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 Introduction 

 In some ways, the works of ancient Greek geometry can be regarded as 
arguments about diagrams. Anyone who has ever looked at a medieval 
manuscript containing a copy of an ancient geometrical text knows that 
the most conspicuous characteristic of these works is the constant presence 
of diagrams.  1    Anyone who has ever read a Greek mathematical text, in any 
language, knows that the most prevalent feature of Greek mathematical 
prose is the constant use of letter names, which refer the reader’s attention 
to the accompanying diagrams. 

 In recent years, particularly due to a chapter in Netz’s  Th e Shaping of 
Deduction in Greek Mathematics  entitled ‘Th e lettered diagram’, historians of 
Greek mathematics have had a renewed interest in the relationship between 
the argument in the text and the fi gure that accompanies it.  2    Research pro-
jects that were motivated by this interest, however, quickly had to come to 
grips with the fact that the edited texts of canonical works of Greek geom-
etry, although they contained a wealth of information about the manuscript 
evidence for the text itself, oft en said nothing at all about the diagrams. For 
years, the classical works of Apollonius, Archimedes and, most importantly, 
the  Elements  of Euclid have been read in edited Greek texts and modern 
translations that contain diagrams having little or no relation to the dia-
grams in the manuscript sources. Because they are essentially mathematical 
reconstructions, the diagrams in modern editions are oft en mathematically 
more intelligible than those in the manuscripts, but they are oft en histori-
cally misleading and occasionally even mathematically misleading.  3    

 1 In some cases, the diagrams were never actually drawn, but even their absence is immediately 
evident from the rectangular boxes that were left  for them.

 2 N1999: 12–67.
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     3      In this chapter, we will see a number of examples of modern diagrams that are more 

mathematically consistent with our understanding of the argument and a few that may have 
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 In fact, a few scholars of the ancient mathematical sciences have for 
many years made critical studies of the manuscript fi gures, and Neugebauer 
oft en called for the critical and conceptual study of ancient and medieval 
diagrams.  4    Th ese scholars, however, were mostly working on the exact 
sciences, particularly astronomy and, perhaps due to the tendency of his-
torians of science to divide their research along contemporary disciplinary 
lines that would have made little sense to ancient mathematicians, these 
works have generally formed a minority interest for historians of ancient 
mathematics. Indeed, in his later editions, Heiberg paid more attention 
to the manuscript fi gures than he did in his earlier work, but by this time 
his editions of the canonical works were already complete. In fact, for his 
edition of Euclid’s  Elements , it appears that the diagrams were adopted from 
the tradition of printed texts without consulting the manuscript sources. 

 In this chapter, aft er briefl y sketching the rise of scholarly interest in pro-
ducing critical diagrams, we investigate the characteristics of manuscript 
diagrams in contrast to modern reconstructions. To the extent that the 
evidence will allow, we distinguish between those features of the manu-
script diagrams that can be attributed to ancient practice and those that are 
probably the result of the medieval manuscript tradition, through which 
we have received the ancient texts. We close with some speculations about 
what this implies for the conceptual relationship between the fi gure and the 
text in ancient Greek mathematical works.   

 Heiberg’s edition of Euclid’s  Elements  

 Heiberg ( 1883 –8), on the basis of a study of manuscripts held in European 
libraries, prepared his edition of the  Elements  from seven manuscripts and 
the critical apparatus accompanying his text makes constant reference to 
these sources.  5    Nevertheless, there is usually no apparatus for the diagrams 
and hence no mention of their source.  6    An examination of the previous 

 4 For example see the section iv D, 2, ‘Figures in Texts’ in his A History of Ancient Mathematical 
Astronomy. Neugebauer 1975: 751–5.

 5 Heiberg 1903 later published a more detailed account of the manuscript sources and the reasons 
for his editorial choices. For a more extended discussion of Heiberg’s work on the Elements and 
a discussion of the overall history of the text see Vitrac’s contribution in this volume.

 6 While this is largely the case there are some exceptions. For example, the diagrams for Elem. 
xi.39 and xiii.15 are accompanied with apparatus. Heiberg and Stamatis 1969–77: iv, 73 
and 166.

led to historical misunderstandings for this reason. Mathematically misleading modern 
diagrams, on the other hand, are relatively rare; Neugebauer discusses one example from 
the edition of Th eodosius’  On Days and Nights  prepared by Fecht. Neugebauer  1975 : 752; Fecht 
 1927 . 
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printed editions of the text, however, makes it clear that the diagrams 
accompanying Heiberg’s edition were drawn entirely, or for the most part, 
by copying those in the edition of August ( 1826 –9).  7    Th e August edition 
would have been particularly convenient for copying the diagrams, since, 
as was typical for a German technical publication of its time, the diagrams 
were printed together in fold-out pages at the end of the volumes. 

 Although nearly all the diagrams appear to have been so copied, a single 
example may be used to demonstrate this point. For  Elem .  xi .12, concerning 
the construction of a perpendicular to a given plane, the diagrams in all the 
manuscripts consist simply of two equal lines, ΔA and BΓ, placed side by 
side and labelled such that points Δ and B mark the top of the two lines. In 
 Figure 2.1 , we compare the diagram for  Elem .  xi .12 in  Vatican 190 , as rep-
resentative of all the manuscripts, with that in both the August and Heiberg 
editions.  8    While  Vatican 190  is typical of the manuscript diagrams, that in 
Heiberg’s text is clearly copied from the August diagram. Although the given 
plane is not shown in the manuscript fi gures, it appears in both the printed 
editions and it is used with the techniques of linear perspective to make the 
two lines appear to be in diff erent planes from the plane of the drawing. 
Most signifi cantly, however, there is a labelling error in the line BΓ. Point 
Γ is supposed to be in the given plane, and hence must be at the bottom of 
line BΓ, as in  Vatican 190 . Th is error was transmitted when the diagram was 

 7 Th e diagrams to the arithmetical books are a clear exception. Th e August diagrams are 
dotted lines, whereas Heiberg’s edition returns to the lines we fi nd in the manuscripts. Th ere 
also other, individual cases where the diagrams were redrawn, presumably because those in 
the August edition were considered to be mathematically unsatisfactory. For example, the 
diagram to Elem. xi.38 has been redrawn for Heiberg’s edition, whereas all the surrounding 
diagrams are clearly copied. See also the diagram for Elem. xii.17. Compare Heiberg and 
Stamatis 1969–77: iv 75 and 128 with August 1826–9: Tab. ix and Tab. x.

 8 In this chapter, we refer to manuscripts by an abbreviated name in italics. Full library shelf 
marks are given in the references. For the Euclidian manuscripts see also Vitrac’s chapter in 
this volume.

 Figure 2.1      Diagrams for Euclid’s  Elements , Book xi, Proposition 12.    
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copied, despite the fact that it could have been easily corrected from consid-
erations of the orientation required by the text.  

 Indeed, whereas through the course of the modern period, following the 
general trends of classical scholarship, the editors of successive publications 
of the  Elements  tended to consult a wider and wider range of manuscripts 
and give their readers more and more information about these manu-
scripts, the diagrams that accompanied these editions were generally made 
on the basis of the diagrams in the previous editions. 

 As an example of this practice, we may take  Elem .  i .13, which con-
cerns the sum of the angles on either side of a straight line that falls on 
another straight line. Th e manuscripts all agree in depicting angle ABΓ as 
opening to the left , as shown in  Figure 2.2  by the example of  Vatican 190 .  9    
Nevertheless, all printed editions, following the  editio princeps  of Grynée 
( 1533 ), print angle ABΓ opening to the right.  

 In some sense, this may have been a result of the division of labour of 
the publishers themselves. Whereas the editions were prepared by classical 
scholars and typeset by printers who were knowledgeable in the classical 
languages and generally had some sensitivity to the historical issues involved 
in producing a printed text from manuscript sources, the diagrams were 
almost certainly draft ed by professional illustrators, who would have been 
skilled in the techniques of visual reproduction but perhaps uninterested in 
the historical issues at hand. Nevertheless, the fact that the scholars who pre-
pared these editions and the editors who printed them were content to use 
the diagrams of the previous editions as their primary sources says a great 
deal about their views of the relative importance of the historical sanctity of 
the text and of the diagrams in Greek mathematical works. 

 Already, during the course of Heiberg’s career, the attitudes of scholars 
towards the importance of the manuscript diagrams began to change. In 
the late 1890s, in the edition he prepared with Besthorn of al-Nayrīzī’s 

 9 See Saito 2006: 110 for further images of the manuscript fi gures.

 Figure 2.2      Diagrams for Euclid’s  Elements , Book i, Proposition 13.    
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 commentaries to the  Elements , the diagrams were taken directly from  Leiden 
399 , and hence oft en quite diff erent from those printed in his edition of the 
Greek.  10    By the time he edited Th eodosius’  Spherics , he must have become 
convinced of the importance of giving the diagrams critical attention, 
because the fi nished work includes diagrams based on the  manuscripts, 
generally accompanied with a critical note beginning ‘In fi g.’  11      

 Editions of manuscript diagrams 

 Because the manuscript diagrams for spherical geometry are so strikingly 
diff erent from what we have grown to expect since the advent of the con-
sistent application of techniques of linear perspective in the early modern 
period, the editions of ancient Greek works in spherical astronomy were 
some of the fi rst in which the editors began to apply critical techniques to the 
fi gures. For example in the eighth, and last, volume of the complete works of 
Euclid, for his edition of the  Phenomena , Menge ( 1916 ) provided diagrams 
based on the manuscript sources and in some cases included critical notes. 

 One of the most infl uential editions with regard to the critical treatment 
of diagrams was that made by Rome ( 1931 –43) of the commentaries by 
Pappus and Th eon to Ptolemy’s  Almagest . Th e diagrams in this long work 
were taken from the manuscript sources and their variants are discussed 
in critical notes placed directly below the fi gures themselves.  12    Rome’s 
practices infl uenced other scholars working in French and the editions by 
Mogenet ( 1950 ), of Autolycus’ works in spherical astronomy, and Lejeune 
( 1956 ), of the Latin translation of Ptolemy’s  Optics , both contain manu-
script fi gures with critical notes. 

 More recently, the majority tendency has been to provide manuscript 
diagrams with critical assessment. For example, the editions by Jones 
( 1986 ) and Czinczenheim ( 2000 ) of Book  vii  of Pappus’  Collection  and 

11 Heiberg 1927. In fact, these critical notes are diffi  cult to notice, since they are found among 
the notes for the Greek text. Th e notes for the Greek text, however, are prefaced by numbers 
referring to the lines of the text, whereas the diagrams are always located in the Latin 
translation, which has no line numbers. Neugebauer 1975: 751–5 seems to have missed them, 
since he makes no mention of them in his criticism of the failure of classical scholars to pay 
suffi  cient attention to the manuscript diagrams of the works of spherical astronomy.

10 Besthorn et al. 1897–1932.

12 In connection with the early interest that Rome and Neugebauer showed in manuscript fi gures, 
we should mention the papers they wrote on Heron’s Dioptra, the interpretation of which 
depends in vital ways on understanding the diagram. Rome 1923; Neugebauer 1938–9; Sidoli 
2005.
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Th eodosius’  Spherics , respectively, both contain critical diagrams, and a 
recent translation of Archimedes’  Sphere and Cylinder  also includes a criti-
cal assessment of the manuscript fi gures.  13    

 Nevertheless, although there are critically edited diagrams for many 
works, especially those of the exact sciences, the most canonical works – 
the works of Archimedes and Apollonius, the  Elements  of Euclid and the 
 Almagest  of Ptolemy – because they were edited by Heiberg early in his 
career, are accompanied by modern, redrawn diagrams. Hence, because a 
study of Greek mathematics almost always begins with the  Elements , and 
because the manuscript diagrams of this work contain many distinctive 
and unexpected features, it is essential that we reassess the manuscript 
evidence.   

 Characteristics of manuscript diagrams 

 In this section, focusing largely on the  Elements , we examine some of the 
characteristic features of the manuscript diagrams as material objects that 
distinguish them from their modern counterparts. Manuscript diagrams 
are historically contingent objects which were read and copied and redrawn 
many times over the centuries. In some cases, they may tell us about ancient 
practice, in other cases, about medieval interpretations of ancient practice, 
and in some few cases, they simply tell us about the idiosyncratic reading 
of a single scribe. In the following sections, we begin with broad general 
tendencies that can almost certainly be ascribed to the whole history of 
the transmission, and then move into more individual cases where the 
tradition shows modifi cation and interpretation. In this chapter, we present 
summary overviews, not systematic studies.  

 Overspecifi cation 

 One of the most pervasive features of the manuscript fi gures is the ten-
dency to represent more regularity among the geometric objects than is 
demanded by the argument. For example, we fi nd rectangles represent-
ing parallelograms, isosceles triangles representing arbitrary triangles, 

13 Netz 2004. In fact, however, the fi gures printed by Czinczenheim contain some peculiar 
features. Although she claims to have based her diagrams on those of Vatican 204, they 
oft en contain curved lines of a sort almost never seen in Greek mathematical manuscripts 
and certainly not in Vatican 204. Th us, although her critical notes are useful, the visual 
representation of the fi gures is oft en misleading.



 Diagrams and arguments in Greek mathematics 141

squares representing rectangles, and symmetry in the fi gure where none is 
required by the text.  14    Th is tendency towards greater regularity, which we 
call ‘overspecifi cation’, is so prevalent in the Greek, Arabic and Latin trans-
missions of the  Elements  that it almost certainly refl ects ancient practice. 

 We begin with an example of a manuscript diagram portraying more 
symmetry than is required by the text.  Elem .  i .7 demonstrates that two 
given straight lines constructed from the extremities of a given line, on the 
same side of it, will meet in one and only one point. In  Figure 2.3 , where 
the given lines are AΓ and BΓ, the proof proceeds indirectly by assuming 
some lines equal to these, say AΔ and BΔ, meet at some other point, Δ, and 
then showing this to be impossible. As long as they are on the same side of 
line AB, points Γ and Δ may be assumed to be anywhere and the proof is 
still valid. Heiberg, following the modern tradition, depicts this as shown 
in  Figure 2.3 . All of the manuscripts used by Heiberg agree, however, in 
placing points Γ and Δ on a line parallel to line AB and arranged such that 
triangle ABΔ and triangle ABΓ appear to be equal.  15    In this way, the fi gure 
becomes perfectly symmetrical and, to our modern taste, fails to convey the 
arbitrariness that the text allows in the relative positions of points Γ and Δ.  

 We turn now to a case of the tendency of arbitrary angles to be rep-
resented as orthogonal.  Elem .  i .35 shows that parallelograms that stand 
on the same base between the same parallels are equal to each other. In 
 Figure 2.4 , the proof that parallelogram ABΓΔ equals parallelogram EBΓZ 
follows from the addition and subtraction of areas represented in the fi gure 
and would make no sense without an appeal to the fi gure in order to under-
stand these operations. In the modern fi gures that culminate in Heiberg’s 
edition, the parallelograms are both depicted with oblique angles, whereas 

 Figure 2.3      Diagrams for Euclid’s  Elements , Book i, Proposition 7.    
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14 In this chapter, we give only a few select examples. Many more examples, however, can be seen 
by consulting the manuscript diagrams themselves. For Book i of the Elements, see Saito 2006. 
For Books ii–vi of the Elements, as well as Euclid’s Phenomena and Optics, see the report of a 
three-year research project on manuscript diagrams, carried out by Saito, available online at 
www.hs.osakafu-u.ac.jp/~ken.saito/.

15 See Saito 2006: 103 for further images of the manuscript fi gures.

http://www.hs.osakafu-u.ac.jp/~ken.saito/
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in the manuscripts the base parallelogram ABΓΔ is always depicted as a 
rectangle, as seen in  Bodleian 301 , and oft en even as a square, as seen in 
 Vatican 190 .  16    Once again, to our modern sensibility, the diagrams appear 
to convey more regularity than is required by the proof. Th at is, the angles 
need not be right and the sides need not be the same size, and yet they are 
so depicted in the manuscripts.  

 We close with one rather extreme example of overspecifi cation.  Elem . 
 vi .20 shows that similar polygons are divided into an equal number of 
triangles, of which corresponding triangles in each polygon are similar, 
and that the ratio of the polygons to one another is equal to the ratio of 
corresponding triangles to one another, and that the ratio of the polygons 
to one another is the duplicate of the ratio of a pair of corresponding sides. 
Although the enunciation is given in such general terms, following the 
usual practice of Greek geometers, the enunciation and proof is made for 
a particular instantiation of these objects; in this case, a pair of pentagons. 
In  Figure 2.5 , the modern diagram printed by Heiberg depicts two similar, 
but unequal, irregular pentagons. In  Bodleian 301 , on the other hand, we 
fi nd two pentagons that are both regular and equal. Th is diagram strikes 
the modern eye as inappropriate for this situation because the proposi-
tion is not about equal, regular pentagons, but rather similar polygons of 

16 See Saito 2006: 131 for further images of the manuscript fi gures.

 Figure 2.4      Diagrams for Euclid’s  Elements , Book i, Proposition 35.    
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 Figure 2.5      Diagrams for Euclid’s  Elements , Book vi, Proposition 20.    
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any shape.  17    In the modern fi gure, because the pentagons are irregular, we 
somehow imagine that they could represent any pair of polygons, although, 
in fact a certain specifi c pair of irregular pentagons are depicted.  

 Th e presence of overspecifi cation is so prevalent in the diagrams of 
the medieval transmission of geometric texts that we believe it must be 
representative of ancient practice. Moreover, there is no mathematical 
reason why the use of overspecifi ed diagrams should not have been part of 
the ancient tradition. For us, the lack of regularity in the modern fi gures 
is  suggestive of greater generality. Th e ancient and medieval scholars, 
however, apparently did not have this association between irregularity and 
greater generality, and, except perhaps from a statistical standpoint, there 
is no reason why these concepts should be so linked. Th e drawing printed 
by Heiberg is not a drawing of ‘any’ pair of polygons, it is a drawing of two 
particular irregular pentagons. Since the text states that the two polygons 
are similar, they could be represented by any two similar polygons, as say 
those in  Bodleian 301  which also happen to be equal and regular. Of course 
statistically, an arbitrarily chosen pair of similar polygons is more likely to 
be irregular and unequal, but statistical considerations, aside from being 
anachronistic, are hardly relevant. Th e diagram is simply a representation 
of the objects under discussion. For us, an irregular triangle is somehow a 
more satisfying representation of ‘any’ triangle, whereas for the ancient and 
medieval mathematical scholars an arbitrary triangle might be just as well, 
if not better, depicted by a regular triangle.   

 Indiff erence to visual accuracy 

 Another widespread tendency that we fi nd in the manuscripts is the use of 
diagrams that are not graphically accurate depictions of the mathematical 
objects discussed in the text. For example, unequal lines may be depicted as 
equal, equal angles may be depicted as unequal, the bisection of a line may 
look more like a quadrature, an arc of a parabola may be represented with 
the arc of a circle, or straight lines may be depicted as curved. Th ese tenden-
cies show a certain indiff erence to graphical accuracy and can be divided 
into two types, which we call ‘indiff erence to metrical accuracy’ and ‘indif-
ference to geometric shape’. 

 We begin with an example that exhibits both overspecifi cation and indif-
ference to metrical accuracy.  Elem .  i .44 is a problem that shows how to 

17 In fact, the proof given in the proposition is also about a more specifi c polygon in that it 
has fi ve sides and is divided into three similar triangles, but it achieves generality by being 
generally applicable for any given pair of rectilinear fi gures. Th is proof is an example of the 
type of proof that Freudenthal 1953 called quasi-general.
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construct, on a given line, a parallelogram that contains a given angle and 
is equal to a given triangle. As exemplifi ed by  Vatican 190  in  Figure 2.6 , in 
all the manuscripts, the parallelogram is represented by a rectangle, and in 
the majority of the manuscripts that Heiberg used for his edition there is 
no correlation between the magnitudes of the given angle and triangle and 
those of the constructed angle and parallelogram.  18    In the modern fi gure, 
printed by Heiberg and seen in  Figure 2.6 , however, not only is the con-
structed fi gure depicted as an oblique parallelogram, but the magnitudes of 
the given and constructed objects have been set out as equal.  

 We turn now to an occurrence of metrical indiff erence that is, in a sense, 
the opposite of overspecifi cation. In  Elem .  ii .7, Euclid demonstrates a 
proposition asserting the metrical relationship obtaining between squares 
and rectangles constructed on a given line cut at random. Th e overall geo-
metric object is stated to be a square and it contains two internal squares. 
Nevertheless, as seen in the examples of  Vatican 190  and  Bodleian 301  in 
 Figure 2.7 , the majority of Heiberg’s manuscripts show these squares as 
rectangles.  19    We should note also the extreme overspecifi cation of  Bodleian 
301 , in which all of the internal rectangles appear to be equal. In general, 
there seems to be a basic indiff erence as to whether or not the diagram 
should visually represent the most essential metrical properties of the 
 geometric objects it depicts.  

 Figure 2.6      Diagrams for Euclid’s  Elements , Book i, Proposition 44.    
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18 In this chapter, when we speak of the majority of the manuscripts, we mean the majority of 
the manuscripts selected by the text editor as independent witnesses for the establishment 
of the text. We should be wary of assuming, however, that the majority reading is the best, 
or most pristine. See Saito 2006: 140, for further images of the manuscript fi gures. In Vienna 
31, as is oft en the case with this manuscript, we fi nd the magnitudes have been drawn so as 
to accurately represent the stipulations of the text (see the discussion of this manuscript in 
‘Correcting the diagram’, below).

19 See Saito 2008 for further images of the manuscript diagrams. In Vienna 31 and Bologna 
18–19, the squares, indeed, look like squares.
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 As well as metrical indiff erence, the manuscript diagrams oft en seem to 
reveal an indiff erence toward the geometric shape of the objects as speci-
fi ed by the text. Th e most prevalent example of this is the use of circular 
arcs to portray all curved lines. As an example, we may take the diagram 
for Apollonius  Con .  i .16. As seen in  Figure 2.8 , the diagram in  Vatican 206  
shows the two branches of an hyperbola as two semicircles. Indeed, all 
the diagrams in this manuscript portray conic sections with circular arcs. 
Heiberg’s diagram, on the other hand, depicts the hyperbolas with hyper-
bolas.  

 Th is diagram, however, is also interesting because it includes a case 
of overspecifi cation, despite the fact that Eutocius, already in the sixth 
century, noticed this overspecifi cation and suggested that it be avoided.  20    
In  Figure 2.8 , the line AB appears to be drawn as the axis of the hyperbola, 
such that HK and ΘΛ are shown as orthogonal ordinates, whereas the 
theorem treats the properties of any diameter, such that HK and ΘΛ could 
also be oblique ordinates. Eutocius suggested that they be so drawn in 
order to make it clear that the proposition is about diameters, not the axis. 
Nevertheless, despite Eutocius’ remarks, the overspecifi cation of this fi gure 
was preserved into the medieval period, and indeed was maintained by 
Heiberg in his edition of the text.  21    Th is episode indicates that overspecifi -
cation was indeed in eff ect in the ancient period and that although Eutocius 
objected to this particular instance of it, he was not generally opposed, and 
even here his objection was ignored. 

 As well as being used to represent the more complicated curves of the 
conics sections, circular arcs are also used to represent straight lines. As 
Netz has shown,  22    this practice was consistently applied in the diagrams for 

 Figure 2.7      Diagrams for Euclid’s  Elements , Book ii, Proposition 7.    
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20 Heiberg 1891–3: 224; Decorps-Foulquier 1999: 74–5.
21 A more general fi gure, which would no doubt have pleased Eutocius, is given in Taliaferro, 

Densmore and Donahue 1998: 34.
22 Netz 2004.
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Archimedes’  Sphere and Cylinder  for a polygon with short sides that might 
be visually confused with the arcs of the circumscribed circle.  23    

 In the manuscript diagrams of  Elem .  iv .16, however, we have good 
evidence that the curved lines are the result of later intervention by the 
scribes.  Elem .  iv .16 is a problem that shows how to construct a regular 
15-gon in a circle ( Figure 2.9 ). Th e manuscript evidence for this fi gure is 
rather involved and, in fact, none of the manuscripts that Heiberg used 
contain the same diagram in the place of the primary diagram, although 
there is some obvious cross-contamination in the secondary, marginal dia-
grams.  24    Nevertheless, it is most likely that the archetype was a metrically 
inexact representation of the sides of the auxiliary equilateral triangle and 
regular pentagon depicted with straight lines, as found in  Bologna 18–19  

 Figure 2.8      Diagrams for Apollonius’  Conica , Book i, Proposition 16.    
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23 In the present state of the evidence, it is diffi  cult to determine with certainty whether or not 
the curved lines in the Archimedes tradition go back to antiquity, but there is no good reason 
to assert that they do not. All of our extant Greek manuscripts for the complete treatise of 
Sphere and Cylinder are based on a single Byzantine manuscript, which is now lost. Th is is 
supported by the fragmentary evidence of the oldest manuscript, the so-called Archimedes 
Palimpsest, whose fi gures also contain curved lines. Th e diagrams in an autograph of William 
of Moerbeke’s Latin translation, Vatican Ottob. 1850, however, made on the basis of a diff erent 
Greek codex, also now lost, have straight lines, but this does not prove anything. Th e source 
manuscript may have had straight lines or Moerbeke may have changed them. Whatever 
the case, we now have three witnesses, two of which agree on curved lines and one of which 
contains straight lines.

24 See Saito 2008: 171–3 for a full discussion. Th is previous report, however, was written before 
the manuscripts could be consulted in person. Since Saito has now examined most of the 
relevant manuscripts, it is clear from the colour of the lines, the pattern of erasures and so on, 
that the curved lines are part of the later tradition. See www.hs.osakafu-u.ac.jp/~ken.saito/
diagram/ for further updates.

http://www.hs.osakafu-u.ac.jp/~ken.saito/diagram/
http://www.hs.osakafu-u.ac.jp/~ken.saito/diagram/
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and in the erased part of  Florence 28 .  25    In  Bodleian 301  and  Paris 2466  we 
see examples in which the scribe has made an eff ort to draw lines AB and 
AΓ so as to portray more accurately the sides of a regular pentagon and an 
equilateral triangle, respectively. In  Bodleian 301 , the external sides of the 
fi gures are clearly curved, while in  Paris 2466  this curvature is slight. In 
 Vienna 31 , the original four lines were straight and metrically accurate, as 
is usual for this manuscript, and a later hand added further curved lines. In 
 Vatican 190 , it appears that all the sides of the auxiliary triangle and pen-
tagon were drawn in at some point and then later erased, presumably so as 
to bring the fi gure into conformity with the evidence of some other source.  

 Not only were circles used for straight lines, but we also have at least one 
example of straight lines being used to represent a curved line. Th is rather 
interesting example of indiff erence to visual accuracy comes from one 
of the most fascinating manuscripts of Greek mathematics, the so-called 
Archimedes Palimpsest, a tenth-century manuscript containing various 
Hellenistic treatises including technical works by Archimedes that was 

 Figure 2.9      Diagrams for Euclid’s  Elements , Book iv, Proposition 16. Dashed lines were 
drawn in and later erased. Grey lines were drawn in a diff erent ink or with a diff erent 
instrument.    
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25 In Florence 28, the metrically inaccurate fi gure with straight lines was erased and drawn over 
with a metrically accurate fi gure with curved lines. Th e colour of the ink makes it clear that the 
rectilinear lines that remain from the original are AΓ and the short part of AB that coincides 
with the new curved line AB.
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palimpsested as a prayer book some centuries later.  26    In the section of the 
treatise that Heiberg called  Method  14, Archimedes discusses the metrical 
relationships that obtain between a prism, a cylinder and a parabolic solid 
that are constructed within the same square base.  27    In  Figure 2.10 , the base 
of the prism is rectangle EΔΓH, that of the cylinder is semicircle EZH, 
while that of the parabolic solid is triangle EZH. Th us, in this diagram, 
a parabola is represented by an isosceles triangle. Since the parabola is 
defi ned in the text by the relationship between the ordinates and abscissa, 
and since the triangle intersects and meets the same lines as the parabola, 
this was apparently seen as a perfectly acceptable representation. In this 
way, the triangle functions as a purely schematic representation of the 
parabola. Indeed, without the text we would have no way to know that the 
diagram represents a parabola.    

 Diagrams in solid geometry 

 Th e schematic nature of ancient and medieval diagrams becomes most 
obvious when we consider the fi gures of solid geometry. Although there are 
some diagrams in the manuscripts of solid geometry that attempt to give 
a pictorial representation of the geometric objects, for the most part, they 
forego linear perspective in favour of schematic representation. Th is means 
that they do not serve to convey a sense of the overall spacial relationships 

26 Th e circuitous story of this manuscript is told by Netz and Noel 2007.
27 Th is section of the Method is discussed by Netz, Saito and Tchernetska 2001–2. Th e diagram 

found in the palimpsest is diffi  cult to see in the original. Here, we include two images developed 
by researchers in the Archimedes Palimpsest Project. Th e diagram is in the left -hand column 
of the text spanning pages 159v–158r. Th ese images, licensed under the Creative Commons 
Attribution 3.0 Unported Access Rights, are available online at www.archimedespalimpsest.org.

 Figure 2.10      Diagrams for Archimedes’  Method , Proposition 12.    
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obtaining among the objects, but rather to convey specifi c mathematical 
relationships that are essential to the argument. 

 Some conspicuous exceptions to this general tendency should be men-
tioned. For example, the diagrams for the rectilinear solids treated in  Elem . 
 xi  and  xii  and the early derivations of the conic sections in the cone, in 
 Con .  i , appear to use techniques of linear perspective to convey a sense 
of the three-dimensionality of the objects. In  Figure 2.11 , we reproduce 
the diagram for  Elem .  xi .33 from  Vatican 190  and that for  Con .  i .13 from 
 Vatican 206 .  

 In all of these cases, however, it is possible to represent the three-
dimensionality of the objects simply and without introducing any object 
not explicitly named in the proof merely for the sake of the diagram. For 
example, in  Figure 2.1  above, the plane upon which the perpendicular is 
to be constructed does not appear in the manuscript fi gure. Hence, even 
in these three-dimensional diagrams, techniques of linear perspective are 
used only to the extent that they do not confl ict with the schematic nature 
of the diagram. Auxiliary, purely graphical elements are not used, nor is 
there any attempt to convey the visual impression of the mathematical 
objects through graphical techniques. An example of this is the case of 
circles seen at an angle. Although it is not clear that there was a consist-
ent theory of linear perspective in antiquity, ancient artists regularly drew 
circles as ovals and Ptolemy, in his  Geography , describes the depiction of 
circles seen from an angle as represented by ovals,  28    nevertheless, in the 
medieval manuscripts such oblique circles are always drawn with two 

28 Knorr 1992: 280–91; Berggren and Jones 2000: 116.

 Figure 2.11      Diagrams for Euclid’s  Elements , Book xi, Proposition 33 and Apollonius’ 
 Conica , Book i, Proposition 13.    

Vatican 190 Vatican 206
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 circular arcs that meet at cusps, as seen in  Figure 2.11 .  29    Th is confi rms that 
the diagrams were not meant to be a visual depiction of the objects, but 
rather a representation of certain essential mathematical properties. 

 Likewise, in the fi gures of spherical geometry, if the sphere itself is not 
named or required by the proof, we will oft en see the objects themselves 
simply drawn free-fl oating in the plane, to all appearances as though they 
were actually located in the plane of the fi gure. Th eodosius’  Spher .  ii .6 
shows that if, in a sphere, a great circle is tangent to a lesser circle, then it is 
also tangent to another lesser circle that is equal and parallel to the fi rst. In 
 Figure 2.12 , we fi nd the great circle in the sphere, ABΓ, and the two equal 
and parallel lesser circles that are tangent to it, ΓΔ and BH, all lying fl at in 
the same plane, with no attempt to portray their spacial relationships to 
each other or the sphere in which they are located.  

 Th e diagram for  Spher .  ii .6 thus highlights the schematic nature of dia-
grams in the works of spherical geometry. Th e theorem is about the type of 
tangency that obtains between a great circle and two equal lesser circles and 
this tangency is essentially the only thing conveyed by the fi gure. Th e actual 
spacial arrangement of the circles on the sphere must either be imagined by 
the reader or drawn out on some real globe.  30    

29 With respect to linear perspective, there is still a debate as to whether or not the concept of 
the vanishing point was consistently applied in antiquity. See Andersen 1987 and Knorr 1991. 
As Jones 2000: 55–6 has pointed out, Pappus’ commentary to Euclid’s Optics 35 includes 
a vanishing point, but it is not located in accordance with the modern principles of linear 
perspective.

30 We argue elsewhere that Th eodosius was, indeed, concerned with the practical aspects of 
drawing fi gures on solid globes, but that this practice was not explicitly discussed in the 
Spherics; Sidoli and Saito 2009.

 Figure 2.12      Diagrams for Th eodosius’  Spherics , Book ii, Proposition 6.    
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 Th e schematic role of diagrams in spherical geometry becomes unmis-
takable when we compare the diagram of one of the more involved propo-
sitions as found in the manuscripts with one intended to portray the same 
objects using principles of linear perspective.  Spher .  ii .15 is a problem that 
demonstrates the construction of a great circle passing through a given 
point and tangent to a given lesser circle. As can be seen in  Figure 2.13 , 
merely by looking at the manuscript diagram, without any discussion of the 
objects and their arrangement, it is rather diffi  cult to get an overall sense of 
what the diagram is meant to represent. Nevertheless, certain essential fea-
tures are conveyed, such as the conpolarity of parallel circles, the tangency 
and intersection of key circles, and so on. It is clear that the manuscript 
diagram is meant to be read in conjunction with the text as referring to 
some other object, either an imagined sphere or more likely a real sphere 
on which the lines and circles were actually drawn. It tells the reader how to 
understand the labelling and arrangement of the objects under discussion, 
so that the text can then be read as referring to these objects. Th e modern 
fi gure, on the other hand, by selecting a particular vantage point as most 
opportune and then allowing the reader to see the objects from this point, 
does a better job of conveying the overall spacial relationships that obtain 
among the objects.  31       

 Figure 2.13      Diagrams for Th eodosius’  Spherics , Book ii, Proposition 15.    
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31 We should point out, however, that the modern diagram in Figure 2.13, as well as being in 
linear perspective, employes a number of graphical techniques that we do not fi nd in the 
manuscript sources, such as the use of non-circular curves, dotted lines, highlighted points, 
and so on.
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 One diagram for multiple cases 

 In the foregoing three sections, we have discussed characteristics of the 
medieval diagrams that are so prevalent that they almost certainly refl ect 
ancient practice. We turn now to characteristics that are more individual 
but which, nevertheless, form an essential part of the material transmission 
through which we must understand the ancient texts. 

 For a few propositions that are divided into multiple cases, we fi nd, nev-
ertheless, the use of a single diagram to represent the cases. Th ere is some 
question about the originality of most of these, and in fact it appears that, in 
general, Euclid did not include multiple cases and that those propositions 
that do have cases were altered in late antiquity.  32    Nevertheless, even if the 
cases are all due to late ancient authors, they are historically interesting and 
the manuscript tradition shows considerable variety in the diagrams. Th is 
indicates that single diagrams for multiple cases were probably in the text 
at least by late antiquity and that the medieval scribes had diffi  culty under-
standing them and hence introduced the variety that we now fi nd. 

 As an example, we consider  Elem .  iii .36. Th e proposition shows that if, 
from a point outside a circle, a line is drawn cutting the circle, it will be 
cut by the circle such that the rectangle contained by its parts will be equal 
to the square drawn on the tangent from the point to the circle. Th at is, in 
 Figure 2.14 , the rectangle contained by AΔ and ΔΓ is equal to the square 
on  ΔB. In the text, as we now have it, this is proved in two cases, fi rst 
where line AΔ passes through the centre of the circle and second where it 

 Figure 2.14      Diagrams for Euclid’s  Elements , Book iii, Proposition 36.    
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32 See Saito 2006: 85–90 for the case of a single fi gure containing two cases in Elem. iii.25, in 
which the division into cases was almost certainly not due to Euclid. Th e Arabic transmission 
of the Elements gives further evidence for the elaboration of a single fi gure into multiple 
fi gures. In the eastern Arabic tradition, we fi nd a single fi gure for both Elem. iii.31 and iv.5 
(see for example, Uppsala 20: 42v and 38v), while in the Andalusian Arabic tradition, which 
was also transmitted into Latin, we fi nd multiple fi gures for these propositions (compare 
Rabāt. 53: 126–8 and 145–6 with Busard 1984: 83–5 and 102–5).
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does not. In Heiberg’s edition, and  Vienna 31  (which oft en has  corrected 
diagrams), there is an individual fi gure for each case. In the majority 
of  Heiberg’s manuscripts, however, there is only a single fi gure and it 
 contains two diff erent points that represent the centre, one for each case. 
In  Figure 2.14 , we reproduce the two diagrams from Heiberg’s edition, 
which are mathematically the same as those in  Vienna 31 , and an example 
of the single fi gure taken from  Bodleian 301 . In the single diagram, as 
found in  Bodleian 301 , there are two centres, points E and Z, and neither 
of them lies at the centre of the circle. Nevertheless, if we suppose that they 
are indeed centres, the proof can be read and understood on the basis of 
this fi gure.  

 Despite these peculiarities, there are a number of reasons for thinking 
that this fi gure is close to the original on which the others were based. It 
appears in the majority of Heiberg’s manuscripts, and the other diagrams 
contain minor problems, such as missing or misplaced lines, or are obvi-
ously corrected.  33    Moreover, the single fi gure appears to have caused wide-
spread confusion in the manuscript tradition. In most of the manuscripts, 
there are also marginal fi gures which either correct the primary fi gure or 
provide a fi gure that is clearly meant for a single case. 

 Hence, although we cannot, at present, be certain of the history of this 
theorem and its fi gure, the characteristics and variety of the fi gures should 
be used in any analysis of the text that seeks to establish its authenticity 
or authorship. Th is holds true for nearly all of the propositions that were 
clearly subject to modifi cation in the tradition.   

 Correcting the diagrams 

 Medieval scribes also made what they, no doubt, considered to be correc-
tions to the diagrams both by redrawing the fi gures according to their own 
interpretation of the mathematics involved and by checking the diagrams 
against those in other versions of the same treatise and, if they were dif-
ferent, correcting on this basis. We will call the fi rst practice ‘redrawing’ 
and the latter ‘cross-contamination’. We have already seen the example of 
 Elem .  iv .16, on the construction of the regular 15-gon (see  Figure 2.9 ), in 
which the scribes corrected for metrical indiff erence and drew the lines of 
the polygon as curved lines to distinguish them better from the arcs of the 
circumscribing circle. 

33 See Saito 2008: 78–9 for a discussion of variants of this diagram in the manuscripts of the 
Elements.
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 In a number of cases, the tendencies toward overspecifi cation and 
graphical indiff erence resulted in a fi gure that was diffi  cult to interpret as a 
graphical object. For example, we may refer again to  Figure 2.14  in which 
two diff erent centres of the circle are depicted, neither of which appears to 
lie at the centre of the circle. In such cases, the scribes oft en tried to correct 
the fi gure so that it could be more readily interpreted without ambiguity. 

 As an example of a redrawn diagram, we take  Elem .  iii .21, which proves 
that, in a circle, angles that subtend the same arc are equal to one another. 
As seen in  Figure 2.15 ,  Vatican 190  portrays the situation by showing the 
two angles BAΔ and BEΔ as clearly separated from the angle at the centre, 
angle BZΔ, which is twice both of them. In the majority of Heiberg’s manu-
scripts, however, as seen in  Bodleian 301  and  Vienna 31 , through over-
specifi cation the lines BA and EΔ have been drawn parallel to each other 
and at right angles to BΔ, so that the lines AΔ and BE appear to intersect 
at the centre of the circle. In the course of the proposition, however, centre 
Z is found and lines BZ and ZΔ are joined. In order to depict centre Z as 
distinct from the intersection of lines AΔ and BE, centre Z has been placed 
off  centre, oft en by later hands, as seen in the examples of  Bodleian 301  and 
 Vienna 31 .  34    Because of the variety of the manuscript fi gures, it does not 
seem possible to be certain of the archetype, but it probably either had point 
Z as the intersection of AΔ and BE, as in the example of  Vienna 31 , or it had 
a second centre called Z but not located at the centre of the circle, as in the 
example of  Bodleian 301 .  35    Later readers, then, found this situation confus-
ing and corrected the diagrams accordingly. In this case, the redrawing was 
done directly on top of the original fi gure.  

34 See Saito 2008: 67 for further discussion of this diagram.
35 In Bodleian 301, a later hand appears to have crossed out this original second centre, Z, and 

moved it closer to the centre of the circle.

 Figure 2.15      Diagrams for Euclid’s  Elements , Book iii, Proposition 21.    
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 Th e redrawing, however, might also be done at the time when the text 
was copied and the fi gures draft ed. In this case, the source diagram is lost in 
this part of the tradition. Of the manuscripts used by Heiberg, the  diagrams 
in  Vienna 31  are oft en redrawn for metrical accuracy, but less oft en for 
overspecifi cation.  36    For the diagram accompanying  Elem .  i .44, the fi gure in 
 Vienna 31  (see  Figure 2.16 ) should be compared with that in  Vatican 190  
(see  Figure 2.6 ). As can be seen, the given area Γ is indeed the size of the 
parallelogram constructed on line AB, but the parallelogram is depicted as 
a rectangle and this is refl ected in the fact that the given angle, Δ, is depicted 
as right. In this case, the diagram is metrically accurate but it still represents 
any parallelogram with a rectangle.  

 For an example in which the diagram in  Vienna 31  has been corrected 
both for metrical accuracy and overspecifi cation, we consider  Elem .  i .22, 
which demonstrates the construction of a triangle with three given sides. 
As seen in  Figure 2.17 , the older tradition, here exemplifi ed by  Vatican 190 , 
represents the constructed triangle with the isosceles triangle ZKH, and 
the given lines with the equal lines A, B and Γ. In some of the manuscripts, 
however, the constructed triangle ZKH is drawn as an irregular acute 
triangle.  37    In  Figure 2.17  we see the example of  Vienna 31 , in which the 

36 As we saw in the foregoing example, in the case of Elem. iii.21, however, the original scribe of 
Vienna 31 did not correct the diagram, but a correction was added by a later hand.

 Figure 2.16      Diagrams for Euclid’s  Elements , Book i, Proposition 44.    
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37 See Saito 2006: 118 for a larger selection of the manuscript fi gures. Th e fact that Vatican 190 
belongs to the older tradition is confi rmed by the Arabic transmission.

 Figure 2.17      Diagrams for Euclid’s  Elements , Book i, Proposition 22.    
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constructed triangle is depicted as an irregular, acute triangle and all of its 
sides are depicted as the same length as the sides that have been given for 
the construction. Indeed, here we have a fi gure that is fully in accord with 
modern tastes.  

 For  Elem .  i .22, of the manuscripts used by Heiberg in his edition,  Bodleian 
301  also depicts the constructed triangle as an irregular, acute triangle, 
similar to that in  Vienna 31 . Th e fact that  Vienna 31  and  Bodleian 301  have 
a similar irregular, acute triangle could either indicate that scribes in both 
traditions independently had the idea to draw an irregular, acute  triangle 
and randomly drew one of the same shape or, more likely, a scribe in one 
tradition saw the fi gure in the other and copied it. Th ere is  considerable 
evidence that this kind of cross-contamination took place. As another 
example that we have already seen, we may mention  Elem .  iii .21 in which 
both  Vienna 31  and  Bodleian 301  show a second centre drawn in freehand 
at some time aft er the original drawing was complete. Moreover, in the 
case of  Elem .  iii .21, in  Florence 28 , which has the same primary diagram 
as  Bodleian 301 , we fi nd a marginal diagram like that in  Vatican 190 , while 
in  Bologna 18–19 , which has the same primary diagram as  Vatican 190 , we 
fi nd a marginal diagram like that in  Florence 28 . 

 Hence, as well as being used as a cross-reference for the primary 
diagram, the fi gures of a second or third manuscript were oft en drawn into 
the margin as a secondary diagram. Although we are now only at the begin-
ning stages of such studies, this process of cross-contamination suggests 
the possibility of analysing the transmission dependencies of the diagrams 
themselves without necessarily relying on those of the text. Indeed, there is 
now increasing evidence that the fi gures, like the scholia, were sometimes 
transmitted independently of the text.  38    Th e process of cross-contamination 
has left  important clues in the manuscript sources that should be exploited 
to help us understand how the manuscript diagrams were used and read.    

 Ancient and medieval manuscript diagrams 

 Since the ancient and medieval diagrams are material objects that were 
transmitted along with the text, we should consider the ways they were 
copied, read and understood with respect to the transmission of the text. 

38 For examples of the independent transmission of the scholia of Aristarchus’ On the Sizes and 
Distances of the Sun and Moon and Th eodosius’ Spherics see Noack 1992 and Czinczenheim 
2000. Th e independent transmission of the manuscript fi gures for Calcidius’ Latin translation 
of Plato’s Timaeus has been shown by Tak 1972.
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Although, for the most part, the text and diagrams appear to have been 
copied as faithfully as possible, at various times in the Greek transmission, 
and perhaps more oft en in the Arabic tradition, mathematically minded 
individuals re-edited the texts and redrew the diagrams. 

 For the most part, in Greek manuscripts the diagrams are drawn into 
boxes that were left  blank when the text was copied, whereas in the Arabic 
and Latin manuscripts the diagrams were oft en drawn by the same scribe 
as copied the text, as is evident from the fact that the text wraps around 
the diagram. Nevertheless, except during periods of cultural transmission 
and appropriation, the diagrams appear to have been generally transmitted 
by scribes who based their drawings on those in their source manuscripts, 
despite the fact that the diagrams can largely be redrawn on the basis of a 
knowledge of the mathematics contained in the text. Hence, the diagrams 
in the medieval manuscripts give evidence for two, in some sense confl ict-
ing, tendencies: (1) the scribal transmission of ancient treatises based on 
a concept of the sanctity of the text and (2) the use of the ancient works 
in the mathematical sciences for teaching and developing those sciences 
and the consequent criticism of the received text from the perspective of a 
mathematical reading. 

 For these reasons, when we use the medieval diagrams as evidence for 
ancient practices, when we base our understanding of the intended uses of 
the diagrams on these sources, we should look for general tendencies and 
not become overly distracted by the evidence of idiosyncratic sources.   

 Diagrams and generality 

 Th e two most prevalent characteristics of the manuscript diagrams are what 
we have called overspecifi cation and indiff erence to visual accuracy. Th e 
consistent use of overspecifi cation implies that the diagram was not meant 
to convey an idea of the level of generality discussed in the text. Th e diagram 
simply depicts some representative example of the objects under discussion 
and the fact that this example is more regular than is required was appar-
ently not considered to be a problem. In the case of research, discussion 
or presentation, a speaker could of course refer to the level of generality 
addressed by the text, or, in fact, could simply redraw the diagram. Th e indif-
ference to visual accuracy implies that the diagram was not meant to be a 
visual depiction of the objects under discussion but rather to use visual cues 
to communicate the important mathematical relationships. In this sense, 
the diagrams are schematic representations. Th ey help the reader navigate 
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the thicket of letter names in the text, they relate the letter names to specifi c 
objects and they convey the most relevant mathematical characteristics of 
those objects. Again, in the course of research, discussion or presentation, 
a speaker could draw attention to other aspects of the objects that are not 
depicted, or again could simply redraw the diagrams. 

 We have referred to the fact that the diagrams could have been redrawn 
in the regular course of mathematical work, and, in fact, the evidence of 
the medieval transmission of scientifi c works shows that mathematically 
minded readers had a tendency to redraw the diagrams in the manuscripts 
they were transmitting.  39    Th is brings us to another essential fact of the manu-
script diagrams. Th ey were conceived, and hence designed, to be objects 
of transmission, that is, as a component of the literary transmission of the 
text. Nevertheless, the extent to which mathematics was a literary activity 
was changing throughout the ancient and medieval periods and indeed 
the extent to which individual practitioners would have used books in the 
course of their study or research is an open question. Th is much, however, 
is virtually certain: the total number of people studying the mathematical 
sciences at any time was much greater than the number of them who owned 
copies of the canonical texts. Hence, in the process of learning about and 
discussing mathematics the most usual practice would have been to draw 
some temporary fi gure and then to reason about it. 

 In fact, there is evidence that, contrary to the impression of the diagrams 
in the manuscript tradition, ancient mathematicians were indeed interested 
in making drawings that were accurate graphic images of the objects under 
discussion. We argue elsewhere that the diagrams in spherical geometry, 
as represented by Th eodosius’  Spherics , were meant to be drawn on real 
globes and that the problems in the  Spherics  were structured so as to facili-
tate this process.  40    As is clear from Eutocius’ commentary to Archimedes’ 
 Sphere and Cylinder , Greek mathematicians sometimes designed mechani-
cal devices in order to solve geometric problems and to draw diagrams 
accurately.  41    In contrast to the triangular parabola we saw in  Method  14, 
Diocles, in  On Burning Mirrors , discusses the use of a horn ruler to draw a 
graphically accurate parabola through a set of points.  42    Hence, we must dis-
tinguish between the diagram as an object of transmission and the diagram 
as an instrument of mathematical learning and investigation. 

39 See Sidoli 2007 for some examples of mathematically minded readers who redrew the fi gures 
in the treatises they were transmitting.

40 Sidoli and Saito 2009.
41 Netz 2004: 275–6 and 294–306.
42 Toomer 1976: 63–7.
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 In fact, we will probably never know much with certainty about the 
parabolas that were drawn by mathematicians investigating conic theory 
or the circles that were drawn on globes by teachers discussing spherical 
geometry. Nevertheless, insofar as mathematical teaching and research are 
human activities, we should not doubt that the real learning and research 
was done by drawing diagrams and reasoning about them, not simply by 
reading books or copying them out. Hence, the diagrams in the manuscripts 
were meant to serve as signposts indicating how to draw these fi gures and 
mediating the reader’s understanding of the propositions about them. 

 We may think of the manuscript diagrams as schematic guides for 
drawing fi gures and for navigating their geometric properties. In some 
cases, and for individuals with a highly developed geometric imagination, 
these secondary diagrams might simply be imagined, but for the most part 
they would actually have been drawn out. Th e diagrams achieve their gen-
erality in a similar way as the text, by presenting a particular instantiation 
of the geometric objects, which shows the readers how they are laid out 
and labelled so that the readers can themselves draw other fi gures in such a 
way that the proposition still holds. Hence, just as the words of the text refer 
to any geometric objects which have the same conditions, so the diagrams 
of the text refer to any diagrams that have the same confi gurations. 

 We may think of the way we use the diagram of a diffi  cult proposition, 
such as that of the manuscript diagram for  Spher .  ii .15 in  Figure 2.13 , in 
the same way that we think of the way we use the subway map of the Tokyo 
Metro.  43    We may look at the manuscript diagram in  Figure 2.13  before we 
have worked through the proposition to get a sense of how things are laid 
out, just as we may look at the Tokyo subway map before we set out for a 
new place, to see where we will transfer and so forth. Although this may 
help orientate our thinking, in neither case does it fully prepare us for the 
actual experience. Th e schematic representation of the sphere in  Figure 
2.13  tells us nothing of its orientation in space, an intuition of which we will 
need to develop in order to actually understand the proposition. Th e Tokyo 
subway map tells us nothing about trains, platforms and tickets, all of which 
we will need to negotiate to actually go anywhere in Tokyo. In both cases, 
the image is a schematic that conveys only information essential to an activ-
ity that the reader is assumed to be undertaking. 

 Th ere is, however, also an important distinction. Th e Tokyo subway map 
points towards a very specifi c object – or rather a system of objects that are 

43 Th e Tokyo subway map, in a number of diff erent languages, can be downloaded from www.
tokyometro.jp/e/.

http://www.tokyometro.jp/e/
http://www.tokyometro.jp/e/
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always in fl ux, and probably not nearly as determinate as we would like to 
believe – nevertheless, a system of objects with a very specifi c locality and 
temporality. A Tokyo subway map is useless for Paris. If it was drawn this 
year, it will contain stations and lines that did not exist ten years ago and 
ten years from now it will again be out of date. Th e manuscript diagram 
in  Figure 2.13 , however, has no such specifi city. It can refer to any sphere 
and does. Anyone who wants to draw a great circle on a sphere tangent to 
a given line and through a given point can use this diagram in conjunction 
with its proposition to do so. In the centuries since this proposition was 
written, a great many readers must have drawn fi gures of this construction 
– on the plane, on the sphere, in their mind’s eye – and this diagram, strange 
and awkward as it is, somehow referred to all of them. It is in such a way 
that the overspecifi ed, graphically inaccurate diagrams that we fi nd in the 
manuscript tradition achieve the generality for which they were intended.     
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