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Ptolemy solves problems in spherical astronomy involving the arcs of great circles by 
means of mathematical techniques that modern scholars refer to as spherical trigonom-
etry. In fact, spherical tetrapleurometry would be a more accurate appellation. These 
methods are based on a fundamental theorem, attributed to Menelaus, which relates 
the arcs of great circles forming a concave quadrilateral.1 Consider Figure 1. The two 
most important versions of the basic theorem state that if the arcs of the quadrilateral 
are not greater than 180E, and Crd(x) is the chord subtending arc x, then 
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In general, it is necessary to know fi ve terms in order to solve for the sixth term. 
However, Ptolemy shows that there are certain cases where it is suffi cient to know 
four terms and the sum or difference of the other two.2 For the purposes of this paper 
I shall call the techniques built up around this fi gure and these compound ratios 
ancient spherical trigonometry.

The standard current view holds that Hipparchus did not possess the methods of 
ancient spherical trigonometry and that these were later developed by Menelaus. This 
view follows Neugebauer who simply says that it is evident from “everything we 

Figure for the so-called Menelaus Theorem, the fundamental theorem of ancient spherical trigo-
nometry.
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know about Greek ‘Spherics’ and Menelaus’ role in it”.3 Both Björnbo and Rome, 
however, through their investigations of Greek spherics, had come to the opinion that 
the ancient trigonometrical methods on the sphere went back at least as far as Hip-
parchus, and that Hipparchus had used them in his investigation of rising times.4 The 
basis of the claim that Menelaus was the founder of ancient spherical trigonometry 
is the fact that the fundamental theorem of these methods is found in the surviving 
texts of Menelaus’s Spherics as theorem Spherics III 1.5 The relationship between 
what survives of Menelaus’s text in Arabic and the Greek tradition is not, however, 
nearly as straightforward as has previously been assumed.6

In fact, there are a number of reasons for being suspicious of the standard view of 
Menelaus’s role in the history of spherics. (1) There is nothing in the mathematics or 
presentation of the fundamental theorem that compels us to believe it could not have 
been written before Menelaus’s time. (2) It makes use only of rudimentary lemmas 
that might well have been assumed by Euclid in his more advanced works and relies 
on no other theorem in the Spherics. (3) The lemmas as they appear in the Arabic text 
may well have found their way in via Ptolemy and not the other way around. (4) The 
theorem makes no use, or mention, of spherical triangles, the hallmark of Menelaus’s 
approach to spherical geometry. (5) The theorem appears as the fi rst proposition in the 
third book and introduces a number of metrical theorems that all concern spherical 
triangles, which are the proper subject of the text. The fi rst proposition in a book is 
usually a construction or a simple auxiliary theorem, one that may be well known 
and introduces the more advanced material of the book. It may be fundamental, but 
it is almost never exciting. Spherics III 1 serves precisely this subsidiary function in 
the context of Book III as a whole.

Quite apart from these circumstantial considerations, however, a close reading 
of Hipparchus’s Commentary on the Phaenomena of Aratus and Eudoxus provides 
evidence for two calculations that I will argue can be reconstructed using ancient 
spherical trigonometry. A reconstruction, however, is not to be taken as evidence. 
Hence, I will argue that in this case the analemma methods as they are handed down 
in the ancient and medieval sources cannot be used to make the necessary calcula-
tions. Moreover, it will be found that the trigonometrical reconstructions make use 
of a lemma that is found in Ptolemy’s Almagest but never used. This unmotivated 
lemma gives us reason to believe that Ptolemy took his material from a source that 
still required it and that when he revised this previous work for the purpose of writing 
the Almagest he neglected to excise the now unnecessary lemma. All these contin-
gencies conspire to argue that the source from which Ptolemy drew the fundamental 
mathematics for his treatment of spherical astronomy went back to Hipparchus’s 
work on simultaneous risings.7

Hipparchus’s Commentary II 2, 25–28

There are numerous places in Hipparchus’s Commentary, especially in the second, 
systematic part, where we can suppose that Hipparchus proceeded by metrical  analysis 
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but where he may also have used nomographic techniques or manipulations of a star 
globe. There is one place, however, where we can safely assume that metrical analysis 
was used because he tells us as much.

The phrase “by means of lines”, dia tōn grammōn, was fi rst recognized as technical 
terminology by Luckey.8 It is used by Ptolemy extensively in the Almagest where it 
generally means “through the techniques of metrical analysis”.9 It is again used by 
Ptolemy in the Analemma where it denotes a problem that is soluble through metri-
cal analysis, in this case using plane trigonometry.10 Solutions that are described as 
dia tōn grammōn, or with the related adjective grammikos, are often contrasted, by 
both Ptolemy and Theon, to solutions that proceed by means of tables. Tables are 
generally constructed dia tōn grammōn, but once constructed they save the user the 
hassle of solving a certain set of problems dia tōn grammōn by providing a ready 
numerical algorithm.11

Our fi rst evidence of the phrase, however, is a use by Hipparchus in the Commen-
tary.12 The context is a discussion of the points of the ecliptic that rise and culminate 
simultaneously with the setting of the “southernmost star in the left foot of the Bear 
Keeper” (υ Boo).13 Hipparchus gives the values of the points of the ecliptic at the 
principal points of the local coordinate system and says that he demonstrated these 
values dia tōn grammōn in other works devoted to such things. Since the passage 
is not long, it will be useful to translate it in full. I have numbered the sentences for 
later reference. Hipparchus’s Commentary II 2, 25–28 reads as follows:14 

[1] Now, let the southernmost star in the left foot of the Bear Keeper [υ Boo] be 
imagined as situated on the horizon toward the west. [2] This star is, however, 
27»E north of the equator, where the circle through the poles is 360E. [3] For this 
reason, the circle drawn through the said star parallel to the equator will clearly 
have an arc above the Earth of approximately 15 – ° parts, where a whole circle 
is 24 parts. [4] Half of the said arc, from the meridian to the setting, is therefore 
approximately 7½ of these parts. [5] But the said star is situated at about 1EK 
along the parallel circle. [6] When the same star is setting, 23»EN15 along the 
parallel circle must culminate. [7] But when this point culminates, 22EN on the 
ecliptic must culminate. [8] But when 22EN on the ecliptic culminates, around 
6EF rises on the underlying horizon. [9] For each of these statements was dem-
onstrated by means of lines (dia tōn grammōn) in the treatises we composed 
generally concerning these things. [10] Therefore the left foot of Bootes sets 
opposite 6EF.

This passage derives three sets of values from the position of a star, given in 
equatorial coordinates. The fi rst set of values (in [3], [4] and [6]) are the results of 
the preliminary problem, the second set (in [7]) the results of the primary problem, 
and the fi nal set (in [8]) the results of the secondary problem. 

The essential claim of this passage is that if the position of a star is given in equa-
torial coordinates then Hipparchus has mathematical methods for determining the 
points of the zodiac at the principal positions of the local coordinate system. Here, 
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Hipparchus simply gives his results and refers the curious reader to other works where 
his methods are presented in more detail. It is possible that the special right ascension 
of υ Boo (α = 180E) allows a shortcut to the values given in [7] and [8]. However, 
I take [9] to indicate that Hipparchus elsewhere set out general methods that would 
solve these kinds of problems, not that he there solved these particular problems. It 
will be useful to follow through Hipparchus’s argument in detail.

After setting the star on the western horizon in [1], Hipparchus gives the star’s 
declination in the equatorial coordinate system in [2]: δ = 27»E N.16 From this, Hip-
parchus calculates the arc of the equatorial parallel, the δ-circle, through the star 
which is above the horizon and gives its value in [3] as 15 – ° twenty-fourths of a 
circle, or 224¼E. In this passage, Hipparchus uses two different units to measure arc 
length: divisions of the circle into 360E, and 24 parts, or 15E arcs. Dropping the –° 
twenty-fourths, or rounding up ¾E, in [4], Hipparchus approximates half of the arc 
of the δ-circle above the horizon as 7½ twenty-fourths of a circle, or 112½E. Neuge-
bauer takes the calculation of the value stated in [3] to be what Hipparchus refers 
to as having determined dia tōn grammōn and has demonstrated that it can be done 
using analemma methods.17 The analemma methods are the best, and probably the 
only, ancient means of performing this calculation. In fact, however, this is merely 
the preliminary calculation. In [5], Hipparchus introduces the right ascension of υ 
Boo, pointing out that the star lies on its δ-circle at around 1EK, in other words, α = 
180E. Hipparchus designates arc length on any circle parallel to either the ecliptic or 
the equator by a system of signs and degrees, where the following signs denote 30E 
multiples. In this way, a great circle drawn through the poles of one of the principal 
great circles will cut all of the parallel circles at the same sign and degree as it cuts the 
principal great circle. Moreover, he starts each sign with 1E, so we convert from his 
degree positions to ours by subtracting 1E and adding the multiple of 30E indicated 
by the sign.18 Hence, as [6] states, when υ Boo sets, 23½EN of the equatorial parallel, 
and of the equator, culminates. In other words, 180E + 112½E = 292½E, or 23½EN. In 
[7] and [8] Hipparchus tells us that when this degree of the parallel circle culminates, 
22EN of the ecliptic culminates and 6EF of the ecliptic rises. He follows these 
claims, in [9], with the remark, “For each of these statements was demonstrated dia 
tōn grammōn in the treatises we composed generally concerning such things”.19 The 
primary and secondary problems are the determination of the degrees of the ecliptic 
rising and culminating, given the culminating point of the equator. 

Hipparchus may include the preliminary calculation, that of the arc of the δ-circle 
that is above the horizon, as one of the things that he showed dia tōn grammōn, 
but more particularly he refers to the determination of the culminating and rising 
points of the ecliptic. Both of these problems can be solved with a table of rising 
times. For the primary calculation, we use the column for sphaera recta and allow 
the horizon to serve as the meridian.20 For the secondary calculation, we follow a 
procedure like that given by Ptolemy in Almagest II 9.21 His use of the phrase dia tōn 
grammōn, however, makes it clear that Hipparchus did not proceed in this manner. 
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The  analemma methods are the best ancient methods for making determinations on 
parallel circles, but when it comes to calculating arc lengths on oblique great-circles 
they are not generally useful.

The next three sections lay out the reconstruction of the solution to the primary 
problem using ancient spherical trigonometry and show why the analemma is unable 
to solve problems of this sort. A penultimate section discusses the solution to the 
secondary problem, the details of which are too similar to the primary problem to 
warrant full treatment.

Reconstruction of the Approach to the Primary Problem

The primary problem is the determination of the culminating point of the ecliptic 
given that 23½EN of the equator, our α = 292;30E, is culminating. This section will 
show that the ancient trigonometrical methods are able to make this calculation. 
Consider Figure 2. Let ALCM be the meridian, LM the horizon, ACD the equator, 
and EHD the ecliptic. The arcs CD

)

 and HD

)

 are the continuation of the equator and 
the ecliptic on the other side of the meridian. This method of drawing the fi gure fol-
lows what we fi nd in the Almagest.22  

Since the star is setting, we let K represent υ Boo so that W is the west point and 
S the south pole. Hence, the movement of the sphere is from B toward W, so that the 
order of the following signs is in the opposite direction. Since, by the preliminary 
calculation, 23;30EN on the equator is culminating, 1EN on the equator will be 
22;30E in advance of C. Let B represent this point so that BC

)

 = 22;30E. Hence, if we 
join the arc of the solstitial colure SGB

)

, point G will be the winter solstice, 1EN, and 
angle SBD = angle SGD = 90E. Then D is the vernal and F the autumnal equinox. 
We join SD

)

 so that angle SDB = 90E. Hence, SB

)

 = BD

)

 = GD

)

 = 90E, and BG

)

 = ε = 
23;51,20E.23 The fundamental theorem of ancient spherical trigonometry, given in 
Equation 2, states24 that
 

Figure for the reconstruction of the primary problem, based on the fi gure in Almagest II 11. Circle 
ASML is the meridian, AWCD is the equator, EFHD is the ecliptic, W is the west point, F the autum-
nal equinox, G the winter solstice, and C is point of the equator which is culminating, 23½EN or α 
= 293;30E. The problem is to determine the degree of the ecliptic that is rising at point H.

FIG. 2. 
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(3)

Since we also know that HG

)

 + HD
)

 = 90E, we can solve for HG

)

. We will take up 
the completion of this calculation after we have seen how this situation would be 
modelled in the analemma.

Modelling the Primary Problem in the Analemma

It is diffi cult to give a complete description of the ancient analemma techniques 
because we have so few examples of the analemma in mathematical practice. The 
best we can do is form a picture of the practice based on the ancient and medieval 
evidence. Ptolemy and Heron are the only ancient authors who preserve texts treat-
ing the analemma as a tool for mathematical investigation.25 Most discussions of 
the analemma as a calculating device are modern reconstructions as opposed to 
explications of ancient texts.26

The central device of the analemma is the translation of arcs of the sphere into 
arcs on the plane of the fi gure. This translation takes place either through rotation 
or superposition. Both of these are mathematically equivalent to orthogonal projec-
tion. Orthogonal projection allows a point on the sphere to be specifi ed in the local 
frame of reference. In practice, this means that in order to fi nd a relation between 
two frames of reference, the coordinate circles in these two systems must be per-
pendicular. Hence, if the equatorial or ecliptic frames of reference can be reduced 
to orthogonal projection, a point on the sphere can be specifi ed and basic problems 
of spherical astronomy can be solved. The analemma is useful for (1) relating the 
equatorial system to the system of the local horizon, (2) relating the ecliptic system to 
either of these two systems when an equinox is rising, or (3) making determinations 
on parallel circles. In cases where the ecliptic is oblique to the meridian, however, 
the analemma is not generally useful.27 Examples of problems solved using (1) are 
Heron’s determination of the distance between two cities based on simultaneous 
lunar eclipse observations, and medieval Arabic determinations of the qibla.28 By 
considering individual points of the ecliptic, Ptolemy’s Analemma uses (2) to deter-
mine the local coordinates of a given point of the ecliptic at a given time. It is not 
generally possible to use the analemma to transform between ecliptic and equatorial 
coordinates, but because (1) allows us to transform between the equatorial and local 
coordinate systems, (2) allows us to specify the equatorial coordinates for points of 
the ecliptic. It should be noted that this solves the inverse of the primary problem: 
to determine the culminating point of the equator given the culminating point of the 

.
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ecliptic. Although there are no ancient examples of (3), this would seem to be an 
obvious use for the analemma since it allows for the solution of problems that cannot 
be handled by ancient spherical trigonometry. Neugebauer and Wilson have given 
reconstructions that solve problems through this use of the analemma.29 

It can be shown that the analemma is of no use for calculating the culminating 
point of the ecliptic given the degree of the equator culminating. In fact, in this case, 
setting up the analemma fi gure would involve knowing what we are trying to fi nd. 
Consider Figure 3. Let ADBC be the meridian with AB the gnomon and DC the 
diameter of the horizon. We let the point S be υ Boo setting so that HG is the diameter 
of the δ-circle of υ Boo. Since we are given the equatorial coordinates of S, we can 
calculate SH

)

 = 112;30E using the analemma as above.30 In order to make use of the 
analemma, we need to draw the ecliptic on the fi gure. Let LK be the diameter of the 
ecliptic and assume, for the sake of the argument, that we can determine angle LTF 
by analemma techniques.31 Let point M be the autumnal equinox, the intersection 
of the ecliptic and the equator. For the analemma to be of any use, we need to rotate 
the ecliptic into the plane of the fi gure so that M maps to some point P. We will then 
solve for KP

)

 which, since P is the autumnal equinox, will be suffi cient to solve the 
problem. Unfortunately, we cannot set up the analemma fi gure without assuming a 
value essentially equivalent to this arc.

Under normal circumstances, in every analemma preserved from the ancient or 
the medieval periods, the two circles that we wish to compare are perpendicular to 
one another and the fi gure allows us to exploit this feature to determine the position 
of a given point on the two circles. Take for example υ Boo at point S. Consider 
the semicircle GSH rotated into its proper position so that it is perpendicular to the 
plane of the fi gure. Then S is on a point above I at distance SI. Then the position of 

Figure for the application of the analemma to Hipparchus’s calculation, based on the fi gures of 
Ptolemy’s Analemma. Circle ADBC is the meridian, DC is the diameter of the horizon, AB the 
gnomon, FE is the diameter of the equator, HG the diameter of the δ-circle of υ Boo, LK is the 
diameter of the ecliptic, and semicircle LNMK is the arc of the ecliptic west of the meridian. Point 
S is υ Boo, M is the autumnal equinox, N the winter solstice, O the intersection of the ecliptic and 
the horizon, and L the point of the ecliptic that is culminating.

FIG. 3. 
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the star can easily be determined on either the horizon or its δ-circle by dropping 
perpendiculars. In our case, however, the semicircle of the ecliptic, LNMK, is not 
perpendicular to the meridian and the only thing we know about its position is the 
arc from the autumnal equinox to the horizon.

Let M be the autumnal equinox, O the intersection of the ecliptic and the horizon, 
and N the winter solstice. Then, by the preliminary calculation on the analemma, 
we know that MT

)

 on the equator is 22;30E, as above. Let the ecliptic be rotated into 
the plane of the fi gure so that M maps to P, O to Q and N to R. Then RL

)

 will be the 
arc distance between the culminating point of the ecliptic and the winter solstice. 
Unfortunately, the analemma fi gure gives us no help in determining any of the points 
P, Q or R on the fi gure. In fact, if we knew the position of any one of these points in 
relation to the cardinal points of the meridian, the problem would already be solved. 
The reason that the analemma is of no use in this situation is simple: the ecliptic is 
not perpendicular to the meridian.

This discussion has shown that although the present problem can be modelled on 
the analemma fi gure, the values that we need to make the model exact are the same 
values that we are using the model to fi nd. Hence, the analemma is not a serviceable 
tool for problems of this sort.

Reconstruction of Hipparchus’s Calculation

In Almagest I 13, in the course of laying the foundation of ancient spherical trigo-
nometry, Ptolemy gives two short lemmas of metrical analysis that he himself never 
needs. These lemmas increase the scope of the fundamental compound ratios of the 
trigonometrical methods. Since there are six terms in the compound ratio, fi ve terms 
will generally be required to solve for any one term. In fact, in the Almagest fi ve 
terms are always used to solve for an unknown term.32 It is clear, however, that it will 
not always be possible to obtain fi ve terms as given. The lemmas given in Almagest 
I 13 provide for certain cases where four terms and either the sum or the difference 
of the two unknown terms are given.

Only the fi rst of these lemmas concerns us here. Consider Figure 4. The fi rst 
lemma states that if AG

)

 and the ratio Crd(2 AB

)

)/Crd(2 BG

)

) are given, then each of 

Figure for the fi rst lemma of numerical analysis in Almagest I 13. This is the lemma required to 
carry out Hipparchus’s calculation.

FIG. 4. 
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AB

)

 and BG
)

 will be given. Join AG and BD and drop DZ perpendicular to AG. Now, 
if AG

)

 is given, then angle ADZ is given, because it is half of AG

)

 [Data 2]. Hence, 
triangle ADZ will be given [Data 40]. Now, since chord AG is given [by the Chord 
Table, Almagest I 11], and AE/EG = Crd(2 AB

)

)/Crd(2 BG

)

) is given [this equality is 
established in the previous theorem in Almagest I 13], then AE will be given [Data 
7], and so will ZE by subtraction [Data 2 and 4]. Hence, since DZ is given in the 
right triangle EDZ [Elements I 47], angle EDZ will be given [Data 1 and 41],33 and 
hence the whole of angle ADB will be given [Data 40]. Therefore, AB

)

 will be given, 
and BG

)

 will be given by subtraction [Data 4].34

In our case, we have AG

)

 = 90E and, by Equation 3,
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where x is given, say x = 1. Thus y is given and, since x/y = AE/EG, and AE/AG = 
1/(1+y) [Elements V 18], therefore
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Although Data 41 tells us that the triangle ZDE is known, it gives us no help in 
assigning values to the triangle’s angles. To fi nd the value of angle ZDE we set DE 
= 120p and we use the Chord Table to fi nd ZE

)

 in the circle around triangle ZDE; this 
will be twice angle ZDE, hence ZDE = 24;15E. For angle ADZ, we set AD = 120p 
and again use the Chord Table. We fi nd that angle ADZ = 45E. Hence,

 ���� 69;15angleangle ADZZDEAB

)

 (4)

and, by subtraction, ���� 45;20ABAGBG

) ) )

. (5)

If we return with the values given by Equations 4 and 5 to the original problem we 
see that HD

)

 = 69;15E and HG

)

 = 20;45E, see Figure 2. Hence, the culminating point 
of the ecliptic is 20;45E in advance of the winter solstice. Therefore, since the winter 
solstice is 1EN, the culminating point of the ecliptic by our calculation is 21;45EN. 
This is very close to Hipparchus’s value of 22EN.

.
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The quarter-degree discrepancy need not worry us since there are a number of 
possible sources for this disparity. I carried out these calculations according to 
Ptolemy’s chord table and the system of sexagesimal fractions, while we do not 
know the details of Hipparchus’s chord table, and he seems to have preferred to 
work with fractions.35 The calculations, as we have seen, are involved, and repeated 
roundings may well account for this disagreement: I carried out these calculations 
on a computer to fi ve sexagesimal places, while Hipparchus carried out his calcula-
tions by hand and very likely rounded the fractions as he went. Most importantly, 
Hipparchus does not seem to have been interested in a high degree of precision in 
this passage. We saw above, in the preliminary calculation of the arc of the δ-circle 
above the horizon, that he rounded up by 0;45E. If this is taken as an indication of 
the quantity of rounding Hipparchus saw as permissible in calculations of this sort, 
then an agreement of 0;15E is quite good.

This reconstruction has shown that Hipparchus uses the phrase dia tōn grammōn 
in a technical sense to signify a calculation that is carried out by means of metrical 
analysis. This is the same technical meaning that it has in Ptolemy. Since the usage 
we have in Hipparchus is the earliest in the Greek corpus, the technical meaning 
likely originated around his time and was appropriated by later writers in the same 
tradition.

Discussion of the Secondary Problem

The secondary problem can be solved along lines similar to the primary problem by 
a double application of the fundamental theorem of ancient spherical trigonometry. 
Since we are now to determine the degree of the ecliptic rising, we will turn our atten-
tion to the other side of the sphere. Consider Figure 5. Let AMNL be the meridian, 
LM the horizon, AEDC the equator, and FQDH the ecliptic. The arcs CB

)

 and GH

)

 

Figure for the reconstruction of the secondary problem, based on the fi gure in Almagest II 11. 
Circle AMNL is the meridian, LM the horizon, AEDC the equator, FQDH the ecliptic, E the east 
point, D the vernal equinox, G the winter solstice, K the summer solstice, and C the point of the 
equator that is culminating, 23½°N or α = 293;30°. The problem is to determine the degree of the 
ecliptic that is rising at point Q.

FIG. 5. 
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are the continuation of the equator and the ecliptic on the other side of the sphere. 
Let E be the east point, N the north pole, G the winter solstice, D the vernal equi-

nox, and K the summer solstice. The great circle GBNKR will be the solstitial colure. 
The sphere will rotate about the celestial poles from A toward C and the order of 
the signs will be from H toward F. The arcs RA

)

 and KF

)

 are symmetrical, and hence 
equal, to the arcs BC

)

 and GH
)

. Since Q is the point of the ecliptic that is rising the 
problem will be solved if we can fi nd DQ

)

. 
With respect to the convex quadrilateral NADK, a variant of the fundamental 

theorem36 of ancient spherical trigonometry asserts that 
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where KR

)

 = ε = 23;51,20°, NK

)

 = 90E – ε, RD
)

 = 90E and AD

)

 = 90E + RA

)

 = 90E + 
22;30E. Moreover, NF

)

 + FA

)

 = 90E. Hence, since the ratio Crd(2NF

)

)/Crd(2FA

)

) and 
the sum of the two arcs are given, the two arcs NF

)

 and FA
)

 are given individually by 
the lemma demonstrated in the previous section. If we assume the elevation of the 
north pole to be the ancient value for that at Rhodes, φ = 36E, FL
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 will be given and 
we can complete the problem.

With respect to the convex quadrilateral LADQ, the fundamental theorem asserts 
that
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where  ED

)

 = 90E – CD

)

 = 22;30°, and AE

)

 = 90° and LA

)

,  FA

)

are given by the previous 
application of the fundamental theorem. Moreover, DQ

)

 + QF

)

 = 90° + 21°. Hence, 
since the ratio Crd(2 DQ

)

)/Crd(2 QF

)

) and the sum of the two arcs are given, the two 
arcs DQ

)

 and QF

)

 are given individually. 
There is no reason to reproduce the tedium of these calculations. It suffi ces to say 

that Hipparchus has again rounded his fi gure, 6EF, to the nearest whole degree.
Even without drawing a new fi gure, it is clear that this problem likewise cannot be 

solved on the analemma. The same diffi culties that we encountered with the primary 
problem are again operative. Because the ecliptic is oblique to the meridian, we have 
no ready way of locating the principal points of the ecliptic with respect to the local 
coordinates. Since Hipparchus tells us that he solved these problems by metrical 
analysis, we should assume that he used the techniques of spherical trigonometry.

Final Remarks

In the one place in the Commentary where we can be sure that Hipparchus proceeded 
by calculation, we have good reason to believe that he used a combined approach 
employing both the analemma and the so-called Menelaus Theorem. Given the equa-
torial coordinates of a star on the western horizon, Hipparchus determines the degree 
of the equator at the meridian. This calculation is made using the analemma methods. 
Given the culminating point of the equator, Hipparchus uses the methods of ancient 
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spherical trigonometry to determine both the culminating and rising points of the 
ecliptic. These calculations, however, can be carried out only if we make use of an 
unmotivated lemma in Ptolemy’s Almagest. Ancient spherical trigonometry allows 
us to carry out the calculation with as much precision as we should expect based on 
approximations demonstrated elsewhere in the same passage.

We should not underestimate the signifi cance of the fact that the lemma needed 
for calculating Hipparchus’s result is found in Ptolemy’s Almagest but never used. 
The sections of the Almagest that cover spherical astronomy, Almagest I 13–II 13 and 
VII 5–6, are lean from a logical and mathematical perspective. Very little material is 
introduced that is not used in later mathematical arguments. It is a tight systematic 
development of Ptolemy’s theory of spherical astronomy, not a collection of tools and 
theorems that the mathematical astronomer may fi nd useful. The few other instances 
of material in these sections that is not later used can be attributed to gestures toward 
historical topics or historical strata in the text. The fact that Ptolemy includes these 
two lemmas is a good sign that he carried them over from one of his sources. The fact 
that one of these lemmas is necessary to a probable reconstruction of Hipparchus’s 
calculation makes it likely that Ptolemy based his work on material that originated 
with, or was derived from, Hipparchus’s work on spherical astronomy.

If this reconstruction may be taken as a representative sample of Hipparchus’s 
spherical astronomy, we can notice a fundamental difference between his approach 
and Ptolemy’s. Whereas Hipparchus seems to have combined the analemma with the 
trigonometrical methods, Ptolemy took pains to base his spherical astronomy on the 
trigonometrical methods alone. Even in Almagest VII, where Ptolemy demonstrates 
how to fi nd the degrees of the ecliptic and equator that rise, culminate and set with a 
given star, he uses only the trigonometrical theorem.37 In fact, when Ptolemy intro-
duces the mathematical theorems of ancient spherical trigonometry he states that 
they will allow him “to carry out most demonstrations involving spherical theorems 
in the simplest and most methodological way possible”.38 By calling his approach 
simple and methodological, he is likely referring to the fact that it makes use of only 
one of the two ancient metrical methods on the sphere.
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