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Abstract This paper is a contribution to our understanding of the technical concept of
given in Greek mathematical texts. By working through mathematical arguments by
Menaechmus, Euclid,Apollonius,Heron andPtolemy, I elucidate themeaning ofgiven
in various mathematical practices. I next show how the concept of given is related to
the terms discussed byMarinus in his philosophical discussion of Euclid’s Data. I will
argue that what is given does not simply exist, but can be unproblematically assumed
or produced through some effective procedure. Arguments by givens are shown to be
general claims about constructibility and computability. The claim that an object is
given is related to our concept of an assignment—what is given is available in some
uniquely determined, or determinable, way for future mathematical work.

1 Introduction

This paper is a contribution to our understanding of the technical concepts of given
in Greek mathematical texts. The linguistic practices surrounding this and related
concepts have recently been the subject of an excellent study by Acerbi (2011a), from
whom I have learned much. In this paper, I focus on mathematical practice, hoping
to elucidate how Greek mathematicians made use of the concepts of given in solving
problems and in pursuing mathematical research.
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354 N. Sidoli

The terminology of given in Greek mathematical texts needs to be distinguished
from the general usage of the same term. In the first place, the ancient mathematical
usage appears to be fairly restricted. Whereas we might say “a theorem shows that,
given some configuration of objects…” or “given that a square number is equal to a
given number…” and so on, we do not find such statements in Greek mathematical
texts.1 Indeed the terminology of givens does not show up in Greek theorems, except
those directly related to the analytical activity of problem-solving, such as those of
Euclid’s Data, or in the lost treatises on loci and porisms.2 As I will argue at length
below, the notion of given specifies the status of certain objects that we work with in
completing problems.3 In the second place, the status of being given can apply to an
object at any stage of a problem. It is not that case that some objects are given and
then some other objects result, or are produced, from these. As we will see below in
reading the ancient texts, objects are also said to be given when they can be produced
from given objects through an effective procedure—that is, one that can actually be
carried out in a finite number of steps.4 In order to adhere to this usage, I will use
given, in italics, to indicate the technical usage, and given, in roman, in the few cases
where I indicate more general conceptions.

The concept of given was denoted by various forms of the verb “to give” (d…dwmi)
and its participles. Although the nominal forms are most common, a range of verbal
forms are also found. In terms of mathematical practice, I cannot find any distinction
between these various forms, and will denote them all with given.5 There appear to
have been a number of related terms that were used in mathematical texts as synonyms
of given, andwhich are discussed in the late fifth centuryce by the Platonic philosopher
Marinus ofNeapolis. SinceMarinus apparently took his terminology from the readings
of the mathematical texts themselves, however, I will postpone any discussion of the
various terms he introduces until after we have seen how the concept of given functions
in a number of the mathematical authors whom he mentions.

1 Greek philosophical texts, on the other hand, do speak in thismore general way. See, for example, Proclus’
discussion of the parts of a proposition (Friedlein 1873, 203–205).
2 I do not follow Heath (1921, I.422) in his claim that propositions in the Data can be either theorems or
problems depending on how they are used. In this I agree with Acerbi (2011a, 126).
The contents of the lost ancient treatises on loci and porisms have been summarized by Jones (1986,

547–602).
3 Here I mean “problem” as a unit of mathematical text that can be contrasted with a “theorem.” In Greek
mathematical discourse, solving a problem generally means doing what one set out to do, and this is usually
expressed by saying that the problem has been done, or produced.
4 This way of talking has struck many readers as strange, and has resulted in modern scholars repeatedly
mistranslating the ancient andmedieval texts. Taisbak (2003, 13–14)mentionsK.Manitius andG.J. Toomer,
but see also Hughes (1981, 127 ff.) and Lewis (2001, 271–273).
5 Fournarakis and Christianidis (2006)—contrary to almost all other scholars—argue that there is a mean-
ingful distinction between the perfect and aorist participles of d…dwmi that has both philosophical and
mathematical implications. I do not see that this difference has, however, any meaning for the mathematical
practice. Acerbi points out that, in the Data, finite verb forms are also used with what appears to be the same
meaning, and he gives statistics for the occurrences of the various forms of the particle in canonical authors
(Acerbi 2011a, 122, 127). In other authors, we also have a range of usage of finite verbs and particles. I
cannot see any mathematically meaningful distinction between the different forms and I am dubious of our
ability to propose emendations to the received manuscripts along these lines.
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The concept of given in Greek mathematics 355

I will take the position that Greek mathematicians were deliberate in their choice of
language and that they used the terminology of given in a wide range of mathematical
contexts because they meant to designate a certain similarity of status among all those
objects that they called given. In this paper, by reading a variety of different texts that
treat given objects, I will seek to develop a general notion of the concept of given that
is applicable in all of these different situations.

After a discussion of some historiographical considerations, the introduction of the
mathematical notation that I will use, and the proposal of a functional definition of
given, I will discuss the role of given in a number of mathematical contexts: a problem
presented as an analysis–synthesis pair attributed to Menaechmus, Euclid’s Data, an
analysis–synthesis pair from Apollonius’ Conics, and arguments by givens in Heron
and Ptolemy.6 I conclude by looking for common aspects of the concept of given in
all of these various contexts.

1.1 History and narrative

Due to the overall lack of sources, and the uncertainty surrounding our extant sources, it
is difficult, if not impossible, to write the history of Greekmathematics in anything like
the sense in which history is usually understood. Some of the sources that I examine
in this paper are subject to historical criticism to the extent that we can reasonably
doubt whether they were even written by the people to whom I attribute them, or in
the period in which I date them.

For example, the first source that I will examine was purportedly written by
Menaechmus, a contemporary of Plato’s of whom we know little beyond the tan-
talizing fragments of his mathematics and ideas reported in much later authors. The
text we will read is attributed to Menaechmus by Eutocius around the turn of the sixth
century ce, probably by way of Eudemus in the late fourth century bce. It contains
terminology that is regarded as being much later than Menaechmus, and it is possible
that key ideas were also imported into the text by later writers.

The core text that we will read, the Data, was probably composed by Euclid in the
early third century bce on the basis of some set of theorems that had been established
by his predecessors. It is believed to have been added to by later authors, and we can
be fairly certain about certain additions made by Theon of Alexandria in late fourth
century ce. There is no objective way to be certain by whom, and at what time in
the classical or Hellenistic periods, the theorems that we will read in this paper were
produced.

We do not know when Heron wrote, although it may have been around, or at least
at some time after, the mid-first century ce (Souffrin 2000; Sidoli 2011; Masià 2015).
With Ptolemy we are on firmer ground and are confident that he worked in the second
century ce—and no one has ever called into doubt his authorship of the passages of
the Almagest that we will read.

6 Diophantus’ use of given and the related concepts of posited, sought, found, determined and so on, in
both Arithmetics and Polygonal Numbers is rather involved and, consequently, I will put off examining
these texts for another time.
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356 N. Sidoli

Nevertheless, despite these caveats, I will present the texts in what I believe is their
historical order, and I will argue that there is a broad historical narrative. In particular,
I will argue that the concept of given, in its technical sense, began in the constructive
context of geometric problem-solving in the classical and early Hellenistic periods,
and was then reconstrued, or repurposed, to apply also to the computational context
of the measuration of geometric objects in the exact sciences of the late Hellenistic
and imperial periods.

This is not, however, the most important issue. My main purpose in this paper is
to convince the reader that the concepts of given with which ancient mathematicians
worked were different from the concepts of given that developed from them in later
periods, although they are closely related. Furthermore, for readers who come to
this paper interested in the way these texts were read by later mathematicians in the
medieval and early modern periods—when the ideas and methods in them might still
have been thought of as relevant—such periodization of the ancient sources is probably
irrelevant. It is unlikely that many, if any, readers of Greek mathematical texts in the
medieval and early modern periods were at all concerned with the original context of
discovery, so that once it became clear that the Euclidean texts could be subjected to
arithmetical and computational readings, these readings were taken to be inherent to
the mathematical ideas articulated in the sources. In particular, there is no indication
that any reader in the late-ancient or medieval periods thought that there was anything
unexpected about making an arithmetical or computational reading of the theorems
of the Data.

1.2 Notation

In order to facilitate discussions of the mathematical concept of given, I introduce the
following notational conventions.7

Primitive objects: I denote geometric objects such as points, and occasionally lines,
with the same letter-name as the text under discussion, in italic type, using the
distinction between capital and lowercase letters to mark the distinction between
given and non-given objects, such that A denotes a general point, while ap denotes
the same point when it is given—that is, given in position. Hence, we can denote a
general line as AB, and the same line as ABp when it is given in position but none
of its points are given, ABm when it is given in magnitude but none of its points
are given,8 or abp,m when both of its endpoints are given. In this way, aB is the
name of any line passing through the given point ap, while aBp is the name of a
certain line given in position that has given point ap as an endpoint—the label B,
however, is just part of the name of the line and does not indicate any particular
point. Since the texts dealt with in this paper sometimes use a single letter-name
for a point and sometimes for a line, when such an object is given I will always

7 This notation is based on that introduced by Dijksterhuis (1987, 51–52) in the 1938 Dutch original of his
work on Archimedes, and uses some aspects of a notation briefly employed by Taisbak (1991).
8 For example, a line that falls at a given angle on two parallels given in position.
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The concept of given in Greek mathematics 357

designate it with a subscript, such that am is a line given in magnitude, while ap

is a point given in position.
Figures: I denote rectilinear figures with bold type, such that a general, rectilinear

figure, constructed from points A, B, C , … is denoted as F(ABC . . .), a triangle
as T(ABC ), a square as S(ABC D ) or S(AB ), a rectangle as R(ABC D ) or
R(AB, BC ), and so on. A figure can be given in magnitude, F(ABC . . .)m , in
form, F(ABC . . .) f , and so on. I also use some more specific names for rectilinear
figures, the meaning of which I hope will be obvious in context.

Ratios: A general ratio between two magnitudes A and B is denoted (A : B ). A given
ratio is denoted (A : B )r .

Equations: Another convention that I will use is to put the object that was originally
known, or assumed, to be given on the right-hand side of an equation and the object
that is shown to be given on this basis on the lefthand side. In this way,

B = am

means that bm is given in magnitude because it is equal to am , whichwas previously
taken, or shown, to be given in magnitude.

Chord-table trigonometry: In order to discuss Ptolemy’s chord-table trigonometry
symbolically, I introduce the following special notation. In his plane trigonometry,
Ptolemy often switches between various measures of length, so that he can operate
with his chord table in such a way that the hypotenuse of the right triangle at issue
is always set to 120p. That is, if T(ABC ) has � B AC = 90◦, then in order to
operate with the chord table using � ABCm , � AC Bm , (AB : BC )r , or (AC :
BC )r , we must first set BCm

..= 120p. In this way, we have (ABm : 120p )r

and (ACm : 120p )r as two given ratios. The ABm and ACm of these expressions
are, however, not given absolutely, but only when we set BCm

..= 120p. Hence,
I will denote them as ABm(BC ) and ACm(BC )—which expressions denote the
numerical values measuring AB and AC when BCm

..= 120p. This somewhat
pedantic notation keeps us mindful of the fact that these measures of length with
which Ptolemy computes are stated as pairs of numbers, that is as ratios—as is
always made explicit in Ptolemy’s arguments by givens.

1.3 A functional definition of given

As we will see below in reading through a number of Greek mathematical texts, there
are three primary ways in which an object can be given. An object is said to be given
when it

(G1) is stipulated as there in some fixed and determinate way at the beginning of the
argumentative discourse—what we would call the data of the problem, or what
is asserted as given in the enunciation of a theorem of the Data,

(G2) is assumed at the mathematician’s discretion, or is arbitrary in the sense that an
arbitrary object can be chosen at the mathematician’s discretion, or

(G3) can be determined by an argument starting from (G1) or (G2) and employing
constructions and chains of inferences calling on either synthetic theorems (say,
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358 N. Sidoli

from the Elements, Conics, and so forth), or propositions concerning givens
(say, from the Data).

This tripartite definition serves to describe the way the concept of given is used in
Greek mathematical texts. As I will point out throughout the rest of this paper, all
of the various usages of given fall into one of these three types. It remains, however,
to say what being given actually means. I hope to develop an understanding of the
essential meaning of this term over the course of this study by considering how the
concept functions in a range of different sources.

Philosophically minded readers may notice that from a logical, and perhaps onto-
logical, point of view there is no difference between (G1) and (G2), since they both
serve as essentially arbitrary starting points for the reasoning.9 Nevertheless, from an
epistemological point of view, and from the perspective of problem-solving practice—
which is the proper arena of given objects in Greekmathematics—there is a difference.
Objects given in the sense of (G1), are given by the problem-setter, or by the context of
the problem, whereas those given in the sense of (G2) are given by the problem-solver,
or in the course of establising the solution—although this may, of course, accidentally
be the same individual. Moreover, objects given in the sense of (G1) may be given
by various inherent mathematical constraints, such as through the transformation of
one problem into another, the division of a problem into parts, the geometry of the
figure, and so on. Furthermore, the types of objects that were assumed in the sense of
(G2) were, in practice, quite limited—such as an example number given in value, in a
numerical computation, or a point or line given in position, in a geometrical construc-
tion. Finally, in the exact sciences, to which we will see the concept of given applied,
objects, or values, which are given by the properties of the model that we will use to
address the problem are given in the sense of (G1), whereas those that are ostensibly
given empirically, or which we will use for an example calculation are given in the
sense of (G2).

An important feature of the concept of given is that it is always local and depends
on the method of production, so an object that is not given by one procedure may, once
arrived at by some other procedure, be treated as given for a following procedure.10

9 For example, Marinus states that those who believe that what is given by hypothesis—which he also
calls “the exposited (™ktiqšmenon) in the hypothesis of the problem”—is the given are mistaken (Menge
1896, 248, 236). He may be talking to his teacher in this passage. Proclus, in his discussion of the parts
of a proposition, claims that in Elem. IV.10 nothing is given, because nothing is stated to be given in the
enunciation and there is no exposition (Friedlein 1873, 203–204). But Proclus is wrong here. Although
nothing is stated to be given, the construction of Elem. IV.10 begins by setting out an arbitrary line, AB,
and an understanding of the practice in the Elements and Data makes it clear that when an arbitrary line
segment is set out in a construction, it is set out as given in position and in magnitude. Hence, Elem. IV.10,
in fact, shows us how to construct an isosceles triangle that has as one of its equal sides as a given line,
(G2). That is, although the Elem. IV.10 makes no mention of an object given in the sense of (G1), there is
an object given in the sense of (G2). Thus, although Marinus is correct that there is no logical difference
between (G1) and (G2), we could ask for an isosceles triangle whose base is a given line, (G1), which
would be a different problem. This highlights the practical difference between (G1) and (G2)—namely
the enunciation of Elem. IV.10 leaves us free to set out a given line as either a leg or the base, so that the
constraints of the problem, (G1), leave us free in our choice of the line given in the sense of (G2). Acerbi
(2011a, 121), following Marinus, takes (G1) and (G2) to be the same.
10 A clear example of this is Ptolemy’s claim that the theorems he sets out in Alm. I.10 can be used to
compute the entries in the chord table “by means of lines” (di¦ tw̃n grammw̃n) despite his later claim that
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The concept of given in Greek mathematics 359

Indeed, as we will see below, given means little more than assumed or produced by
the permitted operations.

2 An early analysis–synthesis pair

In this section, we look at the construction of two mean proportionals to two given
lines proposed by Menaechmus in the mid-fourth century bce as a solution to the
transformation of the so-called Delian problem—to double a given cube. The text of
this solution comes from Eutocius’ Commentary to Archimedes’ Sphere and Cylinder
I, written over eight centuries later and containing what are believed to be various
anachronisms in its presentation.

For our purposes here, we need not be concerned with addressing all of the many
interesting historical and mathematical questions that arise when reading this pas-
sage from Eutocius.11 Instead, we will simply focus on the way that the term given
is used, and try to understand how given objects function in the argument. In the
translation itself, I have not provided justifications for each of the steps in the argu-
ment from propositions in the Elements and the Data, because this argument was
supposedly produced before those treatises were composed. Nevertheless, as I will
make clear in the commentary that follows, all of the steps of the argument by givens
can be justified by theorems of the Data, and all of the steps of the proof can be
justified by theorems of the Elements. Furthermore, most of the construction steps
can be justified by problems of the Elements, with the exception of the constructions
of the conic sections themselves, which appear to be direct pointwise productions
of the curves as the loci of points satisfying certain conditions (Knorr 1986, 63–
66).12 Although I have separated the argument according the traditional divisions of
an analysis–synthesis pair—transformation, resolution, construction, and demonstra-
tion—it should be noted that in this problem, transformation steps, and resolutions
steps, as well as construction steps and demonstration steps, are intermingled, so that,
as often, the division into parts is only a loose characterization of the actual structure.13

Footnote 10 continued
Crd(1/2◦) “is not given in any way by means of lines” (di¦ tw̃n grammw̃n oÙ d…dota… pwj), because it is
Crd(11/2◦ ÷ 3), where Crd(11/2◦)m is given (Heiberg 1898–1903, I.31–32, I.42). Indeed, in the derivation
of the chord table, Alm. I.10, the metrical analyses treat Crd(1/2◦) as given, despite the fact that he has
claimed that it is not given “by means of lines.” That is, once the value of this chord has been determined
as given, (G3), through his approximation technique it can be taken as given, (G2), in a new procedure.

�i¦ tw̃n grammw̃n is a technical expression in Ptolemy’s writings (Heiberg 1898–1903, I.32, 42, 251,
335, 380, 383, 416, 449; II.193, 198, 201, 210, 321, 426, 427, 429; Heiberg 1907, 202, 203). It designates
either a metrical analysis or an actual calculation—either through elementary geometry or chord-table
trigonometry.
11 Useful overviews of the mathematics have been provided by Health (1921, I.253–254) and Knorr (1986,
61–62).
12 The construction of the conic sections in both the analysis and the synthesis appears to produce the
curves using a locus definition, for which we have no corresponding problem in the extant elementary
treatises, including the Conics.
13 For discussions of the structure of an analyzed proposition, see Hankel (1874, 137–150), Hintikka and
Remes (1974, 22–26), Berggren and Van Brummelen (2000, 5–16), Fournarakis and Christianidis (2006,
49–50), Saito and Sidoli (2010, 583–588), and Acerbi (2011a, 138–141).
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360 N. Sidoli

Eutocius’ presentation of Menaechmus’ argument reads as follows (see Fig. 1):

[Exposition:]
Let there be two given lines, A and E . [Specification:] Now, it is necessary to
find two means proportionals to A and E .

[Analysis:]
Let it be done (gegonštw); and let them be B and G. [Transformation:] And let
there be set forth a line [given] in position, DH , terminating at D; and from D
let DZ be laid down equal to G; and let Z Q be produced upright, and let Z Q
be laid down equal to B.

[Resolution:]
Since, then, three lines, A, B and G, are proportional, the rectangle between A
and G is equal to the square on B—therefore, the rectangle between G and the
given A, that is DZ , is equal to the square on B, that is to the square on Z Q.
Therefore, Q is on a parabola drawn through D. Let parallels, QK and DK , be
produced. And since the rectangle between B and G is given—for it is equal
to the rectangle between A and E—therefore, the rectangle between K Q and
Q Z is also given. Therefore, Q is on a hyperbola in asymptotes, K D and DZ .
Therefore, Q is given, and so also is Z .

[Synthesis:]
Now, it will be put together (sunteq»setai) as follows. [Construction:] Let the
given lines be A and E ; and line DH is [given] in position, terminating at D.
And let a parabola be drawn through D, whose axis is DH , and the upright
side of the figure is A; and let the ordinates dropped perpendicular upon DH
be equal in square (dun£sqwsan) to the surface applied to A having a side cut
off from them toward the point D. And let it be drawn, and let it be DQ. And
let DK be upright, and in asymptotes K D, DZ let a hyperbola be drawn, such
that the lines produced parallel to K D and DZ will make a surface equal to the
rectangle between A and E . Now, it cuts the parabola. Let it cut at Q, and let
perpendiculars, QK and Q Z , be produced .

[Demonstration:]
Now, since the square on Z Q is equal to the rectangle between A and DZ , it
is that as A to Z Q, Q Z to Z D. Again, since the rectangle between A and E is

A

E

B

G

Q

Z HD

K

Fig. 1 Menaechmus’ production of two means
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Fig. 2 Menaechmus’ production of two means: Enunciation and analytical assumption

equal to the rectangle between Q Z and Z D, it is that as A to Z Q, Z D to E . But,
as A to Z Q, Z Q to Z D, therefore as A to Z Q, Z Q to Z D and Z D to E . Let
B be laid down equal to Q Z , and G equal to DZ . Therefore, it is that as A to
B, B to G and G to E . Therefore, A, B, G and E are as a continued proportion.
Which was to be found.

(Heiberg and Stamatis 1972, III.78–80)

In order to understand how the given objects function in this argument, it may help
to work through some of the details. The first thing to notice is that there are different
levels of construction.14 Considering Fig. 2 (left), we begin, in the enunciation, simply
by assuming that there are two lines, am and em , given in magnitude, (G1).

15

The analysis begins with the analytical assumption, in Fig. 2 (right), that there are
two other lines B and G—such that (am : B ) = (B : G ) = (G : em). Then begins
the first constructive process, generally known as the transformation, which must be
understood, at this stage in the argument, to have a purely hypothetical character.16

It starts, in Fig. 3 (left), with the assumption that line d Hp is given in position, with
endpoint dp given in position, (G2).

17 In fact, this assumption will also serve as the
starting point of the resolution, as explained below.

The transformation then proceeds by a series of constructions, which, once the
analytical assumption has been made, can be carried out straightforwardly. Namely,
in Fig. 3 (right), we cut off d Z = G, say by Elem. I.3, and set up Z Q ⊥ d Hp, say by
Elem. I.11, such that Z Q = B, by Elem. I.3. We do not at this point know whether or
not B and G can really be produced, nor are we even assuming that they are given—we
are simply interested in exploring what types of constructions might be performed if

14 The function of these different constructions will become clearer in Sect. 4.
15 These lines may also be given in position as well, but that is not essential to the argument.
16 Acerbi (2011a, 139) also emphasizes this point.
17 In the text, we are simply told that the line is laid out “in position” (qšsei), but this is the standard
expression by ellipsis for given in position, often used in Euclid’s Data and probably in Apollonius’ Cutting
off a Ratio. As just one example, see Data 43 , Sect. 3.3.
Furthermore, the point D is not explicitly said to be given in position, but DHp is said to terminate at D,

and will we see in the argument that follows that we do, in fact, assume dp as given in position. Hence, the
claim that line DHp is terminating at D must be read to mean that point dp is given. This is essentially the
same as the initial constructive step of Elem. I.22.

It is a common practice to assume points and lines as given in position—see, for example, Data 28,
40–43, 55.
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Fig. 3 Menaechmus’ production of two means: transformation

they are assumed to exist.18 Hence, all of the constructions in the transformation have
a sort of hypothetical status.

The second stage of the argument, known as the resolution and involving a different
sort of constructive process, proceeds to show that if certain objects are assumed to be
given in the sense of (G1) and (G2), then the objects that will complete the problem
can also be shown to be given in the sense of (G3). It is important to note that we do
not in this process assume that B and G are given, although we will show that lines
equal to them are given.19 The argument proceeds as follows.

We begin, in Fig. 4 (left), by assuming a line given in position and with a given
endpoint, d Hp, (G2). That is, it is taken for granted that we can assume points and
lines given in position.20 Since, Z Q = B, d Z p = G, and (am : B ) = (B : G ), by an
argument similar to Elem. VI.16, we have

R(am, d Z p) = S(Z Q ),

18 Some scholars want to avoid the claim that we must assume the existence of these objects by arguing
that we are simply assuming a potential configuration. In this case, however, it is only their existence as
lines having a certain mathematical constraint that is of any importance—their configuration is irrelevant.
19 This “directionality” of the argument by givens is crucial. It begins with the objects asserted as given
in the enunciation of the problem itself, (G1), not with the objects assumed in the analytical assumption—
unless those later objects are assumed to be equal to the originally given objects. This makes it clear that
Acerbi (2011a, 139) is incorrect in his assessment of the starting point of the resolution of Conics II.50.
He claims that � B�� is given because it is equal to another angle, and that it is irrelevant that this other
angle is given. But the fact that this other angle is given is absolutely essential. In fact, � B�� = � EZHm
is a key part of the analytical assumption, while � EZHm being given in magnitude is one of the conditions
of the problem. That is, what it means to assume that � EZHm is given in the statement of the problem is
that we assume that another angle, say � B��, can be produced equal to it. Then, � B��m is also given by
Data Def. 1, because we can construct another angle equal to it—namely any angle equal to � EZHm . (See
the discussion of Data Def. 1, Sect. 3.1.) The location of � B��m is not yet relevant, but it will shortly be
proven to be given in position. In order to start the resolution, however, all we need is to know that we can
produce somewhere on line B� an angle equal to � EZHm—which, of course, can actually be done with
Elem. I.23. The logical force of this “directionality” is also why the false arguments advanced by Berggren
and Van Brummelen (2000, 25–26) that use Data 2 to show that the side of a square that is equal to a given
circle is given, or that the third of a given angle is given, are not successful as analytical resolutions.
20 It is clear from the problems of the Elements and the theorems of the Data, that the assumption of
points and lines as given was taken for granted. For points, see, for example, Elem. I.9, 11, 23, Data 32, 33,
37, 38. The case for lines can be seen in Elem. I.22, Data 39–43. That the points and lines set out in the
problem-constructions of the Elements must be considered as given can be shown from the fact that they
serve as the basis for further constructions that are performed through problems that themselves assume as
given these very points and lines.
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Fig. 4 Menaechmus’ production of two means: resolution I

and where Z Q is an ordinate and d Z p an abscissa, this is the symptoma (sÚmptwma)
of a parabola, Conics I.11—which can also serve as a locus description of the curve.21

At this stage in the argument, points Z and Q are not given, because lines B and G are
not given, so that the curve is defined for all of the possible pairs of Z and Q, Z ′ and
Q ′, and so on. Nevertheless, although the text does not explicitly say so, this curve
itself is given in position, say Pp—as, indeed, it must be where dp is given in position
and its upright side, am , is given in magnitude, since for any point z ′

p that we locally
assume as given, (G2), point q ′

p can be shown to be given, (G3).
22 Moreover, the fact

that Pp is given in position is also entailed by the locus definition of the curve, where
� d Z Qm is right.

Next, in Fig. 4 (right), we produce QK ‖ d Z and d K ‖ Z Q, say by Elem. I.31.
These constructions are also hypothetical at this stage, because QK must be produced
passing through Q, which is not yet located—because B and G are not given. That
is, this construction, although it comes in the middle of the resolution argument, is,
in fact, a transformation step and it could have been carried out in the transformation
with no change to the force of the argument. Then, since � K d Z = � Q Z Hm , being
right, line d K p is given in position, by Data 29.

Next in Fig. 5 (left), since, by assumption (am : B ) = (G : em ), then by
Elem. VI.16, R(B, G )m = R(am, em )m . That is, since R(am, em )m is given in mag-
nitude, by Data 52, we have

R(d Z , Z Q )m = R(am, em )m,

which is the locus description of a hyperbola passing through point Q, between asymp-
totes d Z p and d K p, both given in position. It is not known how Menaechmus related
this locus to the originating cone, but the property can be seen in Conics II.12. Indeed,
Menaechmus may have simply thought of this property as defining the curve directly,
as a locus (Knorr 1986, 63–66). Whatever the case, as before, where � d Z Qm is given
in magnitude and d Z p is given in position, the hyperbola is given in position, say

21 See Dijksterhuis (1987, 58) for a derivation of the symptoma from what is believed to be the pre-
Apollonian construction of the conic section.
22 That is, taking z ′

p as given, (G2), we would have R(am , dz ′
m )m as given, by Data 26 and 52, so that

S(zQ )m is given by Data Def. 1. Then, by Data 55, line zQ ′
m is given. And since � dz ′Q ′ is right on line

d Hp given in position, locally (G1), line z ′Q ′
p is given in position, by Data 29, so that point q ′

p is given,
(G3), by Data 27.
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Fig. 5 Menaechmus’ production of two means: resolution II

Hp—since for any since for any point z ′
p that we locally assume as given, (G2), point

q ′
p can be shown to be given, (G3).

23 The locus definition of the curve also makes
it clear that where � K d Z is right and d Z p and d K p are given in position, the curve
must be given in position.

Finally, in Fig. 5 (right), since Pp and Hp intersect, by Data 25, their intersection
is given in position, qp. Therefore, by Data 30, q Z p is given in position, so that z p is
given in position, by Data 25. The final step of the argument is omitted as obvious—
namely, G = zdp,m and B = zqp,m are fully given, both by Data 26, so that gm and
bm are given in magnitude, by Data Def. 1.24

That is, we have shown that starting from the assumptions that am , em , (G1),
and d Hp, (G2), are given, and introducing the locus production of a parabola and a
hyperbola using only these given objects, we can constructively produce two straight
lines such that (am : zqm) = (zqm : zdm) = (zdm : em). The resolution, then, acts as
a general argument for the constructibility of these lines as uniquely determined, that
is given in magnitude. The argument is general in the sense that we can designate any
line as the line given in position, (G2), upon which the construction will be based.

Following this, the synthesis begins with another construction, which includes a
construction of the two conic sections—which in terms of later work could be carried
out with Conics I.52, II.4.25 The demonstration then unpacks the definitions of the
curves to show that the problem has been completed by setting out two lines equal to
the ordinate and abscissa of the parabola at the point of intersection.

There are a number of features of this problem that will be of use to our study of
the concept of given. The first is that the contrast between given and non-given objects
plays an essential role in the definition and, indeed, production of the two conic sec-
tions. Although the characterization through givens can be justified by the relationship
between the conic sections and the originating cone in Apollonius’ Conics I.11 and

23 That is, taking z ′
p as given, (G2), we would have dz ′

m as given, by Data 26, so that z ′q ′
m is given, by

Data 57. And, again, And since � dz ′Q ′ is right on line d Hp given in position, locally (G1), line z ′Q ′
p is

given in position, by Data 29, so that point q ′
p is given, (G3), by Data 27.

24 See Sect. 3.
25 In fact, there are substantial issues with Conics II.4, which seems simply to reduce the problem to a
different problem. Also, notice, that the parabola required forMenaechmus’ problem is produced by Conics
I.52, but not by Conics VI.31, which may help us understand the difference between those two problems;
see also the discussion of this issue by Fried and Unguru (2001, 264–268).
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II.12, because these propositions are theorems, the notion of given is not there explic-
itly invoked. InMenaechmus’ problem, however, the curves are essentially determined
by a relation made up of both given and non-given objects—for example, point Q is
non-given in the locus description of either curve; it is only given at their intersection.
Menaechmus has no need to appeal to the cone and we do not need any propositions of
the Conics to follow this proposition. The objects which are non-given—such as point
Q in the locus descriptions of the curves—are, however, not completely arbitrary—
they are constrained by their relations to the given objects, in particular the points and
lines given in position. This was the general characteristic of objects treated in locus
theorems and porisms. In fact, this may have been a characteristic of Menaechmus’
mathematical style.

We are told by Proclus that the “mathematicians around Menaechmus’ considered
all propositions to be problems, which are divided into “those providing (por…sasqai)
the sought, and those seeing that something is, or how something is, or that something
obtains or has a certain relation to something else” (Friedlein 1873, 78).26 The incor-
poration of the notion of given into the production of the curves themselves, and its
applicability in addressing some of the issues handled in this second class of problems,
may have been a feature of the problem-based approach ofMenaechmus’ conic theory.

By seeing how Menaechmus, or his compiler, works with given objects, we can
confirm the various functions that they play in the resolution. The goal of the resolution
is to show that, starting from the objects that are assumed to be given in the enunciation
of the problem, am and em in the sense of (G1), and introducing only objects that can
unproblematically be assumed to be given, such as points and lines given in position,
dp and d Hp in the sense of (G2), then the objects that complete the problem are
also given, G = zdp,m and B = zqp,m , in the sense of (G3). That is, the resolution
constitutes an argument for general constructibility. The types of construction allowed,
of course, vary from problem to problem. In this case, conic sections are allowed. That
is, we have shown that under the assumption that such conic sections can be introduced
the objects that complete the problem are given—that is, fixed or determined. Hence,
in the construction that follows in the synthesis, the conic sections discussed in the
resolution are produced.

Finally, the resolution as presented inMenaechmus’ treatment is rather abbreviated,
and it is only by providing a full commentary that we can see how the reasoning by
givens proceeds deductively. The fact that we may have difficulty followingMenaech-
mus’ argument, however, should not lead us to believe that it presented any difficulty to
ancient mathematicians who were familiar with such analytical procedures. As I will
argue in the next section, we can understand Euclid’s Data as providing justifications
for the steps of such resolutions in an attempt to bring clarity and organization to the
analytical presentation of problems.

26 Vitrac (2005, 40–42) gives a discussion of the context in which Menaechmus and his circle argued for
the primacy of problems.
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3 Euclid’s Data

Euclid’s Data is the only systematic treatise that has come down to us that is devoted
to developing theories of the different ways in which geometric objects can be given.
It was probably composed to show how—by justifying the steps of the resolution in an
analysis, such as that we read in the previous section—the material of Elements I–VI
can be put to use within geometric problem-solving.27 The text itself begins with a
series of definitions and theorems that, in themselves,may strike some readers as vague
to the point of obscurity. Before reading through the core definitions and a number of
the fundamental theorems of the text, it may be helpful to sketch a path backwards
toward these from the types of justifications that are required for an analysis–synthesis
pair like that in Menaechmus’ problem, above. Although I do not claim that this is the
approach that Euclid actually took, it nevertheless helps us understand the motivation
for the development and structure of the Data.

In order to justify all of the steps in Menaechmus’ resolution, we need proofs of
the following claims: (1) the intersection of two lines given in position is given, (2)
the line joining two given points is given in position and in magnitude, (3) the line
passing through a given point and meeting a line given in position at a given angle is
given, (4) and the rectangle contained between two lines given in magnitude is given
in magnitude.

The first three of these claims are all inherent in the concept of given in position
and Euclid demonstrates them indirectly, in Data 25, 26 and 30, as an immediate
consequence of assuming that his definition of given in position, Data Def. 4, does
not hold.28 Indeed, the definition Data Def. 4 was probably specifically formulated
so that it could be developed into the sequence of theorems Data 25–31, which flesh
out the concept of given in position and are some of the most often used theorems
in the Data—applied both in the Data itself and in other analytical works, such as
Apollonius’ Conics and Cutting off a Ratio.

The fourth claim appears to be obvious and could have been shown most simply
by exhibiting the construction of a rectangle from a pair of lines given in magnitude.
But this is not the approach that Euclid takes—nor is there any corresponding problem
in the Elements. Instead, he shows a geometric generalization of this claim—namely,
that if a figure has given angles and the ratios of its sides are given—that is, it is
given in form—and it has one side given in magnitude, then the figure itself is given
in magnitude (Data 52). In order to show this, he needs to show, among other things,
that two triangles, or figures given in form that are standing on the same line have
to one another a given ratio (Data 48, 49). These, in turn, depend on showing that a
triangle that has given angles also has the ratios of its sides given (Data 40). In this way,
he works his way back to making arguments about the relationship between objects

27 Very nearly every step in the Data can be justified by a proposition, definition or postulate, either from
earlier in the Data itself, or from Elements I–VI. The few exceptions require lemmas that can themselves
be demonstrated using only Elements I–VI and the Data, such as in Data 24 and 67, or are corollaries of a
definition, such as Data 25–30 (see note 28).
28 Data 25–29 are corollaries of Data Def. 4, the proofs of which simply involve pointing out that if they
do not hold the consequence is contrary to the definition. Data 30 shows a contradiction with Elem. I.16,
but it also depends on the assumption that Data Def. 4 does not hold.

123



The concept of given in Greek mathematics 367

that are given in position (Data 24–30) and given in form (Data 40–43), and making
general proofs about given magnitudes and ratios. For example, for these arguments
he needs a proposition that shows that if a ratio is given and one of its terms is given,
then the other term is given (Data 2), and another that shows that if two given ratios
share a term then the ratio between the other two terms is also given (Data 8).

It is important to keep inmind the fact that in all of these arguments about givens the
original motivation has to do with settling the general question of constructibility—
namely, to show that given some initial configuration of objects assumed in the
enunciation of a problem, (G1), and introducing only points and lines given in posi-
tion, (G2), the configuration satisfying the specification of the problem is also given
through some set of permissible operations, (G3). Hence, whenwe read the definitions
of the Data and the first set of propositions, which concern magnitudes in general,
we must be mindful that these are introduced to cover their uses in the later propo-
sitions, which are, in turn, introduced to demonstrate constructibility in an analytical
resolution.

3.1 Data Defs. 1–4

The text of the Data begins with a series of definitions, the first two of which refer
explicitly to the constructive processes involved in problem-solving. The text reads,

[DataDef. 1]Regions (cwr…a), [straight and curved] lines (gramma…), and angles
are called given in magnitude, of which we are able to provide (por…sasqai)
equals.

[Data Def. 2] A ratio is called given, of which we are able to provide the same.
(Menge 1896, 2)

The use of the first person plural that we find in these two definitions is somewhat
unusual in Greek mathematical prose and should be taken as deliberate. That is, the
issue involved in the notion of given is not primarily about the existence of the object,
but rather about what we, as mathematicians, are able to do.29

Both of these definitions invoke the action of being able “to provide” as a sort of
primitive concept using the verb poreĩn, meaning “to give” or “to supply.” In the early
propositions of the Data, as we will see, these definitions are used to directly intro-
duce new objects into the discourse—either magnitudes equal to given magnitudes,
Data Def. 1, or a magnitude that has a given ratio to a given magnitude, Data Def. 2.
Nevertheless, as we will see in the later theorems, these propositions are also meant to
stand in for all of the different types of constructions that can produce geometric mag-
nitudes. Since, in the Greek mathematical texts, different verbs are used for different
kinds of constructions, this verb probably simply stands in for all of the various types
of constructions that might be introduced in a problem—the elementary constructions
of the Elements, of course, but also conic sections, neusis constructions, loci, and so

29 The alternate opinion that given is a predicate asserting the existence of an object is claimed by Taisbak
(2003, 24–30) and Acerbi (2011a, 123).
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on. In the context of the Data, however, we simple assume that these constructions
can be carried out.

That is, Data Def. 1 states that when we say that an object is given in magnitude,
what we mean is that there is some effective procedure through which we can produce
another object of the same kind that is the same size as the given object. And if there
is such an effective procedure, then the object is given in magnitude.

Data Def. 2 asserts that what it means for a ratio to be given is that there is a
constructive procedure that we can use to produce an instantiation of it—namely, two
geometric magnitudes, of the same kind, that have to one another the given ratio. And
if there is such an effective procedure, then the ratio is given. As we will see below,
when this definition is used in the text, it is often used as an introduction rule that
allows us to set out a magnitude having a given ratio to a given magnitude—that is, as
an introduction rule for a fourth proportional.30

It should be noted that a ratio can initially be given even if no pair of objects
having that ratio are themselves given. While it is fairly clear what this would mean
from an arithmetical perspective—since Greek texts speak of the half, the triple, the
hemiolic, and so on—it may take a moment’s reflection to see what this might mean
in a geometrical context. Suppose two non-parallel lines are given in position and
another line falls on them at given angles, then the sides of the triangle so formed will
have given ratios, despite the fact that none its sides are given in magnitude.31 Such a
configuration, and others of this kind, might arise in geometrical analysis.

Since these are definitions, we are not concerned at this stagewith statingwhat these
constructive procedures are, because we will apply the term given to objects that we
assume and set out, as well as to objects that we construct—indeed objects constructed
in problems are necessarily produced by some constructive procedure, which can only
be detailed by assumptions about constructions and problems built up from these.32 For
the early propositions of the Data, the procedure used to introduce a given object, or
two objects in a given ratio, is unspecified, but itmust be some procedure that, in awell-
defined way, produces the object. Of course, the constructions used in problems in the
Elements, involving postulates and previously established problems, are procedures of
this sort, but perhaps there are others involving different constructive methods—such
as conic sections, neusis lines, and so on. What is given is simply an assumption about
what is, or what can be, constructed. That is, every constructed object is given, but not
every given object is constructed.

The goal of the Data is to show how we can use the problems and theorems of
Elements I–VI to make inferences from things that are assumed to be given to other
things that can then be constructively shown to be given. Of course, in these deductions,
we also use theorems of the Data, but as I will argue below, these are themselves
argued constructively using either problems of the Elements or definitions of the Data,
which themselvesmake assumptions about what kinds of objects can be constructively

30 Taisbak (2003, 32–33) points out that Data Def. 2 must often be read to mean that both of the terms of
the instantiated ratio are themselves given.
31 See the commentary to Data 2, Sect. 3.2.
32 This restriction does not apply to objects introduced in theorems and in the demonstrations of problems,
which do not need to be constructible through an effective procedure.

123



The concept of given in Greek mathematics 369

produced. The theorems of the Data are not themselves concerned with the ultimate
origin of the objects under discussion, but only with what can be inferred under the
assumption that they are given.

There are two more fundamental definitions:

[Data Def. 3] Rectilinear figures (sc»mata) are said to be given in form, of
which each of the angles are given [in magnitude] and the ratios of the sides to
one another are given.

[Data Def. 4] Points, lines and angles are said to be given in position, which
always keep the same position.

(Menge 1896, 2)

Data Def. 3, which is one of the most frequently used definitions in the text, is,
in fact, an extension of Data Defs. 1 and 2 to rectilinear figures. According to this
reading, a rectilinear figure is given in form if there is some procedure for producing
other angles, equal to its angles, and other lines, having the same ratio as its sides. The
first time this definition is applied, in Data 39, we see that this means that if a figure
is given in form, then there is an effective procedure for producing a similar figure,
Elem. VI.def.1, and likewise having produced a similar figure through an effective
procedure, it is possible to assert that the original figure is given in form. Hence, since
this definition falls back on Data Defs. 1 and 2, it is also essentially constructive.
Indeed, we see in Data 39–43, when Data Def. 3 is first applied, that the status of a
figure being given in form is secured by constructing another, similar figure.

The final definition—concerning given in position—is harder to explain without
reference to the propositions in which it is used, but it is usually characterized as
dealing with the concept of uniqueness (Taisbak 2003, 95; Acerbi 2011a, 146–148).
Indeed, its application in Data 25–30,33 which are essentially corollary statements of
the definition, shows that uniqueness is a core concern. As is clear from the practice of
both the Elements and the Data, however, a geometric object that is given in position
is available for use—the endpoints of a given line may serve as the center or distance
of a circle,34 a given point may serve as the endpoint of a line, a given point may serve
as the distance of a circle, or the endpoint of a line; a given line may be extended, a
point taken on it, and so on—as for example in Elem. I.1, 1.2, I.9, I.11, I.44, Data 39,
33, 38, and so on. Once again, we see that there is a constructive aspect at play—an
object given in position does not simply exist, but is fixed in location in some definite
way, so as to be available to the mathematician for constructive procedures.

Starting already in the ancient period, as we will see below, people appear to
have read the theorems of the Data as justifying both computational and geomet-
rical problem-solving practices. Indeed, the enunciations of certain theorems of the
text are susceptible to such a reading.35 It is much less clear, however, that the text

33 See note 28, above.
34 Here, I use “distance” as a translation of the Greek term di£sthma, the span with which a circle is
drawn (Sidoli 2004b).
35 Friberg (2007, 211–234) gives a recent reading of the enunciations of select theorems of the text along
these lines.
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was originally composed with such an interpretation in mind, and various aspects of
the way the argument is advanced make this reading rather strained. Certainly, the
articulation of Data Defs. 1, 3 and 4 are explicitly addressed to a geometrical reading,
there is no discussion of what it would mean for a number to be given, and there is
no systematic treatment of the arithmetic operations. In the following, we will read
through a number of propositions of the text, both to flesh out Euclid’s articulation of
the notion of given and to see to what extent the underlying mathematics of the text is
compatible with a reading centered on metrical analysis, or numerical computation.

3.2 Data 2

Wewill begin by examining Data 2, which comes from the opening section of the text,
dealing with given magnitudes. It is sometimes maintained that these magnitudes are
general quantities—that is, either the abstract sizes of geometric objects or numbers—
but various aspects of the text, including the precise statement ofDataDef. 1,make this
unlikely. As we will see, both the internal constraints of the demonstrations of these
propositions, as well as their application in the later propositions of the text, imply
that we should understand the notion of magnitude in the Data as a hypernym for all
those geometric objects that have size—in particular regions, lines, or angles—that is,
as the same sorts of magnitudes as are treated in Elements V.36

Data 2 shows that if a magnitude is given, and its ratio to a second magnitude is
given, then the second magnitude is also given—that is,

(am : B )r ⇒ bm .

Computationally, this would be a justification of the rule-of-three, but, as I will argue
below, it is more natural to read this proposition as having originally been composed
so as to be applicable to geometric construction. The text of Data 2 reads as follows
(Fig. 6):

If a given magnitude have to another magnitude a given ratio, the latter is given
in magnitude.

For let a magnitude, A, have a given ratio to some magnitude, B. I say that B is
also given in magnitude.

36 Doubt has been expressed about whether or not angles can be considered to be magnitudes—largely
because the definition of ratio in the Elements, Elem. V.def.4, cannot apply to the conception of angles in
Greek geometrical texts as always being less than 180°. Among modern scholars, see for example Artmann
(1999, 123) and Taisbak (2003, 23, 30). Rashed (2015) has provided a thorough study of various approaches
taken to this topic by ancient and medieval scholars. Whatever the reservations that might be advanced,
however, some of the propositions in the first part of the Data must be used to justify claims that angles are
given in magnitude in the rest of the treatise, so angles must be included in this general treatment of given
magnitudes. Moreover, Greek mathematicians worked with ratios between angles in practice, and applied
theorems from Elements V to proportions resulting from such ratios. Hence, they were either willing to
overlook the failure of Elem. V.def.4 to apply to angles or they regarded this definition as of use to the local
foundational issues of Elements V but not as sufficient to invalidate the clear utility of working with ratios
and proportions among angles—particularly, when represented by numerical values.
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Fig. 6 Diagram for Data 2

For, since A is given, it is possible to provide an equal to it.37 Let it have been
provided, and let it beG. And since the ratio A to B is given, for thatwas assumed,
it is possible to provide the same as it.38 And let it have been provided, and let
it be the ratio G to D. And since as A to B so G to D, therefore, alternately, as
A to G so B to D.39 But, A is equal to G, therefore B is equal to D. Therefore,
magnitude B is given, for an equal to it, D, has been provided.40

(Menge 1896, 6)

As in many of the early propositions of the Data, the core of the proof of Data 2
is a direct application of the definitions. In this case, we apply Data Defs. 1 and 2 to
“provide” magnitudes and ratios—but the text gives us no indication of howwe should
actually go about “providing” these things. Moreover, the way in which the definitions
are applied makes it clear that here providing is a primitive concept. Nevertheless, by
remembering that the purpose of this proposition is to serve in the demonstration of
later, geometric propositions and geometric analytical resolutions, we can staymindful
of the fact that these definitions stand in for geometric constructions that can actually
be carried out with various types of magnitudes.

Furthermore, the details of the proof support my claims that the magnitudes at
issue are geometric objects with size and that the definitions concern operations, or
procedures, that we can perform.

Since am is given in magnitude, (G1), Data Def. 1 can be applied to find another
magnitude, say G, such that gm = am , where gm is also given—because we have just
set it out by some procedure. If we are working with a geometrical configuration, there
is some sense in this operation. The original given magnitude might be given by the
constraints of the initial configuration as a line or a rectilinear figure, and so on, which
has a given ratio to another by the very fact that they both occur, already there, in the
configuration with which the discourse begins. Data Def. 1 assures us that in order to
work with this initially given object, the geometer can set out another, equal to it, in a
different part of the configuration.

The next step of the argument is operational and makes clear the constructive
meaning of Data Def. 2—the text explicitly says that we can set (gm : D ) = (am :
B )r . Since gm is given, this is the production of a fourth proportional, namely D—
which, since we have produced it, by Data Def. 1, must be given, dm , because another
equal to it could be produced by the same procedure. We then argue that this implies

37 Data Def. 1.
38 Data Def. 2.
39 Elem. V.16.
40 Data Def. 1.
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Fig. 7 Application of Data 2 to a set of similar triangles

that bm = dm , (G3), by Data Def. 1. This shows how we can use Data Def. 1 to show
that a magnitude is given—we exhibit a procedure for setting out an equal.

In this argument, the operational meaning of Def. 2 is made clear: When a ratio
is given, we can produce a magnitude that has this given ratio to some other given
magnitude. That is, it is used to introduce a fourth proportional—and hence serves
as an introduction rule for this object, which is thus itself given in magnitude, by
Data Def. 1. In the case of Data 2, the given fourth proportional that we produce
through Data Def. 2 happens to also be equal to B, the magnitude whose status we
are investigating—which it must be for this proof, so that we can apply Data Def. 1.

Ifwe try to read this argument as applying to abstract quantities, including numerical
values, Def. 1 would imply that if we have a given value, say 5,

√
2, or r , then we can

set out another value equal to it—but there is no such other equal value. Moreover,
when we wish to apply this sort of proposition to numbers, using the rule-of-three, we
generally have a given number, say 5, and a ratio given as a pair of two other numbers,
say (3 : 4). It would be senseless to apply this proposition to a situation where we
began with a given number and the given ratio stated in terms of the very same given
number, say 5 and (5 : 6 2/3).

On the other hand, both the argument and the application of this proposition is
explicable in terms of geometric objects. It is possible to imagine a number of situations
in which Data 2 could be applied to geometric configurations, but we can use a set of
similar triangles as a simple example.

Let us consider three bundles of parallel lines intersecting at given angles, θm , ϕm

and ψm , then we have a set of triangles given in form, T(ABC ) f , such that the ratios
of the sides are given, (G1), byData 40, but no other elements are given (Fig. 7). Then,
if we suppose one of the sides of the triangle, say ABm , to be given in magnitude, (G1)

or (G2), the argument ofData 2 shows that the other sides of the triangle are also given
in magnitude, (G3). If we assume some point dp to be given, (G2), and draw line d E
parallel to AB, Elem. I.31, then d E p is given in position, (G3), Data 28. Then, since
ABm is given in magnitude, (G1) or (G2), we can produce an equal to it, say dep,m ,
given in position and in magnitude, (G3), Data 27, 26. Then, if lines are produced
through dp and ep parallel to lines AC and BC , Elem. I.31, the triangle T(de f ) f,m,p

will be fully given, (G3), Data 28, 25. Then, since (de : e f )r = (ABm : BC )r ,
where dem = ABm , BCm will be given in magnitude, (G3), since e fm , equal to it, has
been provided, Data Def. 1.

This argument, of course, applies only to this specific geometric situation. The
argument given in Data 2, however, is meant to serve for any geometric magnitude—
so that it is both more general, but also more vague.
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3.3 Data 43

The next passage of theData that we will read comes from the opening propositions of
Euclid’s theory of given in form—dealing with the conditions under which a triangle
is given in form. We will read Data 43, which is a key theorem in the metrical analysis
employed by Ptolemy and probably others, for the investigation of problems to be
solved using chord-table trigonometry. Data 43 shows that, in a right triangle, if the
ratio of two sides about an acute angle is given, the triangle is given in form—that is,

T(ABG ), � B AG = 90◦, (AB : BG )r or (AG : G B )r ⇒ T(ABG ) f .

If the enunciation is read computationally, it suggests that this theoremmight be used to
evaluate the angles of a right triangle, where the ratio between a leg and the hypotenuse
of the triangle is given. The text of Data 43 reads as follows (Fig. 8):

If the sides about one of the acute angles of a right triangle have a given ratio,
the triangle is given in form.

For, of a right triangle, ABG, having right angle B AG, let the sides, G B, B A,
about one of its acute angles have to one another a given ratio. I say that triangle
ABG is given in form.

For let a straight line given in magnitude, DE , be set forth [given] in position.41

And let a semicircle, DH E , be drawn on DE .42 Therefore, semicircle DH E
is [given] in position.43 And, since the ratio of G B to B A is given, let DE to
Z have become the same as it.44 Therefore, the ratio DE to Z is also given.45

But DE is given, therefore Z is also given.46 And G B is greater than B A,47

41 That is, dem,p is assumed to be given in magnitude and in position, (G2).
42 Elem. III.33.
43 Data Def. 8. Of course, there are two semicircles that could have been produced on DEm,p , but we are
only concerned with the one that is actually produced.
44 This is the production of Z as a fourth proportional through Data Def. 2.
45 Data Def. 2, since there is a procedure for producing lines in the same ratio.
46 Data 2.
47 G B is the hypotenuse.
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therefore E D is greater than Z .48 Let DH be inserted equal to Z ,49 and let H E
be joined,50 and with center D and distance DH let a circle, Q H K , be drawn.51

Therefore, circle Q H K is [given] in position, for its center is given in position
and is radius is given in magnitude.52 But semicircle DH E is [given] in position,
therefore point H is [given] in position.53 But each of D and E are also given,
therefore each of H D, DE , and E H are given in magnitude and in position.54

Therefore, triangle H DE is given in form.55

Now, since there are two triangles, ABG, DE H , having one angle equal to one
angle, angle B AG to angle DH E , and the sides about the other angles, angles
G B A and E DH , proportional, and at the same time the remaining angles BG A
and DE H are each less than a right [angle], therefore triangle ABG is similar to
triangle DE H .56 But, triangle DE H is given in form, therefore triangle ABG
is also given in form.57

(Menge 1896, 76–78)

Although the enunciation of this theorem makes it appear to be ideally suited for
the chord-table methods in which Ptolemy will use it, the mechanics of the proof
itself show how far Euclid’s approach is from any metrical considerations. The key
to the proof is that we set out an arbitrary given line, dem,p , (G2), and then use the
constructive techniques of the Elements to make a new triangle, T(deh) f,m,p, on the
line which we set out. We can think of the construction of this triangle, which is also
at the mathematician’s discretion, as the production of further objects that are given
in the sense of (G2). Finally, the demonstration shows T(ABG ) ∼ T(deh) f,m,p, so
that T(ABG ) f is given in form, (G3).

The initial construction is justified through Data Def. 2, which, as we saw above,
asserts that we can produce some line Z , such that (Z : dem)r = (B A : BG )r , so
that zm , by Data Def. 1.58 We then use this newly provided line segment to complete

48 Elem. V.def.5.
49 Elem. IV.1. As Taisbak (2003, 128) points out, the construction for inserting line DH involves producing
the same circle about center D with distance DH that will be explicitly introduced two steps later. But this
“repeated construction” follows the conventions of constructions in Euclid’s problems. Whenever an object
in invoked using a previously established problem, only the object itself is produced. Any auxiliary objects
that may have been involved in its construction are not available for further work and have to be produced
independently if they are needed—as is done here.
50 Elem. I.post.1.
51 Elem. I.post.3. See note 34, above, for my choice to use “distance.”
52 Data Def. 6.
53 Data 25.
54 Data 26.
55 Data 1, Def. 1 and Def. 3.
56 Elem. VI.7.
57 Data Def. 3.
58 It might appear that this can be done through Elem. VI.12, but this problem requires that we have three
given lines, not merely one given line and a given ratio. If we consider the bundles of parallel lines discussed
in Sect. 3.2, above, we can see an example of how this construction could actually be carried out with only
one given line—all of which is simply taken as a primitive concept in Data Def. 2.
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T(deh) f,m,p, which is fully given because we constructed it using the methods of
Elements I–VI—thereby establishing that we have an effective procedure for produc-
ing all of its elements.59 The final phase of this argument shows us one of the key
implications of Data Def. 3—namely, a figure is given in form when we can construct
another figure similar to it.

The explicit use of constructive processes in this theorem shows that the theorems
of the Data allow us to expand to scope of objects that can be given in the sense of
(G2) from points given in position, as at the beginning of a Data construction, to any
object that can be introduced through the problems of the Elements. By following the
argument of the geometrical theorems of the Data, we come to see that any object that
can be constructed from given objects is fully given.

Such a proof, however, relying as it does on geometric construction, provides noway
of dealing with the given objects as numerical values. Even if we have the given ratio
as a value, or rather as a pair of given values, the proof of the theorem, working through
Data Def. 2 and then constructing a similar triangle, gives us no way to calculate the
value of the triangle’s angles from these given values. But it is this computation that
the methods of chord-table trigonometry require.

3.4 Data 52

Thefinal example thatwewill consider comes from the opening proposition ofEuclid’s
theory of figures given in magnitude, and can be read as one of the cornerstones of his
theory of the measurement of rectilinear figures. Data 52 shows that if a figure given
in form stands on a line given in magnitude, then the figure is also given in magnitude.
That is,

F(ABG DE . . .) f , ABm ⇒ F(ABG DE . . .)m .

From this, since every right angle is given,60 we have the following immediate corol-
laries,

am ⇒ S(am)m,

and

am, bm ⇒ R(am, bm)m,

which are often used in metrical analysis to justify the claim that a square on a given
side is given, or that the rectangle formed from two given lengths is given. For readers

59 Notice that the only theorems of the Data that are applied in the argument that T(deh) f,m,p is fully
given are Data 25 and 26, which are simply reiterations of Data Def. 4. That is, T(deh) f,m,p is fully given
because it was so constructed, by the definition, and implications, of the concept of given in position. Hence,
a figure whose points are given in position is fully given.
60 This is clear from the way right angles are treated in the Data. Acerbi (2011a, 123) gives an explanation
for why this is so, based on the construction of right angles.
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who took the propositions of the Data to justify computations, as I will argue below
was done by Heron and Ptolemy, this theorem is the only candidate for a justification
that the product of two given numbers is given. That is, computationally this theorem
can be regarded as a justification of the operation of the multiplication of two—and
only two—terms.61 The text of Data 52 reads as follows (Fig. 9):

If a form (e„̃doj) given in form is erected upon a line given in magnitude, the
erected [form] is given in magnitude.62

For, let a form given in form, AG DE B, be erected on a straight line given in
magnitude, AB. I say that AG DE B is given in magnitude.
For, let a square, AZ , be erected on AB.63 Therefore, the square on AB is given
in form and in magnitude.64 And since, two rectilinear figures given in form,

61 Proponents of the strong form of the geometrical algebra interpretation of Elements II, VI and Data
57–60 and 84–85—namely, the claim that certain propositions in these texts were motivated by a desire to
justify arithmetical problem-solving techniques—must contend with the fact that this highly geometrical,
and frankly rather peculiar, proposition is the only candidate in the text for propositions demonstrating
that the product of two given numbers is given. This strong interpretation of the hypothesis of geometrical
algebra is the claim GA2 set out by Blåsjö (2016, 326). His GA1 is simply another way talking about the
theory of the application of areas, which is not in any dispute. For example, Dijksterhuis (1987, 51–52),
who developed a notation for expressing the theory of the “Application of Areas” in a symbolic form that
is both true to the original conception and reflects the abstract operational nature of the theory, refers to it
also as “Geometrical Algebra” only the first time he introduces his terminology in order to alert the reader
to the fact that he will use these symbols to treat what Zeuthen (1885, 7) had called geometrical algebra.
Dijksterhuis (1987, 7) presumably preferred his own symbolism and the terminology “application of areas”
because, as he says, “in a representation of Greek proofs in the symbolism of modern algebra it is often
precisely the most characteristic qualities of the classical argument that are lost.”
62 Taisbak (2003, 139, n. 105) has pointed out the strangeness of speaking of a “form given in form”
(dedomšnon tJ̃ e‡dei e„̃doj). Data Def. 3 construes given in form as applying to rectilinear figures, and the
proof of this proposition makes it clear that the “form” we are dealing with here is, in fact, a rectilinear
figure.
63 Elem. I.46.
64 Data Def. 3 and 1. The argument for this is detailed below. Taisbak (2003, 139, n. 106, 151, n. 110,
90–91), suggests that there is some circularity in this argument with Data 55 and, through two notes, refers
the reader back to his commentary to Data 24 for this step, where he shows, for example, that am , bm ⇒
R(am , bm )m and S(A )m ⇒ am . But the inference required for this proposition is am ⇒ S(am )m , which,
he correctly notes, follows directly from Elem. I.46, Data Def. 3 and 1—as I will flesh out below.
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AG DE B and AZ , have been erected on the same straight line, AB, therefore
the ratio of AG DE B to AZ is given,65 But, AZ is given in magnitude, therefore
AG DE B is also given in magnitude.66

(Menge 1896, 94)

Once again, the demonstration of this proposition is grounded in the constructive
procedures of the Elements, and it is difficult to see how it gives us any insight into
how to carry out the related computations necessary to metrical, or arithmetic, con-
siderations.

The key to the proof of Data 52 is the application of Data 49, which shows that
two figures given in form standing on the same line have to one another a given
ratio. In order to apply this proposition, however, all that is necessary is that the new
figure that we introduce, F(B H ) f , be given in form. Hence, any figure will do—an
equilateral triangle, a square, a figure similar to F(AG DE B ) f , indeed, any arbitrary
figure that we construct given in form. Because the possible the constructions that will
straightforwardly lead to a proof of this theorem are so varied, we might justifiably
ask why the proof begins with the construction of a square, Elem. I.46.

Themost likely explanation is that, because this theorem has to dowith determining
the magnitude of a figure given a side, and hence addresses the issue of measurement,
Euclid begins by constructing a square on the given side, in order to explicitly invoke
the core concept used in the measuration of regions in Greek geometrical texts—
quadrature. That is, figure F(ABG DE . . .) f will be shown to have a given ratio to a
given square.67

The fact that S(ABm)m is given is, again, a direct consequence of the constructive
articulation ofgiven in magnitude stipulated inDataDef. 1. That is, since ABm isgiven,
and square S(ABm ) has been constructed on it, using Elem. I.46, there is clearly an
effective procedure for producing a square equal to S(ABm )—namely the procedure
set out in Elem. I.46. So that, by Data Def. 1, S(ABm )m is given in magnitude.

Furthermore, the argument itself hinges on Data 49—figures given in form that
share a side have to one another a given ratio—which in turn requires Data 48—
triangles given in form that share a side have to one another a given ratio. When we
unpack these propositions by reading their proofs, however, we see that they involve
reducing F(ABG DE . . .) f to triangles given in form, and then relating the given ratio
of these to one another through the rectangles under the same heights. Finally, relating
the bases of the two triangles under the same height involves applying Data 40, which,
in turn, shows that the sides of a trianglewith given angles have given ratios through the
same constructive approach that we saw at work inData 43—namely, the construction
of another, similar triangle on a line set out as given in magnitude and in position, (G2).
Hence, Data 49 and 48 rely only on the notion of given in form, as set out in Data

65 Data 49.
66 Data 2.
67 As Taisbak (2003, 139) has observed, this theorem could have been based directly on Data Def. 1, by
constructing another figure equal to F(ABG DE . . .) f . This construction, however, would be no simpler
than that of the square, and it would not explicitly relate the figure to a known square, which was presumably
a goal of Euclid’s proof.
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40, and do not involve any lines given in magnitude—so that they do not give us any
insight into computational procedures. Indeed, these are the same, purely geometric,
concepts that underlie the theory of area developed in Elements I and VI.

Finally, even if we know the sides of a certain figure—and even if this figure is a
square or a rectangle—this proposition, in the way that it is expressed in the Data,
would not show us how to calculate its area. The only way this theorem could have any
use to us in metrical, or arithmetic, problem-solving, is if we already knew, through
independent considerations, what sorts of arithmetic operations to carry out, but were
interested in an unrelated geometric approach as a purely theoretical justification of
these operations.

3.5 The goal of the Data

By reading through the proceeding propositions of theData, we have seen that the core
theorems of this work are founded upon, and demonstrated through, the constructive
geometric approach of Elements I–VI. Although these types of procedures have only a
weak relationship with metrical, or algebraic, problem-solving they are closely related
to geometric problem-solving as it was developed in the classical and Hellenistic
periods. Indeed, the theorems of the Data can be used to form chains of deductive
inference from certain objects assumed as given, (G1), to other objects or properties
of objects that must also be given, (G3), introducing as given, (G2), only points given
in position and using the theorems and problems of Elements I–VI along with the
theorems of the Data, which are, in turn, shown through the constructive methods of
Elements I–VI. The effect of this deductive work is to expand the set of objects that can
be introduced as given by the mathematician in the sense of (G2) in actual problem-
solving practice.68 We have already seen how this sort of inference was apparently
used by Maneachmus in his problem-solving activities; we will now turn to another
example from Apollonius’ Conics.

4 Givens in geometric problem-solving

In order to observe the constructive reasoning of the Data at work in the resolution
of a purely geometric analysis–synthesis pair, we will read Conics II.44—to find the
diameter of a given conic section.69 The language of this proposition, as most of
the problems in the Conics, has some archaic elements (Federspiel 2000, 367), so
that it may predate the work of Apollonius, going back to the time of Euclid or his
predecessors. Hence, it is probably a good example of the sort of geometric problem-
solving that the theorems of theDataweremeant to facilitate. The text reads as follows
(Fig. 10):

68 We will see an example of this in Sect. 4.
69 This problem is also discussed by Zheng (2012, 140–142), but he does not fully articulate the use of the
propositions of theData in the resolution—perhaps because he follows the translation of Decorps-Foulquier
and Federspiel (2008–2010, 2.3.93), who do not provide justifications for the steps of the resolution of this
analysis–synthesis pair.
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Fig. 10 Diagram for Conics II.44

[Enunciation:]
To find the diameter of a given section of a cone.

[Exposition:]
Let the given section of the cone be that on points A, B, G, D, E . [Specification:]
Now, it is necessary to find its diameter.

[Analysis:]
Let it be done, and let it be G Q.70 [Transformation:] If DZ , E Q are produced
ordinatewise,71 and extended,72 DZ will be equal to Z B, and E Q to Q A.73

[Resolution:]
Then, if we fix (t£xwmen) B D, AE [given] in position as being parallels,74 the
points Q, Z will be given,75 so that [line] Q ZG will be [given] in position.76

[Synthesis:]
Now, it will be put together (sunteq»setai) as follows. [Exposition:]
Let the given section of the cone be that on points A, B, G, D, E . [Construction:]
And let parallels, B D, AE , be produced,77 and let them be bisected at Z , Q.78

[Demonstration:] And a joining [line], Z Q, will be a diameter of the section.79

In the same way, we will also find countless diameters.
(Heiberg 1891–1893, 264–266)

In order to see how the reasoning by givens functions, and consequently the role of
the theorems of the Data, we will go through the details of the argument. The analysis,
Fig. 11, begins by taking the conic section AB DE as given and making the analytical

70 This is the analytical assumption.
71 This is a purely hypothetical construction, because there is no problem in the Conics that shows how to
produce ordinates—that is, parallel lines bisected by the diameter. See note 81.
72 Elem. 1.post.2.
73 Conics I.def.4.
74 These lines are simply assumed as given parallels, (G2). As often, however, this can be reduced the
assumption of points given in position. This is fleshed out in the commentary below.
75 Data 25, 26, 7 and 27 (see commentary below).
76 Data 26.
77 Elem. I.post.1, I.31.
78 Elem. I.10, twice.
79 Elem. I.posts.1, Conics I.def.4.
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Fig. 11 Conics II.44, transformation

assumption that the diameter G Q exists in some way—but is not given. Notice that at
this stage in the discourse, the letter-names A, B, D, E and Q simply denote as-of-yet
unspecified points on the conic section and its diameter, they do not designate specific
points.80

The transformation proceeds with the hypothetical claim that, if DZ and E Q are
produced as ordinates, and then extended tomeet the section again at A and B, perhaps
using Elem. I.post.2, then DZ = Z B and E Q = Q A, by Conics I.def.4. The initial
construction of the ordinates must be purely hypothetical because there is no problem
in theConics that tells us how to find an ordinate to a diameter—moreover, the diameter
is not yet shown to be given.81 Nevertheless, if such a configuration were possible, it
would complete the problem.

The brief resolution, starting in Fig. 12, then argues that such a configuration will,
indeed, be given—starting only with objects asserted to be given in the enunciation of
the problem, (G1), and introducing only objects that can unproblematically be taken
as given, (G2). The text reads “if we assign” (™£n ... t£xwmen) B D, E A as parallels,
using a verb related to one of the core meanings of given, and expressed in the first
person.82 This personal expression—unusual, in Greek mathematical texts—makes it
explicit that we, as mathematicians, are setting these two lines out as given, (G2). As
the text puts it, we simply assume these lines as given ordinates. But this assumption
can, in fact, be reduced to the assumption of points given in position. First we take bDp

as given in position, (G2).
83 Then we take an arbitrary point, ap, as given in position,

(G2), on the given conic section, (G1),
84 and we draw aE through ap parallel to bDp,

using Elem. I.31. Then aE p is also given in position, (G3), by Data 34. That is, the
ordinates that we can use Data methods to show are given, (G3), from points assumed

80 Point G is specified as the intersection of the conic section and the diameter simply by the fact that it
occurs in both of these names.
81 In fact, ordinates would most simply be produced by drawing parallels to a tangent to the conic section,
but tangents are produced in Conics II.49–51 and 53, which have yet to be established.
82 Acerbi (2011a, 130–133) discusses the cognates of t£ssw in relation to the concept of given. Federspiel
(2008, 347–349) covers the usage of personal verbs in Greek mathematics and especially the Apollonian
corpus.
83 That a line intersecting a given object, (G1), can be taken as given in position, (G2), is made clear in a
number of propositions, such as Elem. III.1, Data 24, and 39, but see also the discussion by Taisbak (2003,
25). This is, of course, reducible to the assumption of two points, bp and dp , given in position, (G2), joined
by a line, Elem. I.post.1.
84 That an arbitrary point can be taken as given, (G2), on a line given in position, (G1), is seen in its
implicit use in Elem. I.9, I.11, Data 32–33, and 37–38, and so on.
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Fig. 13 Conics II.44, resolution (second part)

as given in position, (G2), are simply introduced by Apollonius as given, (G2). Here,
we see clearly how the propositions of the Data serve to expand the range of objects
that can be introduced by the mathematician without discussion in the sense of (G2).

Next, the resolution continues, in Fig. 13, by simply stating that points z p and qp

will also be given, (G3), but a full argument can bemade for this using the propositions
of the Data. Since lines bDp and aE p are given in position, (G2), and meet conic
section AB DE p given in position, (G1), points ap, bp, dp and ep will all be given,
by Data 25. Hence, lines bdp,m and aep,m are given in magnitude, by Data 26. Then,
since d Z and eQ are half of bdm and aem , respectively, d Zm and eQm are also given
in magnitude, by Data 7. Hence, points z p and qp are also given, by Data 27. Finally,
although unstated, zqp is given in position, since it passes through two given points,
by Data 26, (G3).

The resolution contains its own constructive processes, which have a different sta-
tus than those of the transformation. Whereas the constructions of the transformation
are purely hypothetical, those of the resolution are used to demonstrate real con-
structibility, using the constructive methods of Elements I–VI, and starting only with
the objects assumed as given in the enunciation of the problem, (G1)—in this case, the
conic section—and introducing as given only given points, or objects demonstrably
given from these by construction, (G2).

Notice that it is not important to the resolution that z p and qp bisect lines bdp,m

and aep,m—since any given ratio will do. Indeed, it is a general characteristic of an
analysis that the information needed for the demonstration in the synthesis is found in
the hypothetical construction of the transformation, which supplies the actual solution
to the problem, not in the resolution.85 The resolution itself simply concerns the status
of the geometric objects, namely, that they are given, (G3)—that is, constructible
through the permitted operations.

Finally, a comparison of the truncated form of the argument in the Conics and its
full articulation in my commentary makes it clear that, for those who had mastered

85 Heath (1921, I.423) makes a similar point in his summary of the Data.
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the theorems of the Data, such arguments could be used to rapidly confirm whether
or not a proposed solution would work.

As this example shows, the resolution was meant to be a general articulation of
an effective procedure for producing the sought configuration where some initial
configuration is assumed as given, (G1)—and the theorems of Data were presum-
ably organized to help produce such an argument. That is, the theorems of the Data
can be used to help us investigate what objects are constructible through effec-
tive procedures in such a way as to be available for further construction, (G2), on
the basis of some initial configuration of geometric objects, (G1)—where what we
mean by an effective procedure is one that can actually be carried out in a finite
number of steps, as established, say by the postulates and problems of Elements I–
VI.

5 Given in metrical analysis

Whatever Euclid’s original intention had been in composing the Data, it seems clear
that by the imperial period, and probably for some time earlier, the theorems of the
Data were being used to justify and to facilitate the computation of numerical values
that stood as measures of the magnitudes of geometric objects—specifically lengths,
areas, and angles, precisely those geometric objects for which the Data defines the
concept of given in magnitude. We find clear examples of this in the writings of Heron
andPtolemy—particularly inMeasurements,Dioptra,Analemma, andAlmagest—and
a less straightforward indication of this practice in a passage from Theon of Smyrna
that goes back to Adrastus, and probably to Hipparchus.86 These authors provide
arguments consisting of a series of givens, associated with a calculation that starts
with certain numbers, as measures, and computes other numbers, as measures, and
which follows the same route as the deduction by givens. Following Heron, we can
call this type of argument an analysis, and in order to differentiate it from the strongly
geometrical arguments that we read above, we can designate it metrical analysis—
since it concerns the numerical measuration of geometrical objects.87

Because neither Heron nor Ptolemy explicitly mention the enunciations of the-
orems of the Data in their metrical analyses, it might be thought that they are not
referring to the Data, but to some general idea of the concept of given not artic-
ulated in a mathematical text, or, less likely, to some lost treatise that justified
computations using propositions analogous to those in the Data, but which subse-
quently vanished without a trace. But there are a few pieces of ancient and medieval

86 Acerbi (2007, 512–519) has discussed this type of reasoning in texts by Heron, Ptolemy and Diophantus.
I have elsewhere analyzed the metrical analysis by Theon of Smyrna (Sidoli Forthcoming a).
87 This type of argument is called an “analysis” by Heron throughout his Measurements, and by Pappus
in his commentary on Ptolemy’s Almagest V (Rome 1931–1943, 35). I have not found a passage where
Ptolemy himself refers to this type of argument as an “analysis.” In fact, Ptolemy refers to his articulation
of metrical analysis in the style of Heron as a “theorem” (Heiberg 1898–1903, 38, 40).
I originally introduced the term metrical analysis as a category to discuss Ptolemy’s practice and simply

noted in passing the similarities between these types of arguments in Heron and Ptolemy (Sidoli 2004a,
17–19). I have elsewhere discussed the role of this type of argument with respect to mathematical tables in
the Almagest (Sidoli 2014, 25–26). See also the discussion by Acerbi (2012, 201–208).
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evidence suggesting that it was, indeed, the Data upon which their practice was
based.

In the first place, both Heron and Ptolemy appear to be using the theorems of the
Data in their deductions from givens implicitly—that is, as so well known as not
to require any explicit citation, which is the same way that they generally use the
propositions of the Elements. Hence, if Heron and Ptolemy are, in fact, implicitly
referring to the theorems of the Data, it must have been a standard mathematical
text in the imperial period. And, indeed, when Galen, a contemporary of Ptolemy’s,
is discussing what he considers to be the mathematical deficiencies of the Roman
astrologers, he lists their mathematical abilities in a threefold division: Some of them
have studied basic geometry and number theory, some spherics, but very few geometry
in its entirety, including conic theory (Toomer 1985, 196, 199). In the category of basic
mathematical knowledge, he includes a work “called the Dādūmanā, that is, the Given
( )” (Toomer 1985, 196). This means that Galen, who had a high regard for his
own mathematical education, considered the Data to be so elementary that anyone
with even the most rudimentary mathematical education could have been expected to
have mastered it—and this is precisely the way that Heron and Ptolemy are implicitly
relying on it.

Another piece of ancient evidence that metrical analysis was understood to be
justified by theorems of the Data can be drawn from the scholia to the Almagest.
One of the scholia treating a metrical analysis in Alm. I.13, explicitly mentions
the Data and states the enunciation of Data 7, which is the standard format for an
ancient citation of a known proposition (Acerbi 2017, 213). Hence, by the time these
scholia were composed, and going back at least as far as late antiquity, the met-
rical analyses in Ptolemy’s Almagest were read as relying on the theorems of the
Data.

Finally, we may add the circumstantial evidence that every step in the ancient
metrical analyses can, in fact, be justified from the propositions of the Data, and
the fact that Ptolemy’s metrical analyses make efficient use of the theorems of the
Data, but, as we will see, are somewhat removed from the trigonometric computations
that they serve to justify (Acerbi 2012, 208). As we will see in Sects. 5.1 and 5.2,
every step of the metrical analyses we will read can be justified by a theorem in
the Data, but the context makes it clear that the argument is directly related to, and
appears to justify, a computational procedure. After reading examples of metrical
analyses from Heron and Ptolemy, we will discuss the significance of this type of
argument.

5.1 Metrical analysis in Heron

In Heron’s Measurements, metrical analyses are explicitly called “analyses” and the
computations that follow are called “syntheses.” It seems that Heron thought of metri-
cal analysis as similar to the resolution of a geometrical analysis–synthesis pair, so that
the analysis is meant to provide a justification, and perhaps motivation, for the calcu-
lation that follows, just as the resolution provides a justification for the construction,
but was probably regarded as logically unnecessary, just as the resolution, once the

123



384 N. Sidoli

A

B G

D

E

Z

H

Fig. 14 Diagram for Meas. I.10

computation was actually carried through.88 Another reason for including the metrical
analysis is that the analysis, when read as describing an arithmetical computation as
wewill see below, provides a general statement of the algorithm, whereas the synthesis
that follows gives only an example calculation with certain actual numbers.

To get a sense of metrical analysis in Heron, we will read part of the analysis of
Meas. I.10, which shows that if three sides of a trapezoid having two right angles are
given, then both the area and the fourth side are also given.89 Considering Fig. 14,
assuming Trap(ABG D ) where � A = � B = 90◦, (G1), we let AD be 6 units,
BG be 11 units, and AB be 12 units—that is, we take them to have certain known
measures, as numerical values, ADm

..= 6u, BGm
..= 11u and ABm

..= 12u. The
analysis then argues that where we assume ABm , BGm , and ADm are given, (G2),
then Trap(ABG D )m can be shown to given, (G3). The text of the first part of the
analysis of Meas. I.10 reads as follows:

Let G D be bisected at E ,90 and let Z E H be produced through E , parallel to
AB,91 and let AD be extended to Z .92 Since DE is equal to EG, therefore
DZ is equal to H G.93 Let a common, AD [+] B H , be adjoined,94 therefore
the sum AZ [+] B H is equal to the sum AD [+] BG.95 But the sum AD [+]
BG, is given, since each of them is,96 therefore, also the sum AZ [+] B H is
given,97 that is, twice B H .98 Therefore, B H is also given.99 But so is AB,100

88 Acerbi and Vitrac (2014, 363–409) provide a complete analysis of Heron’s use of arguments by “chains
of givens” and their relationship to computational algorithms. In this section, I give one example and develop
a symbolic representation of Heron’s practice.
89 For our purposes here, we will ignore the argument concerning the fourth side.
90 Elem. I.10.
91 Elem. I.31.
92 Elem. I.post.2.
93 Elem. I.15 and 26.
94 That is, DZ + (AD + B H ) = H G + (AD + B H ).
95 Elem. I.c.n.2, since AZ = DZ + AD and BG = H G + B H .
96 Data 3, and by assumption, (G2).
97 Data Def. 1.
98 Elem. I.33.
99 Data 7.
100 By assumption, (G2).
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therefore, the parallelogram101 AB Z H is given.102 And since triangle DE Z is
equal to E H G, let a common, pentagon AB H E D, be adjoined,103 therefore the
whole parallelogram AB Z H is equal to the whole trapezoid ABG D.104 But,
the parallelogram was shown to be given, therefore, trapezoid ABG D is also
given.105

(Schöne 1903, 28–30; Acerbi and Vitrac 2014, 172)

Following this passage, and a short metrical analysis showing that the fourth side is
given, Heron proceeds to give the computation that corresponds to this analysis. The
text reads:

In conformity (¢koloÚqwj) with the analysis, this is put together (sunteq»-
setai) as follows.

Combine the 6 and the 11; 17 results. And of this, the half; 8 1/2 results. This by
the 12, 102 results. Therefore, of so many is the area (™mbadÒn).

(Schöne 1903, 30; Acerbi and Vitrac 2014, 172)

This brief overview of the calculation, which we are told conforms to the analysis,
provides insight into how we should read the claims of the metrical analysis. Because
the values are simply set out as some number of units, and then in the metrical analysis
these are simply assumed to be given, when Heron tells us, in the metrical analysis,
that a geometric object is given he means both that it is given in magnitude, as stated
in the theorems of the Data to which he implicitly appeals, and also that it is given in
numerical value, as is made clear by the synthesis-computation, and by the fact that
he introduces the given numbers with the definite article. The metrical analysis, then,
serves as a justification and an explicit generalization of this computation—just as we
saw a resolution serves as a justification and generalization of a construction—and
hence operates on two different levels.

On the one hand, based on our reading of the Data, we can follow each of the steps
of the metrical analysis with a justification from the Data, so that we have a claim that
where the geometry of Trap(ABG D) given, (G1), and ABm , BGm , and ADm are
taken as given, (G2), then the geometrical regionTrap(ABG D)m is given, (G3). Since
the Data propositions that are involved in this deduction treat the concept of given
in magnitude,106 we can drop the qualification and speak simply of given—just as is
done in the Data itself when the context makes clear the mode in which the objects are
given, Data 57–59, 60 (the gnomon), 84–86. But, the core of this geometric approach
is an appeal to Data 52, which, as we saw above, is a fully geometric argument that if a

101 Heron is using parallhlÒgrammon to mean rectangle. This is not uncommon in Greek mathematical
texts. For example, Archimedes also employs the term in this way (Heiberg and Stamatis 1972, II.418, 426,
428).
102 Data 52.
103 That is, T(DE Z ) + Pent(AB H E D ) = T(E H G ) + Pent(AB H E D ).
104 Elem. I.c.n.2.
105 Data Def. 1.
106 One of the conditions of Data 52 also stipulates that the figure must be given in form, but, of course,
Trap(ABG D) meets this condition.
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figure given in form—that is, we can construct other angles equal to its angles and other
lengths having the ratios of its sides—stands on a line given in magnitude, then the
figure is also given in magnitude. The proof of Data 52 relies on constructing a square
on one of its sides, and comparing this to the figure given in form, by deconstructing
the figure into triangles known in form, and ultimately comparing of rectangles under
the same height, using Data 49 and 48. That is, the concept of given in magnitude,
in the Data approach, reduces to the ability to construct a rectilinear figure—in fact,
a square—whose size can be geometrically related to the figure we are interested in
measuring.

But, the mathematical context of Heron’s metrical analysis—being proceeded by
an explicit claim that certain lengths, which in the analysis are asserted to be given, are
certain actual numbers of units, and followed by a synthesis-computation in which we
straightforwardly compute with these numbers—indicates that, in fact, the more sig-
nificant reading of themetrical analysis is as a general justification for the computation
that immediately follows.107

We can make this explicit as follows. Assigning the values of the given objects as
ABm

..= q, ADm
..= r , and BGm

..= s, and following through the chain of givens in
the text, we have

ADm + BGm
..= r + s, (Data 3)

so that, since AZ = DZ + ADm and B H = BGm − H G, while DZ = H G,

AZ + B H = 2B H = ADm + BGm
..= r + s,

so that

B Hm
..= (r + s)

2
. (Data 7)

Therefore,

Trap(ABG D)m = R(ABm, B Hm)m
..= q × (r + s)

2
. (Data 52)

When considered in this light, it becomes clear that the step that could be justified
by Data 3 is an addition, that which could be justified by Data 7 is a division, and
that which could be justified by Data 52 is a multiplication—as is made explicit in the
synthesis-computation. In this way, it becomes clear that Heron is using arguments by
givens to justify a series of straightforward arithmetical operations.

Myuse of symbols—asopposed to the numbersHeronuses in his example computa-
tion—in order to represent this argument by givens seeks to capture the sense in which
the argument by givens is general, applicable to any given numbers, (G2). Moreover,
by organizing the argument in this way, we can see at a glance that at each step some

107 Heron’s use of this type of reasoning is also discussed by Acerbi (2011a, 143–144; 2012, 201–204).
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newly considered geometrical element, on the left, is assigned to some computed
given value, on the right. In this way, we see that claims about what is given are not
equations in which there are non-given objects on both sides of an equation—such as
we sometimes encounter in algebraic problem-solving, as in the premodern algebra
of Diophantus.108

It may also be useful to consider this argument in terms of the symbolism developed
by Ritter (1989; 1995, 50–52) to describe the form of computational algorithms in
Egyptian and Mesopotamian sources.

ADm D1

BGm D2

ABm D3

(1) ADm + BGm D1 + D2

(2) 2B H = ADm + BGm (1) ÷ 2

(3) Trap(ABG D)m = R(ABm , B Hm )m (2)×D3

We see that this use of symbols in the right-hand column, which corresponds to
Heron’s computation, although it accurately describes the computational process and
makes it clear that each operation is performed on a value obtained in the operation
directly proceeding it, overly obscures the geometrical relations that are articulated in
the metrical analysis.

There is, however, one significant way in which the first symbolic representation
can be deceptive. When we look at the final line of the first symbolic derivation,
we see at a glance the structure of the initially given objects, (G1) and (G2), in the
sought object, (G3). This structure is, however, obscured in the computation, which
operates at each step with the actual number produced in the foregoing step.109 The
metrical analysis, on the other hand, while it provides a context of justification for the
computations, based in the geometry of the figure, also obscures the computational
structure of the sought object, (G3). Nevertheless, the metrical analysis, although not
explicitly stating all of the calculations, contains a series of geometrical inferences that
includes information about structure that is closely related to that which we perceive
immediately in the final equation of the first symbolic representation.

5.2 Metrical analysis in Ptolemy

A number of the metrical analyses in Ptolemy’s writings—particularly those in the
derivation of the chord table—are of precisely the same type as those in Heron’s
Measurements. The majority, however, must be characterized somewhat differently
because of their particular use of given ratios, due to their role in chord-table

108 See Christianidis and Oaks (2013) for study of Diophantus’ problem-solving techniques.
109 This is not always the case in the computations that correspond to metrical analysis. Sometimes a
computed number can be taken up some steps later—as we will see below in the example drawn from
Ptolemy.
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trigonometry. Moreover, Ptolemy almost never performs a metrical analysis for the
exact same problem for which he performs a calculation, and he does not refer to
an argument by givens as an analysis. Indeed, if a metrical analysis is used either to
establish general computability, or as a heuristic technique to look for a computable
solution, then a metrical analysis, once the reader understands the difference between
values given in the sense of (G1) and those given in the sense of (G2), would only
need to be included for the same problem as a calculation for didactic or rhetorical
reasons—much like the geometrical analysis in a analysis–synthesis pair (Netz 2000).
Hence, late ancient mathematical scholars sometimes provided the metrical analysis
corresponding to a computation—for example, Pappus in hisCommentary to Almagest
V, gives a metrical analysis corresponding to one of Ptolemy’s computations, which
he introduces by saying “we will analyze…” (Rome 1931–1943, 35–37).

In order to see how Ptolemy uses metrical analysis as a complement to chord-table
trigonometry, we will read a passage from the development of his solar theory. In
Alm. III.5.2,110 Ptolemy uses metrical analysis to argue that, where the geometric
configuration and parameters of the solar model are given, (G1), if, the apparent
position of the sun, κ , is given, (G2), then both the equation of anomaly, α, and the
mean position of the sun, κ , will also be given, (G3).

Because of the context of this argument, immediately following and closely corre-
lated to a computation through chord-table trigonometry that begins with the explicit
statement that the value with which we begin the computation is given as 30◦,
Alm. III.5.1,111 it is clear that for Ptolemy givenmeans known as a numerical value—a
degree, or a pair of numbers in ratio (Heiberg 1898–1903, I.241). Considering Fig. 15,
Alm. III.5.2 shows that, assuming the eccentricity of the model, (DQ : Q Z )r

..= (e :
r )r as given, (G1), and taking the apparent motion, arc ABm = � ADBm

..= κ as
given, (G2), then both equation of anomaly, � Q Z Lm

..= α, and the mean motion,
arc E Z = � E Q Zm

..= κ , are also given, (G3). The text of Alm. III.5.2 reads as
follows:

That, if another one of the angles is given, the remaining [ones] will be given
is immediately clear, with a perpendicular, QL , being produced in the same
diagram from Q to Z D.112 For if we suppose the arc AB of the zodiac—that
is, angle Q DL—to be given,113 because of that, the ratio DQ to QL will also
be given.114 But, DQ to Q Z being given,115 Q Z to QL will be given.116 But

110 The Almagest can be divided into units of text based on the types of mathematical argument involved.
Alm. III.5.1 is a chord-table trigonometric computation that is followed by Alm. III.5.2 (I.241.14–242.24)
and Alm. III.5.3 (I.243.1–243.15), which are both metrical analyses.
111 Alm. III.5.1 (I.241.1–242.13) uses chord-table trigonometry to compute α = 1;9◦ and κ = 28;51◦,
where κ̄ is explicitly asserted to be given as 30◦, and (e:r)r is treated as the pair of numbers 2; 30p and 60p.
112 Elem. I.12.
113 That is, arc ABm

..= κ .
114 Data 40, Def. 3.
115 Namely (DQ : Q Z )r

..= (e : r, )r = (2; 30P : 60P), as shown in Alm. III.4.
116 Data 8.
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Fig. 15 Almagest III.5.2

through this we will have the angle Q Z L given,117 that is the one corresponding
to the difference of nonuniformity,118 and angle E Q Z [will be given], that is the
arc of the eccenter [circle].119

(Heiberg 1898–1903, I.242–243)

Again, this analysis can be read on two levels. Thefirst is that of the purely geometric
operations involved in the proofs of Data 40 and 43, as required in the argument
by givens. But as we saw in our reading of Data 43, these propositions proceed by
geometric construction.120 Hence, following the arguments in these propositions, what
it would mean for ratio (DQ : QL)r to be given is that we could construct another
triangle similar to T(Q DL), thus providing another, constructed instantiation of the
ratio, as in Data 40. And what it would mean for � Q Z Lm to be given is that we could
construct another triangle similar to T(Q Z L) including an angle equal to � Q Z Lm ,
as in Data 43.

But this constructive approach is of little or no use for the computations that Ptolemy
intends to justify. Hence, just as with Heron’s metrical analysis above, and as clearly
indicated by the context in which the argument occurs, the more significant reading
of this passage must be as the justification of a computation—now also involving
chord-table trigonometry.121

Hence, the second, and probably more significant, level on which we can read
Ptolemy’s metrical analysis is as a justification of a computation. Assigning the given
objects as (DQ : Q Z )r

..= (e : r)r , (G1), and � ADBm
..= κ , (G2), the relationship

between the metrical analysis and the computation to which it corresponds can be

117 Data 43.
118 That is, the equation of anomaly, � Q Z Lm

..= α.
119 That is arc E Zm

..= κ̄ , by Elem. I.32 and Data 4. or Data 3
120 The strategy of the proof of Data 40 is essentially the same as that for Data 43. See Sect. 3.3, above.
121 Ptolemy’s use of this type of reasoning is also discussed by Acerbi (2012, 204–208).
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detailed as follows. Entering into a chord table with κ , (G2), in T(Q DL), where we
set DQm

..= 120p, (G2),
122 we have

(DQ : QL)r = (120p : QLm(DQ))r
..= (120p,Crd(κ)m)r .

123 (Data 40)

And, since (DQ : Q Z )r = (120p : Q Zm(DQ))r
..= (e : r)r , (G1), we have

(Q Z : QL )r = (Q Zm(DQ) : QLm(DQ))r . (Data 8)

Hence, we can set (120p : QLm(Q Z ))r = (Q Zm(DQ) : QLm(DQ))r , and enter into a
chord table with QLm(Q Z ), so that

� Q Z Lm
..= α = Arc(QLm(Q Z ))m

2
. (Data 43)

Finally, from the geometry of the figure, we also have

� E Q Zm = κ ..= 180◦ ±
(

(90◦ − κ) ±
(
90◦ − Arc(QLm(Q Z ))m

2

))
.

(Elem. I.32, Data 4 or Data 3)

When we read the text in this way, it becomes clear that the step that can be justified
by Data 4 or Data 3 is a subtraction or an addition, that justified by Data 8 is the
elimination of equal terms from two known ratios, that justified by Data 40 is entering
a chord table with an angle, and that justified by Data 43 is entering a chord table
with a ratio124 between a leg and the hypotenuse of a right triangle.125

Because of the structure of Ptolemy’s chord table, in doing plane trigonometry we
continually switch between different measures of length, and hence generally work
with given ratios, not with lengths given strictly.126 Hence, when we write QLm(Q Z )

we do not that mean QLm given strictly, but rather QL as given, (G3), where we set
L Zm = 120p, (G2)—that is, where the ratio (QL : L Z )r is given, (G1), and L Zm

is assumed as given, (G2).
127 For this reason, and because of the need to enter into a

chord table, sometimes multiple times, it is not possible to look at the final lines of this

122 In fact, we could say that this is either given in the sense of (G2), because we can set it to whatever
value we like, or given in the sense of (G1), because the use of Ptolemy’s chord table, Alm. I.11, always
determines this value. This, again, shows the ambiguity between (G1) and (G2), and reinforces the claim
that the function of given is always local.
124 Or rather with a sort of pseudo-ratio—namely, a length given in terms of another length.
125 Or rather, entering a chord table with the value of the leg when the hypotenuse has an assumed value.
126 When we enter into an ancient chord table with a given angle we produce a length given in terms of
the hypotenuse—that is, as a pair of numbers, a sort of pseudo-ratio—as is made clear from the fact that
Ptolemy always expresses these lengths in terms of a certain hypotenuse. The 120th part of the diameter
of the chord table is not understood as a unit in the normal sense, because we divide as many diameters
into 120 parts as are required to solve the problem. For this reason, we should not follow Acerbi (2012,
204–208) in rewriting Ptolemy’s text. See also note 142.
127 Once again we see that the difference between (G1) and (G2) is merely local.
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symbolic representation and see at a glance the relationships that the sought objects
have to the given values.

Again, it may be useful to compare this symbolic summary of Ptolemy’s computa-
tion with a formal description of the arithmetical operations.

� ADBm ..= κ D1

(DQ : Q Z )r ..= (e : r)r D2, D3

(1) (DQ : QL)r = (120p : QLm(DQ))r Crd(D1)

(2) Q Zm(DQ) = (Q Z : DQ )r · 120p D3 ÷ D2 × 120p

(3) QLm(Q Z) = (QLm(DQ) : Q Zm(DQ))r · 120p (1) ÷ (2) × 120p

(4) � Q Z Lm in T(Q Z L) Arc((3)) ÷ 2

(5) � E Q Zm = 180◦ ± (� Z QLm ± � L Q Dm ) 180◦ ± ((90◦ − D1) ± (90◦ − (4)))

Here we see that while the symbolism in the right-hand column describes the
operations to be performed as a sort of recipe that shows that values may be stored
and operated on later, it is less successful than the metrical analysis in articulating the
justifications for these operations.

Whenwe look at the first symbolic description of Ptolemy’s metrical analysis, how-
ever, we observe the overall pattern that at each stage of the argument some newly
considered element, on the right, is said to be given in terms of some previously estab-
lished value, or pair of values, on the left. Moreover, the first symbolic representation
is faithful to Ptolemy’s use of metrical analysis as a general argument that if some
values are assumed to be given, (G1) and (G2), then other values can be shown to be
computably given, (G3). Moreover, for those familiar with this style of mathematics,
the metrical analysis also indicates how to actually carry through the computation,
although the use of the chord table means that the steps of the metrical analysis are
somewhat farther removed from the steps of the computation than is the case with
metrical analyses not involving a chord table, both in Heron and Ptolemy (Acerbi
2012, 208). This looseness is, however, a function of the mathematical constraints
involved, not some carelessness on Ptolemy’s part.

Finally, the metrical analysis of a configuration amenable to chord-table trigonom-
etry is generally is much faster than carrying through the corresponding computation
by hand.128 Hence, for mathematicians skilled in the methods of the Data, metrical
analysis probably functioned as a sort of heuristic technique that could be used to
explore the feasibility of making calculations without the labor of actually carrying
them through.

128 Compare, for example, the metrical analysis above with the calculation that proceeds it in Alm. III.5.1.
The computation takes 39 lines of Heiberg’s text whereas the metrical analysis takes 9 (Heiberg 1898–1903,
241–243).Moreover, for someone familiar with reasoning by inferences from theData the metrical analysis
given above is trivial and rapid, whereas the computational effort involved in entering even one time into
the chord table is rather time consuming for anyone not able to perform sexagesimal computations in their
head.
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5.3 Characteristics of metrical analysis

In reading through these passages of metrical analysis, some, but tellingly not all,
modern readers perceive a tension between the computational procedures that the
process seeks to justify and the geometrical theorems of the Data that the claims made
in the argument implicitly call upon. It is important to note, however, that this tension
was either not evident to Heron and Ptolemy, or, if it was, they passed over it in silence.
In fact, there is no indication that they thought of their use of metrical analysis as in
any way new, or innovative.129

Heron and Ptolemy probably thought of their metrical analyses as addressing issues
dealingwithmeasuring geometric objectswith numerical values, as opposed to numer-
ical computability taken strictly.That is, ametrical analysis,with its possible grounding
in the geometrical theorems of the Data, was able to make a claim that, say, the diag-
onal of a square, or the chord of an arbitrary arc, is given in terms of the side of the
square or the diameter of the circle, Data 52 and 87—even if we do not have a method
for computing these ratios exactly. Indeed, in most of our ancient sources, metrical
analysis was carried out in a fundamentally geometric context.130 Nevertheless, as we
made explicit in the symbolic representations above, the steps of a metrical analysis
are computable through some well-known process, as well as being supported by the-
orems of the Data. In fact, it is likely that being computable was more crucial than
being supported through theorems in the Data. For example, Ptolemy’s derivation of
the chord table,Alm. I.10, which employs theorems, computations, andmetrical analy-
ses, seems to prefer metrical analyses that are suitable for computation over others that
correspond to the simplest argument made possible by the theorems of the Data.131

In this way, metrical analysis, although based on underlying geometrical objects,
was first and foremost a technique for addressing questions of computability. What is
given at each step is some actual number. It need not be a perfectly accurate measure
of the object in question—for example, the value of the chord subtending 1/2◦, or the
diagonal of a square in the same measure as its side—but it must be a number that
we can compute, and which we can then use in further computations. This is made
clear by looking at the symbolic representations of metrical analyses above, in which
we see that the right-hand side always assigns a computed number to some geometric
object. Indeed, a statement that something is given occurring in a metrical analysis is
a claim it can be assigned some definite, computable value.

A metrical analysis need not proceed in such a way that each step computes with
the value just assigned in the previous step—although some simple metrical analyses
do work this way, as in the example from Meas. I.10. Once a value has been assigned

129 At least by the classical Islamicate period, and probably from much earlier, this blending of the geo-
metrical and arithmetical readings of geometrical books of Euclidean works was commonplace. Thābit ibn
Qurra, who knew Euclid’s work as well as anyone, tells us in his Composition of Ratios that although Euclid
only defined “quantity” or “magnitude” ( ) to refer to geometric objects that have “extent” ( ), in his
actual works the meaning of the term is broader and refers also to angles, numbers, movements, and so on;
and that whenever we read quantity we should also understand number (Lorch 2001, 170; Rashed 2009,
431).
130 A possible exception is the analysis in the final theorem of Diophantus’ Polygonal Numbers.
131 I will flesh out the details of this in separate paper, focusing on Ptolemy’s use of metrical analysis.
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to an object, that value remains available for future computation at any later point in
the analysis, as in the example from Alm. III.5.2. Hence, the chain of givens need not
be direct—in the sense that values can be set aside and taken up at some later point
for further computation.

In texts containing metrical analysis the basic computational operations—the four
arithmetical operations, taking roots, eliminating an equal term from given ratios,
entering a chord table, and so on—are neither postulated nor discussed. They are
simply assumed unproblematically to be possible, and executed without discussion in
a computation. This approach, however, is similar to that taken by Euclid in his number
theory, Elements VII–IX, or by Diophantus in his premodern algebra, Arithmetics. In
both of these works, basic computational operations are simply assumed with no
formal introduction and little, or no, discussion. Indeed, a metrical analysis is not an
explicit arithmetical algorithm, since no arithmetical operations are ever mentioned.
A metrical analysis deals then, not explicitly with the mechanics of any operation, but
rather with the possibility of computability more generally.

There are a number of fundamental differences between the methods of metri-
cal analysis and those of premodern algebra—found, for example, in Diophantus’
Arithmetics. For one thing, Diophantus’ procedures are, at least in principle, purely
numerical, and do not rely on any underlying geometric conception.

Next, metrical analysis has no special nomenclature for designating objects to
be sought, as is introduced in premodern algebra. In ancient analysis, we deal only
with geometric objects and with those same objects when they are given in various
ways—hence, there is no notational, or conceptual, device that allows us to set up a
relation containing both given elements and explicitly sought elements. A problem in
premodern algebra, however, begins with an instantiation of the stated problem using a
certain equation, in which terms to be sought are set into relation with actual numbers
that are stated to be given.132

Finally, although metrical analysis provides an algorithm for computing a definite
value, it does so in a different manner than premodern algebra. Diophantus’ procedure
for setting up the equation with which he will work, allows him to set known and
sought values on both sides of his equation, so that he can apply operations mathemat-
ically equivalent to the arithmetical operations without regard to the epistemological,
or ontological, status of any of the objects in his equation.133 Of course, in metrical
analysis we also find equations, and proportions, with non-given objects on both sides
of the equation, which are then subjected to arithmetical operations and ratio manipu-
lations,134 but this is done only as an intermediate step before immediately asserting

132 This section of a Diophantine problem has been called the invention and the set up of the equation
(Christianidis 2007, 296–298; Christianidis and Oaks 2013, 132–134).
It should be noted that, in general, premodern algebra does not employ the concept of given as part of its

problem-solving procedure, but rather uses the practice of assigning actual numbers to stand in as examples
of the values that are asserted to be given in the enunciation.
133 In fact, Diophantus’ three primary operations for working with equations are not expressed by him as
arithmetical operations, but, of course, they can be so expressed (Tannery 1893–1895, I.14; Sesiano 1982,
88).
134 See, for example, the second line of the symbolic representation of the example from Heron above,
Section 31.
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that some geometrical object is given in terms of some computable number. Inmetrical
analysis, it is this series of claims about what is given that functions as the primary
problem-solving procedure.

As well as showing the possibility of producing a computation, and providing a
general language in which to state an algorithm, metrical analysis was probably used
by ancient mathematicians because in many cases it would have been faster, and more
convenient, to look for a solution by metrical analysis then to carry through an actual
computation. Once the metrical analysis had assured the mathematician that a certain
valuewas, in fact,given, then the computation itself could actually be carried through—
and the metrical analysis would point out the general direction of the computation.
Hence, in this restricted sense metrical analysis could play a similar role in ancient
problem-solving as our use of a purely symbolic equation, although the strengths of
the two methods are rather different.

6 Conclusion

Although from a mathematical perspective it is possible to claim that that the argu-
ments about givens in the Data were produced from the beginning to address the dual
questions of general constructibility and general computability,135 on balance I think
that this is less likely than the claim the Data was originally composed to address the
needs of geometrical problem-solving and was then later repurposed as a means to
justify and generalize metrical arguments.

In the first place, I am aware of no evidence—direct, indirect, or circumstantial—for
the use of arguments by givens in the classical or earlyHellenistic periods in computing
numerical values, despite the fact that we have a number of direct and indirect sources
for these periods that do carry out computations; while, on the other hand, there is
clear and direct evidence that Greek geometers of these periods used the concept of
given extensively in their geometric problem-solving activities.

Moreover, the articulation of theData itself is fully consistent with a purely geomet-
rical reading. For example, as we saw, the core definitions are explicitly geometrical,
and the key theorems are demonstrated using geometrical construction. If we want
to argue that the Data itself was originally written to justify numerical operations,
however, we must confront a number of inconsistencies. While Data 3 and 4 could
be taken to justify adding and subtracting for general quantities, for multiplying and
squaring, taking square roots and dividing, we must turn to Data 52, 55 and 57—but,
as we saw, the proof of these theorems rely on the geometric construction of a square
and a similar triangle, since Data 55 depends on Data 52, and Data 57 depends on
Data 40. And moreover, they only allow for multiplying or dividing by one value—
since the resulting object, being geometrical, would have to be transformed, in some

135 Blåsjö (2016) has recently made a related argument in regards to the interpretation of certain theorems
of Euclid’s Elements as so-called geometrical algebra. He argues, essentially, that this reading has not been
definitively refuted. This is, of course, true, but it misses the point. Almost no one would argue that it is not
possible to make a reading of Elements I and VI as motivated by and justifying computational problem-
solving. The question is rather whether such a reading, or that through the theory of the application of areas,
is more broadly successful in explicating the ancient sources.
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unspecified way, before the operation could be performed again. At the very least, we
must accept that if, in fact, Euclid had devised his text in order to justify arithmetic
procedures, he did so in a rather disorganized way. Finally, it should be added that
there is no clear evidence that Greek mathematicians thought that the basic arithmeti-
cal operations needed to be justified, so there is no reason for us to believe that Euclid
felt the need to engage in such a project.

Hence, it is more likely that mathematicians in the late Hellenistic period, such
as Hipparchus and perhaps others, adopted the theorems of the Data as a structure
for justifying their computations. They probably did this because the Data was the
only text available that provided such justifications and they probably felt warranted
in doing so because their computations were, after all, meant to measure the sizes of
various geometric objects. Whatever the case, metrical analysis, as it was practiced by
Heron and Ptolemy sets geometry in a truly fundamental position, so that only com-
putations that measure geometric objects are, in fact, justified. With few exceptions,
metrical analysis is not used in purely numeric problem-solving in our sources.136

This realization leads us to see the analytical approach of Jordanus of Nemore, in his
Given Numbers, as all the more innovative (Hughes 1981; Zheng 2012).

In order to elucidate and summarize the various uses of given that we have seen,
we will return to Marinus’ discussion of the various ways that ancient mathematicians
talked about objects being given (Menge 1896, 238–242). Instead of closely following
Marinus’ own discussion of these terms, we will try to understand them on the basis
of the mathematical passages we have read.

The first term that Marinus introduces is fixed, assigned, or ordered (tetagmšnon),
whichhe attributes toApollonius, andwhichhe tells us is thatwhich remains always the
same in regard to whatever it is fixed (Menge 1896, 234, 238). As Acerbi (2011a, 130–
133) has argued, the most common meaning of this term in the mathematical corpus
is “unequivocally determined.” We saw above that Apollonius used it to introduce
as given, (G2), the ordinates of a conic section assumed as given, (G1), and, in fact,
Apollonius’ terminology for the ordinates themselves is a cognate of this word (Acerbi
2011a, 131–132). This way of talking about given emphasizes that what is given is
fixed, or assigned, as opposed towhat is free, or variable. This distinction betweenwhat
is fixed and what is variable is especially drawn out in the study of loci and porisms
(Acerbi 2011a, 137–138). Moreover, it has important overlaps with our understanding
of the difference between the given and variable terms of a Cartesian equation. For
example, if we compare the Cartesian equations with the locus definitions of the conic
sections in Manaechmus’ problem discussed above, namely

ax = y2 with R(am, d Z p ) = S(Z Q ), and

xy = ae with R(d Z p, Z Q )m = R(am, em )m,

where a and e, on the left, and am and em , on the right, are simply given in magnitude,
(G1), while x , on the left, and d Z p, on the right, are non-given segments of a line

136 A possible exception is Diophantus’ Polygonal Numbers, which is essentially arithmetical despite an
outward veneer of geometrical language and concepts. (Heath (1921, II.516), for example, states that “the
method of proof is strictly geometrical.”)
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given in position with a given endpoint, (G2), it is clear that the notion of given is
here closely related to our conception of fixed, or assigned, as opposed to variable.
It is unfortunate that the ancient works on loci problems and porisms have been lost,
but it is to be hoped that a careful investigation of the fragmentary evidence for this
material, especially in Pappus’ Collection VII, will further shed light on this aspect of
the ancient use of given as opposed to unassigned objects.137

Marinus’ second term is known (gnèrimon), which he attributes to Diodorus, who
apparently said that rays and angles are given in this way (Menge 1896, 234, 238–
240). Since Diodorus is known to have worked in sundial theory, and since Ptolemy’s
Analemma 9 and 10 use metrical analysis to determine the angles that specify the
position of the solar ray, it is likely that Diodorus used known to describe the status of
the given objects in metrical analyses that he included in his now lost Analemma.138

This is supported by the observation ofAcerbi (2011a, 134) that an analytical argument
in the Euclidian Optics 18, version A, uses the term known as perfectly synonymous
with given. Indeed, it is quite possible that Diodorus wrote metrical analyses similar
to those now found in Ptolemy’s Analemma 9 and 10 using known in place of given.

At any rate, the notion of known appears to be closely related to the usage of given in
metrical analysis—namely, it designates a value that can be assigned in the beginning
and then computed at each stage through an effective procedure, in such a way that
each step is also justified by a theorem of the Data. In both, metrical analysis and
premodern algebra, we start out with the essentially arbitrary assignment of certain
values to be operated on in the procedure. The contrast, here, between what is given
and what is not is that between the terms to which we can assign a definite, known
value, and those whose values are sought, or depend in some essential way upon the
given values. In metrical analysis, however, unlike premodern algebra, we have no
special terminology for the values we seek, or any values we may determine along the
way. Moreover, as discussed above, metrical analysis does not lend itself to working
with unknown values on both sides of an equation. Finally, inDiophantus’Arithmetics,
we do not find analyses by givens, and the terminology is used only for the arbitrary
values that are used to state the problem or assumed in completing the problem,
(G1) and (G2). This may be because in Diophantus’ problem-solving procedure the
relationships between the various terms is crucial to choosing appropriate given values
to complete the problem, whereas in metrical analysis these underlying relationships
are obscured by a chain of givens that results in the simple assertion that the sought
object is given. It is also possible that Diophantus thought of arguments by givens as
justified by the Data and considered that the geometrical context of the Data bares

137 The vital role of loci and porisms in ancient analysis is elucidated byKnorr (1986) in his brilliant study of
ancient geometric problem-solving. See Jones (1986, 547–602) for a summary of the mathematical contents
of the lost treatises on porisms and loci. Acerbi (2011a, 137–138, 146–448) discusses the importance of
locus theorems and porisms with respect to the language of givens. See also the reconstruction of Euclid’s
Porisms by Simpson,which although speculative, can give us a sense for themathematical concepts involved
(Tweddle 2000).
138 See Edwards (1984, 152–182) for a discussion of the evidence concerning Diodorus. Ptolemy’s use of
metrical analysis in Analemma 9 and 10 is described by Edwards in the notes to his translation of these
passages.
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little relation to the purely arithmetic context of his problem-solving approach in
Arithmetics.

Marinus’ next term is provided, found or calculated (pÒrimon), which, although
not associated with any particular name, given the context and the terminology, he
must have been taken from Euclid’s usage (Menge 1896, 240). This is the meaning
of given used in the problems of the Elements, the theorems of the Data, and the
resolutions of geometrical analyses. Here, what is given is whatever objects are there
available to work with in the beginning of the mathematical discourse, whatever we
introduce in some well-defined way, and whatever we can produce from these through
an effective procedure. In terms of the elementary Euclidean texts, these procedures
were confined to the postulates and the problems, but in more advanced works objects
could be considered given so long as they were introduced by some well-defined
procedure, such as a locus description or a mechanical construction—certainly, both
Menaechmus and Apollonius considered it possible to introduce conic sections given
in position. The term is also used by Heron in Dioptra 13–14, 25–30, for values that
can be computed through some effective procedure (Acerbi 2011a, 135). This way
of treating given objects as provided or found gives us a general way of treating the
effective procedures used to produce or locate these objects. An argument by givens
in this sense does not necessarily actually produce any object, it simply establishes
that it is possible to do so. Hence, a problem, since it produces, or finds, and actual
object, need not be accompanied by an argument by givens, since the possibility of
producing or finding the object is established as a corollary of having actually done
so.

Marinus’ final term is stated, specified or expressible (·htÒn), which he seems to
put forward with some hesitation (Menge 1896, 234, 240–242).139 In the first place, he
attributes it rather obliquely to Ptolemy and then in his own discussion of the term gives
no more than the most basic definition of the term, with no attempt to explain how it
is related to the concept of given. When Marinus first introduces the term he says, “…
somedeclare it to be expressible (·htÒn), as it seemsPtolemy,whenhe callsgiven those
things whose measure is known either accurately, or approximately” (Menge 1896,
234). This expression implies, however, that Marinus did not actually find a passage
in Ptolemy’s text that makes this assertion, but rather he inferred it indirectly from
something else that Ptolemy says. Indeed, I have not found any passages in Ptolemy
that directly assert that what is given is expressible. There are a few places where
Ptolemy speaks of the precision of his calculations, but he generally does not mention
what is given in this regard.140 Perhaps Marinus is referring to Ptolemy’s general
practice of using metrical analysis to compute values that we know are not necessarily
expressible. For example, in the course of the derivation of this chord table, Ptolemy

139 As is well known, ·htÒn refers to what is precisely expressible in terms of some arbitrary measure, and
hence relates to the distinction between what is commensurable and incommensurable—as, for example,
in Elements X. Hence, the concept is mathematically related to our notion of a rational number, and the
word is sometimes translated in this way. There is a long literature on this material that need not concern
us here.
140 For example, Taisbak (2003, 243) refers this passage in Marinus to Almagest I.10.1, where Ptolemy
introduces the system of sexagesimal fractions, but Ptolemy does not say anything about what is given in
this passage (Heiberg 1898–1903, 32).
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tells us that if a chord is taken as given, (G2), then the chord of the supplementary arc
is given, (G3), since the sum of their squares equals the square of the diameter, which
is tacitly assumed to be given, locally (G1). He then gives an example calculation and
states that the chord is “nearly” ( ”eggists) a certain sexagesimal value (Heiberg 1898–
1903, 35–36). This is fairly plainly an assertion that even though we cannot compute
this value exactly, it is still given. I do not see, however, that this amounts to a claim
that what is given is expressible, in the technical sense of the latter term. Indeed, this
seems to be equivalent to the claim that Marinus attributed to Diodorus—namely, that
what is given is “anything that arrives to some knowledge, even if it is not expressible”
—because Ptolemy must have been aware of proofs that some of the values computed
in this way are irrational (¥logoj), or non-expressible (Menge 1896, 134). Since I
cannot find any statement by an ancient mathematician claiming that what is given
is what is expressible, and since Marinus himself does not seem to be interested in
discussing the subject at any length, it is likely that the only reason he brought it up
is that someone in his circle had, incorrectly, attributed this interpretation to Ptolemy.
Whatever the case, since we do not find this in Ptolemy, or any other mathematical
author, we may, like Marinus, dismiss this reading as irrelevant.

AlthoughMarinus introduces these alternative terms as definitions, or explanations,
of the given (Menge 1896, 134), the first three terms, or their cognates, are all found
used in Greek mathematical texts as synonyms for given.141 Indeed, considering the
general lack of metamathematical discussion in Greek mathematical texts, it is likely
that synonyms such as these are the only sources for Marinus’ terminology and that
his discussion has little more to teach us than what we can already learn from the
mathematical texts themselves.

From these texts we see that an object that is designated as given is one which
is directly accessible to the mathematician and is available for further mathematical
work. What is given is uniquely determined in such a way that it is available for a
constructive or computational procedure, and what results from this procedure then
becomes given—what we might call assigned. In the texts that have come down to us,
once an object has been assigned in a certain mode of given, it cannot be reassigned.142

Of course, a newly assigned object often depends on a previously assigned object, and
it is just this dependency that an argument by givens seeks to establish. Arguments
and claims about givens do not concern themselves with how the original objects are
assigned—it is simply assumed that this can be done. There does not appear to have

141 For example, the verb t£ssw is used by Apollonius, Conics II.44 to set out a line given in position,
as seen above, Sect. 4; gnèr…mon is used as a synonym of given in Euclid’s Optics A 18 (Heiberg 1895,
28); and Heron uses por…zw in Dioptra 13, 14 and elsewhere to mean given (Schöne 1903, 234–236). (The
use of poišw by Apollonius in the enunciation and exposition of a number of theorems of the Conics is
unrelated to the concept of given. The discussion by Acerbi (2011a, 135) of Apollonius’ usage is obscure
to me—it does not introduce something which is “provided,” nor is it used in any problems. It introduces a
constructive assumption without which the theorem would not hold—what we can call a contrivance.)
142 Perhaps this is why Ptolemy, in the metrical analyses of his chord-table trigonometry generally does
not speak of a length being given in magnitude, because this would involve him in assigning the same line
multiple times. Acerbi (2012, 208) observes this problem of multiple assignments. The end of the metrical
analyses in Analemma 9 and 10 support this assessment. In each case Ptolemy first sets the radius of the
analemma as given in magnitude and then all the other lengths that he has previously shown to be given in
ratio to the radius are all given in magnitude—so that each length has only one assignment.
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been any restriction on the objects that can be assigned in setting out a problem. We
see, however, from reading the texts that the objects that can be assigned arbitrarily in
the course of an argument are restricted to points and lines in position, magnitudes,
numerical values, and certain well-defined constructions.

Arguments by givens establish the constructibility, or computability, of a math-
ematical object—that is, they establish the validity of an effective procedure. One
of the primary goals of an effective procedure is to produce a mathematical object
in such a way that it may be of use in further mathematical work—so that it may
enter into new procedures. This means that a problem must produce a new object
that will be as concrete and available to the mathematician as whatever we started
with. For example, in Elem. I.1 an equilateral triangle is constructed on a given line,
then in Elem. I.2, this constructive operation is called in to produce an equilateral
triangle that is, in turn, operated on—its sides are extended, circles are drawn about
its vertices and so on. Hence, the triangle that is produced using Elem. I.1 must be
given in the same sense as any other mathematical object that we introduce in a con-
trolled manner. It is in light of this that it makes sense to say that whatever we arrive
to at the end of a productive mathematical procedure—an ancient problem—is also
given.
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