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Abstract In this paper, I present an interpretation of the use of constructions in both
the problems and theorems of Elements I–VI, in light of the concept of given as devel-
oped in theData, that makes a distinction between the way that constructions are used
in problems, problem-constructions, and the way that they are used in theorems and
in the proofs of problems, proof-constructions. I begin by showing that the general
structure of a problem is slightly different from that stated by Proclus in his commen-
tary on the Elements. I then give a reading of all five postulates, Elem. I.post.1–5, in
terms of the concept of given. This is followed by a detailed exhibition of the syntax
of problem-constructions, which shows that these are not practical instructions for
using a straightedge and compass, but rather demonstrations of the existence of an
effective procedure for introducing geometric objects, which procedure is reducible to
operations of the postulates but not directly stated in terms of the postulates. Finally, I
argue that theorems and the proofs of problems employ a wider range of constructive
and semi- and non-constructive assumptions that those made possible by problems.

1 Introduction

This paper is a treatment of the role of construction, and constructive thinking, in
Euclid’s Elements I–VI, based on a reading of both the Elements itself and the Data,
which has a close relationship to Elements I–VI and is a formal treatment—in the
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404 N. Sidoli

ancient sense—of constructibility.1 It is now widely recognized that the predicate
logic used in the early twentieth century axiomatizations of Euclidean geometry, and
by Mueller (1981) in his treatment of the logical structure of the Elements itself, is
insufficient to axiomatize geometric constructions (Pambuccian 2008). Starting from
the 1960s, however, logicians began to produce axioms for operations, as is required
for the axiomatization of geometric construction. Although I have been influenced by
this work and have used some of it to help clarify what I think that Euclid is doing,2 I
do not give a formal treatment of Euclid’s practice and I have avoided formalization
as much as possible. Instead, I have attempted to keep things intuitive and grounded in
concepts and procedures thatwe can find in the ancient texts, because ancient geometry
is a study of geometric objects themselves, using a fairly simple logic articulated in
natural language (Panza 2012; Acerbi 2011a).

Hence, in reading the Elements, I endeavor to provide an interpretation of obscure,
or uncertain, passages that is both consistent with other passages in the Elements itself
and with the Data. That is, I make the methodological assumption that the author
of the Elements was not simply a compiler—although he doubtless did work with
and assimilate previously available material—but rather, intentionally composed and
organized Elements I–VI and the Data, both to be read together and to express a
coherent project of plane geometry.3 In this way, I hope to present an integrated view
Euclid’s constructive geometry that can be placed in the context of ancient debates
about the nature of geometry even if it is sometimes not theway that wewould proceed.

In this paper, I utilize a number of concepts from computer science—or rather
from the philosophy of computer science. This is not because I believe that ancient
geometers were thinking along similar lines but rather because these concepts help
us to discuss constructive procedures more precisely. For example, the concept of
function introduced in this paper is simply that of a type of procedure or routine that
performs a specific task—namely, it operates on some specified object, or objects, and
returns some definite object. I use the term routine for a procedure that is explicitly
stated as a finite series of steps, each one of which has already been fully articulated.
Finally, I use subroutine for a procedure that acts as a unit in other routines. In fact, all
of these could simply be called procedures, or rules, but the terminology introduced
will help us be more specific about various aspects of the practice that we find in the
Euclidean texts.

1.1 Constructions in problems and in theorems

In order to discuss the role of constructions in the Elements, it is useful to point out
that constructions are employed in both problems and theorems, and to distinguish

1 Of course, there are no explicit constructions in Elements V. Nevertheless, I take Elements V to be
necessary to the development of ElementsVI, which includes a number of important problems and involves
considerably use of construction. Furthermore, it is possible that construction is implicitly involved in the
essential definitions of ratio and proportion, Elem. V.def.4 and V.def.5.
2 I have particularly found useful the approaches of Mäenpää and von Plato (1990) and Beeson (2010).
3 In fact, the Data is more of a compilation than the Elements and it is really only the first half to three
quarters of the text that can be read as articulating a single program.
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between problems, which are a type of assertion, and constructions, which are a way
of introducing, or perhaps producing, objects. Constructions are used to introduce new
objects into both theorems and in problems—and in problems this is done in twoways,
or rather to two ends, as we will see.

The terminology and practice of the Elements clearly divide propositions between
theorems and problems (Heath 1908, 124–129; Caveing in Vitrac 1990–2001, I.133–
137). The first six books of the Elements present a blend of theorems and problems—
most books are mixed; Elements IV has no theorems, Elements V no problems. Since
the term problem is used in discussions of Greek mathematics in a way that differs
from that normal in current usage, it may be helpful to state that every proposition of
the Elements can be categorized as follows:

Problem: Given some set of initial objects, a problem shows how to do some-
thing (say, how to find, to produce, to construct, to set out, and so on) and then
demonstrates that what has been done is satisfactory. (“To do such-and-such…”)

Theorem:A theorem asserts someproperty that holds for certain objects that are not
asserted to be given. (“If… then…,” “Such-and-such an object has such-and-such
property…”)

The distinction between these two types of propositions is discussed by Proclus, who
also tells us that in the classical period there was a lively debate over which type of
proposition should be regarded as primary (Friedlein 1873, 77–81). Since at least as
far back as Proclus, however, it has been more common for scholars of the text to
regard theorems as primary and to construe the role of problems as auxiliary (Zeuthen
1896; Harari 2003). This view has been challenged by Mueller (1981, 15–41), who
points out that a desire to produce problems could account for much of Elements I, and
by Knorr (1983) who makes it clear that in other mathematical texts, including other
texts by Euclid himself, problems play a fundamental role. Nevertheless, because of
theweight placed on theorems, there seems to be still a general tendency, when reading
the Elements, to see problems as auxiliary to theorems and hence to conflate problems
with the constructions used in proving theorems.

In fact, in the Elements, constructions are used in both theorems and in problems—
and in problems in two different ways. A clear distinction between problems and
constructions has already been delineated on the basis of a reading of Theodosius’
Spherics (Sidoli and Saito 2009), and I will argue in this paper that this distinction
must be maintained for the Elements as well.

A problem is completed by producing a specific geometric object that meets cer-
tain conditions. A problem (a) shows how to produce the object using an explicitly
articulated routine of postulates and previously established problems and then, (b)
through deductive argumentation, using first principles—of three different types—
and previously established theorems, shows why this object is the one that was to be
produced. This deductive argumentation sometimes requires the introduction of new
objects. That is, the geometric objects that complete the problem, together with the
initial objects stipulated in the enunciation of the problem itself, are sometimes not
sufficient to show that the constructed object satisfies the requirements of the prob-
lem. In such cases, we must introduce new objects for the proof—which, just as with
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theorems, can be done using a variety of different means, including, but not limited to
postulates and previously established constructions.

In a theorem, on the other hand, while it is sometimes the case that the properties
of the objects stated in the enunciation are sufficient to demonstrate the proposition,
more often than not we must introduce new objects and use their properties in the
course of the demonstration. These new objects are introduced using constructions
that can usually be carried out using the postulates, or previously demonstrated prob-
lems. Euclid, however, also demonstrates theorems by introducing, or supposing the
existence of, objects whose production cannot be so explained—to be discussed in
Sect. 5. In such cases, we may call the introduction of these objects hypothetical, in
the sense that no effective procedure has been, or in some cases can be, stated for their
production.4

Indeed, whereas the introduction of objects in a theorem, or in the proof of a prob-
lem, is sometimes hypothetical, the use of construction in problems is strictly reducible
to the postulates—as has long been known. Nevertheless, the way that constructions
function in the production of problems has never been accurately described in detail.
Indeed, since most scholarly work on the Elements has gone into understanding the
theorems, the way that previous problems are employed in the constructions of prob-
lems has often been overlooked. For example, Heiberg (1883) often notes a fairly
minimal set of justifications for the production of a problem in his Latin translation
and in this he has been followed by Heath (1908). More recently, Vitrac (1990–2001),
Joyce (Online), and Fitzpatrick (2008) havemade reference tomore construction steps,
but I have often found that the list of justifications that they provide in their text is
also incomplete.5 Hence, in order to fully understand the way that previous problems
function in the construction of new problems, we must work through every step from
the beginning of the text.6

4 These semi-constructive, or non-constructive introduction assumptions have the same status as the ana-
lytical assumption of an ancient geometrical analysis–synthesis pair; see Sidoli (2018, Sects. 2, 4).
5 For example, for the construction of Elem. III.33—to describe a segment of a circle on a given line
admitting a given angle—Heiberg (1883, I.251–255) makes reference to only one problem, Elem. I.23,
and Heath (1908, I.67–70) cites no problems, while Vitrac (1990–2001, I.455–457), Joyce (Online, III
Proposition 33), and Fitzpatrick (2008, 101–103) cite all of the problems that are employed, omitting
only the postulates—presumably because they are taken to be obvious. (Note that Joyce incorrectly cites
Elem. I.12 in place of I.11.) Finally, Vitrac (1990–2001, I.514–517) gives the full application of all of the
postulates in his tables for Elements I–IV.
6 I have worked through all of the problems for Elements I with paper and pencil and all of the problems
for Elements I–VI using Alain Matthes’ tkz-euclide, which allows us to emulate constructions according
to the methods stipulated in the text (see Sect. 3, below). If we move through the text in order, we see
that all of the problem-constructions are fully specified by the text, with the following exceptions: (1)
Elem. III.16.corol. states that the line drawn at right angles to the diameter of a circle is tangent to the circle.
This would allow us to produce a tangent to a circle at a given point with Elem. III.1, I.post.1, and I.11.
Such a construction is implicitly used in Elem. III.34, IV.2, IV.3, IV.7, and IV.12. (2) Elem. IV.1 and IV.6
begin by producing the diameter to a given circle. This can be done with Elem. III.1, I.post.1 and I.post.2.
(3) In Elem. IV.16 an equilateral triangle is inscribed in a given circle. In order to do this, we will have to
apply Elem. I.1 to an arbitrary line before we can apply IV.2. The model for this is Elem. IV.10 and IV.11.
(4) In Elem. VI.13—to find a mean proportional between two given lines—the given lines first have to be
set up in the necessary configuration. This can be done with Elem. I.post.2 and I.3. Also, in order to draw
the semicircle in this problem, a right anglemust be produced,Elem. I.11, before the semicircle can be drawn
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I will argue in this paper that whereas all of the objects introduced in the construc-
tions of problems can be unproblematically produced by applications of the postulates
and previously established problems, the ways in which objects can be introduced in
theorems and also in the proofs of problems are not subject to this constraint. Hence,
Euclid’s problems cannot be understood as simply auxiliary to theorems, but constitute
a mathematical project in their own right.

1.2 Given objects in problems

Problems in the Elements involve the concept of given, which plays a much more
restricted role in Greek mathematical texts than in our mathematical discourse.7 Prob-
lems concern various constructive mathematical processes that can be carried out on
objects that are asserted to be given,8 while this terminology does not enter into the
theorems of the Elements.9 From a functional perspective, an object is said to be given
when it is either (G1) assumed at the beginning of the argumentative discourse, in the
enunciation, or (G2) assumed in the course of setting out the solution to the problem,
at the mathematicians discretion, or (G3) is determined by an argument starting from
(G1) or (G2) and employing constructions made up of postulates and problems and
chains of inferences using theorems (Sidoli 2018).

Although from a logical perspective there is no difference between (G1) and (G2),
in any particular problem objects given in the sense of (G1) are part of the problem
itself and are expressed in the enunciation and exposition, whereas those given in the
sense of (G2) are part of the solution and are expressed in the construction. That is,
objects given in the sense of (G2) are locally arbitrary.10 Objects given in the sense
of (G3) are not explicitly treated in the Elements, nevertheless, as we will see below,
the propositions of the Data can be used to make claims about whether or not other
objects, besides those set out in the enunciation, are also given.

From a more essential perspective, I will argue that a given object is one that
can possibly enter into or result from a routine, or an effective procedure—which is
understood as a constructive process that can be carried out using a definite series of
well-defined procedures. That is, a given object is one that can, but need not, actually be
constructed. Since, aswewill see below, problem-constructions are routines composed
of postulates or previously established problems, each of which starts with certain

Footnote 6 continued
with Elem. III.33. In these four cases as well, however, we can easily see how these constructions can be
reduced to the postulates and previously established problems, as I have made clear.
7 For a recent discussion the terminology of givens in Greek mathematical sources see Acerbi (2011b).
The discussion here is a short summary of my recent study of the ancient concept of given (Sidoli 2018).
8 Elem. IV.10, which does not assert any object to be given in the enunciation, appears to be an exception,
but a line is set out assumed as given in the beginning of the construction and the proposition could be
rewritten along these lines. See note 29, below, and Sidoli (2018, n. 9).
9 Greek philosophers such as Proclus, on the other hand, speaking rather more loosely, do refer to the
objects that we start with in a theorem as being given (for example, Friedlein 1873, 203–205).
10 In fact, the difference between (G1) and (G1) can only be stated locally, as is discussed in detail in
(Sidoli 2018).
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given objects, this implies that each must also result in certain given objects—which
can then serve as a given starting point for further construction operations.

One apparent difference between the way that given objects are dealt with in the
Elements and in the Data is that in the Elements objects are referred to as being given
without qualification, whereas in the Data they are often qualified as being given in
magnitude, in position, and in form—which expressions are all defined in the text and
treated by theorems grouped into theories. One might be tempted to propose that given
means something different in the Elements than in theData, but there is a good reason
to believe that this is not the case. The theorems of theData are used to justify the steps
of the part of an analysis for a problem called the resolution, in which the argument
proceeds from the objects stated to be given in the enunciation of the problem and
shows that the object that completes the problem is also given.11 The resolution is a
straightforward, synthetic deduction that takes as its starting point the givenness of
certain objects asserted as given in the enunciation. If the givenness of those objects
was somehow different than the givenness of objects treated in theData, the theorems
of the Data could not be applied in the analysis of a problem. Of course, there are
no analyses in the Elements, but the presence or lack of an analysis for a problem is
a purely rhetorical difference—no problem is logically required to have an analysis,
and any problem could be supplied with one.

Hence, the different modes of being given defined and articulated in the Data do
not denote a different status for given objects than that in the Elements, but are simply
different modes in which objects can be given. Indeed, it is clear that they were read
this way in antiquity, since Proclus in hisCommentary on Euclid’s Elements I first tells
us that there are four ways (trÒpoi) in which an object can be given—in position, in
ratio, in magnitude, and in form, just as in the Data12—and then shortly after that the
student should state for each proposition of theElements, in howmanyways ( )
the given is given (Friedlein 1873, 205, 210).

In fact, using the definitions and theorems of the Data, it is clear that these qualifi-
cations can be used to classify the ways in which objects are given in the Elements as
well. In general, if an object is said to be given without qualification in Elements I–VI,
it is simplest to understand it to be fully given—that is, given such that all of its com-
ponents are given in position. Indeed, because position is the primary characteristic of
constructed geometric objects, all of the objects that are said to be given in Elements
I–VI are at least given in position. For angles and figures this already means that they
are fully given—since specifying the position of two intersecting lines implies that
their angles are given in magnitude, Data Defs. 4 and 1, and specifying the position
of all of the points of a figure implies that it is also given in magnitude and in form,
Data Defs. 1 and 3. If a finite line is said to be given simply, such as in Elem. I.1, it is

11 For the details of this type of argument and the use of Data for this purpose, see Sidoli (2018, Sects.
2–4).
12 Proclus states that given “in ratio” is a mode of being given, whereas Data Def. 2 simply defines “given
ratio.”
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given in magnitude and in position and its endpoints are given in position.13 Indeed, if
we do not assume that the endpoints of the initially given line are given, then it would
not be possible to show that the constructed triangle is also given, which is necessary
for the solution of the problem to be satisfactory.14 If an unspecified or unbounded
line is said to be given, such as in Elem. I.11 and I.12, it is only given in position.15

Some cases are potentially ambiguous, such as Elem. I.22. Here we have three lines
given without qualification, and we must understand them to be given in both position
and in magnitude, with their endpoints given. Of course, it is only their magnitude
that is essential to the problem, since they could be moved around arbitrarily, using
Elem. I.2, before the construction begins; but, nevertheless, the construction provided
in Elem. I.22 cannot proceed if the three given lines are not eventually given in some
position with their endpoints given.

In many of the enunciations, interpreted in this way, we are presented with a claim
that a single object—a line, an angle, a circle, and so on—is given in position. Since it is
difficult for us to imaginewhat it wouldmean for a single object to be given in position,
thismay strikemodern readers as peculiar. Nevertheless, it ismade explicit in a number
of propositions in the Data that in Euclid’s practice a single object can be assumed as
given in position,Data 39–43.Hence, it clear that Euclid’s notion of given in position is
different from ours. Probably due to our familiarity with analytical geometry, we have
a tendency to think that given in position means known in terms of some framework,
but this is not how Euclid treats the concept. Indeed, the definition in the Data simply
reads, “Points, lines and angles are said to be given in position, which always keep the
same position” (Menge 1896, 2). There is nothing here about determining where these
things are, only a claim that they do not undergo any transformation. In the Elements
and the Data, what it means for an object to be given in position is simply that it will
not undergo any transformation with respect to any other objects that are also given in
position. That is, because there is no framework in Euclid’s practice, the first object
that is introduced as given in position acts as the framework for everything else that is
introduced, and it is because the concept of given is used both in the sense of assumed
and also in the sense of determined on the basis of what is assumed that Euclid can

13 The claim that the endpoints are given in position may sound pedantic, but the Data also deals with
lines given in position and magnitude whose endpoints are not themselves given (consider the implication
of Data 27).
14 See Sidoli and Isahaya (2018, 16–17) for a reconstruction of such an argument. If we only assume that
the line is given in magnitude it is only possible to show that the other two lines of the equilateral triangle
are given in magnitude, but not that the point which completes the triangle is given.
Furthermore, given in magnitude simply is a more geometrically involved constraint for a segment than

given in position and in magnitude. To be given in position and in magnitude involves the two endpoints
being given in position, but being given in magnitude simply involves something like the segment of a line
falling at a given angle between two parallel lines given in position, or being the radius of a given circle. That
is, the description of a segment given in magnitude only involves objects that are themselves not elements
of the segment.
15 Since there is no segment given on this line, the only alternative to the claim that this line is given in
position would be the idea that given has a non-technical meaning in the Elements that is unrelated to its
detailed treatment in the Data. But such an ad hoc assumption is doubtful and unnecessary.
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designate this initial object as given.16 Hence, the initially given object is whatever
object is assumed, designated or constructed as that object in terms of which all other
objects will be described.

Finally, although any actually given object is particular and unique, a procedure
described in terms of given objects, or an argument about given objects, is fully general.
This is because the initially given objects are simplywhatever objectswe assume, or set
out, at the beginning of the discourse. For example, Elem. I.1 shows how to construct
an equilateral triangle on a given line, where that line is simply any line designated,
or set out, as given. Hence, the proposition sets out a procedure for constructing an
equilateral triangle on the segment joining any two points that have been assigned.
That is, Euclid’s concept of given, just as ours, refers both to any particular given
object and also to any object that may be taken as given.17 In this way, Euclid is able
to set out procedures and arguments about given objects that can be read as general
claims about constructibility.18

2 The structure of a problem

Structure plays a role in shaping the deductive force of an ancient Greek proposition.
Since at least as far back as Proclus, it has been traditional to divide a Euclidean
proposition into six parts (Friedlein 1873, 203–205): enunciation (prÒtasij), exposi-
tion ( ”ekqesij), specification (diorismÒj), construction (kataskeu»), demonstration
(¢pÒdeixij), and conclusion (sumpšrasma).19 Although Proclus’ schema is suitable
for many of the simple problems of Elements I, however, it fails to capture all of the
possible components of a problem in the Elements. To see this, we will read through
the somewhat unusual problem that begins Elements III.

2.1 Example: Elem. III.1

The first proposition of Elements III proposes to find the center of a given circle. What
is at stake here is to find ( ) something, which must—given the definition of a
circle, Elem. I.def.15—already be assumed to exist. In fact, the other problems which
propose to find an object, in Elements VII, VIII and X, also seek an object which
must, given the definitions of the concepts involved, already exist. This makes it clear

16 It may be helpful to think of an analogy from analytical geometry. When we consider a Cartesian plane
we tacitly assume the origin, (0, 0), as the reference point by which all other points will be determined.
In Euclid’s sense of the term we are assuming this point as given in position—it does not undergo any
transformation. That is, the position of everything that comes later in the discourse will be set out against
this as the framework.
17 Again, it may be helpful to consider the analogy with analytical geometry. Euclid’s concept of a given
point refers both to a particular point, as say (2, 3), and also to any point that may be taken as given, as say
(a, b).
18 In the later Imperial period, as I have argued, Greco-Roman mathematicians utilized related strategies
to make general arguments about computational procedures (Sidoli 2018, Sect. 5).
19 See Netz (1999b) for a discussion of Proclus’ division of a proposition. The use of this structure as a
deductive framework, focusing on the Elements, but also using other texts, is addressed by Acerbi (2011a,
1–117).
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that Elem. III.1 has nothing to do with a demonstration of existence. In fact, in the
definition of a circle given in magnitude and position, Data Def.6, we read that “a
circle is said to be given in position and in magnitude, of which the center is given
in position and the line from the center [is given] in magnitude” (Menge 1896, 2).
Hence, in Elem. III.1 we are seeking a point which both exists and is given. Indeed,
Elem. III.1 is a demonstration that whenever a circle appears, no matter how it has
been introduced, there is an effective procedure for locating its center.

Of course, it is difficult for us to imagine how a circle could have been constructively
introduced without first introducing its center, but, as we will see below in Sect. 4.3,
Euclid’s practice in his problem-constructions is consistent in introducing objects
whose production is described by a problem as fully formed, without any auxiliary
constructions that may have been used in the original problem-construction. Hence,
if in the course of a problem-construction a circle is introduced as passing through
three given points, C(abg )m,p—as, for example, in Elem. IV.4 or IV.5, or, in a solid
context, as passing through three given points on the surface of a given sphere, and so
on—then the circle’s center will not have been introduced at the same time. Now, of
course, the problem-construction of such a circle will first involve finding its center,
but since this operates as a subroutine, its center is not immediately available when
the circle is called in. Hence, if its center is required, it must be introduced by its own
introduction rule.20

Finally, since the notion of given also applies to objects that are simply assumed
at the beginning of the discourse, Euclid seems to be unconcerned with the ultimate
origin of such objects. Since in both the Elements and the Data, a proposition often
begins with the assumption of a given circle, or segment of a circle, whose center
must then be found for use in the following problem-construction, Euclid requires this
proposition in order to set out the construction as a routine. Hence, a possible reason
for the existence of this problem is simply that it is required by propositions of both
the Elements and the Data.

The parts of Elem. III.1 with which we are concerned, read as follows (Heiberg
1883, I.166):

[Enunciation:]
To find the center of a given circle.

[Exposition:]
[1] Let there be the given circle, ABG.

[Problem-specification:]
Then, it is necessary to find the center of circle ABG.

[Problem-construction:]
[2] Let some line, AB, be produced through it, at random, and [3] let it be
bisected at point D. And, [4] at D let DG be produced upright to AB, and [5]
produced through to E . And, [6] let GE be bisected at Z .

20 See Sect. 4.3 for the full argument for this claim.
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[Proof-specification:]
I say that Z is the center of ABG.

[Proof-construction:]
For, otherwise, if possible, [7] let it be H . And, [8] let H A, HD and HB be
joined.

[demonstration:]
And, since …

A

B

G

A

B

G

Elem. III.1: [1] Given configuration [2] Unpostulated

In order to follow the constructive process in detail, we will read through the details
of the constructive steps, omitting the demonstration, which is unnecessary for the
current discussion.

In the exposition, in [1],whatever circle is given is set out as assumed and is assigned
the arbitrary name ABG, which is made explicit in the Greek through apposition
(Ð doqeìj Ð AB�) —say, C(ABG )m,p (Acerbi 2011b, 125–128). At this
stage of the process, A, B and G are unspecified as points and simply act as labels
that name the circle itself. As we will see, they will soon be assigned to specific points
that will be produced in the course of the construction—after which they will serve
the double function of naming individual points and the figures to which those points
belong.

Following the problem-specification, which states what is to be done, the problem-
construction begins, in [2], by assuming that some arbitrary line—which is thus given
in the sense of taken at the mathematician’s discretion—has been produced in the
given circle—line abm,p. Consideration of the problems in the Elements, as well as
the proofs in the Data, makes it clear that Euclid held that it is possible to set out
arbitrary points and lines as given without appeal to any postulate.21 Now, labels A
and B are assigned to the endpoints of this line, assumed as given.

21 That points can be set out as given may be seen from, for example, Elem. I.11, I.23, Data 32, 33, 37,
38. The case for lines can be seen in Elem. I.22, Data 39–43. That the points and lines set out in the
problem-constructions of the Elements must be considered as given can be shown from the fact that they
then serve as the basis for further constructions that are performed through problems that themselves assume
as given these very points and lines. Of course, the assumption of a given line can generally be reduced to
the assumption of two given points and an application of Elem. I.post.1 or I.post.2 (see Sect. 4.1).
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A

B

G

D
A

B

G

D

Elem. III.1: [3] Elem. I.10 [4] Elem. I.11

The next stage of the problem-construction is a series of operations performed on
this assumed line, carried out through postulates and previously established problems.
In step [3], AB is bisected, which may be done through Elem. I.10—to bisect a given
finite straight line. The fact that we can apply this problem confirms that abm,p was
meant to be assigned as given, so that it can enter into the effective procedure of
Elem. I.10 as the given line on which that problem operates—that is, since Elem. I.10
takes as its starting point a given line, and since AB here serves as the starting point
for the problem-construction set out in Elem. I.10, we must understand that abm,p

was understood to be set out as given. In the diagram for step [3], in gray dotted
lines, we see all of the subroutines that are used to carry out Elem. I.10—that is,
Elem. I.10 relies on Elem. I.1 and Elem. I.9, which in turn relies on Elem. I.1, taking
a random point, I.3, I.1, and I.post.1. Although this is not the optimal procedure for
carrying out this construction, this is the routine specified in the problem-construction
of Elem. I.10 and hence is the only routine that we are justified in supposing. None
of these subroutines or auxiliary constructions, however, appear in the diagram for
Elem. III.1.22 This is significant, because the next object to be produced in the problem-
construction—the perpendicular to AB—is already there in the auxiliary objects. The
problem-construction, however, does not use this auxiliary object, but rather produces
the perpendicular anew, in its own construction step. I will argue below, this serves
two purposes. In the first place, it allows the problem-construction to proceed as a
routine made up of postulates and previously established problems, and it allows
the demonstration to forgo proving that the auxiliary objects produced in the problem-
construction have certain properties—they are simply introduced as the objects having
those properties. That is, since Elem. I.10 has already demonstrated that there is an

22 The fact that the auxiliary objects do not appear in the diagram is not simply an accident of themanuscript
transmission. The absence of such auxiliary objects is a characteristic of all problem-constructions in
Elements I–VI in all of the primary manuscripts of the Greek, Arabic and Latin transmissions. As I will
argue below, this a characteristic of the algorithmic practice of problem-constructions.
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effective procedure for bisecting a given line, the point of bisection simply appears
fully formed in the figure as dp.

The next step, [4], applies Elem. I.11—to produce a straight line upright on a given
line at a given point on it—from which we see that dp must be taken as given, and
hence, must have been produced as given. Once again, in the diagram for step [4], we
see the subroutines of Elem. I.11—in this case, taking a random point, Elem. I.post.3,
I.1, and I.posts.1 and 2. Again, this is not an optimal construction, since, as pointed out
above, the line that produced point D as part of the subroutine used to introduce that
point is already the perpendicular line introduced here. Once again, however, those
auxiliary objects are apparently not available for use, so that the perpendicular line
must be introduced separately—presumably using the routine set out out inElem. I.11.
As before, the subroutines that go into the production of the perpendicular line do not
appear in the figure for Elem. III.1. Line dgm,p simply appears in the figure as a result
of the effective procedure that produces it.23
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E

Z

[5] Elem. III.1: Elem. I.post.2 [6] Elem. I.10

In step [5], line dgm,p is extended to meet the circle at ep. Then dem,p is taken to be
given. We can provide two arguments for this claim. The first is purely textual. Since
the next step of the problem-construction bisects this line, using Elem. I.10, which
applies to a given line, this line, DE , must be taken as given, dem,p, in order to apply
Elem. I.10. The second argument is mathematical, and relies on propositions of the
Data to show that dem,p is given. Namely, since line abm,p and point dp are given,
by Data 29, line dgm,p is given, and since C(ABG )m,p is given, by Data 25, points
gp and ep are both given, so that by Data 26, gem,p is given.24 In fact, however, there
is no need to show that this line is given using the theorems of the Data, because any
object that is constructed is necessarily given.

In step [6], Elem. I.10 is applied once again, this time to line gem,p. As before,
although the subroutines are depicted in the diagram for [6], in the manuscript sources
and in the ancient practice, point z p simply appears in the figure (Saito 2011, 52).

23 We will see below dgm,p must be understood to be given.
24 Line dgm,p is given for the same reasons.

123



Uses of construction in problems and theorems in Euclid’s… 415

This completes the procedure that produces the center of C(ABG )m,p. As will
be shown below, z p is the circle’s center, and if it were not necessary to prove
this, the problem would require no further constructions or introductions. Indeed,
following the problem-construction, the proposition has a second specification, the
proof-specification, which states what is to be shown and has the same linguistic
structure as the specifications of theorems in Elements I.25
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Z H
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Elem. III.1: [7] Hypothetical [8] Elem. I.post.1 (3 times)

The proposition then proceeds with a series of assumptions and constructions intro-
ducing objects that will be used in the argument to demonstrate that point z p is, in fact,
the center of the circle. This begins, in step [7], with the counterfactual assumption
that some other point, say H , is the center. This assumption is part of an indirect argu-
ment, so it is clearly counterfactual, but it is worth stressing that there is no effective
procedure that can produce any other center for the given circle besides z p—as will
be shown in the demonstration. In fact, the text makes it clear that some other point is
simply assumed to be the center of the circle, so that no constructive assumptions are
required.26 This means that the assumption of H as a center is both non-constructive
and of a purely hypothetical nature. Hence, the introduction of point H into the argu-
ment as a center is fundamentally different in nature than the construction steps of
the problem-construction, which are synthetic routines based on, and reducible to, the
postulates.27 Nevertheless, since the introduction occurs in the section of the argument
called the construction, we can refer to it as a construction in this limited sense.

In step [8], lines aH , dH , and bH are joined, using Elem. I.post.1. Once the point
H is assumed to be the center, these lines can be produced straightforwardly, so that
these constructions need not be regarded as purely hypothetical in the sameway as that
in step [7]. Nevertheless, these lines are unnecessary for finding the center, and hence
their only role is to serve as auxiliaries to the demonstration by introducing newobjects,
and hence new information drawn from the definitions, into the argument. Hence, we

25 See Acerbi (2011a, 57–65) for a discussion of the stylistic format of the two types of specification.
26 The definition of the circle, Elem. I.def.15, rules against the possibility of considering points outside the
circle in the indirect argument—although the argument will work for any other point in the plane.
27 This counterfactual assumption is discussed again in Sect. 5.2.
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will categorize these constructions as proof-constructions—being necessary for the
argument provided, but playing no role in producing the object to be set out in the
problem.

The indirect structure of the argument in Elem. III.1 requires that the two different
types of construction be separated from each other in the presentation of the argument,
since it would make little sense to introduce another hypothetical center, H , prior to
producing Z and then asserting that it is the center. Nevertheless, it is possible to
differentiate these two types of constructions and to categorize them as such, even if
they are not clearly indicated by the structure of the argument. In Elements I, which
served as the basis of Proclus’ introduction of the canonical structure of a proposition,
the majority of the problems are so simple that no auxiliary proof-constructions are
required to introduce objects beyond those produced in the course of the problem-
construction itself.

A
B

G

D

E
H Q

Z

Elem. I.12

An exception is Elem. I.12—to produce a straight line as a perpendicular to a
given unlimited straight line, from a given point, which is not on the given line. In
this proposition, just before the proof-specification, we read “… and let straight lines
GH , GQ, GE have been joined” (Heiberg 1883, I.34).28 Of these lines, only GQ,
the perpendicular itself, is part of the problem-construction. The other two, produced
in the same phrase as GQ, are, in fact, auxiliary lines introduced for the sake of
the demonstration and serve no role in the production of the perpendicular. In this
proposition, because lines GH and GE are not counterfactual, there is no reason why
they cannot be produced at the same time as GQ. Nevertheless, it is also clear that
they could have been produced after the proof-specification, just as the auxiliary lines
in Elem. III.1. As is often the case in a Greek proposition, the overall structure acts as
a sort of guideline that was not always applied strictly.

28 Other exceptions in Elements I–VI are in Elem. II.14, III.30, IV.10, IV.12, VI.9, VI.10, VI.13, VI.28 and
VI.29.
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2.2 The complete, potential structure of a problem

With these preliminaries, we can set out a schema for the complete, potential structure
of a problem in Elements I–VI.

Enunciation: A general statement of what is to be done, usually in terms of given
objects.29

Exposition: A statement of what is given, usually using specific letter-names.

Problem-Specification: A specific statement in terms of letter-names of what is to
be done, often with qualifications.

Problem-Construction: A construction of the geometric object that satisfies the
requirements of the problem, using the postulates, or previously completed prob-
lems.

Proof-Specification: A specific statement of what is to be shown, usually using
letter-names.

Proof-Construction: A constructive assumption or introduction—usually using
postulates and previously established problems, but sometimes purely
hypothetical—of any new objects, or configurations, that may be necessary to
the proof.

Demonstration:Anargument that the object produced by the problem-construction
meets the requirements of the proposition; if necessary, using the objects newly
introduced in the proof-construction.

Conclusion: A restatement, in general terms, of what has been done.30

As is generally the case with structure in Greek mathematical texts, this is simply a
suggestive template that is useful for navigating, and perhaps for originally composing,
the argument, but should not be taken as normative.

In Elements I–IV, all problems that are not simply sketches—such as some of
the problems toward the end of Elements IV—have an enunciation and a proof-
construction, but all of the other parts are sometimes absent. For example, as just noted,
Elem. IV.10 is missing the exposition and the problem-specification, Elem. IV.16 is
missing the demonstration, many problems require no proof-construction, and the
conclusion is often abbreviated or omitted altogether.

The majority of the problems in Elements I–IV, 70%, have no proof-specification,
so it is simplest to list those that do: Elem. I.9–12, I.22, II.11, III.1, III.17, IV.15. A
smaller set of problems have no initial proof-specification, but have a sort of second
proof-specification, introducing a second part of the demonstration with the usual

29 An exception is Elem. IV.10, which does not mention any given objects in the enunciation, as remarked
upon by Proclus (Friedlein 1873, 204–205), who incorrectly believed that there are no given objects and
that this forced the exposition and specification to be missing. In fact, however, as the argument makes
clear, line AB is taken as given, and the proposition could be rewritten such that this given line is mentioned
in the enunciation and set out in the exposition. This proposition is probably abbreviated as it is because it
simply serves as lemma to the following problem, Elem. IV.11.
30 This is very often abbreviated or absent.
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locution for a proof-specification (Elem. I.46, IV.6, IV.7, IV.11, IV.12). One problem,
Elem. IV.15, has both.

Although only Elem. III.1—apparently required by its indirect argument—has a
proof-construction clearly delineated from the rest of the argument, a number of
other problems employ proof-constructions set out in the course of the problem-
construction: Elem. I.12, I.14, III.30, IV.10, IV.12, VI.9, VI.10, VI.13, VI.28 and
VI.29.

Finally, a number of constructions intermix the demonstrationwith theproblem- and
proof-constructions: Elem. III.25, III.33, IV.4, IV.5, IV.8, VI.18. An interesting exam-
ple of this sort of exceptional structure is the important problem Elem. I.44—to apply
a parallelogram equal to a given triangle to a given line in a given rectilinear angle—
which intermingles constructions with the demonstration and uses Elem. I.post.5
constructively.31

3 The syntax of problem-constructions

In this section, using the example already presented and the well-known problems
Elem. I.1–3, I give a detailed presentation of the way that Euclid organizes problem-
constructions in theElements. Itwill be seen that this is not—as is often claimed—most
readily understood as series of operations to be carried out with a straightedge and
a collapsing compass, or directly using the postulates. Before this, however, I will
discuss the five postulates and show that they all directly or indirectly serve a role in
the problems of Elements I–VI.

3.1 Postulates: Elem. I.posts.1–5

As is well known, the first three postulates are directly related to problem-
constructions. In this section, I will argue, moreover, that all of the postulates can
be related to problem-constructions and can be fruitfully explicated though the con-
cept of given.32 In Euclid’s texts, the wording of the introductory material is often
vague and it is sometimes only possible to form a clear idea of what his rather philo-
sophical starting points mean by seeing how they are applied. This is certainly the
case with the postulates.

Elem. I.post.1: The text of the first postulate reads, “Let it be demanded to produce a
straight line from any point to any point” (Heiberg 1883, I.8).33 Since the wording of

31 The details of this proposition will be taken up in Sect. 3.1, below.
32 My approach differs from the recent reading of Schneider (2015, 20), who interprets the postulates as
extensions of the definitions and as making assertions about the fundamental nature of the objects involved.
My thinking about the Euclidean postulates had been much clarified by the work of modern logicians, such
as Mäenpää and von Plato (1990) and Beeson (2010). Whereas these scholars have used the Elements as a
motivation for producing a well-founded logic of construction, I have been interested in using ideas from
modern logical studies to explicate the received text of the Elements.
33 The word that I have translated with “to produce” (¢gageĩn) literally means “to lead,” which is how
Vitrac (1990–2001, I.167) translates it (mener). I use “to produce,” following Fitzpatrick (2008, 7), because
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this text is subject to various interpretations, we will look to its use in the problems
to see what this postulate actually means. Here we find that the postulate is used to
join a line between two given points. For example, in Elem. I.1, it is used to join the
endpoints of a given line, which must be given, with the intersection of two given
circles, which must also be given, by Data Def.6 and Data 25. In Elem. I.2, it is used
to join a given point with the endpoint of a given line, which must also be given.
Indeed, in every case in which the postulate is used to join a line in Elements I–VI,
we can make an argument based on the Data that the two points that the line joins are
given.

Hence, we can assert that Elem. I.post.1 defines a function on two given points that
results in a line, having the two given points as endpoints, and, hence, being given in
position and in magnitude, Data 26. That is, where ap and bp are two points given in
position, we have the function

ap bp
abm,p

which produces a new type of object that we will call line abm,p .34

It is often remarked that Euclid does not explicitly assert the uniqueness of abm,p,
but this functional interpretation of Elem. I.post.1, based as it is on objects given in
position, which appears to have been Euclid’s approach to the concept of uniqueness,
makes such an explicit assertion unnecessary (Vitrac 1990–2001, I.167–168).35

It has long been held that Elem. I.post.1 is an abstraction of working with a straight-
edge. It is important to recognize, however, just how abstract the operation has become.
The postulate allows us to join any two given points, no matter where they may occur,
but no straightedge can perform such an operation. Of course, one could posit that we
are dealing here with a straightedge that is indefinitely long—but, of course, such a
straightedge, as an object of human manufacture, does not exist. Hence, the analogy
with a straightedge is rudimentary. The postulate specifies a purelymathematical func-
tion, which, although it may have its conceptual basis in manipulating a straightedge,
now serves as an introduction rule for a mathematical object.

Elem. I.post.2: The text continues with the second postulate, “And to extend a finite
straight line continually in a straight line” (Heiberg 1883, I.8). Once again, to see what
this means in detail, we will look at some of its applications in the early problems
of Elements I. In Elem. I.2, the postulate is used to extend a line that results from

Footnote 33 continued
“to produce” has an overlapping meaning with “to lead” as a kind of abstraction. In any case, it does not
mean “to draw,” as it is often translated.
The word translated by “any” (pãj) literally means “every,” but it is often used in Greek to imply a certain

generality which in English we more naturally convey with “any” (Heath 1908, I.195). The same applies
to Elem. I.post.3, below.
34 I formulate such functions using Martin-Löf’s intuitionistic type theory, following Mäenpää and von
Plato (1990).
35 For discussions of the relationship between the notion of given in position and uniqueness, see Taisbak
(2003, 95) and Acerbi (2011b, 146–148).
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Elem. I.1, and is hence given, in a straight line such that the extended length is longer
than a line given in magnitude. In Elem. I.31, it is used to extend a line that results
from the production of a triangle, through Elem. I.23 and I.22, and is hence given,
some indeterminate length.36 It is used in a similar way, to extend a given line some
indeterminate length in Elem. IV.3. In Elem. I.44, II.11, II.14, III.1, III.25.1, IV.15,
VI.11, and VI.28 it is used to extend a line whose endpoints are given by a length
that is determined by the geometry of the figure, and hence given in magnitude.37

Whenever this postulate is applied in the context of a problem, it involves extending
a line whose endpoints are given by another line of arbitrary length or whose length
is given by the geometry of the figure—and hence given in magnitude in the sense in
which this concept is treated in the Data.

In this way, Elem. I.post.2 specifies a function that takes a line whose endpoints are
given and returns a line that is extended an arbitrary length in one direction. That is,
where abp,m is a line whose endpoints are given in position and lm is a line given in
magnitude in that sense that it is taken at a length suitable to the situation at hand, we
have the function

abm,p lm
abCp

which produces an object of the same type that we will call abCp.38

The claim that lm is given must be understood in the ancient sense—that is, that we
are able to construct an equal length. In fact, however, we may not know the length of
lm before the construction has been carried out, because on its own there is a certain
indeterminacy involved in the procedure of applyingElem. I.post.2 (Lassalle Casanave
and Panza 2015, 150–152). For example, when the postulate is applied in Elem. I.2, it
must be applied such that lm is equal to or greater than some line that is already present
in the configuration of given and constructed objects. In this case, we can determine lm
straightforwardly before the procedure is carried out. On the other hand, inElem. II.14,
lm will be determined by the construction itself, and hence we cannot be certain that
we know its length before we apply the postulate. Nevertheless, an arbitrary length
that we can be certain will result in the intersection we need can be found in the given
objects—such as the radius of the circle. In both cases, however, lm is determined
locally by some aspect of the assumed configuration of geometric objects. Even in a
case in which is was not clear that a length equal to or greater than the length to be
produced is extant in the figure, we can still apply this postulate as an additive iteration
with some length found in the given configuration of geometric objects. Hence, so long
aswe understand the initial line given inmagnitude, lm , to simply be an arbitrary length

36 Following Heiberg (1883, I.77), this use of Elem. I.post.2 is generally not noted in modern translations
(Heath 1908, 316; Vitrac 1990–2001, I.254; Fitzpatrick 2008, 34). Notice, however, that its use inElem. I.31
is included in the table provided by Vitrac (1990–2001, I.514) and in the text of Joyce (Online, Book I,
Proposition 31).
37 It is perhaps also implicitly used in setting up Elem. VI.13. See note 6, above.
38 We can use Data 26 to show that where lm is an arbitrary given length, then cp will also be given, but
the postulate is not used in this way. It is simply used to make lines as long as we like, while points along
this extended line are determined by further constructions.
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that we are able to provide an equal to, then we can understand Elem. I.post.2 as a
function that produces a unique object for each application.

Finally, an important application, or perhaps development of Elem. I.post.2, may
be in Elem. I.post.5. Here, as will be discussed below, the later postulate appears to
require the former. In this case, in terms of the discussion above, Elem. I.post.2 would
have to be applied iteratively until an intersection is obtained. As we will see, this is
not the only other postulate that is necessary for formulating Elem. I.post.5.

For modern treatments of Euclidean constructions, this postulate is unnecessary,
becausewe clearly distinguish between lines, rays and segments—such that two points
determine a line, a segment and two rays, the latter three of which are subsets of the
first. Hence, if we regard Elem. I.post.1 as allowing us to introduce the line through
two points, we can perform all of the constructions in the Elements by defining the
intersection of such a line with other objects.39 Indeed, even in the Elements the
postulate sometimes plays a purely aesthetic, or illustrative, role, such as its use in
Elem. I.31, noted above. In this problem, since the parallel line has already been
constructed before Elem. I.post.2 is employed and since the line it produces plays no
role in the demonstration, it simply serves to make the diagram more recognizable.

Once again,Elem. I.post.2must be recognized to be a purelymathematical function,
since no actual straightedge can perform all of the operations for which it is required.

Elem. I.post.3: The text continues, “And to describe a circle with any center and
distance” (Heiberg 1883, I.8). In the early uses of this postulate, such as Elem. I.1, I.2,
and I.3, it is used to produce a circle which passes through one given endpoint of a
line such that the other given endpoint is the circle’s center. The use of the postulate in
Elem. I.12, as seen above, however, makes it clear that this line, which appears as the
circle’s radius in the earlier problems, is purely accidental.40 All that matters is that the
two points be given. Indeed, the use of the term “distance” or “interval” (di£sthma),
in place of line, makes it clear that we are talking about a span, or interval that need
not be occupied (Sidoli 2004). Both in the postulate itself, and also when it is used,
circles are produced with this potentially empty interval which is determined because
the two points defining it are given in position.

Thus, Elem. I.post.3 specifies a function that takes two points given in position and
returns a circle given in position and in magnitude.41 That is, where ap and bp are the
two points given in position, we have the function

39 If we read through the constructions provided by Martin (1998, Chapter 1)—and especially if we do
the exercises to translate these into the notation that he develops for constructions—we see that all of the
constructions can be carried out using lines and intersections. For example, if we compare Martin’s account
of the constructions for Elem. I.2, II.11 and II.14 with those in the Elements, we see that the applications of
Elem. I.post.2 are avoided by simply considering the intersections of previously introduced objects (Martin
1998, 8, 12–13).
40 This is the reason why my formulation of the function below differs from that of Mäenpää and von Plato
(1990, 285), since they view the function as operating on a point and a line.
41 It would also be possible to argue that Elem. I.post.3 defines a function that takes a given point and a
given line having the given point as one endpoint, and then claiming that Elem. I.12 simply neglects to join
this line. But this requires us to read material into Elem. I.12 and is not the most straightforward explanation
of the text.
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ap bp
C(ap, bp)m,p

which produces a new type of object that we call circle C(ap, bp)m,p, in which ap is
the center and bp a point on the circumference of the circle.

Again, it has long been held that this postulate is an abstraction of working with
a compass. But the function specified by Euclid’s postulate is at once more powerful
and more restricted that the operation that can be performed with a compass. As with
Elem. I.post.1 and I.post.2, the two points can be separated by any arbitrary distance,
but every actual compass has a greatest span. Furthermore, Elem. I.post.3 can only
produce a circle about a given point, passing through another point already given in
the configuration—it cannot make a circle with a preassigned distance, for which we
require Elem. I.2. Hence, we read of collapsing compasses, or compasses that close
“themoment they cease to touch the paper” (DeMorgan inHeath 1908, 246;Greenberg
2008, 47). But, once again, there is no such thing as a collapsing compass, and every
actual compass can be set at a given radius and can be used to carry a length.42 Indeed,
Euclid’s postulate is a purely mathematical function, organized so as to operate on
the simplest starting points of a geometric construction—points assumed as given in
position. Although perhaps originally based on the manipulations of a compass, the
postulate now serves as the primitive introduction rule for a circle.

Elem. I.post.4: The postulate reads, “And all right angles are equal to one another”
(Heiberg 1883, I.8). In this case, we are not dealing with an introduction rule, but with
a claim about the nature of right angles. This postulate is generally read as concerning
the magnitude of right angles, and hence the measuration of angles, but it is possible to
give the postulate a constructive reading based on the concept of given (Acerbi 2011b,
123). In particular, by the definition of a right angle, Elem. I.def.10, once we have an
effective procedure for producing a right angle, Elem. I.11 and I.12, the two angles so
produced are both given in magnitude, by Data Def.1. That is, the two right angles at
any particular point are both given.

This construction, however, does not guarantee that pairs of right angles constructed
at different points of the same line are also equal (Schneider 2015, 17). In fact, as
pointed out by Proclus, in the context of ancient mathematical methods, right angles at
different points can straightforwardly be shown to be equal by superposition (Friedlein
1873, 188–819;Mueller 1981, 22). This proof, as all proofs by superposition, however,
requires that the angles be subjected to some kind of transformation. As we see inData
25–30, however, the fundamental property of points given in position is that they cannot
be subjected to a transformation.43 Hence, the argument by superposition cannot apply
to right angles at two given points—that is, at points separated by a given distance,
Data 26. For this reason we need this postulate to assert that any time a right angle is
constructed, it is equal to any other right angle that has been constructed—which is the

42 Drafters use, or used to use, a compass with two pins, known as a divider or a drafting compass, to carry
length more accurately than a compass with a drawing end, but the design is essentially the same—in fact,
many modern designs accommodate both functions (Martin 1998, 6).
43 For my interpretation of Euclid’s proofs by superposition, see Sect. 5.3, below.
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full meaning of the assertion that all right angles are given inmagnitude. Understood in
this way, the postulate is a constructive assertion that all straight lines are everywhere
straight in the same way, because the notion of given in magnitude is fundamentally
constructive.44

This articulation of Elem. I.post.4 as treating the situation in which two right angles
are separated by a given distance appears to be directly related to the situation required
by Elem. I.post.5, which requires I.post.4.45 Since Elem. I.post.5 is straightforwardly
constructive, its reliance on Elem. I.post.4 further emphasizes my claim that all of the
postulates are constructively grounded in Euclid’s concept of given.

Elem. I.post.5: The most famous of Euclid’s postulates reads, “And if a straight line
falling on two straight lines makes the interior angles on the same side less than two
right [angles], the two straight lines being extended indefinitely, they will meet on the
side on which there are [angles] less than two right [angles]” (Heiberg 1883, I.8). This
postulate is clearly constructive in the sense in which is it articulated.46 It acts as an
introduction rule for a point as the intersection of two given lines. It is well known
that Euclid assumes the intersection of two circles and a circle with a line without
a special postulate (Heath 1908, 234–240), but one could argue that there are fairly
clear introduction rules for these intersections, because some points will be inside, and
other points outside, any given circle—as specified in the definition, Elem. I.def.15.
Hence, Euclid could, famously, be certain without discussion that the two circles of
Elem. I.1 would intersect.47

The constructive determination of whether or not two lines will intersect, however,
is not so straightforward, and nothing in the definition of a line, Elem. I.def.2, directly
sheds light on this question. This postulate, however, gives us a constructive way to
determine whether or not two given lines will have an intersection.

We proceed as follows. With two lines given in position, lp and mp, let an arbitrary
line, np, fall on them, making on one side angles αm and βm given in magnitude.
Then, using Elem. I.11, set up perpendiculars at the intersections, pp and qp, which
will themselves be given in position, Data 29.

44 The constructive aspect of the notion of given in magnitude is explicit in the articulation of Data Def. 1.
See also the discussion in Sidoli (2018, Sect. 3).
45 In its extant articulation, the demonstration for Elem. I.46—to construct a square on a given line—
requires Elem. I.post.4, because one angle is constructed equal to a right angle, say rAngle1, and then that
angle with an equal angle is shown to be equal to two right angles, say 2rAngle2. But if we do not have
Elem. I.post.4 to assure us that rAngle1 = rAngle2, the proof will not follow. This argument depending on
Elem. I.post.4, however, can be changed to one depending on Elem. I.def.10 alone by producing the external
right angle and then arguing by Elem. I.29, so that it is not enough, on its own to require the formulation
of Elem. I.post.4. (The uses of Elem. I.post.4 in Elem. I.13–15 can be reduced to the definition because the
right angles in question are at a single point.)
46 This is especially clear when we compare it to many of the alternative postulates that make direct
existence claims (Heath 1908, 220).
47 If the center of a circle falls on the circumference of another, it will clearly have some points inside and
some points outside the other circle. Hence, the two circles will intersect.
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Then there are three cases for intersection. If (1) αm < 90° and βm < 90° (or
αm > 90° and βm > 90°), (2) αm < 90° and βm = 90° (or αm > 90° and βm = 90°),
or (3) β − 90◦ < 90◦ − α (or β − 90◦ > 90◦ − α),48 then the two lines will
meet in the direction of angles α and β (or the opposite), say at sp, which will be
given in position, Data 25. In this way, we can state constructive criteria for the
introduction of a given point, ap, so long as we can be certain that the right angles
about lines n and p are equal to those about n and q—as is guaranteed by Elem.
I.post.4.

That is,Elem. I.post.5 can be taken as specifying a function under certain conditions,
such that where lp, mp are lines given in position, and any other line taken as given
in position, say np, falls on them such that angle α is formed between lp and np
and angle β is formed between mp and np in the same direction, such that α + β <

2 right angles, then, usingElem. I.post.2 iteratively, lp andmp can be extendedwithout
limit, producing an introduction rule for a point as the function

lp mp

sp

where sp is the point common to both lp and mp, which is given in position, by Data
25.

The first application ofElem. I.post.5 is in a theorem,Elem. I.29, where it is invoked
as part of a counterfactual, and hence purely hypothetical, construction or constructive
assumption—which will be discussed below. Its next application, however, is in the
course of the problem-construction of a problem, Elem. I.44, where it is used as an
introduction rule to produce a point as the intersection of two lines given in position.
Furthermore, we are told by Proclus that this problem, laying the foundation of the
theory of the application of areas, was considered to be one of the great achievements
of the geometers of the classical period, particularly those known as the Pythagoreans
(Friedlein 1873, 419–420). We cannot now know whether or not the pre-Euclidean
approach to the theorem utilized Elem. I.post.5, but it is clear that in the context of
the effective procedures developed in Euclid’s problems, such an articulation of the
postulate is necessary. In the course of the problem-construction of Elem. I.44, a line
is produced from one of the intersections of a line that falls on a pair of parallel lines,

48 This case can be seen constructively by producing rp ‖ lp , which will be given in position by Data 28.
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making an angle less than that of the parallel line. The third of the constructive criteria
set out above can be used to confirm that the line so produced must meet the other
parallel line.49 In this way, we can see that Elem. I.post.5 plays a clearly articulated
role in Euclid’s development of the theory of the application of areas—one of the most
powerful tools of ancient geometric problem-solving.

3.2 Examples: Elem. I.1–3

In order to explicate Euclid’s procedure for implementing postulates and previously
established problems in the problem-constructions of Elements I–VI, we will follow
through with a close reading of the first three propositions of the text, which are
well known and simple enough to make his practice perfectly clear. In each problem,
certain objects are stated to be given in the exposition, and then in the problem-
construction, certain operations are performed, each ofwhich utilizes either a postulate
or a previously completed problem.

A

B

A

B

G

D

Elem. I.1: [1] Given objects [2] Elem. I.post.3

In Elem. I.1, [1] a line is assumed as fully given—that is, the line is given in
magnitude and position, with both endpoints given, abm,p.

The problem-construction, then, reads, “[2] With center A and distance AB let
a circle, BGD, be described” (Heiberg 1883, I.10–11). This is an application of
Elem. I.post.3, which makes it explicit that AB is being treated not as a line, but
as a fixed span between two points, which must be given. At this point, G and
D do not name specific points, but are simply parts of the name of the circle
itself.

The text continues, “And [3] again with center B and distance BA, let a circle,
AGE , be described,” which is a second application of Elem. I.post.3, differing only in
the center and the order in which the points of the distance are named (Heiberg 1883,
I.11). As noted in the discussion of Elem. I.post.5, above, the fact that the definition
of the circle, Elem. I.def.15, specifies that a circle has an inside can be used to confirm
that the two circles must intersect at a point not on the segment joining their centers—

49 For the sake of comparing the figure given here with that in the Greek text, we would have �Z ..= n ,
KZ ..= l , �� ..= m and �B ..= r (Heiberg 1883, I.102–103).
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because neither will be entirely inside the other.50 In the case of Elem. I.1, since the
centers of the two circles fall on the each other’s circumference, they will both have
some points inside and some points outside the other. Hence, they must meet at some
point not on the line joining their centers. Since G is found in the letter-names of both
circles, it now specifies one of the intersections of the circles and names this point.

Finally, the problem-construction concludes with, “And [4] from point G, at which
the circles cut one another, let lines GA and GB be joined” (Heiberg 1883, I.11),
which is the assertion of two applications of Elem. I.post.1 at the same time. The
verb used to invoke the postulate is different than that used to state the postulate,
which exemplifies a general principle—although the verb of invocation is often the
same as that used to state a postulate or a problem, this is not essential. It is the
mathematical operation itself which is most important, not the verb used to articulate
it.

A

B

G

D

E

A

B

G

D

E

Elem. I.1: [3] Elem. I.post.3 [4] Elem. I.post.1 (2 times)

With these constructions the problem-construction is complete, and in this case
no further objects are necessary for the proof, which follows from an immediate
application of the definition of the new objects produced. In this case, all of the
constructions are performed with postulates, so that we see every auxiliary object in
the final diagram. In fact, this is the only problem in Elements I–VI that is of this kind.
All other problems rely on at least one previously established problem,51 and as seen
already in Elem. III.1 and as we will see again below, the auxiliary operations used
in previously established problems do not appear in the final diagram of the problem
currently being completed, so that if any of them are required, they must be introduced
through their own introduction rules.

Hence, we can think of the problem-construction of Elem. I.1 as specifying a func-
tion that operates on a given line and produces a given equilateral triangle. That is,
where abm,p is the given line, we have the function

50 That is, the segment joining the centers will meet one circle or both circles as a radius, as per
Elem. I.def.15—which determines whether it is entirely inside or also has some points outside the cir-
cle.
51 A near exception is Elem. IV.15.
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abm,p

eqT(abc)m, f,p
,

which returns a new type of object, an equilateral triangle, eqT(abc)m, f,p , which is
fully given because cp can be shown to be given by Data Def.6 and 25.

It is sometimes remarked that two triangles can be produced by this method, one on
either side of the given line. For the Euclid’s purposes, however, this is irrelevant, since
he is only interested in showing that there is an effective procedure for producing at
least one such triangle. The choice of which triangle to use can be made in the context
in which the problem is invoked—in most cases it will not matter much, for example,
in Elem. I.2, but in some cases we may want the equilateral triangle to face a certain
direction, for example, in Elem. I.9, since otherwise if the vertex of the triangle is
close to the vertex of the given angle, it will be practically difficult to perform the
final construction.52 If we were writing this algorithm for a machine, we could write
it such that if we are given abm,p, then cp will lie on one side of the line, while
if we are given bam,p , it will lie on the other side. Euclid, however, is not writing
his effective procedures for a machine, but for a human geometer, who can choose
whichever direction suits the problem at hand.53

Elem. I.2, which uses Elem. I.1, proceeds as follows. It begins, in the enunciation,
with [1] a given line and a given point—that is, the point is given in position, ap, and
the line is given in magnitude and in position with its endpoints given, bgm,p.

A
B

G

A
B

G

Elem. I.2: [1] Given objects [2] Elem. I.post.1

The problem-construction begins, “For, [2] let a line, AB, have been joined from
point A to point B ” (Heiberg 1883, I.12). This is a straightforward application of
Elem. I.post.1, joining given point ap with given point bp, using the same verb as was
used in Elem. I.1.

52 Indeed, if they should happen to coincide, the algorithm for Elem. I.9 will fail, and the simplest way to
avoid this is to construct the triangle facing away from the given angle.
53 The issue of the uniqueness of the triangle produced in Elem. I.1, and generally of the objects produced
by a problem, has been discussed by Manders (2008, 100–103). Although my reading of the text has been
influenced by his approach, I believe the ancient geometers would have addressed uniqueness through the
concept of given (Taisbak 2003, 95; Acerbi 2011b, 146–148), where what it means for a point to be given
is fundamentally that its position is unique.
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A
B

G

D

E

ZA
B

G

D

Elem. I.2: [3] Elem. I.1 [4] Elem. I.post.2 (twice)

The text proceeds with, “And [3] upon it, let an equilateral triangle, DAB, be put
together” (Heiberg 1883, I.12). This is an application of Elem. I.1, using the same
verb as used to enunciate that problem. In the figure, the auxiliary constructions used
to produce the triangle have been drawn in gray dotted lines, to remind ourselves
that this triangle is actually produced by a series of operations of the postulates. In
fact, however, these auxiliary constructions do not appear in Euclid’s diagram. That
is, Elem. I.1 is used directly to call in the triangle fully formed with no indication
in this context of how that is done. At this stage in the constructive process there
is no problem in assuming that we actually draw that triangle from scratch using
the postulates, but as I will argue below, as we progress farther into the problems,
it becomes less and less tenable that Euclid would have believed a human geometer
would actually follow all of the constructive steps in exactly the way that he sets them
out.

The text continues, “And [4] let lines AE and BZ have been extended from
lines DA and DB ” (Heiberg 1883, I.12–13), which is a double application of
Elem. I.post.2, using the same verb as was used to state the postulate. The length
to which we should extend these lines is unspecified at this point (Lassalle Casanave
and Panza 2015, 149–152). There are two ways that we can think of applying the
postulate to this circumstance, both of which depend on the local configuration
of this proposition. The first is that we use BGm or a line arbitrarily longer than
this as the length by which to extend DA and DB, which we know will work
because of the argument that follows. The second is to extend DA and DB by
some other arbitrary given line in the figure, such as ABm , and then produce the
circles with Elem. I.post.3 and seeing if intersections are produced. If not, we can
iteratively extend DA and DB until intersections are produced. All that matters
is that we can extend these lines farther than any assumed length until they meet
the circles—which, because the original segments are inside the circles, they must
do.
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E

ZA
B

G

H

D

Q

E

Z

K

A
B

G

Q
H

D

L

Elem. I.2: [5] Elem. I.post.3 [6] Elem. I.post.3

Finally, we have “And [5] with center B and distance BG let a circle, GHQ,
be described. And [6] again with center D and distance DH let a circle, HK L , be
described” (Heiberg 1883, I.14). This a double application ofElem. I.post.3—probably
asserted separately because the grammatical construction is slightly more involved.
Again, the way that the postulate is invoked, with the explicit statement of the interval,
makes it clear that it is the span between the two points that is given, not the radius—
although in this case they are the same.

This completes the problem-construction, and in this proposition, again, no special
proof-construction is needed. In this case, all but one of the constructions are performed
with postulates. Hence, in the final figure, we see all the lines and circles produced
by postulates, as well as the equilateral triangle, which was produced with Elem. I.1,
without appeal to the postulates. We do not see the auxiliary objects of Elem. I.1,
because these are hidden within the direct invocation of Elem. I.1, which produces the
triangle fully formed.

The problem-construction of Elem. I.2 establishes a function that operates on a
given point and a line whose endpoints are given, and returns a certain line equal to
the given line, one of whose endpoints is the given point. That is, where ap is the given
point and bgm,p is the given line, we have the function

ap bgm,p

alm,p = bgm,p

where alm,p is a line given in magnitude and in position, one of whose endpoints
is the originally given point.

As is well known, this problem can be used to produce a circle about a given center
with a given length, which is the primary use of the proposition in the text. Hence,
Elem. I.2 establishes, as a corollary, the function

ap BGm

C(ap, BGm)m,p
,

whereC(ap, BGm)m,p is a circle about a given point, ap, with a given radius, BGm .54

Of course, for the construction to actually be carried out, both of the endpoints of BGm

54 Beeson (2010, 8) gives a similar account of Elem. I.2.
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must also be given in position, bgm,p, but this is a secondary consideration to its being
given in magnitude, which satisfies the main goal of this problem.

It is sometimes argued that this problem shows that the use of a normal compass
is compatible with the postulates, since a normal compass produces a circle around a
given point with a given radius (Greenberg 2008, 47; Meskens and Tytgat 2017, 28).
Stated as an issue of compatibility, this claim is, of course, correct. In order to see if
Euclid treats this problem as the abstraction of the use of a normal compass, however,
we must turn to how he applies it in Elem. I.3.

A

B

G

D

A

B

G

Elem. I.3: [1] Given objects [2] Elem. I.2

The exposition of Elem. I.3 sets out [1] a given line and a greater line given in
position with one endpoint given—that is, gm and aBp. Notice that no points on gm
are given, and on aBp only point a is given.

The problem-construction of Elem. I.3 is quite brief. It begins, “[2] Let AD have
been set out equal to lineG frompoint A ” (Heiberg1883, I.14). This is an applicationof
Elem. I.2. In order to actually perform this construction, according to the only method
specified in this text, we would have to apply all of the auxiliary constructions of
Elem. I.2, includingElem. I.1 and its auxiliary constructions. All of these constructions
are noted in the diagram, [2], in gray dotted lines. In fact, however, none of these
auxiliary objects appear in the manuscript sources. As always, the object produced by
Elem. I.2 simply appears, apparently fully formed, in the diagram, and the auxiliary
constructions are not immediately available.55

55 Indeed, in the manuscript diagrams, line G generally appears as a vertical line and AD is drawn as an
equal, randomly skew line whose inclination does not depend on an operation of Elem. I.2, so that AD must
have been produced by purely graphical techniques that are unrelated to the specifications of the problem-
constructions (Saito 2006, 99). This is the first indication of a general pattern. The diagrams produced in
the manuscripts—and, indeed, the diagrams produced by any normal human geometer, diverge more and
more from the algorithms laid out in the problems as we progress through the text.
There are two issues here. The first is that the manuscript diagrams appear to have been produced by

individuals, or at least by graphic techniques, thatwere notmuch concernedwith the underlyingmathematics
to be depicted. This is an accident of transmission. The second issue ismore fundamental. Human geometers
construct diagrams with drafting tools, or with the postulates themselves, so that they will rarely follow the
algorithms set out in the text, and almost never for the later problems, as we will see below.
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D

A

B

G

E
Z

Elem. I.3: [3] Elem. I.post.3

The text continues, “And [3] with center A and distance AD let a circle, DEZ ,
have been described” (Heiberg 1883, I.14). This is an application of Elem. I.post.3,
and completes the problem-construction. As usual, the final diagram contains only
objects produced by the postulates and previous problems—no auxiliary objects are
present.

This problem can be taken as providing an effective procedure that results in an
operation on two unequal given lines and results in a line given in magnitude. That is,
where gm and aBp are the two lines, we have

aBp gm
aem,p = gm

,

where ep lies betweenap and B. Again, for the procedure specified in the proposition to
actually be carried out, gm will also have to be given in position, but this is not essential
for the problem, since gm can be moved to any position before the procedure begins.

As we have seen, this problem uses Elem. I.2 to transform the position of a line,
bgm , but it does so through the direct use of the proposition, which is rather different
from the way that we carry a length, or span, with a compass. That is, when Elem. I.2
is invoked, the line that it produces, adm,p, appears in the figure, and we then work
with the endpoints of this line to produce a circle. The actual operation of a compass,
however, would not require the production of this line. Hence, it is clear that Euclid’s
problem-constructions work directly with the postulates as stated and do no try to
emulate the possible actions of a compass and straightedge.

4 Constructions in problems

Using the propositions that we have looked at so far, Elem. I.1–3, I.12, and III.1,
we are now in position to give a general description of the way that constructions
function in the problems of the Elements I–VI. The basic tenet of this description
is that we accept that each construction is carried out according to the algorithms
specified by the text. Hence, each problem-construction is carried out by a series of
steps, each of which can be performed by either a postulate or a previously established
problem. In the event that a step is carried out by a previously established problem, we
look to the problem-construction of the problem in question in order to see how it is
carried out—which, for the later problems produces an iterative process. In this way,
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every problem-construction is reducible to postulates, although, with the exception of
Elem. I.1, any individual problem-construction does not itself exhibit this reduction.
That is, with the exception of Elem. I.1, no problem-construction in the Elements
shows, on its own, how to produce the objects it constructs with the postulates.

4.1 Unpostulated constructions

As we saw in the discussion of Elem. III.1, and I.12, as well as introducing lines and
circles through Elem. I.post.1–3, there are also some unpostulated constructions—
such as setting out given points or lines. Since what we call segments may be regarded
as introduced by Elem. I.post.1, these can be considered reducible to the introduction
of given points. In Elem. I.22 a line with one endpoint given—what we would call a
ray—is set out in the problem-construction. Since only one point is given, it is not
clear that this is reducible to the introduction of given points and an application of
a postulate. Points may be introduced as given either somewhere in the plane, as in
Elem. I.12,56 or on a given object, as in Elem. I.9, I.11 and I.31. A given line can be
introduced by specifying two given points and then joining them using Elem. I.post.1,
as in Elem. III.1. As we will see below, a wider range of unpostulated introductions,
or constructive hypotheses, are allowed in proof-constructions.

4.2 Problems as demonstrations of an effective procedure

There have been a number of articulations of Euclid’s approach to constructions in
problems, which, although conceptually viable, and often mathematically equivalent
to what Euclid does, are not the same as the algorithms stated by the text. In order
to get a clear sense of the problem-constructions as Euclid presents them, it may be
useful to articulate what they are not.

Euclid’s problem-constructions are not practical instructions for the use of a com-
pass and straightedge—despite the fact that this is themost commonway of explaining
Euclid’s approach, and has been developed in mathematical treatments of Euclid’s
geometry (Mueller 1981, 15–16; Hartshorne 1997, 18–22; Catton and Montelle 2012,
29;Meskens and Tytgat 2017, 27–36). Aside from the fact that every real instrument is
bounded and real compasses carry length, Euclid’s problem-constructions are built up
from the postulates and from fully formed objects introduced directly from previously
established, so that they always involve full circles, produced lines, and complete
objects—they do not show how to produce intersecting arcs and points, as is usually
done when working with real instruments.57

56 In fact, in Elem. I.12 the given point that is introduced is on a certain side of a given line, so that there
must be some constructive procedure for deciding this. Perhaps we could join the two given points and
check whether or not there is an intersection with the given line.
57 There are a few exceptions to the use of full circles, such as the use of a semicircle in Elem. VI.13, Data
43 and 90. These can be regarded as the production of a segment containing a right angle, Elem. I.11, III.33.
I exclude cases where the text describes the production of a circle, but the manuscript figures show only an
arc—these exhibit graphical choices that are related to the production of material objects and tell us little
about the mathematical intention.
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The problem-constructions in the Elementsmake no pretense to presenting optimal
solutions to any but the earliest problems. This is because problem-constructions
function by calling in fully formed objects whose constructions have been previously
established—they are not constructed again from the postulates. Hence, obviously
simpler constructions are overlooked in favor of constructions that call on previously
established problems (Heath 1908, I.268, 270; Hartshorne 1997, 22; Joyce Online,
Book 1, Proposition 10). One of the goals of the problem-constructions appears to
have been producing at the same time and with the same constructions those objects
which will complete the problem and those which will be used in the proof—that
is, to reduce, so far as possible, the need to introduce further objects with proof-
constructions. The result of this is that as the problems become more involved, the
algorithms that they present become increasingly removed from an algorithm that
would be devised by starting again from the postulates.58 This, of course, is also
relevant to my claim that problem-constructions are not meant to be instructions for
the use of a compass and straightedge—as we will see in the example of Elem. II.11,
below, the algorithms detailed by the Elements are almost prohibitively laborious to
carry out with real instruments.

Euclid’s problem-constructions do not provide us with instructions for producing
a series of points as the intersections of lines or circles, created by either physical
instruments or the postulates. This a common way to think of Euclid’s construc-
tions from a practical perspective (Catton and Montelle 2012, 35–36), and has been
used as an approach to formalizing Euclidean constructions (Moler and Suppes,
1968; Seeland, 1978; Martin 1998, 1–28; Beeson 2010, 23–33), but it is not Euclid’s
approach. Euclid uses his postulates and previously established problems to bring in
objects fully formed, and the points of intersection, which are the focus of most mod-
ern treatments, usually appear as secondary, almost accidental, elements in Euclid’s
problem-constructions. Of course, mathematically, there is no significant difference
between these two approaches—nevertheless, they are conceptually quite distinct.

Finally, problem-constructions are not instructions yielding “the minimal graphic
requirements” of the objects to be produced (Catton and Montelle 2012, 36). In order
to follow the problem-construction of a later problem, we must treat it as an algorithm
in which each previously established problem that is called on is a subroutine, pro-
vided with its own algorithm in its own problem-construction. The only constructive
procedure licensed by the text, as it stands, is that produced by reading recursively
back through all of the previously established problems. The constructions that we
generally supply, as human geometers, in following the text are made up of construc-
tion shortcuts that we learned in school; they are not the constructions stipulated by
the Elements.

With these remarks as preliminary, wemay turn to a positive description of Euclid’s
problem-constructions: A problem-construction in Elements I–VI is an effective pro-
cedure that begins with some given objects and consists of a well-ordered, finite series
of steps, each of which is either a postulate or a previously established problem. The

58 For example, if we compare the algorithms developed in the Elements with those by Martin (1998,
Chapter 1). In particular, compare the constructions for Elem. I.2 and II.11 with those in the Elements
(Martin 1998, 8, 13).
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result of each step of a problem-construction is the production of a given object—
a point, a segment, a circle, or some more involved plane figure. This process may
also involve some deductive inferences securing the possibility of producing certain
objects—for example, inElem. I.44, with the use ofElem. I.post.5, or often inElements
IV, in establishing the possibility of drawing certain circles.

Although, as noted above, some of the problem-constructions also include proof-
construction steps and introduce objects not strictly necessary for completing the
problem, taken together the constructions stipulated in both the problem-construction
and the proof-construction result in the objects that we see in the diagram.59 In fact, the
diagram is simply a visualization of the construction—a symbolic representation of
the objects that results from performing the operations stipulated in the construction.
Deductive inferences that we tend to think of as originating in the diagram have their
source not in the diagram itself, but in the construction that it points toward—usually
through the definitions of the newly introduced objects, but occasionally through
various aspects of their configuration.60

The objects that are introduced through problem-constructions can all be produced
in a finite number of steps, each of which is ultimately reducible to the postulates,
but we will see below that objects introduced into the discourse through proof-
constructions are not subject to this constraint. Hence, the problems of Elements I–VI
can be taken as proofs that there is an effective procedure for producing the objects at
issue, given some assumed objects, arbitrary points, and perhaps lines, and the func-
tions stipulated by the postulates—that is, they show that if the objects asserted in the
enunciation are given, then the objects produced by the procedure can also be provided
as given.

4.3 Routines and subroutines

We can regard a problem-construction as a routine made up of postulates and subrou-
tines, each of which itself has the structure of a routine. For example, Elem. I.3, as
read above, has the following structure:

Elem. I.3:
Step 1: Elem. I.2 (I.post.1, Elem. I.1 (I.post.3, I.post.3, I.post.1, I.post.1), I.post.2,
I.post.2, I.post.3, I.post.3),
Step 2: Elem. I.post.3.

In this case, when Elem. I.2 is called in Step 1, only the final object that it produces
appears in the figure, and the constructive process that lead to its production, shown
here in parentheses, is treated as a black box. In stating a routine, parentheses are used
to describe a subroutine to make it clear that the auxiliary objects that are used in the
subroutine are not introduced by the routine itself. Since all of problem-constructions

59 Catton and Montelle (2012, 35–37) claim that this is not the case, but this is because the “actions” that
they use to produce the construction do not agree with those given in the text.
60 This emphasis on the construction as providing starting points for the deduction should be contrasted
with accounts that place these starting points in the diagram itself, such as that provided by Netz (1999a,
Chapter 1).
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in Elements I–VI can be stated as routines, it is clear that a problem-construction acts
as a series of operations that could in principle be mechanized. Of course, in order
to make the procedure mechanical we would have to include various if-then rules in
order to make certain decisions along the way. Euclid does not need to worry about
this, because his instructions are written for human geometers who canmake their own
decisions and only need to be convinced that the operation in question is possible.

A characteristic of Euclid’s practice in setting out problem-constructions is that a
subroutine acts as a black box in the sense that the internal constructive operations
that lead to its output are not directly recoverable. There is no logical or mathematical
necessity that this should be so, since one could simply construct everything from
scratch from the postulates, as is usually done in modern treatments of Euclidean
constructions. Nevertheless, this results from the way that Euclid uses previously
established problems as introduction rules to bring in new objects fully formed. An
example that makes this practice clear can be taken from the use of Elem. I.10 in
Elem. III.1—see step [3] in Sect. 2.1, above. In the process of bisecting line AB at D,
using Elem. I.10, the perpendicular to D is produced as an auxiliary construction, as
can be seen among the gray dotted lines in the figure forElem. III.1 [3]. In the next step,
[4], however, Elem. I.11 is used to produce a perpendicular anew, as though no per-
pendicular had been used in determining point D. The same situation—arising from
a similar application of Elem. I.10 followed by Elem. I.11—is found in Elem. I.12,
III.25, III.30, III.33 and IV.5. We see a similar situation in Elem. IV.12—to circum-
scribe a regular pentagon about a given circle. This problem-construction proceeds
by taking the vertices of an inscribed regular pentagon, as established in Elem. IV.11,
drawing the tangents to the circle though these points, Elem. III.16.corol., and then,
among other things, finding the center of the circle. But, the unstated subroutine that
produces these tangents involves finding the center of the circle, Elem. III.1, joining
this with the vertices, Elem. I.post.1 (five times), and then erecting perpendiculars,
Elem. I.11 (five times). Hence, although the center of the circle is already found in one
of the subroutines, because it is required in the routine itself, it must be introduced
separately. A particularly striking case is found Data 43. In this theorem, a given line
is fitted into a circle, using Elem. IV.1, and then the circle that is used as an auxiliary
object in Elem. IV.1 is introduced separately, using Elem. I.post.3.61 In fact, there is no
problem-construction inElements I–VI or theData in which an object that would have
been involved in a subroutine is not later introduced by its own problem-construction
step, if it is required. Hence, although this black-boxing of the subroutines is not math-
ematically required, it is consistently applied in Euclid’s problem-constructions and
can be used to explain the difference between Euclid’s approach and that of modern
accounts of Euclidean constructions, and to account for the diagrams found in the text.

The fact that the auxiliary objects used in a subroutine need to be reintroduced if they
are to be used later in the routine, is related to our concept of the scope, or visibility, of
an object used in a subroutine. In this sense, objects introduced in a subroutine have
local scope and are not available after the subroutine is complete. That is, a problem
acts as an introduction rule providing only the final object. An auxiliary object that

61 Taisbak (2003, 128) refers to this as a “repeated construction.” See also Sidoli (2018, Sect. 3.3).
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may have been used in stating the construction rule is not also introduced when the
rule is applied, unless it is an element of the object introduced by the rule. Hence, if
such an auxiliary object is also needed in the routine, it must also be introduced by
its own introduction rule. That is, a problem-construction uses previously established
problems to introduce objects fully formed, having the properties demonstrated in the
proofs of those problems—which has the advantage that we do not need to prove these
properties, as would be necessary if we constructed the objects from the postulates
themselves.

This discussion makes it clear how remote Euclid’s procedures are from the actions
of any human geometer—any person actually producing one of these diagrams would
see that the objects produced in the subroutines are already there in the figure and do
not need to be introduced again. In this way, although the problem-constructions of
Elements I–VI emulate the possible actions of a human geometer, they quickly become
rather far removed from any series of actions that a human geometer would actually
perform.

In the problem itself, taken as a whole, the demonstration serves a cognitive func-
tion beyond simply verifying that the produced object satisfies the requirements of the
problem. It also identifieswhich of those objects produced in the problem-construction
will be called in when the problem is later invoked. It does this by showing what
object produced by the problem-construction satisfies the definition of the objects
required by the problem in the enunciation. That is, it is the demonstration that deter-
mines which object meets the requirements of the enunciation and is returned when
the problem is later invoked. For example, in Elem. I.2, which we can outline as
follows,

Elem. I.2:
Step 1: Elem. I.post.1,
Step 2: Elem. I.1 (I.post.3, I.post.3, I.post.1, I.post.1),
Step 3: Elem. I.post.2,
Step 4: Elem. I.post.2,
Step 5: Elem. I.post.3,
Step 6: Elem. I.post.3,

the previous problem, Elem. I.1, is invoked in Step 2 as a subroutine, in such a way
that of the four steps of the subroutine, only the final two, along with the line assumed
as given, are involved in the production of the equilateral triangle that will appear
when the proposition is invoked. We can regard the demonstration as the cogni-
tive process that identifies the sought object among the various objects produced.
The situation is more pronounced in a case like Elem. I.3, above. When we look at
the constructive steps involved in the production of Elem. I.2, in parentheses, it is
not at all clear, merely from reading the list of operations, which of the produced
objects completes the problem and should appear in the figure. Only by following
the demonstration is this made clear. Of course, we could also mechanize this pro-
cess by writing an algorithm to identify the sought object and then drawing just these
objects—Euclid, however, is not writing these procedures for machines, but for human
geometers.
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4.4 Example: Elem. II.11

We can summarize these various observations by going through the problem-construc-
tion of Elem. II.11—to cut a given line such that the rectangle contained by the whole
and one of the sections is equal to the square on the other section.62 This will serve as
a concrete example that will make the syntax of Euclid’s problem-constructions clear
and illustrate the various points that have been raised above.

B
A

G
D

B
A

Elem. II.11: [1] Given objects [2] Elem. I.46

The enunciation of Elem. II.11, [1] sets out a given line—that is, given in position
such that both of its endpoints are given, abm,p . The problem construction, then,
begins with “For, let a square, ABDG, be erected on AB ” (Heiberg 1883, I.108),
which uses the same verb as was employed in Elem. I.46. This is expressed as a simple
construction, but in order to see how a square would actually have been constructed
according to the text we have to read Elem. I.46 and all of its subroutines. This gives,

Elem. I.46:
Step 1: Elem. I.11 (Elem. I.1 (I.post.3, I.post.3, I.post.1, I.post.1), Elem. I.9
(Elem. I.3 (Elem. I.2 (I.post.1, Elem. I.1 (I.post.3, I.post.3, I.post.1, I.post.1),
I.post.2, I.post.2, I.post.3, I.post.3), I.post.3), I.post.1, Elem. I.1 (I.post.3, I.post.3,
I.post.1, I.post.1), I.post.1)),
Step 2: Elem. I.3 (Elem. I.2 (I.post.1, I.1 (I.post.3, I.post.3, I.post.1, I.post.1),
I.post.2, I.post.2, I.post.3, I.post.3), Elem. I.post.3),
Step 3: Elem. I.31 (I.post.1, Elem. I.23 (I.post.1, Elem. I.22 (Elem. I.3 (Elem. I.2
(I.post.1, Elem. I.1 (I.post.3, I.post.3, I.post.1, I.post.1), I.post.2, I.post.2, I.post.3,
I.post.3), Elem. I.3 (Elem. I.2 (I.post.1, Elem. I.1 (I.post.3, I.post.3, I.post.1,

62 As is often the case in problem-constructions, Heiberg (1883, I.153) did not attempt to provide a justifi-
cation for every step, mentioning only Elem. I.46, once. In this he is followed by Heath (1908, 402). Vitrac
(1990–2001, 353, 515) mentions no construction steps in his translation, although they are all listed in his
table. Joyce (Online, Proposition II.11) and Fitzpatrick (2008, 63) give a fuller, although still incomplete,
set of justifications in the text itself.

123



438 N. Sidoli

I.post.1), I.post.2, I.post.2, I.post.3, I.post.3), I.post.3, I.post.3, I.post.1, I.post1)),
I.post.2),
Step 4: Elem. I.31 (I.post.1, Elem. I.23 (I.post.1, Elem. I.22 (Elem. I.3 (Elem. I.2
(I.post.1, Elem. I.1 (I.post.3, I.post.3, I.post.1, I.post.1), I.post.2, I.post.2, I.post.3,
I.post.3), Elem. I.3 (Elem. I.2 (I.post.1, Elem. I.1 (I.post.3, I.post.3, I.post.1,
I.post.1), I.post.2, I.post.2, I.post.3, I.post.3), I.post.3, I.post.3, I.post.1, I.post1)),
I.post.2),

which appears in the diagram as the gray dotted lines of a subroutine, itself involving
four subroutines, for a total of 80 uses of the postulates.63 It goes without saying that
no human geometer would ever actually construct a square in this way and that this
is not a straightforward way to produce a square with a compass and straightedge.64

The expression for invoking problem Elem. I.46, in fact, simply calls in a square as
fully given, S(abgd)m, f,p. Of course, the square will appear on one side or the other
of line abm,p, but the choice of which side is at the discretion of the geometer, since
the subroutine itself can produce a square on either side.

E

G
D

B
A

G
D

E

B
A

Elem. II.11: [3] Elem. I.10 [4] Elem. I.post.1

The problem construction continues, “And [3] let AG be bisected at point E ”
(Heiberg 1883, I.108)—using the same verbal phrase as was employed in Elem. I.10
to invoke that proposition. The subroutine that is called in with this expression is, in
fact, the following:

Elem. I.10:
Step 1: Elem. I.1 (I.post.3, I.post.3, I.post.1, I.post.1)

63 It should be noted that some of the steps of the subroutine, for example, in applications of Elem. I.3,
will be degenerate, so that we will not actually produce all 80 circles and lines, but a somewhat smaller
subset. (See the discussion of Elem. II.11 [6], below.)
64 Having worked through Elements I following the full constructions as stipulated in the text using a
straightedge and compass, I found that proceeding through the full sequence of operations for Elem. I.46
has a tendency to produce a misshapen figure.
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Step 2: Elem. I.9 (Elem. I.3 (Elem. I.2 (I.post.1, Elem. I.1 (I.post.3, I.post.3,
I.post.1, I.post.1), I.post.2, I.post.2, I.post.3, I.post.3), I.post.1, Elem. I.1 (I.post.3,
I.post.3, I.post.1, I.post.1), I.post.1)

which appears as gray dotted lines in the diagram. Following these constructions back
to the postulates would involve 19 operations.65 As before, the only object from this
subroutine that appears in the figure for Elem. II.11 is the point of bisection itself, ep.

The problem-construction continues, “And [4] let BE be joined” (Heiberg 1883,
I.108), which is simply an application of Elem. I.post.1, as appears in the diagram.

G
D

E

B
A

B
A

Z

E

G
D

Elem. II.11: [5] Elem. I.post.2 [6] Elem. I.3 [degenerate]

We then have the following two operations, “And [5] let GA be extended to Z .
[6] And let BE be laid out equal to EZ ” (Heiberg 1883, I.108). The first of these,
[5], should be read as an application of Elem. I.post.2, in which we extend line gam,p

some arbitrary distance, so long as it is greater than BE − AE . At this point in the
construction, Z is not yet specified and simply names the extension of this line.

In the next step, [6], with the application of Elem. I.3, point z p is determined as
a point on the extension of AG, which is given, by Data 25. This is an example,
as often happens in Elements I–VI, of a degenerate application of this problem. In
general, Elem. I.3 can be used to cut off a shorter line from a longer line, wherever
the two lines lie in the plane. Here, as often however, the two lines share an endpoint,
so that instead of all of the applications of the postulates that we see in the routine for
Elem. I.3 above, we require only Elem. I.post.3.66 Of course, there is no discussion
in the text of degenerate and non-degenerate cases—probably because Euclid did not
think of himself as explaining how to actually carry out these constructions, but only
as demonstrating that an effective procedure exists, for which purpose, we need treat
only the more involved case.

65 Again, in this case a number of the operations of Elem. I.3 are degenerate, and, hence, all of the
applications of the postulates in the full algorithm will not appear as objects in the diagram. (See the
discussion of Elem. II.11 [6], below.)
66 See notes 63 and 65, above.
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B
A

E

HZ

G
D

Q

K

B
A

E

HZ

G
D

Q

Elem. II.11: [7] Elem. I.46 [8] Elem. I.post.2

The final passages of the problem-construction read, “And [7] let a square, ZQ, be
erected on AZ . And [8] let HQ be produced through to K ” (Heiberg 1883, I.108). This
is another application of Elem. I.46, as discussed above, followed by an application of
Elem. I.post.2. As usual, only the final square and line produced by these operations
appear in the figure.

The production of line QK brings up an interesting issue. The question arises
whether or not this line serves a necessary function in the problem-construction,
whether it is a proof-construction, or whether it serves a purely illustrative role. In
fact, this depends to some extent on how we read the propositions of Elements II
with regard to whether or not they are primarily geometrical or primarily demonstrate
abstract relations that were meant be applied in other areas of mathematics as well.
Certainly, if we are only interested in finding point Q, which divides AB such that
R(AB, BQ ) = S(AQ ), there is no need for line QK . Furthermore, it is certainly pos-
sible to set up a more operational proof using the relations demonstrated in Elements
II, as abstract relations—in the way that this material was handled by Apollonius and
Archimedes and occasionally by Euclid—to show that the R(AB, BQ ) = S(AQ ),
without recourse to line QK . Indeed, as is well known, Heron rewrote much of Ele-
ments II is this more abstracted vein—making the treatment of the book stylistically
compatible with its usage in the works Apollonius and Archimedes.67 Hence, it would
appear that line QK plays an essentially illustrative role, like the lines constructed in
the theorems Elem. II.1–8.68 That is, this line is used to visually illustrate that point Q
divides AB such that the square on one part, S(AQ ), is equal to the rectangle formed

67 Heron’s reworking of Elements II is preserved only in al-Nayrı̄zı̄’s commentary, in both Arabic and
Latin (Besthorn and Heiberg 1897–1905, II.1.4–79; Tummers 1994, 73–89). For recent work in the long
literature on Heron’s rewriting of Elements II, see Corry (2013, 133–139) and Sialaros and Christianidis
(2016, 652–654). Acerbi and Vitrac (2014, 31–39) give an overview of Heron’s commentary and discuss
Heron’s more abstract proofs on p. 36. For a discussion of Euclid’s use of this abstract approach, see note
69, below.
68 For example, Acerbi (2007, 272) mentions that the constructions in Elem. II.1–8 serve such a purely
illustrative function.
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by the whole and the other part,R(BD, BQ). Just as Euclid’s goals in Elements I–VI,
in general, and Elements II, in particular, have to do with producing theorems about
geometric objects, his problems are also situated in this geometric context.69 This final
line in the problem-construction of Elem. II.11 is a good illustration of the following
general claim: for a Euclidean problem to be effected, it must, at the least, produce
all of the objects explicitly stated in the enunciation—while other objects may also be
necessary to either produce these, or for the proof.

K

B
A

E

HZ

G
D

Q

All the steps of Elem. II.11

Having gone through the details of the problem-construction for Elem. II.11, it
suffices to say that at each stage an object is called in directly through either a pos-
tulate, or the invocation of a previously established problem, in such a way that the
construction produces only those objects that we see in the diagram. No object that
serves in an auxiliary role in any of the subroutines appears in the final diagram. As
with the previous examples, it would be possible to write out a full routine for this
proposition, but since we have gone over the general principle for doing this, and as no
new information would be presented, I will spare the reader this tedium. On the other
hand, it is rather striking to see, in the final figure for Elem. II.11, what it would look
like if the constructions were actually carried out according to the routine specified
by the text. I will simply mention that the full routine would contain 183 applications

69 It should be noted that this was probably a stylistic choice on Euclid’s part, not a conceptual limitation.
As the arguments in Elem. III.35, III.36, IV.10, and Data 86 make clear, Euclid himself was capable of
applying theorems ofElements II in the abstract, operational way that we find in thework of Archimedes and
Apollonius, known as the application of areas, or geometrical algebra (Zeuthen 1917, 313–316(115–118);
Taisbak 1996, 2003, 211–224), and there is no reason why he could not have written Elements II in the
same abstracted vein as we find in Heron’s commentary.
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of the postulates.70 I think it is likely that in all the centuries since Euclid composed
his Elements no human geometer has ever carried out the full construction for this
problem as specified by the text.

5 Constructions for theorems and demonstrations

In this section, I argue that the proof-constructions found in theorems and in the
demonstrations of problems employ a broader range of introduction procedures or
assumptions than we find in problem-constructions. Here, I present some examples of
these practices in three categories that are neither mutually exclusive nor exhaustive.

In this section, the terminology of construction is used in a sense that is looser
than usual. Here construction is employed in the sense of whatever is done in the
construction section of a proposition as a means of introducing new objects into the
discussion whose existence was not asserted in the enunciation. That is, in the sense
that both problem-constructions and proof-constructions involve introduction proce-
dures, while only problem-constructions are effective procedures, the introduction
procedures in proof-constructions are sometimes purely hypothetical. As this sec-
tion will establish, objects are introduced in problem-constructions through effective
procedures, whereas they can be introduced in proof-constructions through purely
hypothetical assumptions, whether or not any effective procedure for their production
can be demonstrated. Nevertheless, following the terminology of the division of a
proposition, I will call both of these introduction procedures constructions.

5.1 Counterfactual constructions

Probably the most straightforward type of proof-construction are those that seem to
employ only postulates and previously established theorems, but produce a diagram
that is then shown to be impossible—namely, for use in an indirect argument. Such
proof-constructions may be called counterfactual.

As an example, we may look at the proof-construction for Elem. I.6, which is a
theorem. The passages with which we are concerned, read as follows (Heiberg 1883,
I.22):

[Proof-construction:]
[1] For, if AB is unequal to AG, one or the other of them is greater. Let AB be
greater, and [2] let DB equal to the lesser, AG, be removed (¢fhÄ r»sqw) from
the greater, AB. And, [3] let AG be joined.

70 Of course, many of the applications of Elem. I.3 will be degenerate, as discussed above, but since this is
not discussed in the text, and the only way to know which are degenerate and which are not is to go through
the construction and count, I simply count the operations of the algorithm as presented by the text. The
diagram shows only the lines and circles that would actually be produced—which is significantly less than
183, but still far more than a human geometer would require.
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D

A

B G

D

Elem. I.6: [1] Assumption [2] Elem. I.3 [*] [3] Elem. I.post.1

Wemay depict the procedure of this proof-construction with three diagrams. In [1]
we simply have the assumption of the theorem, namely T(ABG ), where � ABG =
� AGB but AB > AG. In [2], Elem. I.3 is applied using the same verb as was used in
the enunciation of that problem. The issue, of course, is that the demonstration itself
will show that this construction is, in fact, impossible. That is, wewill demonstrate that
there is no effective procedure that, starting with this configuration, will allow us to
cut off AD = AG. Hence, we must take this construction step as purely hypothetical.
Of course, we can say that once the assumption that one is greater than the other is
made, it should be possible to carry out the application of Elem. I.3. But in fact, no
effective procedure can be articulated that starts with an equiangular triangle and cuts
off an equal to one of the opposite sides from the other.71 Finally, in [3], once point D
has been assumed, we can use Elem. I.post.1 straightforwardly to join points D and
G.

This sort of construction appears to be an application of a postulate or a previously
established proposition, but the construction cannot actually be carried through using
the tools provided. Although we might construe such a proof-construction as a free
procedure for producing a drawing, the postulates, and especially the problems, do not
appear to be about making drawings, as I have emphasized. Indeed, there is nothing in
Euclid’s approach to indicate that the configurations depicted in the text diagramswere
meant to be understood as anything but signs pointing toward themathematical objects
at issue—and, again, there is no way to produce themathematical objects pointed to by
the diagram forElem. I.6 through an effective procedure.Hence, theproof-construction
articulated in this theorem is actually a purely counterfactual assumption, introduced
for the sake of the argument.

5.2 Semi- and non-constructive introductions

Another way of introducing objects, or properties of objects, into the argument is
simply to assume that they exist, or are so, with no recourse to the language of con-
struction. Since such assumptions are not clearly constructions we will call them semi-
and non-constructive introductions.

71 For example, although for the sake of an argument we might suppose that two numbers that are equal
might be different and subtract one from the other, no effective procedure carried out on numbers would
ever produce this difference as a natural number.
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An interesting example of this style of reasoning comes from the first application
of Elem. I.post.5 in Elem. I.29, which shows, among other things, that a straight line
falling on two parallel lines makes the alternate angles equal. The indirect argument
proceeds by the assumption that one of the angles is greater than the other, from
which it can be shown that the two internal angles on the same side are less than two
right angles. The text then reads, “But two [straight lines] extending indefinitely from
less than two right [angles] meet” (Heiberg 1883, I.72). This is then shown to lead
immediately to a contradiction.

In this case, the form of the verb—third person, present, indicative—simply indi-
cates a fact, as was asserted in Elem. I.post.5. Nevertheless, as was argued above, we
can read Elem. I.post.5 as a sort of introduction rule for the intersection of these two
lines. Hence, the full indirect argument leads to an assumption of the production of a
point that is also assumed, by Elem. I.def.23, not to be produced. We could also frame
this as a property of the two lines—they both meet and do not meet. In either case,
however, we can think of this as a semi-constructive assumption in that we are dealing
with a new object, an intersection, or a property, a meeting, brought into the argument
through an application of one of the postulates.

A second example of this type of non-constructive introduction can be taken from
the proof-construction that we read above for Elem. III.1—to find the center of a given
circle.72 As we saw, the indirect proof for this problem begins with the assumption
that some other point is the center of the circle. This is stated as a claim of existence—
“let it be…”—asserted in a verb form that is used for both the exposition and the
construction, but using the verb of being, which is more common for the exposition.
In this case, we can simply think of this as taking any point and then assuming it has
the property of being the center of the circle in question. The definition of a circle,
Elem. I.def.15, immediately rules out any point outside the circle and the argument
provided obtains for any point inside the circle. As with the previous example, we
can regard this either as a semi-constructive assumption about the existence of an
object—a center—or an assumption about a property—being a center—applying to
an object that may be assumed unproblematically to exit—any point.

Both of these examples are in indirect arguments, so they are also counterfactual.
Non-constructive assumptions, however, need not always be counterfactual, as wewill
see in the next section.

5.3 Superposition

We turn now to the most frequently discussed semi- or non-constructive assumption
made in the Elements—namely the assumption of superposition made in Elem. I.4, I.8
and III.24. Although there is a long history of criticizing the practice in modern schol-
arship, it is a striking fact that no ancient or medieval commentator or mathematical
scholar considered superposition to be illegitimate.73 Hence, any attempt to explain

72 This example was discussed in Sect. 2.1, above.
73 There is an extensive literature on superposition in the Elements, which I will not pretend to survey.
Axworthy (2018, 6–9) provides a recent overview. Vitrac (2005, 49–52) treats the ancient and medieval
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how Euclid, and other ancient and medieval mathematical scholars, understood super-
position must confront the fact that they did not consider it to be problematic. There
have been various approaches taken to this bymodern scholars.74 Most explanations of
Euclid’s use of superposition can broadly be divided up into claims that the first three
problems are meant to be used constructively to produce the superposition, claims that
superposition depends on a transformation, or rigid motion, or some combination of
both views.75

I am not convinced that Euclid intended superposition as an application of the
previously established problems for the following reasons. (1) The construction of
the elements of another triangle through Elem. I.1–3 will involve us in an argument
about three triangles, T(ABG ), T(A′B ′G ′) and T(DEZ )—but Elem. I.4 concerns
only two triangles. (2) The use of Elem. I.1–3, which might explain Elem. I.4 and
I.8, cannot serve for Elem. III.24. And, most importantly, (3) the grammatical form
used for the invocation of superposition—the genitive absolute—which is used in each
of Elem. I.4, I.8 and III.24, is not anywhere clearly used by Euclid for constructions,
which are invoked with the imperative. Indeed, the use of the genitive absolute implies
a hypothetical situation. Hence, in what follows I will argue that the argument by
superposition involves a purely hypothetical assumption, and is explicable in terms of
the concept of given.76

In order to formulate a new articulation of the argument by superposition, we will
read through the opening passages of the proof Elem. I.4 after the exposition, followed
by an exposition of how we should understand these passages. I will only discuss the
details of this theorem, but the claims that I make about the argument it presents
can be easily extended to Elem. I.8 and III.24—indeed, the grammatical similarity in
the articulation of these three arguments indicates that Euclid intended that they be
understood in the same way.

The exposition of Elem. I.4 sets out two triangles, T(ABG ) and T(DEZ ), such
that AB = DE , AG = DZ , and � BAG = � EDZ . The text then reads as follows
(Heiberg 1883, I.16–18):

Footnote 73 continued
discussions of superposition. Acerbi (2010) discusses the evidence for homeomeric lines in Greek math-
ematical authors, which makes clear the extent to which the technique of superposition was accepted and
used by Greek mathematicians.
74 Here, I refer to scholarly work aiming to explain the ancient position, not mathematical work meant to
criticize it and produce a new, more complete, formulation.
75 Without attempting to be exhaustive it is sufficient to point out that Levi (2003, 103–109),Wagner (1983),
and Saito (2009, 807–809) argue for construction from the postulates, whileHeath (1908, 225–228),Mueller
(1981, 21), Vitrac (1990–2001, I.293–299), and Panza (2012, 92, n. 71) speak of a rigid displacement.
Alvarez (2003) treats constructions by postulates as a sort of movement, or transformation. Finally, Dean
and Mumma (2009, 725) argue that the assumption made in Elem. I.4 is essentially hypothetical.
76 My position is close to that put forward by Vitrac (2005, 49–52), except that I do not think we need to
invoke the notion of motion in anything like the normal meaning of the word. Furthermore, I put greater
emphasis on the notion of given to explicate the ancient and medieval understanding of superposition,
and I agree with Dean and Mumma (2009, 725) that the supposition of superposition must be regarded as
purely hypothetical. The case for the purely hypothetical status of superposition was clearly articulated by
Commandinus (Axworthy 2018, 25–33).
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[Demonstration:]
[1] For, when triangle ABG is fit to triangle DEZ and point A placed on point
D and the straight line AB upon DE , point B will fit on point D because AB is
equal to DE .77 [2] And, when AB fits on point DE , straight line AG will also
fit on DZ , because angle BAG is equal to angle EDZ . [3] So that point G will
also fit on point Z , again because AG is equal to DZ . [4] But, B has also fit on
E , so that base BG will fit on base EZ .

The first thing to notice about this passage is that it begins, in [1], with a genitive
absolute phrase in which the verbal participle is passive, but in the present tense.
Hence, it describes a current state inwhich one triangle is being fit to another triangle—
whatever this might mean. Although the passive construction leads us to read this as
a kind of operation that has been performed on the triangle, we should remember that
in the Elements constructive operations are expressed in the imperative, often in the
perfect tense. Furthermore, the use of the genitive absolute, which acts as a conditional
here, is not used to introduce constructions or operations in Elements I–VI. Hence, I
propose that we read this opening clause as the hypothesis of a possible, current state
which may obtain for T(ABG).

A

B
G

Z

E

D

Elem. I.478

The key to understanding this is to remember that in a theorem nothing has been
specified as given, and, in particular, nothing is given in position. InData 25–30, which
are essentially corollaries ofData Def.4, the concept of given in position is developed
by indirect arguments in which objects that are given in position are taken not to be so
given, such that they are assumed “to undergo a change” (metap…ptein). This is not
a movement in the normal sense of the word—in which an object starts in one place
and then after some time arrives at another place having passed through a series of

77 I have translated the genitive absolute using when, to emphasize the difference between this type of
hypothesis and that setting out the conditions of the theorem, which is introduced with ™£n.
I have translated both the transitive ™farmÒzesqai and the intransitive ™farmÒzein with “to fit,” as

opposed to the usual convention of using two different verbs, such as “to apply” and “to coincide” (Heath
1908, 224–225; Vitrac 1990–2001, I.181, n. 13). The reason for this is that we have a long tradition of
reading “to apply” and “to coincide” as technical terms that we think we understand. For example, Heath
(1908, 225) claims that the linguistic expression used to introduce superposition must be read to mean that
one figure is “actually moved and placed upon the other.” But, nothing in the text is so explicit. In fact,
both the text and the argument are vague and subject to a range of interpretations. Hence, I use a literal
translation, with an English verb that can be both transitive and intransitive.
78 In most of the manuscripts used by Heiberg (1883), the two triangles are placed next to each other at the
same rotation and reflection (Saito 2006, 100). In the Bodleian manuscript, Heiberg’s B, there are two lines
EZ , one curved below the other.

123



Uses of construction in problems and theorems in Euclid’s… 447

intermediate places—it is rather a more abstract concept of transformation.79 Hence,
objects that are not given in position, such as the elements of triangles T(ABG )

and T(DEZ ), can be imagined to undergo any sort of transformation relative to one
another, so long as AB = DE , AG = DZ , and � BAG = � EDZ .

That is, so long as AB = DE , AG = DZ , and � BAG = � EDZ , the two triangles
may be anywhere in the plane and have any orientation to one another. That is, we do
not imagine thatT(ABG ) is first in one place and thenmoved to another place after the
argument begins—for the conditions required by this theorem, it may as well be in any
place, and with any orientation. Hence, it may just as well be in the same position and
orientation as T(DEZ ), somehow without any loss in the generality of the essential
assumptions—namely that AB = DE , AG = DZ , and � BAG = � EDZ .

Continuing, in [1], we are then told that point A is placed on point D, using a present
passive participle. This simply orientates us to the details of the overall fit of the two
triangles. The rest of the passage, [2]–[4], continues in the same vein, using genitive
participles to state the conditions, and future or present verbs to state what follows.
The unstated assumptions guiding this whole argument are that the components of
T(ABG ) are constant for any position and that lines that are equal can be fit to one
another.80 These were probably considered to be so obvious as to not require explicit
formulation.

This is also the context in which we should understand the superposition argu-
ment in Elem. I.4, I.8, and III.24. Indeed, the implicit assumption of the argument by
superposition is that the elements of a geometric object that are constrained in some
way—as by definition, such as the equality of the radii of a circle in Elem. III.24, or
through assumption, such as the equality of lines and angles in Elem. I.4 and 8—will
not change no matter what the position or orientation of the object. In the case of
Elem. I.4, the specific assumption is that the magnitude of BG will not change, no
matter what the position or orientation of T(ABG ).81 Whatever we may think of
the soundness of arguments through superposition, the main point is that for Euclid
they involved neither the constructive production of new elements, nor a movement
of objects from one position to another. Rather, because the position of the objects is
initially unspecified, we may assume, merely for the sake of the argument but without
any loss of generality, that they may be superimposed on one another.

Themajority of proof-construction steps in theorems can be carried out unproblem-
atically with postulates and previously established problems.Moreover, in general, the
overall structure of Elements I–VI is such that the problem showing that any particular
object can be produced by an effective procedure from the postulates is introduced

79 See the discussion of the verb metap…ptein by Taisbak (2003, 93–94), who also argues that it denotes
an abstract type of change. This point was also made by Russell (1938, 405–406), but note that he also
claims that a “point of space is a position”—which is contrary to Euclid’s view. An important goal of the
Data and of the language of givens is to develop a meaningful way to differentiate between points which
are positioned and points that have various degrees of freedom.
80 The latter assumption is a sort of converse of Elem. I.c.n.7 (or 4). This is also all that is required for
Elem. III.24, because the points and the lines are assumed to fit, from which the segment is shown to fit.
81 One could argue that this assumption is mathematically equivalent to the assumption of Hilbert’s sixth
axiom of congruency, III-6.
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before the said object needs to be used in a particular proof-construction—often imme-
diately before, such as with Elem. I.11 and I.13, I.23 and I.24, I.31 and I.32, I.46 and
I.47, and so on. As this short survey makes clear, however, in contrast to the situation
with problem-constructions, this should be regarded, not as a strict necessity, but as
a strong tendency. In fact, since calling on previously established problems allows
us to bring in objects fully formed having the properties demonstrated in the prob-
lem, using problems as introduction rules assures us that the objects so introduced are
compatible with the configuration at hand and have the required properties. Hence,
the difference seems to be that whereas for theorems it is stylistically preferable that
assumptions introduced for the sake of the argument, following the exposition, should
be applications of postulates and previously established problems, for problems, this
is an essential requirement.

6 Conclusion

We have seen that the concepts developed in theData can be used to flesh out the con-
ceptual background of the problems in Elements I–VI. This is not surprising because
theData itself makes extensive use of Elements I–VI and appears to have been written
so as to mobilize Elements I–VI in analytical problem-solving (Taisbak 2003, 17–18).
Indeed, the more fully developed treatment of given objects in the Data helps us to
articulate what it means for objects to be given in the problems of the Elements, and to
understand the sense in which objects are not given in the theorems of the same text.

In order to appreciate the role of problems in the text, we must clearly distinguish
between problem-constructions and proof-constructions, despite the fact that these
are not always structurally separated in the text. Indeed, the use of counterfactual and
semi- and non-constructive introduction assumptions in theorems and in proofs, but
not in problem-constructions, makes it clear that the author of the text intended such
a conceptual distinction. The difference between these two is clearly exhibited in the
full, potential structure of a problems, which is more involved that that of a theorem.

Moreover, by giving a constructive reading of all five postulates, on the basis of the
notion of given, we see that they are all involved in problems, and four of them are
employed as introduction rules in problem-constructions. This is a further indication
that the theories of given developed in theData provide a useful conceptual framework
in which to understand the role of problem-constructions in the Elements.

A problem-construction is a well-ordered, finite routine made up of applications of
postulates or previously established problems, which themselves act as well-ordered,
finite subroutines. The objects involved in carrying out a subroutine are not directly
recoverable when the object that the subroutine produces is invoked. The diagram in
the text results from lines and circles produced by the postulates and from geometric
objects produced directly frompreviously established problems. Insofar as the diagram
has any role in the demonstration that follows, the possibility of this results from the
construction, not from the diagram itself. The demonstration shows us what elements,
of all those produced in the diagram, constitute the object the problem will return
when it is later called upon—using the imperative and often the same verb. Taken as a
whole, a problem is a proof that the object in question can be produced by an efficient
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procedure that is reducible to the postulates—and hence, can be directly called into
the discourse, in either a problem or a theorem.

Theorems and problems both play a vital role in the development of the Elements—
theorems are used in the proofs of all but the simplest problems and problems are used
in the constructions of all but the simplest theorems. Indeed, we can read this interplay
of problems and theorems in the Elements as Euclid’s response to the debate reported
by Proclus to have taken place betweenMenaechmus and Speusippus about the relative
primacy of the two (Friedlein 1873, 78; Vitrac 2005, 40–42). Although there is a strong
tendency to use postulates and problems in proof-constructions, as shown above, this
is not absolutely necessary. Problem-constructions, however, depend essentially on
postulates and previously established problems. Hence, the establishment of problems
must be understood as a goal in its own right.

Since the Elements was meant to provide the fundamental tools necessary to do
geometry—that is, to write new theorems, and to complete new problems—the pri-
mary purpose of problems must be the production of further problems, and the general
development of problem-solving techniques. Hence, we should seek the motivation
for the problems of the Elements in their use in ancient geometrical analysis. Now, of
the seven works in geometry attributed to Euclid, four—Data, Divisions [of Figures],
Porisms, and Loci on Surfaces—are on topics entirely devoted to analysis. Further-
more, if Pappus’ characterization of Apollonius’Conics is any indication, conic theory
was regarded in antiquity as part of analysis (Jones 1986, 85)—or at least strongly
related to analysis. Thus, Euclid’s Conics must also have had as one of its goals the
development of propositions and techniques of use in analysis. Finally, the Elements
itself includes many problems and the close relationship between Elements I–VI and
the Data shows that the former can also be read as a work of fundamental importance
to analysis. In this way, we can see that the development of geometrical analysis, and
the organization of problem-solving techniques, was one of Euclid’s overall goals.

It is well known that ancient mathematical scholars divided problems up into (1)
those that can be solved by straight lines and circles, (2) those that can be solved by
conic sections, and (3) those that require more involved curves (Knorr 1986, 341–348;
Vitrac 2005, 23–29). Indeed, it is possible that this distinction goes back to the division
of topics in Euclid’s own works devoted to geometrical analysis and problem-solving.
Despite this, it is common to hear assertions that “Euclidean geometry” is restricted
to the geometry of straight lines and circles—indeed, to straightedge and compass
constructions. By this expression we mean, in fact, the geometry of the Elements
and the Data—and, in particular, the way that this was reformulated, and eventually
formalized, in the modern period. Given the original scope of Euclid’s work, however,
there is no reason to believe that he himself held that there was anything more than
a practical distinction between these different arenas of problem-solving. Hence, the
statement of the postulates, and their articulation in the problems of the Elements, can
be taken as a foundational project, the goal of which was to provide a set of tools for
demonstrating that certain objects can be produced as the result of an effective—that
is a well-ordered and finite—procedure.

Acknowledgements The diagrams in this paper were created with Alain Matthes’ tkz-euclide package.
This package gives us tools for starting with a set of arbitrary points and producing new points as the
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intersections of objects produced with lines and circles, as is often done in modern treatments of Euclid’s
constructions. Of course, the underlying engine of this package assumes a Cartesian plane, and the location
of each object is computed using modern formulas. Nevertheless, in this way, it is possible to emulate
Euclid’s actual constructions by drawing in only those lines and circles called for by each of his problems
and building up a set of routines that can act as subroutines in subsequent constructions. The ideas in
this paper were presented at the PhilMath InterSem, Paris, February 2016, at a Workshop in History of
Greek Mathematics, Stanford University, October 2017, and the French-Japanese Workshop in Philosophy
of Logic and Mathematics, Keio University, January 2018. I thank the organizers of these workshops for
the chance to present my ideas. I received a number of useful comments and questions following my talks.
I discussed my ideas about Elem. I.4 informally with Daryn Lehoux, and many times with Ken Saito and
Marco Panza. Earlier drafts of this paper were read by Victor Pambuccian, Len Berggren, Marco Panza,
Michael Fried, and Bernard Vitrac—all of whom made useful comments that helped me clarify my ideas.
Bernard Vitrac will no doubt still disagree with my methodology, but his comments have nevertheless been
helpful for me. I have greatly benefited from discussions with Marco Panza, who has helped me to sharpen
my thinking on a number of fundamental points.
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