting off a Ratio reveals a number of features of ancient
analysis that are obscure or absent in other sources.

The overall project of Cutting off a Ratio is stated at the outset as follows.

When two unlimited lines are positioned ( ) in a plane, either parallel or intersect-
ing, and a point is marked ( ) on each of them, and a ratio is determined ( ), and a
point is marked ( ) that is not on either of them, how, from the marked point, we pro-

40 For purposes of citation, we will refer to these as CR A and CR B. The library shelf marks are
given in the bibliography.
41 Macierowski and Schmidt [1987] also made an English version of this text on the basis of both
Arabic manuscripts. As the subtitle states, however, this is “an attempt to recover the original
argumentation through a critical translation,” and, hence, should not be read as a faithful
translation of the Arabic. We are told that an edition of the Arabic, with French translation, has
been been made by R. Rashed and H. Bellosta and will appear in print soon [Rashed and Bellosta,
forthcoming].

Diorism in Greek Analysis 595



Author's personal copy

duce a line that crosses the two positioned lines and sections them such that the ratio of one
of the two sections to the other of them, with respect to what is adjacent to the two marked
points on the two lines, is equal ( ) to the determined ratio.42 (CR A, 2v; CR B, 1v)

That is, given two lines ‘1 and ‘2, point E on ‘1, point Z on ‘2, point T on neither ‘1 nor
‘2, and given ratio r, to draw a line, TKL, such that

EK : ZL ¼ r:

The treatise then proceeds to systematically investigate all arrangements of the given ob-
jects that differ in some geometrically significant way. The first book solves the problem
when ‘1 and ‘2 are parallel and when E or Z is the intersection of ‘1 and ‘2, and the second
book reduces the construction of all other arrangements to these.

Cutting off a Ratio was probably written as a sort of training exercise in the techniques of
ancient analysis, and its repetitive structure makes rather explicit certain processes of the
problem-solving art that appear to have generally been left out of published works—such
as the systematic arrangement of all possible cases and the subsequent reduction of more
complicated cases to simpler ones, the systematic investigations of the limits of solution,
and the complete enumeration of all possible solutions.43

Probably the most striking difference between Cutting off a Ratio and other Greek
works of pure geometry is the structural arrangement. In general, the works of Greek
geometry—such as Euclid’s Elements, Archimedes’ Sphere and Cylinder, or Apollonius’s
Conics—are divided into relatively small units of text which each establish a particular
theorem or solve a certain problem. Since Cutting off a Ratio, however, solves a single
problem, the text is divided first according to the geometrically significant ways in which
the given objects can be arranged and then according to the ways in which the sought line
can fall on the given lines so that the problem is solved. The first division, which we
translate as disposition,44 is determined by the position of the original objects, and the

42 Although Greek mathematicians generally asserted a proportion by saying that one ratio was the
same as another, Arabic mathematician retained no such distinction, employing instead a number of
different terms with a range of meanings such as similar, as, and equal.
43 Acerbi [2007, 442] doubts that Cutting off a Ratio was meant as a preparatory text for the practice
of analysis in the same sense as the Data. Indeed, if the Data was even meant to be studied
thoroughly, certainly its primary purpose was to act as a repository for theorems justifying the kind
of steps that were required in the resolution of an analyzed proposition. Although one, in some
sense, needs the Data to do analysis, one cannot learn much about how to do analysis by reading it.
We believe that Apollonius probably composed exhaustive solutions to simple problems, such as
Cutting off a Ratio, to address the question of how to structure analytic investigations. Nevertheless,
we do not mean to suggest that Apollonius had students who were interested in studying analysis,
but rather that the exhaustion and repetition of the text seems to indicate that Apollonius planned
the work around what he considered to be the proper approach when investigating problems. The
problem solved is neither very interesting nor difficult; hence he is probably demonstrating a general
strategy with a simple case. On the other hand, whether or not he knew any of them personally, it is
clear from the opening of Conics V, quoted in the Introduction, that Apollonius thought there
would be people interested in learning how to do analysis, and he, naturally, called them students.
44 The Arabic term is and Pappus uses sópoB, which can both mean “place” and are often
translated with locus (see Section 4.2, below). Since this usage is different from what we generally
mean when we say “locus,” however, we have followed Jones [1986, 87] and translated with
disposition.
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second division, which we translate as occurrence,45 is determined by the possible arrange-
ments of the solution.

Each occurrence, in turn has four parts—analysis, diorism, synthesis, and enumeration.
The analyses and syntheses usually begin with short contrivances or constructions that one
may think of in terms of the transformation and construction of a standard analyzed prop-
osition, but since these are usually so short, and since contrivances and constructions are
also used in the other parts of the text, it is not particularly useful to impose these parts
of the standard structure on Cutting off a Ratio. Finally, each disposition concludes with
a summary of all possible solutions that draws on the diorisms and enumerations given
in each occurrence. Hence, we may outline the overall structure of the text as follows:

1. Problem [The project of the entire text]
(a) Disposition 1 [A geometrically significant arrangement of the given objects]

i. Occurrence 1 [An investigation of one of the possible configurations for a solu-
tion of Disposition 1]
A. Analysis [Assuming that a particular solution has been found, an investi-

gation of what is known on this basis]
B. Diorism [A statement about, or study of, the solutions themselves]
C. Synthesis [The construction of the line(s) that solve the problem and a

proof that the construction solves the problem]
D. Enumeration [A proof that only the line(s) constructed in the synthesis

solve(s) the problem]

ii. Occurrence 2 [An investigation of a different possible configuration for a solu-
tion of Disposition 1]

iii. . . .
iv. Summary [A discussion of the total number of possible solutions found in all of

the occurrences of Disposition 1]

(b) Disposition 2 [A different, geometrically significant arrangement of the given
objects]

(c) . . .

As this list shows, in one sense the basic unit of text in Cutting off a Ratio can be taken as
the occurrence, which is, in some ways, equivalent to an individual analyzed proposition.
The most variable section of an occurrence is the diorism. For an occurrence in which
the problem can always be solved, the diorism, or lack thereof, is stated in a single line,

45 The Arabic term is , which literally means “the place where something falls” or “position,” and
Pappus uses psx

_
riB, which in mathematical texts usually denotes a case (see Section 4.2, below).

Since the division in question here, however, is according to the possible ways in which solutions can
be arranged, it has a different meaning than what we generally mean by “case.” Hence, we have
translated the Arabic term somewhat abstractly as occurrence, in the sense of a particular setting out
of geometric objects. In the Arabic text, another word, , is sometimes used synonymously with ,
although it also has more general uses. Although these words may in fact be fully synonymous, for
the time being, we differentiate and translate with case.

Diorism in Greek Analysis 597



Author's personal copy

or omitted altogether. In other cases, however, the diorism can be rather involved, using
internal analyzed propositions and becoming the longest section of the occurrence. In
another sense, however, the basic unit of the text is the disposition. In fact, the disposition
includes a final summary that gives a treatment of all possible solutions and the limits of
solvability for the particular arrangement of objects set out in the disposition. The study
of the solutions that was developed in the diorisms reappears in this final summary. In
the following two sections, we will examine one example of a standard diorism and one
example of an extended, analytical diorism.

4.1. A standard diorism in Cutting off a Ratio

For a standard diorism, we will look at Cutting off a Ratio Disposition 1, Occurrence 1.
In this example we will sketch all four parts of the analyzed proposition in order to make
clear the structure of the text. In Cutting off a Ratio 1, Apollonius assumes that the given
lines, ‘1 and ‘2, are parallel and that the given point, T, is somewhere outside the pair of
parallel lines.

In Fig. 8, let ‘1 be AB, ‘2 be GD, point E given on AB, point Z given on GD, and point T
given outside AB and GD. Cutting off a Ratio 1.1, then, solves the problem of constructing a
line through T falling on EB and ZD, as say TLK, such that

EK : ZL ¼ r;

where r is a given ratio.
The analysis proceeds as follows. We begin with the assumption that the problem has

been solved; that is, that EK : ZL is given.46 Then we join line ET. Since points E and T
are given, line ET is given [Data 26], and since line GD is given in position, pointM is given
[Data 25]; therefore ratio EM : MT is given [Data 1 and 26]. So, by composition, ratio ET :
TM is given [Data 6].
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Fig. 8. Cutting off a Ratio 1.1, analysis.

46 Our interpretation of this proposition is different from that recently put forward by Panza [2007,
107–109]. Part of the problem arises from the ambiguity in the term given, which can mean either
given by the conditions of the problem or assumed at the geometer’s discretion. For example, Panza
[2007, 108] states that EK : ZL (his AM : BN) is “given as the condition of the problem,” whereas
this is the analytical assumption. Moreover, because, as we will argue below, this proposition
intermingles the transformation and the resolution, Panza’s attempt to restructure the order of the
argument is unnecessary.
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By the geometry of the figure, however, ET : TM = EK :ML [Elements VI 4], so ratio
EK : ML is given. By hypothesis, however, ratio EK : ZL is given, so ratio ZL : LM is given
[Data 8]. Hence, by separation, ratio ZM : ML is given.47 Line ZM, however, is given [Data
26], so lineML is given [Data 2]. PointM, however, is given, so point L is given [Data 27].48

Point T, again, is given, so line TK is given [Data 26].
In this proposition, because the transformation is geometrically so simple, the steps of

the transformation and resolution have been combined into a single argument. The trans-
formation component of the argument is the construction of line ET and a demonstration
that ET : TM = EK :ML. The resolution component of the argument is the proof that,
given the initial configuration and ET : TM = EK : ML, point L is given, so that line TK
is given. Moreover, ET will be essential to the synthesis and, hence, it is the auxiliary con-
struction that solves the problem.49 Because ET will be used in the synthesis to solve the
problem, its geometric properties lead directly to an investigation of the limits of solvabil-
ity. The diorism, which we quote in full, reads as follows:

Because line LM is less than line LZ, ratio EK to ML is greater than ratio EK to ZL
[Elements V 8]. Ratio EK to ML is as ratio ET to TM [Elements VI 4], so ratio ET to
TM is greater than ratio EK to ZL, and ratio EK to ZL is the determined ratio. There-
fore, it is necessary that the determined ratio is less than ratio ET to TM. [CR A, 5r; CR
B, 2r]

Here we see that the diorism simply uses the properties of the constructed line to show a
necessary, but not sufficient, condition for solvability. In order to show that TK also pro-
vides a sufficient condition for solvability, Apollonius, following standard practice, intro-
duces a synthesis.

As usual, the synthesis for Cutting off a Ratio 1.1 begins with a new diagram, Fig. 9. The
argument is fairly brief and can be sketched as follows. Let lines AB, GD and points E, Z, T
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Fig. 9. Cutting off a Ratio 1.1, synthesis.

47 See note 37, above.
48 Panza [2007, 108] claims that concluding by showing that point L (his N) is given seems to
contradict Pappus’s “structural description.” The statement that point L is given, however, is the
conclusion of the resolution, so whatever Pappus may say about structure, it must be the conclusion
of a deductive chain of givens that begins with the analytic assumption, the geometry of the given
objects and the properties of the auxiliary constructions. Hence, the argument Panza [2007, 108]
reconstructs is the inverse of that Apollonius gives.
49 See Hintikka and Remes [1974, 41–48] for a discussion of the role of auxiliary constructions in
analyses.
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be given as before. Let N : SO = r be the given ratio, but satisfying the condition, deter-
mined in the diorism, that N : SO < ET : TM. Then line ET is drawn and points F and L
are taken such that ET : TM = N : SF, and OF : FS = ZM : ML [Elements VI 12]. It is then
a straightforward matter of ratio manipulation to show that EK : ZL = N : SO = r, and
hence, that line TK solves the problem.

In the synthesis, the given ratio is made explicit with the two lines N and SO, not
found in the original configuration. Hence, it becomes necessary for Apollonius to argue
that OF : FS = ZM : ML implies EK : ZL = N : SO, following a series of steps that does
not correspond to anything in the analysis. In this way, the synthesis is burdened with the
full task of explicitly setting out the given ratio and showing its relation to the arrange-
ment of the given lines. The motivation for this division of labor can, again, be under-
stood in terms of the diorism. In the analysis, we assume the existence of some actual
solution; hence it will necessarily fall within the limits of the possible solutions. More-
over, the geometric properties of this solution can be used to understand the limits of
the possibility of solution as presented in the diorism. Setting out the given ratio, inde-
pendent from a specific configuration, however, involves the geometer in the use of the
results of the diorism. Hence, it was natural to put this task off until after the diorism
had been completed.

Following the synthesis, Apollonius gives an enumeration of the solutions by showing that,
for this occurrence, TK is the only line that solves the problem. He begins, in Fig. 9, by
assuming that some other line, say TQ, also solves the problem. Then, since LM < LZ,
RL : LM > RL : LZ [Elements V 8], and ratio manipulation is used to show that
QE : RZ > EK : ZL = r. Hence, line TQ does not solve the problem and the same argument
could be used to show that any line closer toZ thanTK cuts off a lesser ratio thanEK : ZL = r.

In the context of Cutting off a Ratio 1.1, the diorism establishes a necessary condition for
the given ratio, which is then simply assumed in the synthesis. The results of the diorism,
however, reappear in the final section of Cutting off a Ratio 1, in which this particular
arrangement of given objects is considered in full generality.

For Cutting off a Ratio 1, there are three occurrences. In Fig. 10, Cutting off a Ratio 1.2
solves the problem when TK0 falls on lines EA and ZD, cutting off EK0 : ZL0 = r, and
Cutting off a Ratio 1.3 solves the problem when TK00 falls on lines EA and ZG, cutting
off EK00 : ZL00 = r. For Cutting off a Ratio 1.2, the problem can always be solved, while
for Cutting off a Ratio 1.3, Apollonius shows that the given ratio, r, must be greater than
ET : TM.
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Fig. 10. Cutting off a Ratio 1.2 and 1.3.
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Following the three occurrences, in the summary, Apollonius considers some initial con-
figuration of the given objects satisfying the conditions of Cutting off a Ratio 1, draws the
line TE intersecting line GD at point M, and points out that

r R ET : TM :

Thus,

where r < ET : TM, the problem is solvable by Occurrences 1 and 2;
where r = ET : TM, the problem is only solvable by Occurrence 2; and
where r > ET : TM, the problem is solvable by Occurrences 2 and 3.

In this way, the diorisms, in conjunction with the analyses, establish the necessary and suf-
ficient conditions for solvability. A fully general statement of the solutions for Cutting off a
Ratio 1 can only be given on the basis of the solutions given in the syntheses structured
according the claims of the diorisms.

4.2. An analytical diorism in Cutting off a Ratio

In the first book of Cutting off a Ratio, 18 of the occurrences have the basic structure we
have seen above, containing a short diorism situated between the analysis and the synthesis.
For five occurrences, however, Apollonius produced a much more extended diorism, con-
taining internal problems and theorems treated with analyzed propositions, and resulting in
a full treatment of the possibilities of solvability that is much longer than the combined pas-
sages of the general synthesis and analysis.50 In fact, for Pappus, these extended diorisms
were the only ones that he regarded as diorisms. In his summary of the work, he tells us that

. . .The first book of Cutting off a Ratio has seven dispositions (sópotB), twenty-four
occurrences (psώreiB), and five diorisms (dioqirloὺB), of which three are maxima
and two minima. [Jones, 1986, 87]

Aswewill see, this is because these diorisms are treated using analyzed propositions, first to
demonstrate whether the limit of the solvability of the problem is a maximum or minimum
and then to show how the possible solutions are arranged around the limiting solution.

In order to examine the more developed role of diorism in these occurrences, we take, as
an example, Cutting off a Ratio Disposition 6, Occurrence 4. Because the structure of Cut-
ting off a Ratio 6.4 is rather convoluted, it may be useful to give a summary of the argument
before going into the details.

In Fig. 11, let the given lines be AB and GD, meeting at point E, and let the given point
not on the lines be H. Let the given points on the lines be the intersection E and some other
point on GE, say Z. Cutting off a Ratio 6.4 solves the problem of constructing a line
through H, say HL, falling on EA and ZD such that

EK : ZL ¼ r;

where r is a given ratio.

50 These five occurrences are Cutting off a Ratio 5.3, 6.2, 6.4, 7.2, and 7.4. The dispositions of the
second book are reduced in one way or another to those in the first book, so that the argument is
generally much shorter and the extended diorisms that are the focus of our attention in this section,
in particular, are absent. This is explained by Pappus in his summary of the work in Collection VII
[Jones, 1986, 87].
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We may summarize the full occurrence as follows. (I) A short, general analysis shows
that if HT k AB, and TH : ZM = EK : ZL = r, then the point L is given; that is, line HL
is given. (II) Because, in the analysis, (TL ! LM) = (ZM ! TE) is applied to line TM
and deficient by LM2, it is not always possible to solve the problem and there will be some
limit when TL = LM. (IIa) Hence, there is one principal case where the problem is solved,
where TL0 = L0M0, TH : ZM0 = EK0 : ZL0 = r0 and (TL0 ! L0M0) = (ZM0 ! TE).51 It is
shown through an analyzed proposition that, in the principal case, points L0 and M0 are
given when TE : L0E = L0E : EZ. (IIb) Since (TL0 ! L0M0) is applied to line TM0 and defi-
cient by L0M2

0, the principal case must be a limiting case and it is shown through an ana-
lyzed proposition that, in the principal case, line HL0 cuts off the greatest ratio of all lines
drawn from point H and cutting lines EA and ZD. (IIc) It is, then, shown through another
analyzed proposition that lines closer to line HL0 always cut off greater ratios on lines EA
and ZD than those more distant from HL0. (III) Using the principal case, the synthesis of
the problem is developed in three cases. (IIIa) Where r = EK0 : EL0, line HL0 alone solves
the problem. (IIIb) Where r > EK0 : EL0, the problem cannot be solved. (IIIc) Where
r < EK0 : EL0, the auxiliary construction provided in the analysis is used to construct
two points, one on either side of L0, that solve the problem. (IV) The limiting ratio is shown
to be given as r0 ¼ EK0 : EL0 ¼ TH : TE þ EZ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðTE ! EZÞ

p" #
.

With this overview as a guide, we now examine the details of Cutting off a Ratio 6.4. In
the 18 standard occurrences of Cutting off a Ratio I, there are two diagrams, one for the
analysis and one for the synthesis. In each of the five occurrences with an extended diorism,
however, we find a third diagram specifically for the diorism. In Cutting off a Ratio 6.4, the
first diagram serves the general analysis, (I), and the principal case of the diorism, (IIa), and
the second diagram serves the rest of the diorism, (IIb) and (IIc), while the third diagram
serves the general synthesis, (III), and the metrical determination of the upper limit of the
given ratio, (IV). Because the full text of Cutting off a Ratio 6.4 is long, in the following, we
give a summary of the argument, providing the full justification only for key steps.
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Fig. 11. Cutting off a Ratio 6.4, overview.

51 In this summary, we distinguish between points L and M, introduced in the analysis, and points
L0 and M0, which are special cases of these points introduced in the diorism. In the more detailed
discussion that follows, just as in the text, the difference between these Ls and Ms must be
distinguished by context.
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In Fig. 12, the general analysis, Section (I), proceeds as follows. Where lines AB, GD and
points H, E, and Z are given, assume HL is drawn cutting off a given ratio EK : ZL. Line
HT is drawn parallel to line AB and point M is taken such that TH : ZM = EK : ZL. By
alternation, TH : EK [=TL : LE] = ZM : ZL [Elements V 16], and by conversion, TL :
TE =MZ : ML [Elements V conversion*];52 therefore [Elements VI 16],

ðMZ ! TEÞ ¼ ðTL! LMÞ: ð1Þ
Then, since both TE and MZ are given, a given rectangle, (TL ! LM), has been applied to
a given line TM, deficient by a square; therefore point L is given [Data 58], and hence line
HL is given.

The diorism, Section (II), begins by pointing out that the auxiliary construction, used to
complete the analysis, also reveals that the problem cannot always be solved. Since, TE and
MZ are given by the geometry of the initial configuration,53 it may not always be possible
to locate a point L between E and M, such that (MZ ! TE) = (TL ! LM). The text reads,
“We had taken point L, and this is not always possible in every case. Therefore, the syn-
thesis of the problem is not possible in every case (CR A, 13r; CR B, 25r).”

Since, for a solution to be possible, Lmust be between E andM, there will be at least one
case in which it will certainly be possible to find the appropriate point L; that is, when L is
the midpoint of TM. The first problem of the diorism, Section (IIa), begins with the state-
ment, “The relation ( ) does work, however, according to one principal case
( ) (CR A, 13r; CR B, 25r).”

This leads to the following problem: how to find points L and M such that EK : ZL =
TH : ZM, TL = LM and (MZ ! TE) = (TL ! LM). Hence, for this problem, we abandon
the original assumption of a given ratio. Indeed, the construction of L and M satisfying the
three stated conditionswill produce a limiting case ofEK : ZL, as will be shown in the next sec-
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Fig. 12. Cutting off a Ratio 6.4, analysis.

52 An argument for the legitimacy of this operation is included in the Elements as the corollary to
Elements V 19, but as Heath [1926, 175] has argued, this corollary does not follow directly from the
proposition and most scholars agree that it is a later addition to the text. Vitrac [1990–2001, Vol. 2,
113–114], on the other hand, shows that an argument can be restored, although it is somewhat
involved. As far back as Clavius, however, it has been noted that conversion is simply successive
application of composition, inversion, and separation. This is the simplest explanation for the fact
that no justification of this operation was provided in Elements V.
53 Since TE : ME = r and TE is given, MZ is given.
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tion of diorism. The problem is solved using a standard analyzed proposition. The transforma-
tion shows that if the three conditions are assumed, EL will be a mean proportional between
linesTE andEZ, such that TE : EL = EL : EZ, and the resolution shows that this implies that
both pointsL andM are given. The synthesis, then, proceeds to construct pointL, straightfor-
wardly, by settingTE : EL = EL : EZ [ElementsVI13], andMby settingTL = LM [Elements I
3], and using ratiomanipulation to show that (MZ ! TE) = (TL ! LM) andEK : ZL = TH :
ZM. The text then asserts that, “Before the synthesis, it is necessary that we take a line between
TEandEZwith respect to ratio, and joinHL (CRA,14r;CRB,25v).”54That is, thediorismhas
provided a construction necessary to the synthesis and not derived in the analysis.

Since TH : ZM = EK : ZL, then L will fall between T and M. Therefore, since
(TL ! LM) is greatest when TL = LM,55 while TE is given by the initial configuration
of the figure, by Eq. (1), MZ is also greatest when TL = LM. Since M was taken by setting
TH : ZM = EK : ZL, however, while TH is determined by the initial configuration, the
principal case will be some limiting case of ratio EK : ZL. Apollonius simply assumed that
this was obvious and asks, “Does line HL cut off ratio EK to ZL less or greater than all the
[other] lines that are produced from point H and cut EA and ZD?” [CR A, 14r; CR B, 25v]

This is followed by two theoretic analyses that show that, when point L is taken accord-
ing to the conditions of the principal case, line HL cuts off the greatest ratio of all lines
drawn from point H falling on lines EA and ZD, Section (IIb), and that lines closer to
HL always cut off greater ratios then those further from it, Section (IIc). Because the
extended diorisms in Cutting off a Ratio contain the earliest example, of which we are
aware, of a style of argumentation that we call comparative analysis, it will be valuable
to look at the first of these theorems in some detail.56

In Fig. 13, we let line HL satisfy the requirements of the principal case and another line,
such as HN, is drawn. The text then reads,

So, it is necessary to link EK to ZL and ES to ZN.57 Ratio EK to ZL is equal to TH to
ZM, so TH to ZM and ES to ZN will be linked, and by alternation, TH to SE and ZM

54 The expression “between AB and GD with respect to ratio” ( ) is the idiom used in the
text to denote a mean proportional.
55 Although the fact that a regular figure has the greatest area of any other polygon of the same
number of sides was demonstrated in a treatment of isoperimetric figures, generally attributed to
Zenodorus, for the case of four sided figures, however, this follows directly from Elements II 5 (see
Note 59, below). We have three treatments of isoperimetric figures in Greek texts, probably all from
the same source but with significant discrepancies among them: Theon of Alexandria, Commentary
on the Almagest I 3; Pappus; Collection V; and the unpublished anonymous introduction to the
Almagest [Rome, 1931; Hultsch, 1876]. (The anonymous introduction is now being edited by Fabio
Acerbi and Bernard Vitrac.)
56 Comparative analysis is found, as well, in Pappus’s Collection VI, Props. 16–20 [Hultsch, 1876,
494–512]. A linguistically related passage is Collection VII, Prop. 26 [Jones, 1986, 147]. We will
discuss all of these related passages in a separate paper, which sets out the structure of comparative
analysis and distinguishes it from standard theoretic analysis.
57 The expression “it is necessary to link” ( ) means that we must determine the mathematical
relation between one object (such as a rectangle), or relation (such as a ratio), and another. Another
expression that more literally means “it is necessary to compare” ( ) is also used in this text to
express the same idea. Although the two expressions appear to be synonymous, for the time being
we translate rather literally. Although we do not know what the original Greek formulation was,
stylistically related passages in Pappus’s Collection VI and VII suggest that it may have relied on
prepositional phrases, without the use of a specific verb [Hultsch, 1876, 498–500; Jones, 1986, 147].
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to ZN will be linked [Elements V 16*].58 Ratio TH to SE is equal to TN to EN [Elements
VI 4], so TN to EN and ZM to ZN will be linked. Then we convert, so TN to TE and ZM
to NM will be linked [Elements V conversion*], and rectangle ZM by TE and TN by NM
will be linked [Elements VI 16*]. Rectangle ZM by TE is equal to rectangle TL by LM
[Eq. (1)], so it is necessary to link rectangle TL by LM and rectangle TN by NM. Its rela-
tion ( ) is that TL by LM is greater than TN by NM, because point L is at half of
TM.59 [CR A, 13v; CR B, 26v–27r]

The analysis begins by assuming that some relation holds between the ratios that need to
be compared and then uses standard techniques of ratio manipulation to reduce this to a
relation that is obvious on the basis of the geometry of the figure. In this process, ratio
manipulations are applied to as yet undetermined relations in the same way that they
are generally applied to proportions and ratio inequalities. This furnishes a means for
the geometer to reduce the relation that must be determined to one that can be readily
asserted on the basis of the geometry of the figure or previously determined results.

The synthesis is a reversal of the steps of the analysis. By starting with the observation
that (TL ! LM) > (TN ! NM) [Elements II 5], it is a simple matter to show that EK :
ZL > ES : ZN. Since (TL ! LM) > (TN ! NM) holds as long as point N is any point other
than L on line TM, ratio EK : ZL is the greatest ratio cut off by any line falling from point
H onto lines EA and ZD.

Again in Fig. 13, in order to show that the ratios continuously increase as the line
approachesHL, Apollonius draws another line,HF, cutting AB and GD at Q and F, respec-
tively, and shows that ES : ZN > EQ : ZF. For this purpose, he sets out point O, as anal-
ogous to point M, such that ES : ZN = TH : ZO, and uses the same type of comparative
analysis to show that

ðTE ! ZOÞ < ðTL! LOÞ: ð2Þ
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Fig. 13. Cutting off a Ratio 6.4, diorism.

58 Note that these ratio manipulations are carried out on proportions or ratio inequalities that, for
the moment, we know nothing about, R. Pappus, much later, in Collection VII demonstrated the
applicability of the standard ratio operations to inequalities (see note 32.)
59 This inequality is a direct consequence of Elements II 5, which shows that (TL ! LM) =
(TN ! NM) + LN2.
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The synthesis of this theorem, again, begins by asserting that (TE ! ZO) < (TL ! LO)
and then working backwards to show that ES : ZN > EQ : ZF. The relation, in this case,
follows from the fact that point F was taken between points N and T, such that
(TF ! FO) < (TN ! NO). Hence, again, it does not matter on what side of point L the
two other lines are taken, it is only the ordering of the lines that determines the relation
between the ratios they cut off.

These two theorems can be taken as a full proof that, where L bisects TM, line HL cuts
off the greatest ratio drawn from point H to lines EA and ZD and that all other lines cut off
ratios that always approach the maximum ratio cut off by HL as the lines themselves
approach HL. Again, we see that the diorism is an investigation of the general mathemat-
ical properties of the construction that solves the problem. Whereas the analysis assumes
the existence of one particular solution and then explores its properties, the diorism is a
study of all possible solutions carried out by a series of analyzed propositions that demon-
strate the limiting solution and the behavior of the solutions around the limit.

In this way, following standard practice, the geometrical properties of the auxiliary con-
struction are then used to establish the conditions for the solvability of the problem as set
out in the synthesis.

These theorems can be compared with propositions that demonstrate the properties of
minimum and maximum lines drawn from a given point to a given curve, such as Elements
III 7 and 8 and most of the theorems in Conics V.60 The treatment in Cutting off a Ratio is
much longer, however, for two reasons. In this text, the comparison is between ratios, as
opposed to line segments, and the demonstrations are carried out using analyzed proposi-
tions, as opposed to pure syntheses. The fact that these theorems are carried out with ana-
lyzed propositions can be taken as further evidence that Cutting off a Ratio was written for
the sake of instructing readers in the techniques of the analytical approach.

In Fig. 14, the construction of the synthesis, section (III), proceeds as follows. Let ratio
N : S, lines AB and GD intersecting at E, and points H and Z be given and take point L
such that TE : LE = LE : ZE [Elements VI 13]. Then N : S R EK : EL.
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Fig. 14. Cutting off a Ratio 6.4, synthesis.

60 See Fried and Unguru [2001, 177–185] for a discussion of Apollonius’s concept of minimal and
maximal lines in Conics V and the analogy between this book and Elements III.
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Thus,

(1) where N : S = EK : EL, the problem is solved by HL alone;
(2) where N : S > EK : EL, there is no solution; and
(3) where N : S < EK : EL, the problem is solved as follows.

We set TL = LM, so that, by the principal case, (TL ! LM) = (TE ! ZM) and EK : ZL =
TH : ZM. Then, since N : S < EK : ZL = TH : ZM, we take point O such that N : S =
TH : ZO [Elements VI 12]. Then, since

ðTL! LMÞ ¼ ðTL! LOÞ & ðTL!MOÞ
¼ ðTE ! ZMÞ ¼ ðTE ! ZOÞ & ðTE !MOÞ;

while (TL !MO) > (TE !MO), therefore (TL ! LO) > (TE ! ZO). Hence, it is possible
to apply a rectangle equal to (TE ! ZO) to line TO being deficient by a square at two
points equally distant from the midpoint of TO, and thus on either side of point L.61

Let these points be constructed as F and Q.
The proof of the synthesis of the third case uses ratio manipulation to show that if

(TE ! ZO) = (TF ! FO) = (TQ ! QO), then N : S = TH : ZO = ER : ZF = EX : ZQ, so
that both lines HF and HQ solve the problem.

In this case, the synthesis itself is structured around the possibilities for the solution
determined in the diorism. The diorism not only sets out the limit of solvability but also
shows that the problem should be approached in cases based on the circumstances of
the given lines and the given ratio.

The synthesis is then followed by a passage that points out that the “boundary” of the
ratio can be understood in terms of lines that are given by the geometry of the figure.62 It is
a relatively straightforward matter of substitutions to show that whereM is taken such that

EK : EL = TH :ML, then EK : EL ¼ TH : TE þ EZ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðTE ! EZÞ

p" #
. This gives a metri-

cal determination of the ratio EK : EL in terms of the givens of the problem. It is interesting
to note that Apollonius waits until the problem has been completely solved before showing
that the bounding ratio, developed in the diorism and utilized in the synthesis, is itself
given. Indeed, because he proceeds by analysis and synthesis, there is no reason to show
that this ratio is also given before the problem has been solved.

In problems such as Cutting off a Ratio 6.4, the diorism takes on an expanded role and is
used to structure the cases of the synthesis. As usual, the analysis begins by the assumption
of a single solution to the problem. An investigation of this specific solution, however, leads
to an auxiliary construction that leads both to a limit to the solvability and to the possibil-
ity that there may be more than one solution. In this case, the auxiliary construction is the
application of a given area to a given line deficient by a square [Elements VI 28], the lim-
itation is that the greatest area that can be so applied is the square on half the given line
[Elements II 5], and the possibility of more than one solution is due to the fact that the defi-
cient square my be situated at either end of the line. The diorism then uses the properties of

61 This, again, follows as a direct consequence of Elements II 5 and would have been intuitively
obvious to mathematicians working within the Euclidean theory of the application of areas.
62 The Arabic term we translate as boundary is , whose plural often translates the plural of ὅqoB
and means mathematical definitions. Both terms, however, also have the more literal meaning of
boundary.
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this auxiliary construction to investigate the limit and to show how possible solutions are
symmetrically arranged around the limiting case. This discussion of the limits and condi-
tions of solvability, then, becomes the key to structuring the synthesis of the problem.
Moreover, the arguments developed in the synthesis rely as much, on the diorism as on
the analysis, if not more.

5. Conclusion

In this paper, we have seen that although the majority of the diorisms that survive in
ancient texts simply state a limit to the solvability of the problem, the ancient mathemati-
cians themselves regarded the investigation of the diorism as an important aspect of ana-
lytical problem solving. Indeed, it is only on the basis of this expanded view of diorism
that we can understand Pappus’s general description of diorism or Apollonius’s claim to
have put together Conics IV so as to be useful in the analysis of diorisms (see Section 1).
This distinction between diorism as a study of the limits of solvability and the total number
and arrangement of solutions, on the one hand, and diorism as part of an analyzed prop-
osition, on the other hand, should make clear an obvious, but sometimes overlooked, char-
acteristic of the Greek mathematical texts. The texts that we possess are the finished
product of an attempt to articulate the most interesting results of a probably messy, but
now largely inaccessible, process of mathematical research.63 Hence, diorism would have
meant something different to a working mathematician than to someone who was simply
interested in reading the ancient mathematical texts and appreciating their results.

In order to develop a concrete sense for this distinction, we take the liberty of an imag-
inative reconstruction. Let us suppose that we have been asked to carry out a dioristic
investigation at about the same level of detail and exhaustion as we find used in Cutting
off a Ratio. For this purpose, we return again to the example analyzed proposition that
we presented in the introduction, Collection IV Prop. 31. In our sources, this neusis prob-
lem has no diorism, because it is always soluble with only one solution.

Nevertheless, we suppose that a full treatment is required, which will provide an argued
account explaining why it is unnecessary to include a diorism in the final version of this
problem. InFig. 15, given rectangle (AB ! BG), the problem is to draw a line through point
A that intersects segment GD and BGZ extended such that line EZ is equal to some given
length, l. This is solved by the construction of a parallel line, which transforms the problem
into that of finding the intersection of the hyperbola with asymptotes BA and BG that
passes through point D and the circle drawn about center D with radius l.

We propose the following as an exhaustive account of the diorism for these problems. In
fact, the transformed problem has more solutions than the original problem. Indeed, there
will always be at least two solutions, since a circle centered on a hyperbola will intersect it in
at least two points, H and H0. The circle, however, will not intersect the same branch of
hyperbola in more than two points, again because its center is on the hyperbola so that
it is clear that there will not be two points of intersection in the same direction from the
center. Moreover, even if we consider the other branch of the hyperbola, which the ancients
called the opposite section, there will be no more than four solutions, since a circle will not
intersect opposite sections at more than four points [Conics IV 38].64 Finally, it is also pos-

63 Furthermore, the majority of our texts can be shown to have been edited and variously altered
some unknown number of times in the course of their transmission.
64 See note 4 above.
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sible that the circle will be of such a size as to touch the opposite branch of the hyperbola in
one point, and intersect the other in two; however, given the tools of ancient conic theory,
the determination of this magnitude would be nontrivial. Thus, it is a simple matter to use
the theorems of Conics IV to show that the transformed problem has between two and four
solutions, depending on whether we consider the branch of the hyperbola independent or
not, and to see where they are arranged with respect to the original rectangle, (AB ! GB).

We must then consider whether or not any of these other possible solutions to the inter-
section problem can be transformed into another solution for the neusis problem. We can
show by indirect argument, however, that there can only be one solution to the neusis prob-
lem. If we assume that EZ solves the problem and is equal to l, then if one of the other
solutions to the secondary problem, for example DH0, is transformed in some way to pro-
vide another solution, let it fall as AE0Z0. It can then be shown that E0Z0 does not equal
EZ = l, and hence cannot, in fact, be another solution of the original problem.65

Moreover, since BZ is an asymptote of the hyperbola, the two figures may be continued
indefinitely, so that ZH can be taken as less than any given length [Conics II 14], and line
DH can be taken as greater than any given length. Hence, there is no limit to the solvability
of the problem. Nevertheless, in order to be certain that it is not necessary to provide a
diorism in the text, we had to carry out a mathematical argument that is neither an analysis
or a synthesis, but which, rather, concerns the general limits of solubility and the total num-
ber of possible solutions.

Although the specific neusis problem that Pappus solves has no interesting diorism, if we
consider the original problem of trisecting an angle, which the neusis problem was designed

ZGB

L

A D

E

H

H'

E'

Z'

Fig. 15. Collection IV Prop. 31, hyperbola and circle.

65 This method of showing that there is only one solution to the problem is similar to what we find
in Apollonius’s Cutting off a Ratio and when we consider that there would have often been a concern
about whether or not solutions of a transformed problem were applicable to the original problem
(for example, see the discussion of Archimedes’ Sphere and Cylinder II 4, below), it becomes
understandable why Apollonius seems so insistent on providing deductive proofs for the number of
possible solutions in Cutting off a Ratio.
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to treat, we will see that the diorism discussed above is indeed related in some interesting
ways. Considering Fig. 16, in Collection IV 32, Pappus shows that given some acute angle,
GAD, if we complete the rectangle GBAD and construct the neusis line ZE as twice AG,
then line ZEA will trisect angle GAD. The argument is as follows. If we bisect line EZ at
K and join GK, then since G, Z and E can be regarded as three points on the circumference
of a circle about diameter EZ, GK = KE = KZ [Elements III 31]. Hence, GK = AG, so that
the angles GAK and GKA are equal [Elements I 5]. But, if we consider a circle through G, Z
and E, angle GKA is twice angle GZA [Elements III 20], so that angle GAK is twice angle
EAD [Elements I 29].

The key to the solution of this problem lies in passing a line through point A such that the
segment of it that is cut off between the extensions of the two linesBG andGD is twice lineAG.
If we consider these analogous objects for the other points of intersection of the circle and the
opposite sections, we will see that they effect a number of related constructions.

In Fig. 17a, we consider the other intersection of the circle with the same branch of the
hyperbola. We set out ZE = 2AG cut off between lines BG and GE. We take the midpoint
of ZE at K and join GK. Hence, when we consider the circle through points E, Z and G,
angle ZKG is twice angle ZEG [Elements III 20]. Since GE is parallel to BA, angle ZAG
is twice angle BAZ [Elements I 29]. Therefore, line EA trisects angle BAG, which is the com-
plement of angle GAD.

In Fig. 17b, we show the trivial case in which DH passes through point B and point A is
the midpoint of ZE. In this case, the line equal to twice AG that passes through A is also
bisected by A and it is a simple matter to show that the triangles BZH, ZBA, ADE, ADG
and GBA are all equal. Hence, there is no related solution because line ZE coincides with
the reflection of line AG about line AB.

In fact, however, there is another position in which a line equal to twice GA will pass
through point A and be cut off between lines GBZ and GDE such that the line drawn from
G to its midpoint is equal to line GA. In Fig. 18, we consider the final intersection of the
circle and the hyperbola. We set out ZAE = 2GA and join the midpoint, K, with G, such
that GK = KZ = KE [Elements III 31]. In this construction, we can show that line ZAE cuts
off an angle, DAE, that is one-third of the supplement of the original angle GAD. If we con-
sider the circle through points G, Z and E, it is clear that angle GKA is twice angle BZA
[Elements III 20]. But, if we extend GA to X, angles GKA, GAK and EAX are equal

A

B

E

D

H

ZG

K

L

Fig. 16. Collection IV Prop. 32, reconstructed diorism, case 1.
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[Elements I 5, 15], while angles DAE and GZE are equal [Elements I 28]. Hence, angle DAE
is one-third of angle DAX, which is the supplement of angle GAD.

Although these constructions do not solve the stated problem, they show how diorism
may have been used as a way to investigate the relationship between a problem and its
transformed solution. The point of this fanciful exercise was to give an example of how
diorism, although not well represented in our sources, may have been used by ancient
mathematicians to analyze the more general conditions of geometric problems. Moreover,
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Fig. 17. Collection IV Prop. 32, reconstructed diorism cases 2 and 3.

A

L

Q

Z
B G

D

H

E

K

X

Fig. 18. Collection IV Prop. 32, reconstructed diorism case 4.
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we have shown how theorems of Conics IV could have been useful in these investigations,
just as Apollonius claims they were.

As we have seen in this example, analysis often transforms a given problem into one that
is more abstract and general. Hence, this more general, transformed problem may have a
diorism that is not relevant to the original problem. In this way, the expanded form of dior-
ism that we saw in Cutting off a Ratio may have often been used in the investigation of gen-
eral problems, such as the one solved in that text, without being necessary for the final
version of the specific problems we generally encounter in our sources. Although there
are a number of other examples in the ancient literature of problems for which the trans-
formed problem may have had an extended diorism that was left out of the final version, we
have at least one example in which this was certainly so. This is the well-known case of
Archimedes’ Sphere and Cylinder II 4, in which the transformed problem, which was pro-
vided by Eutocius, has a diorism, whereas the original problem does not. Archimedes, in
reference to the transformed problem says, “This, stated generally, in this way, has a dior-
ism, but with the suppositions of the forgoing problem included . . . it has no diorism”
[Heiberg, 1910–1915, Vol. 1, 190]. Indeed, the transformed problem, as found in Eutocius’s
revision of a solution to this problem that he found in “an old book,” is solved by the inter-
section of a parabola and a hyperbola [Heiberg, 1910–1915, Vol. 3, 130–131]. Hence, not
only is there a limit to the solvability of the problem but there may be multiple solutions
and the number and arrangement of the solutions can once again be addressed by the the-
orems of Conics IV. Hence, we see that here Archimedes also intended diorism to have the
sense of a general treatment of the possibility, arrangement and totality of solutions.

A diorism then, is an investigation of the geometric objects used to solve a problem,
which provides more general insight into the circumstances of the solutions themselves,
such as their limitations, number and arrangement. In this paper, we have seen a number
of different types of problems which involve diorism. Although it is possible that there were
other types as well, since most of the diorisms in the Greek mathematical corpus fall into
one of the categories discussed here, it will be useful to briefly enumerate them. (1) A
straightforward case of the diorism is that in which some inherent property of the geometric
objects involved in the problem presents a limit to possibility of solving the problem [Sphere
and Cylinder II 7, Conics II 53]. Most of the diorisms in the surviving corpus are of this
type. (2) Another fairly common form of the diorism arrises when the solution of the prob-
lem is found by the intersection of two conics [Sphere and Cylinder II 4, Collection IV 31].
When Apollonius says that Conics IV is useful in the investigation of diorisms, he probably
had this sort of diorism in mind. (3) When a given area is applied to a given line and defi-
cient by a given figure, an upper limit to the given area must be stated and there will be two
positions for the solutions [Elements VI 28, Cutting off a Ratio 6.4]. Although there are rel-
atively few of these diorisms in our sources, since the application of areas was a widely used
technique in Greek geometry, it is possible that this type was more often encountered than
the cases in our surviving sources suggest.

As this list shows, the diorisms discussed thus far constituted a geometric study of the
auxiliary objects introduced in the transformation. Although it would only have been nec-
essary to actually write up relatively few diorismic investigations, these studies would have
been essential for the mathematicians in understanding the relationship between the more
general transformed problem and the original specific problem that it was devised to treat.
Indeed, it is only on the basis of this broader understanding of diorism that we can make
full sense of a number of the remarks about diorism that we have read in Archimedes,
Apollonius, and Pappus.
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