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9  Ancient Greek Mathematics
Nathan Sidoli

This chapter is addressed to those who wish to read the primary 
sources of Greco- Roman mathematics, either in the original languages 
or in modern translations. Hence, it focuses on the kinds of math-
ematics that was disseminated in treatises written by scholars who 
were members of a relatively small literary elite. This theoretical 
style of mathematics was not the only kind of mathematics practised 
in Greco- Roman antiquity, and, indeed, the total number authors of 
philosophical mathematics must have been dwarfed by the number 
of individuals who used practical mathematics in their daily work, 
and who passed on such mathematical skills to their sons, disciples, 
and apprentices.1 Nevertheless, the literary works produced by this 
self- selected group of individuals have elicited the admiration and 
study of mathematical scholars throughout the centuries, and have 
justly been regarded as one of the most important products of ancient 
scholarship.

The modern reader who encounters these works in their original 
presentation may, however, have the uncanny feeling of experiencing 
something that is at once both reassuringly familiar and yet strangely 
alien. Much of the mathematics that we learn in school derives from 
Greco- Roman origins, but many of the actual interests and methods 
of ancient mathematicians are no longer part of our approach to math-
ematics. In order to read the ancient sources, however, we must try to 
recreate their interests and to follow through with their methods. This 
chapter is meant to be an introduction to this process.

It begins with a discussion of the evidence itself, with emphasis 
on how far removed this often is from the mathematical activity we 
are trying to understand. It then situates the production of literary 
mathematical texts in a broader context of mathematical activities, 
including oral presentation and material practices. Finally, special 
topics of mathematical practice are addressed:  the overall role of 
structure, the production of various types of argument, the function 
of constructions and constructivist thinking, and the execution of 
operations and algorithms.
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Sources for Theoretical Mathematics

Our evidence for ancient Greek mathematical activity comes, almost 
exclusively, from texts that were passed down through the medieval 
period in contexts that were often not devoted to mathematical activity 
and by individuals who generally did not themselves produce original 
mathematics. Although this is true for all of the ancient Greek theor-
etical sciences, the situation is perhaps more pronounced in the case of 
mathematics.

The manuscript sources are divided by modern scholars into direct 
and indirect traditions. The direct tradition consists of manuscripts 
of source texts, in Greek, while the indirect traditions are made up 
of commentaries and summaries in Greek along with translations 
and their commentaries, largely in Arabic and Latin (Lorch 2001). 
For understanding Greek mathematics, the most important indirect 
traditions are the Arabic translations that derive from the eighth-  and 
ninth- century translation activity in Baghdad, and the twelfth-  and 
thirteenth- century Latin translations, from either Greek or Arabic. 
From this description, it might seem that the direct tradition could be 
treated as the principal source, so that the indirect traditions could be 
neglected except in cases where the direct tradition was deficient.

The difficulty with this assumption, however, is that even in the 
direct tradition the mathematical texts were subjected to numerous 
revisions over the centuries, the details of which are now mostly lost 
to us. In the case of religious and literary texts, the actual words of the 
original author were considered sacrosanct and the ancient and medi-
eval editors conceived of their role as the preservation of these words 
themselves. In the case of the exact sciences, however, the texts were 
often edited by scholars who were themselves expert in the fields that 
the texts transmitted. These scholars often took the scope of their role 
to include a correction of the words of the text based on their own 
understanding of the ideas that the words conveyed. Hence, the Greek 
mathematical texts must be understood as canonical in the sense that 
the canon was somewhat flexible and subject to repeated reinterpret-
ation. Both the selection of texts that we are now able to read, and the 
specific words in which we read them, are the result of this repeated 
reworking and re- examination of the canon. For these reasons, in order 
to determine how Greek mathematics was actually practised, we are 
often in the position of having to reconstruct a lost context of mathem-
atical activity on the basis of both the direct and indirect traditions. In 
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order to get a sense for some of the vagaries of this transmission, we will 
consider a few illustrative cases in some detail.2

The work of Archimedes (ca. 280s– 212) will furnish our first 
example (Heiberg and Stanatis 1972). We know of this corpus through 
a number of early modern copies of a lost Byzantine manuscript, a 
thirteenth- century Latin translation by William of Moerbeke (ca. 1215– 
86) made on the basis of this and another lost Byzantine manuscript, 
and a third Byzantine manuscript that was made into the famous pal-
impsest in the twelfth century (Clagett 1976; Netz and Noel 2007; Netz 
et al. 2011). Neither the Arabic nor the pre- Moerbeke Latin tradition 
is crucial in our assessment of Archimedes’ writings. Although the 
Arabic tradition is important for some of the minor works,3 it appears 
that On the Sphere and Cylinder was the only one of Archimedes’ sub-
stantial treatises that was translated into Arabic. Hence, our know-
ledge of Archimedes is based on three, presumably independent, Greek 
manuscripts that were probably produced as part of the Byzantine revival 
of the ninth century and one or two other Greek manuscripts that were 
in Baghdad around this same time. In fact, compared with other major 
Greek mathematical sources, such as the works of Apollonius (late third 
century BCE) or Pappus (early fourth century CE), this is a fairly rich 
basis. One thing that we notice immediately, however, is that a number 
of treatises  –  including those on which Eutocius (early sixth century 
CE) wrote commentaries –  are written in Koine, whereas other treatises 
are partially written in Archimedes’ native Doric.4 Since Eutocius him-
self, and others in his milieu, edited the works they studied, we may 
presume that these changes in dialect were introduced by such editorial 
work. We cannot now know what other changes were introduced in 
this process. We cannot be certain that the texts were not already edited 
before the late ancient period and we also do not know what changes 
were introduced around the ninth century in Constantinople when the 
three Byzantine manuscripts for which we now have any direct evi-
dence were produced. Nevertheless, it is clear that late ancient and 
medieval editors felt that they were fully justified in making fairly 
extensive changes without comment.

The next example that we will look at is that of Apollonius 
(Heiberg 1891– 3; Toomer 1990; Decorps- Foulquier and Federspiel 2008– 
10; Rashed 2008– 10; Rashed and Bellosta 2010). We know the Greek 
version of Apollonius’ Conics through a single Byzantine manuscript, 
of which all other extant manuscripts are copies (Decorps- Foulquier 
1999). What we find in this manuscript, however, is not an original 
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work by Apollonius, but an edition of the first four books of the original 
eight made by Eutocius, over six centuries later, as part of his project 
to expound classical works of advanced Hellenistic geometry. A second 
important Greek source for Apollonius’ activity comes from another 
single Byzantine manuscript containing Pappus’ Collection  –  a loose 
grouping of writings on various mathematical topics. From this text we 
learn about aspects of Apollonius’ work for which we would not other-
wise have any evidence, such as his interest in systems of large numbers, 
or his adherence to Euclid’s organisation of geometry into those fields 
that can be handled with elementary constructions (straight lines and 
circles), with conic sections (parabolas, hyperbolas, and ellipses), and 
those that require more involved curves (spirals, quadratrixes, cissoids, 
and so forth).

For our understanding of Apollonius’ mathematics, however, the 
Arabic tradition is as important a source as the Greek. In the ninth 
century, a group of scholars around the Banu ̄ Mūsā acquired a copy of 
the Conics in a version which had not been modified by Eutocius, but 
from which the eighth book had already gone missing. Through the 
mathematical work of al- H ̣asan ibn Mu ̄sā (mid- ninth century CE), the 
chance discovery of a copy of the Eutocius version in Damascus, and 
the philological and mathematical expertise of Tha ̄bit ibn Qurra (ca. 
830s– 901) and others, an Arabic version of the seven remaining books 
was eventually completed (Toomer 1990, 621– 9; Rashed 2008– 10, 
1.1.501– 7). When we compare this version with the Greek, there are a 
number of differences, but it is not clear which one is closest to what-
ever Apollonius wrote (Rashed 2008– 10, 1.1.12– 25, 44– 5). Indeed, we 
no longer posses the Conics that Apollonius wrote. We have the des-
cendent of an edition made by Eutocius, in Greek, and another of that 
made by the scholars in the circle of the Banu ̄ Mu ̄sa ̄, in Arabic. The 
Arabic tradition has also preserved On Cutting off a Ratio, a text in 
what Pappus calls the ‘field of analysis’, otherwise only known from a 
discussion in Pappus’ Collection 7. Hence, in order to try to evaluate 
Apollonius’ mathematics, it is necessary to read a variety of texts, none 
of which he actually wrote, and some of which are not even translations 
or summaries of his work.

As these two examples serve to show, the significance of the 
manuscript tradition for interpreting the received text has to be 
evaluated independently in each case. Nevertheless, it is clear that 
the texts with which we have been working have been modified over 
the centuries. This is even more pronounced in the case of the texts 
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that were more often read, such as the Elements or the treatises of 
the so- called Little Astronomy.5 The Greek text of the Elements is 
preserved in two main versions: that in most of the manuscripts is 
called ‘the edition of Theon’ although there is some disagreement 
among the principal sources, while another, non- Theonine version, 
is extant in one manuscript. At the end of the ninth century, there 
were apparently a number of Arabic versions –  two translations by 
al- H ̣ajja ̄j (late eighth/ early ninth century) and a translation by Ish ̣aq 
ibn H ̣unayn (830– 910) that was revised by Tha ̄bit ibn Qurra  –  of 
which only Tha ̄bit’s correction remains, but not without substan-
tial incorporation of the older versions (Lo Bello 2003, xiii– xxix; 
De Young 2005, 176– 7). All of the various Arabic texts, however, 
are different, in places, from the Greek, and it is not clear that the 
Greek versions have not also undergone some changes since the 
Baghdad translations were made (Knorr 1996; Rommevaux, Djebbar, 
and Vitrac 2001). This means that the Arabic versions should also 
be used to assess the original source, but this is made difficult by 
the numerous variants in the Arabic tradition and the fact that only 
parts of the text have been published (Engroff 1980; De Young 1981; 
Brentjes 1994).

A similarly complicated assortment of variants can be found 
in the sources for the group of texts known as the Little Astronomy, 
in the late ancient period, or the Middle Books, during the medieval 
period. By the late ancient period, these texts were grouped together by 
teachers like Pappus and described as the texts to be mastered between 
Euclid’s Elements and Ptolemy’s Almagest. Hence, these treatises, like 
the Elements, were often studied, and thus often edited. For example, 
there are two substantially different Greek versions of Euclid’s Optics 
and Phenomena (Jones 1994; Knorr 1994), while there are at least three 
early Arabic versions of the Spherics by Theodosius (early second/ 
midfirst century BCE) (Kunitzsch and Lorch 2010) and at least two of 
On the Sizes and Distances of the Sun and the Moon by Aristarchus 
(early third century BCE) (Berggren and Sidoli 2007). Once again, there 
are differences between the Greek and Arabic traditions, such as extra 
propositions in the Arabic On the Sizes and Distances or in the Greek 
Spherics. Moreover, it is often difficult to decide, in any objective way, 
which variant should be ascribed to the older source.

Because the texts of Greek mathematics have been subjected to 
repeated editorial work, we must regard them as historically contingent 
objects –  in some ways created by the process of transmission itself. The 
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texts, as we find them, are the products of a literary culture, produced 
by literary practices and made for literary consumption. Nevertheless, 
the mathematics that they contain was originally produced in a context 
of activity, now mostly lost to us, of which the production and con-
sumption of literary texts formed only a part.

Mathematical Practices

Although almost none of the surviving documents tell us how Greek 
mathematicians actually taught and produced mathematics, we can 
make some conjectures about this based on what the sources do say, and 
the types of mathematics that are preserved. In the following, we will 
examine three primary nexuses of mathematical activity: oral practices, 
material practices, and literary practices. In our sources, we can perceive 
a gradual transition from a more oral tradition, based around public 
arguments made about diagrams and instruments, to a more literary 
tradition that involved reading and writing texts containing elaborate 
arguments, tables, and special symbols that would have been difficult 
for anyone to follow without engaging the written works as material 
objects.

Of the formative, primarily oral, period of Greek mathematics, we 
know very little. It is now generally accepted that the Greeks produced 
little or no deductive mathematics before the mid- fifth century BCE, 
when Hippocrates was active. It was also around this time that Greek 
mathematicians began writing down their results (Netz 2004, 243– 86). 
Nevertheless, it is clear that the practice of mathematics at this time 
was still highly oral. John Philoponus (mid- sixth century CE) tells us 
that Hippocrates learned mathematics during his time in Athens, by 
associating with philosophers, while he was waiting for the resolution 
of his lawsuit against certain pirates who had plundered his cargo (in 
Phys. A2185a16). From Plato’s writings, we have the images of Socrates 
teaching Meno’s slave boy mathematics by discussing diagrams in a 
public square, and Theaetetus (early fourth century BCE) and Socrates 
working through a question pertaining to commensurability, which 
was presumably meant to be reminiscent of the way Theaetetus had 
studied mathematics under Theodorus (late fifth century BCE; Meno 
82a– 85b, Tht. 147d– 148b). When we reflect on the fact that deductive 
mathematics arose during the period of the sophists, when Greek, and 
particularly Athenian, culture put a premium on the ability to persuade 
others of one’s position in public forums, it is clear that mathematical 
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practice also originally involved the oral presentation of arguments in 
public spaces.

Moreover, throughout the ancient period, the most common insti-
tutional location for mathematical activities was in schools that were 
predominantly devoted to teaching philosophy and rhetoric. Since there 
were no schools of higher mathematics, we must assume that the bulk 
of the higher education of mathematicians, like other intellectuals, took 
place in schools of philosophy, where they studied the skills of winning 
others to their position through oral disputation and rational argument. 
We still find considerable evidence for such oral practices in the elem-
entary texts, such as Euclid’s Elements or Theodosius’ Spherics. The 
format of the propositions and the repetitive language lends itself to 
oral presentation and memorisation,6 and the fact that earlier propos-
itions are often referenced by repeating the enunciation indicates that 
the listener was expected to learn the propositions by memorising the 
enunciations.7

As well as drawing diagrams and making arguments about them, 
Greek mathematicians engaged in a range of material practices involving 
specialised instruments, of which we now have only indirect evidence. 
It has long been recognised that the constructive methods of Euclid’s 
Elements are a sort of abstraction of procedures that can actually be 
carried out with a straightedge and collapsing compass. More recently, 
it has been recognised that the constructions of Theodosius’ Spherics 
are also meant to be applicable to actual globes (Sidoli and Saito 2009). 
The construction of mechanical globes was brought to a high level 
by the most mechanically orientated of the ancient mathematicians, 
Archimedes. We are told that the consul Marcus Claudius Marcellus 
brought back to Rome two devices built by Archimedes for modelling 
the heavens (Cic. Rep. 1.14), and, according to Pappus, Archimedes 
wrote a book on Sphere- Making (Collection 8.3). Hence, as with oral 
practices, we find that the material practices have left their mark in the 
preserved texts.

In a number of places, mathematical authors explicitly describe 
the sorts of instruments that they used in the course of their research. 
Eutocius attributes to Plato, somewhat dubiously, a sort of mechan-
ical sliding square, which could be used to find two mean proportionals 
between two given lines (Heiberg 1891– 3, 3.56– 8; Knorr 1989, 78– 80). 
Diocles (early second century BCE), in On Burning Mirrors, describes 
how we can use a flexible ruler, made of horn, to draw an accurate 
parabola (Prop. 4). Nicomedes (mid- third century BCE) is said to have 
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built a mechanical device for inserting a line of a given length between 
two given objects, known as a neusis construction (Heiberg 1891– 3, 
3.98– 106). These and many other passages make it clear that Greek 
mathematicians were engaged in a range of material practices that 
involved the accurate reproduction of the objects that they studied.

Interest in the mathematisable properties of instruments is also 
evidenced from texts like Pappus’ Collection 8, which shows how to 
carry out geometric constructions with a straightedge and a compass 
set at a fixed opening (Jackson 1980). Moreover, a number of fields of 
applied, or mixed, mathematics were based around the set of operations 
that could be carried out with specific instruments. Ancient gnomonics, 
the study of sundials, was based on constructions that could be carried 
out with a set- square and a normal compass (Vitr. De arch. 9.7; Ptol. 
Analemma 11– 14). The methods developed for projecting the objects in 
the surface of a sphere on to a plane were closely related to the practices 
involved in drawing star maps in the plane (Ptol. Planisphere 14– 20). 
Finally, the analemma methods of spherical astronomy involved the 
use of analogue calculations that were carried out by performing phys-
ical manipulations on a prepared plate, and in some cases a hemisphere 
(Ptol. Planisphere 9– 13; Sidoli 2005).

Whereas these activities were mostly employed in research and 
teaching, there were also material practices that involved the pro-
duction and use of literary texts. One important area of this activity 
involved the production of literary diagrams. Whereas we have descrip-
tive evidence that Greek mathematicians were concerned with the 
visual accuracy of their drawings, the figures that we find preserved 
in our manuscript sources are so far from such accuracy that it seems 
there must have been special principles operative in the production of 
these literary diagrams. In the manuscript sources, we find, for example, 
a square representing any rectangle, a regular pentagon representing 
any polygon, circular arcs representing conic sections, straight lines 
representing curved lines, curved lines representing straight lines, and 
so forth.

The two most consistent features of these diagrams are the use of 
an unnecessarily regular object to represent a general class of objects, 
and a basic disregard for visual accuracy in favour of the representation 
of key mathematical relationships (Saito and Sidoli 2012). It seems that 
ancient authors developed a type of diagram that would be easy to copy 
and which could be used as a schematic, in conjunction with the text, to 
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produce a more accurate diagram when the need arose. The literary dia-
gram was an object of communication that served to mediate between 
the readers and the mathematical objects under investigation. As Greek 
mathematics became literary, the diagram secured a central place in 
the production of mathematical texts so that we find diagrams even in 
places like Elements 7– 9, on number theory, where they often do not 
convey essential information and appear to be merely a literary trope.8

All of our preserved texts, however, come from the fully lit-
erary period, and hence we see little change in the use of diagrams in 
our sources. This can be contrasted with the use of tables. Whereas 
it would be possible to follow the mathematical details in Euclid’s 
Elements in an oral presentation, in order to verify even a simple cal-
culation in Ptolemy’s Almagest one needs to have access to a copy of 
the chord table. While the proto- trigonometry of Aristarchus’ On the 
Sizes and Distances of the Sun and Moon can be followed in detail 
with just a working knowledge of geometry and some arithmetical 
calculation, the chord- table trigonometry developed by Hipparchus 
(mid- second century BCE) and others in the late Hellenistic period 
was a literary practice involving the consultation and manipulation 
of written sources.

The literary practices of Greek mathematicians naturally exten-
ded to the production of the texts themselves. Greek mathematicians 
were members of a small group of individuals in Greco- Roman society 
who produced works of high literature and they took pains to secure 
this social role. It has been argued that there are parallels between both 
the language and the structure of Greek mathematical works and other 
types of literary production (Netz 1999b, ch. 4; 2009). It is also clear 
that Greek mathematicians, like other ancient intellectuals, engaged 
in various editorial and pedagogical projects to revise their works and 
to make them more accessible to students and less specialised readers 
(Cameron 1990; Mansfeld 1998).

This was true not only for the structure and overall presentation 
of their works, but also for the language itself. Although individual 
authors had their own personal style, Greek mathematicians developed 
a distinctive mathematical style that can be recognised in all their the-
oretical texts (Mugler 1959; Aujac 1984; Federspiel 1995; Acerbi 2011b). 
This style becomes especially conspicuous when we see it mishandled 
by a non- mathematician, such as in an argument by Theon of Smyrna 
(early second century CE) that if the parameters of Hipparchus’ solar 
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model are given, the position of the sun is determined (Hiller 1878, 
157– 8).

It is not clear to what extent the homogeneity of mathematical 
style was due to the attention of the original authors or to the care of 
their later editors; nevertheless, already by the middle of the Hellenistic 
period the production of mathematics had become a fully literary 
activity, closely involved with the careful study of written works. This 
must have formed yet another barrier to entry into the small group of 
individuals who produced original mathematics. While a fair number 
of people may have studied the mathematical sciences by attending 
lectures and sessions at various schools, only a small number of these 
could have advanced to the study of written mathematical texts, either 
by being wealthy enough to buy their own books or by being bright 
enough to be considered worthy of studying their teacher’s books.

Structures

A striking feature of Greek mathematical texts is their organisation. 
Like other literary texts, Greek mathematical works were divided 
into books. The books often varied in length, which depended on 
the mathematical content they developed. In the case of the more 
elementary texts, such as the Elements and the treatises of the Little 
Astronomy, which would have often been used in teaching, these 
books began immediately with mathematical content. More advanced 
works, however, often began with an introduction, for example in the 
form of an epistle to a colleague or student, in the Hellenistic period, 
or, in the imperial period, more commonly a short address to a stu-
dent or patron. These epistles provide introductory material meant 
to be useful for understanding the goal of the theory developed in 
the text and the tools used to develop it (Mansfeld 1998). The math-
ematics itself is then divided up into clear sections: an introduction, 
which often includes definitions or axioms, followed by various units 
of text. In the medieval manuscripts of most ancient mathematical 
texts these units are numbered as propositions; however, even in 
unnumbered texts, such as Ptolemy’s Planisphere, the sections are 
clearly distinguished. Propositions, as a type of textual unit, are then 
grouped together into theories, which are only differentiated on the 
basis of mathematical content. For example, Elements 1 begins with 
a theory of triangles and their congruency, followed by a theory of 
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parallelism and a theory of area, which are then used to prove the 
so- called Pythagorean theorem, Elements 1.47. The interweaving 
of, sometimes, obscure individual units to form an overall theory 
produced an element of narrative that Greek mathematicians had 
great skill in exploiting (Netz 2009, 66– 114).

The most common types of unit are the two types of propositions 
that the ancients called theorems and problems  –  in which, starting 
with some set of initial objects, a theorem shows that some property 
is true of these objects, while a problem shows how something can be 
done, and then demonstrates that what has been done is satisfactory.9 
These are what we find making up the majority of theoretical treatises. 
There are, however, other types of units, such as analysed propositions 
(analysis/ synthesis pairs), metrical analyses, computations, tables, 
algorithms, and descriptions. Not all of these types of texts are found 
in all works and some of them, such as tables, are rarely found out-
side the exact sciences. For example, a description is a discussion of 
a mathematical figure or model that explains the properties of the 
objects but contains little or no argument. While these are common in 
the exact sciences, they are rare in pure mathematics; an exception is 
Archimedes’ Sphere and Cylinder 1.23.10

It was recognised already by Proclus (fifth century CE) that a 
Euclidean proposition is carefully structured (Friedlein 1873, 203; Netz 
1999a; Acerbi 2011b, 1– 117). He names the following parts: enunciation 
(protasis), exposition (ekthesis), specification (diorismos), construction 
(kataskeuē), demonstration (apodeixis), and conclusion (sumperasma).11 
This exact division, however, is limited to the theorems and problems 
of Elements 1. In more involved problems, such as Elements 3.1 –  find 
the centre of a circle –  or Spherics 2.15 – draw a great circle through 
a point tangent to a lesser circle  –  there are two further parts:  first, 
there is a specification of the problem followed by a construction that 
solves the problem, then there is a specification of the demonstration 
followed by a second construction for the sake of the demonstration. 
Moreover, other elements can also be recognised. It has been noted that 
in many cases the beginning of the demonstration makes explicit ref-
erence to statements that are made possible by the exposition or the 
construction, in a section that modern scholars have called the anaphor 
(Federspiel 1995, 1999). Like the other parts of a proposition, the usage 
of the anaphora is not rigid and in some case, as Elements 3.1, it blends 
seamlessly into the demonstration.
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The flexibility of these divisions must be emphasised. Outside 
texts that became pedagogical, such as the Elements or Theodosius’ 
Spherics, these parts did not seem to exercise much constraint and we 
find Archimedes, Apollonius, and Ptolemy mixing them up or omitting 
them all together. Nevertheless, the realisation that Greek mathem-
atical units are structured has led to useful insights and a number of 
scholars have put forward structures for various units. It has long been 
accepted that there are four parts in a standard problematic analysed 
proposition: transformation, resolution, construction, and demonstra-
tion (Hankle 1874, 137– 50; Berggren and Van Brummelen 2000). More 
recently, the diorism has been added to these four, and it has been 
noted that in the case of theoretic analysed propositions the division 
is somewhat different:  construction, deduction, verification, inverse 
deduction (Saito and Sidoli 2010; Sidoli and Saito 2012). In the case of 
Diophantus’ problems, we can again recognise various parts although 
they are not always clearly distinguished: enunciation, instantiation, 
treatment, solution, and test.12 All of these structures, however, seem 
to have functioned more as guidelines than as dictates for acceptable 
practice, and although their existence may owe much to later editorial 
efforts, they are still useful to us in reading and understanding Greek 
mathematical texts.

As well as the structures found in the arguments themselves, as 
discussed in the previous section, we also find structure at the level 
of individual verbal expressions. Greek mathematicians, of course, 
developed a system of technical idioms to handle their discipline.13 As 
well as a nomenclature, which became fairly standardised over time, 
they developed formulaic expressions that allowed them to condense 
their texts and help their readers keep mindful of the mathematical 
objects themselves. Since Greek mathematics was still essentially 
rhetorical, the use of operations and constructions was facilitated by a 
highly abbreviated diction that relied on various features of the Greek 
language in order to function. The fact that ancient Greek is a gen-
dered, inflected language with a definite article allowed Greek authors 
of all genres to condense their terminology through various types of 
ellipsis that would not be possible in languages like English, Latin, or 
Arabic. In mathematics, particularly, these expressions needed to be 
highly regular in order to still be intelligible. This process led to the use 
of formulaic expressions involving particularities of the language such 
as the use of prepositions and number- and- gender agreement between 
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definite articles and nouns (Netz 1999b, 127– 67). In this way, he ̄ hupo 
tōn ABΓ (the [feminine] between the ABΓs) means angle ABΓ, whereas 
to hupo to ̄n ABΓ (the [neuter] between the ABΓs) means rectangle AB × 
BΓ. These processes allowed Greek mathematicians to make involved 
statements without unnecessary verbiage so as to focus attention on 
the objects and their relations. These expressions, however, cannot be 
literally translated into English. For example, Archimedes uses a sen-
tence that would be literally translated as ‘the of the on the AΘ to the 
on the ΘB having gained the of the AB to the ΘB is the on the AΘ to 
the between the ΓΘB’ to convey (AΘ2 : ΘB2) × (AΘ : ΘB) = AΘ2 :  (ΓΘ × 
ΘB) (Heiberg and Stanatis 1972, 3.220). It should be clear, however, that 
these expressions could be used to express patterns of abstract thought, 
even in the absence of symbolism.

Arguments

The core element of theoretical mathematics was the argument. As is 
well known, Greek mathematical texts often begin with definitions that 
state properties of various objects. In some cases, these properties can then 
be used to make further claims. If the objects involved in the assertion 
of a proposition are insufficient to actually carry through the proof, new 
objects are introduced through constructions –  which are discussed below.

The argument itself begins with references back to the objects 
that are introduced and then named in the beginning, or brought in 
by the construction (Acerbi 2011b, 73– 5). It then proceeds by making 
claims about instantiated objects, usually in the form of letter- names. 
It has often been claimed that a Greek proof is actually about a spe-
cific, instantiated object, but this neglects the manner in which these 
letter- names are introduced. When an object is introduced into the 
domain of discourse this is done with an expression such as ‘let there 
be an object, AB’  –  so the object is any one of the type of objects 
under consideration and its letter- name is simply a way of referring 
to it (Federspiel 1995, 1999; Acerbi 2011b, 39– 57). Hence, the letter- 
name is a sign, referring not to a specific object but to any member 
of the class of objects that the proposition concerns. This generality 
is maintained throughout the argument and becomes clear whenever 
the text refers back to what has gone before –  for example, references 
to the construction, or a previous proposition are almost always gen-
eral claims (Acerbi 2011b, 26– 32).
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The necessity of the argument is produced by a deductive chain of 
assertions that some relation, or property, holds for some object (Netz 
1999b, ch. 5). Each step of this chain can be justified on the basis of 
either a definition or some previously established result. Often these 
previously established results are found earlier in the same work, 
but they may also be part of a broader set of theorems assumed to be 
known to the reader, known as the toolbox by modern scholars, and 
made up largely of propositions of the Elements (Saito 1997, 1998; Netz 
1999b, 216– 35). The standard form of synthetic argument is a chain of 
assertions that two objects have some relation, or that an object has a 
certain property, but analyses also contain deductive chains asserting 
that certain objects are given, and in various ways.

The simplest argument type is direct. After the assumed objects 
have been stated and any necessary constructions performed, some 
claims can then be asserted about these objects. In simple cases, 
these claims can lead directly, through a chain of implications and 
operations, to the conclusion. More often, however, other starting 
points must be introduced: either through a new appeal to the con-
struction, introducing a new construction, appealing to a previous 
theorem in the same work, or in the toolbox. References to previous 
theorems, and to the theorems of the toolbox, are often invoked by a 
brief summary of the enunciation, or simply by a generalized claim of 
the mathematical fact.

A common form of argument is the indirect argument, in which a 
claim contrary to what the mathematician wishes to prove is assumed, 
followed by constructions and arguments leading to a contraction 
with the hypotheses, with established results, or with some feature 
of the mathematical objects in question that is taken to be inherently 
obvious. Although indirect arguments are very common in our sources, 
not all Greek mathematicians found them satisfactory: Menelaus (turn 
of second century CE) tells us in the introduction to his Spherics that he 
will avoid them (Krause 1936, 118; Sidoli and Kusuba 2014, 167; Rashed 
and Papadopoulos 2017: 697).

Another common argument type is the proof- by- cases. In some of 
the proofs- by- cases found in the geometrical books of the Elements, it 
is not clear whether the cases were part of the original composition or 
if they were added by later editors. In the number theory, however, it is 
certain that proof- by- cases was an integral part of the original approach. 
Arguments by cases were also combined with indirect argument, as in 
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the double- indirect argument, often used by Archimedes, and some-
times called the method of exhaustion. Using this argument structure, 
one shows that two objects are equal by showing that one is neither 
greater nor less than the other. Archimedes uses this form of argument 
in Measurement of the Circle 3 to show that a circle is equal to a right 
triangle that has one leg equal to the circle’s radius and the other leg 
equal to the circle’s circumference.

Occasionally, we find an argument in two parts, or which extends 
beyond a single unit of text. The most common case of this is found in 
simple converses. In order to prove that A holds if and only if B, Greek 
mathematicians would often first show that A implies B and then that 
B implies A, in two separate propositions, for example in Elements 1.5 
and 6, or 1.17 and 18. Another example of this sort of extended argu-
ment was a two- stage method of showing that four magnitudes are pro-
portional, a : b :: c : d, which involved first showing that the proportion 
holds when a and b are assumed to be commensurable, and then, in a 
second argument using this and a double- indirect argument, showing 
that the proportion also holds when a and b are incommensurable. This 
structure was used in Archimedes’ Equilibrium of Planes 1.6 and 7, 
Theodosius’ Spherics 3.9 and 10, and Pappus’ Collection 5.12 and 6.7– 9 
(Knorr 1978; Mendell 2007).

An interesting type of argument that extends beyond a single unit 
is the analysis/ synthesis pair, which consists of an assumed construc-
tion, a deductive argument concerning givens, a treatment of the limits 
to the possibility of solution and of the total number of solutions, a 
construction, and a deductive argument concerning the relations and 
properties of geometric objects. From a purely deductive perspective, 
the analysis is unnecessary, so that the reasons for providing it must 
have been expository. A  problematic analysis, can provide a motiv-
ation for the initial construction steps of the synthesis and point the 
way towards an articulation of the limits to possibility of solution, 
while a theoretic analysis can provide insight into how the main rela-
tion of the theorem was obtained (Saito and Sidoli 2010; Sidoli and 
Saito 2012).

The argument was the locus of deduction and hence can be 
regarded as the core of theoretical mathematical activity. Although 
mathematicians clearly put considerable care into making arguments, 
they left few discussions about what constitutes a valid argument. 
Hence, in order to understand their philosophy of mathematics, we 
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must read the mathematical texts themselves, paying attention to the 
overall structures which the individual arguments compose.

Constructions

One of the most distinctive methodological features of Greek mathem-
atics is the use of constructions. Construction, or construction- based 
thinking, is found not only in geometry but also in number theory, 
pre-modern algebra, the exact sciences, and in general investigations of 
what, and how, mathematical objects are given.

Constructive techniques are conspicuous in elementary geom-
etry. Recently, much attention has been paid to the role of diagrams 
in Greek mathematical thought (Manders 2008; Netz 1999b, 12– 67; 
Le Meur 2012); however, it is only through the mediating process of 
construction that the diagram has any deductive force (Avigad, Dean, 
and Mumma 2009; Sidoli and Saito 2009). Constructions are used in 
very nearly every proposition in order to introduce new objects whose 
defined properties are then used as starting points in chains of deductive 
inference.

Constructions played a different role in problems than in 
theorems and in the demonstration section of a problem. In the 
Elements, construction postulates are introduced to justify the con-
struction procedures that are used in problems, but not necessarily 
those used in theorems. More elaborate construction procedures are set 
out and then justified in problems. The construction of a problem uses 
postulates, or previously established problems, to show that there is an 
effective algorithm for producing the sought object. The construction of 
a theorem, or of the demonstration of a problem, however, can call on 
a wider range of constructive assumptions (Elements 1.4, 6, 8), or even 
involve impossible, or counterfactual, constructions (Elements 1.6, 7 
and 3.1). In other geometrical texts, a variety of constructive processes 
are used that are never explicitly postulated, such as setting a line of 
a given length between two given objects (a neusis construction), or 
passing a plane through a solid object –  for examples, see Archimedes 
Spiral Lines 5– 9, or Apollonius Conics 1.4–14.

In geometric texts, different verbs were used to denote various 
types of constructions, depending on what the geometer intended to do. 
Lines could be produced (ago ̄) between two given points, circles drawn 
(graphō) with a given centre and passing through a given point, solid 
objects cut (temnō) by a passing plane, diameters in spheres set  out 
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(ektithēmi) on plane survaces, parallelograms erected (sunistēmi) 
on given lines, and so forth. In the enunciation of problems, these 
operations were stated in the infinitive, whereas in the construction 
of either type of proposition they were generally stated in the perfect 
imperative passive. Despite the fact that the construction is explicitly 
stated as complete, it is clear that it represents the most active part of 
mathematical practice. Moreover, the construction is often the most cre-
ative part of a mathematical argument, since it introduces new objects 
into the domain of discourse, which are entirely at the mathematician’s 
discretion.

Although construction is generally associated with geometry, 
constructivist thinking permeated other branches of Greek mathem-
atics as well. All of the problems in Euclid’s number theory, Elements 
7– 9, show us how to find (euriskō) numbers, which are hence assumed 
to exist from the beginning (Mueller 1981, 60). The problems in Euclid’s 
number theory, however, are the active components and provide the 
algorithms that are used in the rest of the theory. In geometric texts, 
as well, objects that are assumed to exist are sometimes found by con-
struction –  such as the centre of a circle, in Euclid’s Elements 3.1, or of 
a sphere, in Theodosius’ Spherics 1.2 –  so that these problems are con-
ceptually related to the algorithms in the number theory. Furthermore, 
in works of pre-modern algebra, such as the Arithmetics of Diophantus 
(ca. third century CE), a number of different constructive operations 
are invoked such as find (euriskō), separate (diaireō), add (prostithēmi), 
and make (poieō). Although these expressions assume the existence of 
the numbers involved, because rational numbers are expected, limits 
to the possibility of solution must sometimes be invoked. One of 
Diophantus’ problems, such as Arithmetics 2.8 –  ‘Separate a proposed 
square into two squares’ –  can later function as an algorithm used in 
further problems, in much the same way as a problem in the geometric 
texts (Tannery 1893, 90). One difference is that for Diophantus the con-
structive procedures are themselves joined together, making a series of 
conditions for the solution to the problem, such as Arithmetics 1.7 –  
‘Take away two given numbers from the same number and make the 
remainders have a given ratio to one another’  –  whereas in the geo-
metric texts only one construction is stipulated and all the conditions 
are expressed as modifications of the objects, such as Theodosius’ 
Spherics 2.15 –  ‘Given a lesser circle in a sphere and some point on the 
surface of the sphere that is between it and the circle equal and parallel 
to it, draw through the point a great circle tangent to the given circle’   
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(Tannery 1893, 24; Czinczenheim 2000, 102). This difference occurs both 
at the grammatical level and also in terms of the procedures of solution. 
In geometric problems, there is only one verb, in the infinitive, and a 
single geometric object is constructed satisfying all of the conditions, 
which are stated as modifications of the nouns. In Diophantus, the 
conditions are stated as a series of verbs and they are satisfied individu-
ally as the problem proceeds.14

The notion of construction was so fundamental for Greek 
mathematicians that they developed a sort of conceptual framework 
to handle constructive processes as a theory of givens, formalised in 
Euclid’s Data (Taisbak 2003). Given objects exist in a definite and often 
unique way and their properties are known and manageable (Acerbi 
2011a). Given objects, or properties, are those that are found at the start 
of the discourse, that are constructed at the discretion of the mathem-
atician, or that can be inferred to be given based on these. The Data 
shows us how to make inferences about given objects or properties. 
The late- Platonic commentator Marinus of Neapolis (late fifth century 
BCE) reports a number of definitions of the concept of given, which 
he attributes to various mathematicians (Menge 1896, 234– 6). After 
discussing various ways that we can understand the notion of given, 
Marinus settles on the concepts of known (gnorimon) and provided 
(porimon), claiming that what is provided is that which we are able 
to make or to construct, for example drawing a circle or finding three 
expressible lines that are only commensurable in square (Menge 1896, 
250, 240). This agrees with Euclid’s definition of given in the Data. 
Def. 1 reads, ‘Given is said of regions, lines and angles of which we are 
able to provide an equal’ (Menge 1896, 2). The notion of provision was 
an attempt to formalise the productive processes through which the 
mathematician gained mastery of the subject. Its formalisation was 
meant to facilitate the types of inferences that mathematicians made 
in geometrical analysis –  starting with the analytical assumption that 
a certain configuration exists containing the sought object, one then 
started with objects in this configuration that were either already 
or assumed to be known, or could be readily constructed, and then 
proceeded, through a chain of inferences, to show that the sought 
object was also given.

In later readings of the Data, the notion of given, and hence of 
provision, was expanded to include computations and other sorts 
of deductive inferences. Later authors, such as Heron and Ptolemy, 
constructed chains of givens, where each step can be referred to a 

 

 

 

 

 

 



Ancient Greek Mathematics 203

203

purely geometric theorem of the Data, but which are in fact used to jus-
tify computational procedures, involving arithmetical operations and 
tabular functions.15 We can call these chain of inferences metrical ana-
lyses, since they show how to construct a sought number.16

In these ways, construction fulfilled a number of important 
roles for Greek mathematicians. On a practical level, construction 
formalised and abstracted various active procedures that were necessary 
in actually doing mathematics. On a more theoretical level, it allowed 
mathematicians to introduce new objects whose properties could then 
be used to prove theorems or solve problems. On a fundamental level, it 
provided instantiations of objects with known properties to be used in 
mathematical discourse.

Operations and Procedures

Although, in a general sense, we can regard constructions as operations, 
in this section we focus on those operations that can be performed on a 
statement, expression, or number. While there is relatively little oper-
ational mathematics in elementary geometrical treatises, such as the 
early books of the Elements or Theodosius’ Spherics, as soon as we 
begin to read higher geometry, number theory, pre-modern algebra, or 
the exact sciences, we encounter long passages of deductive reasoning 
in the form of chains of mathematical operations.

From both a theoretical and practical perspective, Greek 
mathematicians privileged operations on ratios and proportions over 
arithmetic operations. A  theoretical justification for many of the 
common ratio manipulations that were in use was provided by Elements 
5, which is thought to have been formulated by Eudoxus. Almost all of 
the theorems of the second half of this book deal with manipulations 
that can be carried out on proportions. For example, the operation of sep-
aration (deilōn), justified in Elements 5.17, entails inferring from a pro-
portion of the form a : b :: c : d one of the form a − b : b :: c − d : d, where 
a > b. The operation of combination (sunthentos), justified in Elements 
5.18, is the converse. Although in the Elements these operations are 
only justified for proportions, Greek mathematicians also applied them 
to ratio equalities and, occasionally, equations or inequalities.17

This gives the impression that Greek mathematicians sharply 
distinguished between proportions and equations, and there is some 
truth to this. Equations were taken to be statements about different 
things that were equal in quantity, whereas proportions were claims 
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that two ratios were the same. Nevertheless, despite this distinction, 
Greek mathematicians were aware that equations and proportions 
could be interchanged, and occasionally subjected equations to ratio 
manipulations, or proportions to arithmetic operations.18 Of course, all 
of the ratio manipulations can be rewritten as arithmetic operations, 
but Greek mathematicians apparently had no interest in doing so. In 
fact, even in places where one might expect to find only arithmetic 
operations, such as in the calculation of the size of a length or an 
angle by Aristarchus or Archimedes, we still encounter the use of ratio 
manipulations.

Greek mathematicians, of course, also performed arithmetic 
operations; however, they did not spend much effort attempting to for-
malise or justify these operations. More difficult operations, such as 
taking roots, are not explicitly discussed in much detail in our sources 
before the late ancient period.19 Arithmetic operations were performed 
on individual terms, whole proportions and ratio inequalities, and 
equations.

The three ancient and medieval algebraic operations were prob-
ably regarded as special cases of such arithmetic operations, applic-
able under certain specified conditions. In the introduction to his 
Arithmetics, Diophantus describes the two primary pre-modern alge-
braic operations that can be performed on an equation to solve for an 
unknown number. He says that if ‘a kind (eide ̄)20 becomes equal to the 
same kind but not of the same quantity, it is necessary to take away 
the similar from the similar on each of the sides, in order that that 
kind should be equal to kind’ (Tannery 1893, 14). In other words, given 
an equation in which numbers, some number of unknowns, or higher 
terms are found on both sides of the equation, to subtract the common 
term from both sides, so as to bring it to the other side –  as we would 
say. The second operation is ‘to add a kind lacking from either of the 
sides, in order that an extant kind will come to be for each of the sides’ 
(Tannery 1893, 14). That is –  as we would say –  to make all our terms 
positive. These operations may be repeated as necessary until only one 
of a number, some number of unknowns, or higher terms are found on 
each side of the equation. The third operation is not stated until it is 
needed at the beginning of the Arabic Book 4, which follows the Greek 
Book 3. The text says that, if after the other two operations have been 
performed we have a statement equating unknowns of higher degree, 
then, ‘we divide the whole by a unit of the lesser in degree of the two 
sides, until there results for us one kind equal to a number’ (Sesiano 
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1982, 88). In other words, we reduce the equation to the lowest degree 
possible. There is no attempt in the text to formally relate these 
operations to operations of arithmetic or to develop further operations 
to be carried out on equations on analogy with the other arithmetic 
operations. Hence, they appear to have been treated separately as an 
operation for eliminating lacking (negative) terms, an operation for 
grouping like terms on one side of the equation, and an operation for 
reducing certain equations of higher degree.

Series of operations were also arranged in algorithms. In Elements 
7 there are a number of problems that involve algorithms, for example 
Elements 7.2 – find the greatest common measure of two numbers –  or 
7.34 – find the least common multiple of two numbers. The only actual 
operations involved in these problems, however, are arithmetical and 
they are not postulated, but simply assumed as obvious. As with all 
problems, following a presentation of the algorithm, there is a proof 
that the algorithm accomplishes its goal.

In other authors, such as Diophantus and Ptolemy, we have 
less formal approaches to algorithms and computational procedures 
that involve a series of arithmetic operations and are generally unjus-
tified (Acerbi 2012, 183– 9). These algorithms proceed by a chain of 
instructions, in the second person imperative, and may involve the use 
of parameters of calculation and entries into tables, as well as arith-
metic operations. Parameters of calculation are often distinguished 
from the data for any particular procedure with the word ‘always’ (aei). 
The results of table- entries and calculations can be set aside and then 
brought back in at some later stage of the procedure.

There are also algorithms in which each successive operation is 
carried out directly on the result of the proceeding operation, which 
are often presented in a context of justification (Acerbi 2012, 190– 9). 
For example, Heron, in Measurements 1.8, gives a general algorithm 
for finding the area of a triangle given its sides, which is followed not 
by a proof, but by a computed example (Taisbak 2014). This justifica-
tory section ends with a short metrical analysis before the example, 
which for Heron functions as the synthetic construction of a particular 
number given some assumed values, and which he calls the ‘synthesis’. 
This was Heron’s general approach to metrical analysis: first an ‘ana-
lysis’, justified by steps of the Elements and the Data that if certain 
values are assumed as given, the sought value can be shown to also be 
given, followed by a ‘synthesis’, in which the sought value is computed 
from some values assumed as given.
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An interesting type of metrical analysis is found in trigonometric 
texts, such as Ptolemy’s Analemma or Almagest. Here we find gen-
eral statements of an algorithmic procedure using the givens termin-
ology, where each step can be justified by a theorem of the Data, but 
actually refers to arithmetical operations, ratio manipulations, entries 
into a chord table, and so forth. Ptolemy apparently thought of these 
arguments as justifying a computational procedure, by referring each of 
its steps to a theorem of the Data. On the other hand, he does not seem 
to have regarded arguments by givens and computations as an analysis/ 
synthesis pair, since he always only gives one or the other, and he some-
times later refers to a calculation as a proof.

Conclusion

It is now generally recognised by historians of ancient and medieval 
mathematics that ancient Greek mathematics is not our mathem-
atics (Høyrup 1996). Nevertheless, Greek mathematics was one of the 
great productions of ancient scholarship –  particularly in its desire to 
produce arguments that established both generality and necessity, in its 
endeavour to formalise mathematical knowledge through structure and 
regularity, in its goal of producing problem- solving techniques through 
constructive processes under the mathematician’s control. It is for 
these reasons that Greek mathematical texts were read and reread over 
many centuries by creative mathematicians such as Ibn al- Haytham 
(ca. 965– ca. 1040), Abu ̄ Naṣr Manṣu ̄r ibn ʿ Irāq (ca. 960– 1036), Jordanus of 
Nemore (thirteenth century), Francesco Maurolyco (1494– 1575), Pierre 
Fermat (1601– 65), and Isaac Newton (1642– 1726).

I hope that this chapter will have highlighted some of the 
characteristics of Greek mathematics that make it distinctive, so that 
we can study this material as a style of mathematics different from our 
own, but nonetheless, as belonging to mathematics. In this way, we can 
more effectively compare Greek mathematics with other ancient ways 
of doing mathematics, and with the medieval approaches to mathem-
atics that built on, and broke away from, ancient Greek works.

Notes

 This chapter was written in 2015.

 1 Asper 2009 provides a discussion of the differences between the theoretical and 
practical traditions of mathematics.

 2 For the Greek manuscript tradition, see Acerbi 2010, 269– 375; Vitrac n.d.; for the 
Arabic tradition, see Sezgin 1974– 9.
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 3 For example, Knorr 1989, 375– 816, has argued for the importance of the medieval 
tradition of Measurement of the Circle.

 4 The question of Archimedes’ dialect is made difficult by the fact that much of the 
Doric in the received text was produced by the editor, J. L. Heiberg, in response 
to the fact that the manuscripts contain a strange mixture of Koine and Doric; 
Heiberg and Stamatis 1972, II: x– xviii; Netz 2012).

 5 Vitrac 2012 gives a discussion of the editorial production of the Elements.
 6 Netz 1999b, 127– 67, discusses the formulaic nature of Greek mathematical prose. 

Although he focuses on the cognitive roles of formulae, it is also clear that they 
would have facilitated memorisation and oral presentation.

 7 This is also supported by the format of three of the papyri containing 
material  from the Elements: P. Oxy. I 29 (Elements 2.4 and 5), P. Oxy. 5299 
(Elements 1.4, 8–11, 14–25), and P. Berol. 17469 (Elements 1.8– 10); see Sidoli 
2015, 392–3.

 8 It should be noted, however, that there are some cases where the diagrams help us 
understand both the proposition and the argument (Bajri, Hannah and Montelle 
2015, 559– 68).

 9 Definitions of theorem and problem are given by Pappus and Proclus (Hultsch 
1876, 30– 2; Friedlein 1873, 200– 1).

 10 This unit is unnumbered in the manuscripts.
 11 The conclusion is almost certainly a late addition in the Greek tradition of the 

Elements (Acerbi 2011b, 38– 9).
 12 The names given to these parts by A. Bernard and J. Christianidis are different, 

but the parts appear to be the same (Christianidis 2007; Bernard and Christianidis 
2012). See also Christianidis and Oaks 2013, 130– 4.

 13 Heath 1896, clvii– clxx; 1912, clv– clxxxvi, provides useful introductions to Greek 
mathematical terminology, and there have been a number of studies of the lan-
guage of Greek mathematics (Sidoli 2014, 29).

 14 For Arithmetics 1.7, the two conditions are rather simple, but they are still 
handled sequentially. For more involved problems the conditions are solved indi-
vidually. For example, in Arithmetics 3.1, after satisfying two of the conditions, 
Diophantus says ‘two of the conditions (epigmata) are now solved (lelumena)’ 
(Tannery 1893, 138).

 15 The expression ‘catena dei dati’ is due to Acerbi 2007, 455.
 16 This type of argument is called an ‘analysis’ by Heron throughout his 

Measurements, and by Pappus in his commentary on Ptolemy’s Almagest 5 
(Rome 1931– 43, 35).

 17 See, for example, Aristarchus’ On the Sizes and Distances of the Sun and Moon 
4, or Archimedes’ Sand Reckoner (Heath 1913, 367; Heiberg and Stamatis 1972, 
2.216– 58).

 18 See, for examples, Aristarchus’ On the Sizes and Distances of the Sun and Moon 
4, Apollonius’ Conics 1.15, or Ptolemy’s Almagest 1.10 (Heath 1913, 367; Heiberg 
1891– 3, 1.63; Heiberg 1898– 1903, 1.45– 6).

 19 The extraction of square roots is described by a scholium to Elements 10, and 
Theon in his Commentary to the Almagest. Heron gives an example of taking a 
cube root, but does not give his method in detail (Heath 1921/ 81, I: 60– 2).

 20 In Diophantus’ terminology, a kind is mathematically related to what we would 
call a term of a polynomial, although he does not appear to have conceived of a 
polynomial as a series of terms combined by operations.

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

  

 

 

  

 


