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1. Introduction

This paper is an attempt to understand the mathematical methods found in
Ptolemy’s Analemma in the context of Greek mathematical practices. I first
present an overview of the concepts we will need to read the text, followed by a
close reading of select passages, which provide a clear overview of the structure
of the argument and give examples of the mathematical methods involved.

In general terms, the Analemma provides a method for specifying the location
of the sun in three pairs of locally orientated coordinate arcs as a function
of three ostensibly empirical variables, namely the declination of the sun as a
function of its longitude, δ(λ), the terrestrial latitude, φ, and the hour, η. The
key to the approach is to represent the solid configuration in a plane diagram
that Ptolemy calls the analemma. The mathematical argument begins with the
presentation of a general argument that the analemma figure, or model, can be
used to map arcs and lines of the solid configuration, through the example of
a proof that this mapping is sound for one of the angles in question. It then
proceeds to show that the analemma figure can be used to make computations
of arc lengths of the solid sphere through two different methods: chord-table
trigonometry, or what we can call analog, or nomographic, computation.1 The
final section of the received text details a series of physical manipulations
through which we can compute the values of three pairs of coordinate arcs
given the three variables δ(λ), φ, and η.

The Analemma has been the subject of a number of important studies, upon
which I have drawn. The medieval Latin translation, accompanied by many
useful notes that make sense of the mathematical methods, was first printed by
F. Commandino in 1562, with no textual apparatus.2 J. L. Heiberg made use

1 The terminology of ‘analog computation’ is common in describing technical devices that
use physical manipulation to produce a numerical result—such as a slide rule, or an astrolabe.
The usage ‘nomographic computation’ follows that of Neugebauer, A History, pp. 839–856,
in denoting a tradition of graphic procedures through which line segments or arcs can be
physically measured.

2 Commandino, Ptolemaei Liber de analemmate. This publication also contains Commandi-
no’s own work, Liber de horologiorum descriptione, which explains how to use the analemma
methods set out in Ptolemy’s Analemma to produce sundials.
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of this version in his critical edition of the Latin translation and the Greek
fragments.3 An excellent study of the mathematical conceptions underlying the
text was made by P. Luckey.4 All of this material was used by Neugebauer in
his overview of ancient analemma methods.5 D. R. Edwards provided a new
critical edition of the Latin translation with an English translation, as well as a
careful textual study of the work in his 1984 dissertation.6 R. Sinisgalli and S.
Vastola made an Italian translation, in 1992, accompanied by many useful notes
and diagrams.7 Finally, a full appreciation of the analemma methods must also
involve some study of the substantial evidence of the medieval Arabic sources.8

In this paper, I make a close reading of key passages of the text, showing
how each step of the argument can be understood as justified by other ancient
mathematical sources, and how certain arguments are meant to be a justification,
or summary of, mathematical practices that are not made explicit in the text.
This results in an articulation and development of the approach of Luckey,
Neugebauer and Edwards, which fleshes out many of the mathematical details
in the context of ancient methods and which, I hope, helps us to understand
Ptolemy’s claim to be producing a more mathematical natural science.

2. Concepts and terminology

In this section, I introduce the concepts and terminology that we will need to
read Ptolemy’s text, without showing in detail how they can be derived from
the sources.9 This order of presentation—which may strike some readers as
backwards—is motivated by the fact that the analemma approach is unknown
to most modern readers, whereas it appears to have been well-known to ancient
and medieval readers familiar with the mathematical sciences. Following this, I
will make a close reading of key passages of the Analemma, arguing along the
way that all of these concepts and techniques can be derived directly from
the ancient and medieval concepts.

3 Heiberg, ‘Ptolemäus de Analemmate’. Heiberg somewhat revised this version in his Opera
astronomica minora, pp. 189–223. I have mostly relied on the later version in this study.

4 Luckey, ‘Das Analemma’.
5 Neugebauer, A History, pp. 839–856.
6 Edwards, Ptolemy’s Περὶ ἀναλήμματος.
7 Sinisgalli and Vastola, L’Analemma.
8 An incomplete selection of such material are the following: Schoy, ‘Abhandlung’; Id, ‘An

Analemma Construction’; Kennedy and ʿId, ‘A Letter of al-Bīrūnī’; Kennedy, ‘Ibn al-Haytham’s
Determination’; Berggren, ‘A Comparison’; Berggren, ‘Ḥabash’s Analemma’; Carandell, ‘An
Analemma’, and Suzuki, ‘A Solution’.

9 This material takes its point of departure from the work of Luckey, ‘Das Analemma’;
Neugebauer, A History, pp. 839–856, and Edwards, Ptolemy’s Περὶ ἀναλήμματος. Between when
I wrote this paper and when it appeared in press, a useful summary of the text, including
excellent diagrams, was made by Guerola Olivares, El Collegio Romano, pp. 67–132.
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Figure 1: Analemma methods 1: (left) perspective diagram of a point A on a sphere to be
mapped to both a lesser circle orthogonal to the analemma and to the great circle joining it
with the poles of the analemma circle in the receiving plane, in solid gray; (right) representation
in the plane of the analemma of A, which appears in three different representations: (1) as
A �→ A ′ in its orthogonal projection into the analemma, (2) as A �→ A ′′ in its location on a
lesser circle orthogonal to the analemma, and (3) as A �→ A ′′′ in its location on the great
circle joining point A with the pole of the analemma circle. The original point A does not
appear in the analemma representation, because, visually, it coincides with A ′.

2.1. Analemma methods

The key to the use of the analemma as a problem-solving device lies in the
application of four projective constructions, namely
(M.1) orthogonal projection of individual points into the receiving plane of

the analemma,
(M.2) orthogonal projection of great and lesser circles into the lines of their

diameters in the receiving plane of the analemma,
(M.3) orthogonal rotation of individual points into the receiving plane of the

analemma, and
(M.4) orthogonal rotation of great and lesser semicircles into semicircles in

the receiving plane of the analemma.

In all of these geometric transformations, the magnitudes of lines and arcs are
preserved, and in the analemma figure we find the same object represented in
multiple ways. Some examples will suffice to show the strategy.

A common way of mapping a point in two ways onto the analemma—which
we will see Ptolemy perform three times in this account—is seen in Figure 1.
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Here we see point A on the sphere in Figure 1 (left), which we will represent
both on a lesser circle perpendicular to the analemma, in gray, and on the great
circle that joins point A with the poles of the great circle of the analemma.
In order to do this, in Figure 1 (right), we represent A by its orthogonal
projection in the plane of the analemma, A ′ (M.1), and draw through A ′ a
line as the diameter of a lesser circle in the sphere that is perpendicular to
the analemma, which can also be regarded as the orthogonal projection of
the lesser circle into the analemma (M.2). We then rotate this lesser circle
into the plane of the analemma by constructing a semicircle on this line and
erecting A ′A ′′ perpendicular to the diameter of the lesser circle (M.4 and
M.3). The length of line A ′A ′′ on the analemma will be constant no matter
what lesser-circle diameter we draw through A ′ and it is equal to AA ′ on the
sphere. Next, we effect the mapping of A in its location on the great circle
joining A with the poles of the analemma onto the plane of the analemma
by a two-stage process. First, (1) we join the orthogonal projection, A ′ with
that of the poles, the center of the sphere (M.1)—that is, by joining A ′ with
the center of the circle of the analemma. This gives us the diameter of this
great circle as the orthogonal projection of the great circle into the plane of
the analemma (M.2). Next, (2) we find the orthogonal rotation of A on the
sphere to A ′′′ on the analemma by rotating point A along the circumference
of a circle of radius AA ′, shown in a gray dotted line, with the axis of rotation
being the diameter of the great circle into which we project A (M.3). We do
this in the analemma by producing a circle around A ′ with distance A ′A ′′,
since this length is equal to AA ′ on the sphere. This circle, shown in a gray
dotted line, however, is not drawn in the plane of the analemma—presumably
because arc lengths are not preserved on this circle.10 In this way, we can
exhibit A mapped to A ′ by orthogonal projection, and to both A ′′ and A ′′′

by rotation into either a lesser circle or the great circle that joins A with a
pole of the analemma.

In Figure 2 (left), if points A and B in the sphere lay on a great circle passing
through the poles of the gray analemma circle, they can be projected into
the analemma plane orthogonal to the great circle between them by dropping
perpendiculars to the plane of the analemma meeting the diameter of the
great circle joining them at A ′ and B ′ (M.1). When this is represented in the
analemma, Figure 2 (right), the line joining A ′ and B ′ must pass through the
center of the circle, because A and B lie on a great circle that passes through
the pole of the analemma (M.2). Arc α of the great circle between A and B
is found in the plane of the analemma by constructing perpendiculars at A ′

and B ′, mapping them to A ′′ and B ′′ (M.1 and 2). In this way, lines A ′A ′′

10 That is, while AA ′′′ is always a quadrant on the sphere, A ′′A ′′′ is not generally a
quadrant on the analemma.
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Figure 2: Analemma methods 1: (left) perspective diagram of two points A and B on a sphere,
and the great-arc distance between them, α, to be mapped to the receiving plane, in gray;
(right) representation in the analemma of A and B as orthogonally projected onto the analemma
such that A �→ A ′ and B �→ B ′, along with orthogonal rotation of the great circle into the
analemma such that A �→ A ′′ and B �→ B ′′. The original points A and B do not appear in the
analemma representation, because, visually, they coincide with A ′ and B ′.

and B ′B ′′, in the analemma, are equal to the perpendiculars dropped from A
and B into the receiving plane, in the sphere, and the length of arc α, the
great-arc distance between the two points, is preserved in the transformation.

In Figure 3 (left), if points A and B in the sphere lay on a lesser circle
perpendicular to the gray analemma circle, they can be mapped into the
plane of the analemma circle by rotating the lesser circle into the plane of
the analemma—or rather, folding it into two semicircles that are rotated into
the same position in the plane of the analemma. This is represented in the
analemma, Figure 3 (right), by dropping perpendiculars into the receiving
plane, such that A ′ and B ′ represent points A and B in the analemma (M.1),
and the line joining them is a diameter of the lesser circle and its orthogonal
projection into the analemma (M.2). The lesser circle is then folded and rotated
into the analemma by erecting a semicircle on the diameter of the lesser circle
(M.4). Arc α of the lesser circle is rotated into the plane of the analemma
by constructing perpendiculars at A ′ and B ′ meeting the semicircle, such that
A maps to A ′′ and B to B ′′ (M.3).11 Once again, lines A ′A ′′ and B ′B ′′, in
the analemma, are equal to the perpendiculars, AA ′ and BB ′, in the sphere,

11 The practice, in dealing with a solid configuration, of rotating one plane into another by
constructing the objects in the plane to be rotated directly in the receiving plane is common in
Greek geometry. See, for example, the solid constructions by Diodorus or Eutocius; Hogendijk,
‘The Geometrical Works’, pp. 56, 70–71, and Sidoli, ‘Review of The Works of Archimedes’,
pp. 160–61.
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Figure 3: Analemma methods 2: (left) perspective diagram of two points A and B on a lesser
circle of a sphere, and the lesser-arc distance between them, α, to be mapped to the receiving
plane, in gray, which must be perpendicular to the lesser circle and pass through its poles;
(right) representation, in the analemma, of a semicircle of the lesser circle as rotated into the
plane of the analemma, such that A �→ A ′ and B �→ B ′, by orthogonal projection, and to
A �→ A ′′ and B �→ B ′′, by rotation.

dropped from A and B into the receiving plane, and arc α is equal to the
lesser-arc distance between the two points.

In this section, I have used the term analemma as synonymous with the
receiving plane of a projection, or mapping. This understanding of the term
agrees with Ptolemy’s usage in his Analemma, and, as Edwards has argued, best
conforms with the various functions of the term in ancient sources.12 Hence,
the analemma is the receiving plane of a projection, which is performed by
carrying out constructions directly in the plane.13

In Ptolemy’s Analemma, we will see evidence for these various projective
operations. Although he explicitly refers to rotating the semicircles of lesser
circles, Ptolemy has no special terminology for orthogonal projection of points
and circles, and the text speaks only of producing perpendiculars and of taking
the diameters of circles in the analemma. Nevertheless, as we read through
Analemma 6, below, we will see that the underlying solid configuration is
essentially that described in this section.

12 Edwards, Ptolemy’s Περὶ ἀναλήμματος, pp. 1–10.
13 This way of producing projective constructions is also found in Ptolemy’s Planisphere;

see Sidoli and Berggren, ‘The Arabic Version’.
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see Sidoli and Berggren, ‘The Arabic Version’.
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2.1.1. Geometrical constructions and instrumental practice
Although there are almost no synthetic theorems in analemma texts—and only
one in Ptolemy’s Analemma—there are constructions in all uses of the analemma
in geometric problem-solving, in both ancient and medieval texts. The types
of constructions employed, however, are clearly restricted. In fact, I am not
aware of any constructive step in an ancient or medieval analemma problem
that uses an operation that cannot be reduced to applications of Elements
I.posts.1–3, I.11, and 12—that is, the first three postulates of Euclid’s Elements
and the two problems that produce perpendicular lines.14 Even more, analemma
constructions can all be regarded as abstractions of the use of a compass and a
set square. Indeed, the three ancient texts that deal with the analemma make
explicit mention of various types of instrumental practice, indicating that the
mathematical methods of the analemma were closely associated with certain
instruments.

As well as referring to operations performed on instruments such as specially
prepared plates and hemispheres, analemma texts prescribe the instruments used
to carry out geometric constructions. The analemma described by Vitruvius,
Architecture IX.7, although not addressing a problem, is explicitly produced
with a compass,15 and Ptolemy, as we will see below, explicitly introduces both
the compass and the set square. It seems clear that constructions in analemma
texts were limited to abstractions of the operations that can be performed
with these instruments—that is, a finite set square whose side is just a bit
greater than the diameter of the great circle of the analemma, and a finite
compass whose radius is just a bit greater than that of the great circle of the
analemma, and which can be operated with a given radius.

In order to make this underlying instrumental practice explicit, in the
following I will note how each construction on the analemma can be performed
with either the compass or the set square.

2.2. Ptolemy’s notion of ‘model’

Ptolemy’s uses of the term hupothesis (ὑπόθεσις), and the cognate verb (ὑποτίθεται),
are far ranging. These terms often have the sense—implied by the basic meaning
of the words—of what is set down in the beginning to be built upon, and,
indeed, they are translated literally by Moerbeke, in his Latin translation of
the Analemma, with suppositio and supponere. They may also, however, indicate
the assumption of a fully elaborated depiction of the structure and function
of the objects under investigation.

14 As we will see below, the proof in Analemma 6 also requires Elements XI.12, but this is
a theorem, not a problem.

15 See Soubiran, Vitruve. De l’architecture, pp. 26–30.
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Moreover, a Ptolemaic hupothesis, unlike a modern scientific hypothesis, is
not subject to testing; in fact, it may sometimes be demonstrated, or even
saved—as occasionally in the Almagest or in Harmonics I.2.16 G. J. Toomer
emphasized that Ptolemy’s understanding of a hupothesis is often far removed
from the modern sense of a hypothesis in scientific discourse, and pointed out
that it was closer to our idea of a model.17

An hupothesis in Ptolemy’s writings can be as simple as the assumption
of the immobility and sphericity of the earth, or as complicated as the full
geometric configurations for the moon or Mercury;18 either purely arithmetical,
as in harmonics, or fundamentally geometric, as in astronomy;19 an idealized
mathematization, as we will see in the Analemma, or closely connected with a
physical representation, as in Planetary Models (commonly Planetary Hypotheses)
I.1 and 2, or Almagest XIII.3.20

This broad notion of a conceptual tool for explanation and computation
has more overlap with our concept of model than our concept of hypothesis.
Hence, in my translation of passages of the Analemma I will translate ὑπόθεσις
and its cognates with model and its cognates.21 Some readers may find this
excessively modern, but I hope the discussion here will help us avoid unwanted
anachronism.

Ptolemy’s use of modeling can be compared to that of Hellenistic authors
working in the exact sciences such as Autolycus, Euclid, Aristarchus, Archimedes
and Eratosthenes—all of whom used geometric modeling as the basis of their
work in astronomy, mechanics, optics and harmonics.22 A distinction can be
drawn, however, between Ptolemy’s use of hupothesis and that of Aristarchus
in On the Sizes and Distances of the Sun and the Moon and that attributed to
Eratosthenes by Cleomedes in On Heavens I.7.23 Aristarchus and Eratosthenes
used hypotheses both (a) to set out the overall geometrical configuration that

16 Heiberg, Syntaxis mathematica, vol. II, pp. 26, 180, 461, and Düring, Die Harmonielehre,
p. 5.

17 Toomer, Ptolemy’s Almagest, pp. 23–24.
18 Heiberg, Syntaxis mathematica, vol. I, pp. 26, 350; vol. II, p. 255.
19 Düring, Die Harmonielehre, p. 5.
20 See Heiberg, Opera astronomica minora, pp. 70–74; Hamm, Ptolemy’s Planetary Theory,

pp. 72–76; Murschel, ‘The Structure’; Heiberg, Syntaxis mathematica, vol. II, pp. 532–533.
Jones, ‘Ptolemy’s Mathematical Models’, gives an overview of the various ways mathematical
modeling functions in Ptolemy’s work.

21 This is also done, for example, by E. Hamm, Ptolemy’s Planetary Theory, in her translation
of Ptolemy’s Planetary Models I, Part A.

22 There has been much debate over whether or not Euclid composed the Division of the
Canon, but there seems to be no objective way to decide the issue; see Barbera, The Euclidean
Division, pp. 3–29.

23 Heath, Aristarchus of Samos, pp. 352–411, and Todd, Cleomedis Caelestia, pp. 35–37.
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that it was closer to our idea of a model.17

An hupothesis in Ptolemy’s writings can be as simple as the assumption
of the immobility and sphericity of the earth, or as complicated as the full
geometric configurations for the moon or Mercury;18 either purely arithmetical,
as in harmonics, or fundamentally geometric, as in astronomy;19 an idealized
mathematization, as we will see in the Analemma, or closely connected with a
physical representation, as in Planetary Models (commonly Planetary Hypotheses)
I.1 and 2, or Almagest XIII.3.20

This broad notion of a conceptual tool for explanation and computation
has more overlap with our concept of model than our concept of hypothesis.
Hence, in my translation of passages of the Analemma I will translate ὑπόθεσις
and its cognates with model and its cognates.21 Some readers may find this
excessively modern, but I hope the discussion here will help us avoid unwanted
anachronism.

Ptolemy’s use of modeling can be compared to that of Hellenistic authors
working in the exact sciences such as Autolycus, Euclid, Aristarchus, Archimedes
and Eratosthenes—all of whom used geometric modeling as the basis of their
work in astronomy, mechanics, optics and harmonics.22 A distinction can be
drawn, however, between Ptolemy’s use of hupothesis and that of Aristarchus
in On the Sizes and Distances of the Sun and the Moon and that attributed to
Eratosthenes by Cleomedes in On Heavens I.7.23 Aristarchus and Eratosthenes
used hypotheses both (a) to set out the overall geometrical configuration that

16 Heiberg, Syntaxis mathematica, vol. II, pp. 26, 180, 461, and Düring, Die Harmonielehre,
p. 5.

17 Toomer, Ptolemy’s Almagest, pp. 23–24.
18 Heiberg, Syntaxis mathematica, vol. I, pp. 26, 350; vol. II, p. 255.
19 Düring, Die Harmonielehre, p. 5.
20 See Heiberg, Opera astronomica minora, pp. 70–74; Hamm, Ptolemy’s Planetary Theory,

pp. 72–76; Murschel, ‘The Structure’; Heiberg, Syntaxis mathematica, vol. II, pp. 532–533.
Jones, ‘Ptolemy’s Mathematical Models’, gives an overview of the various ways mathematical
modeling functions in Ptolemy’s work.

21 This is also done, for example, by E. Hamm, Ptolemy’s Planetary Theory, in her translation
of Ptolemy’s Planetary Models I, Part A.

22 There has been much debate over whether or not Euclid composed the Division of the
Canon, but there seems to be no objective way to decide the issue; see Barbera, The Euclidean
Division, pp. 3–29.

23 Heath, Aristarchus of Samos, pp. 352–411, and Todd, Cleomedis Caelestia, pp. 35–37.
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serves as the basis of the model, and also (b) to set out quantitative assumptions
that are, at least in principle, empirically decidable and which serve as a basis
for computation.24 Ptolemy, however, does not use hupothesis in this second
sense. For Ptolemy the hupothesis is only the general geometric configuration
of the model, whereas the quantitative parameters to be determined through
observation are not referred to by the term hupothesis.

Hence, by Ptolemy’s time, and probably for a long while before, there was a
fairly clear distinction between what we would think of as the model as a basis
for computation and the given values that are used in the computation. As we
will see in the Analemma, although there is no discussion of empirical practice
and both the geometric model and the quantitative parameters are simply
assumed in the course of the argument, there is a clear linguistic distinction
between the two—the model itself is asserted as assumed and the parameters
are asserted as fixed, or determined, although they may, of course, vary.

2.3. The two-sphere model

The two-sphere model is a name given by modern scholars to the model of
the cosmos found in texts such as Autolycus’ Moving Sphere and Risings and
Settings, Euclid’s Phenomena, and Theodosius’ Days and Nights and Habitations.
In this model, the sun is taken as located in varying positions on the ecliptic as
a great circle in the sphere of the cosmos, which contains the fixed stars. The
sphere of the cosmos, carrying the ecliptic, rotates about the celestial poles,
Pn and Ps, creating the celestial equator, to which the ecliptic is skew at the
angle known as the obliquity of the ecliptic, ε. The sphericity of the earth is
only accounted for by the fact that the horizon, which is also a great circle, is
generally skew to the ecliptic and the celestial equator, and divides the cosmos
into two hemispheres—above and below. In Figure 4, if the eastern point is
taken to be in the direction of the viewer, since the horizon is immobile, the
sphere of the cosmos is imagined to rotate clockwise. This configuration was
used by ancient mathematicians to model the phenomena we associate with
spherical astronomy—namely, the solar and stellar phenomena related to local
coordinates, determined by the horizon and the local meridian.

Whatever the mathematicians of the Hellenistic period may have thought
of this construction, by Ptolemy’s time it must certainly have been thought of
as a model in the sense discussed above—that is, as a simplified configuration
that was known to not be a strict representation of reality, but which could
be used mathematically without any significant loss of accuracy. Trivially, the
earth is not actually a point, but a sphere—which is what allows us to speak

24 Berggren and Sidoli, ‘Aristarchus’s On the Sizes and Distances ’, pp. 231–234; Carman, ‘Two
Problems’, pp. 55–58; Carman and Evans, ‘The Two Earths’; Sidoli, ‘Mathematical Discourse’.
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Figure 4: The ‘two-sphere’ model

of a region above and below the horizon. It is so small in comparison to the
cosmos, however, that it can be regarded as a point. That this is a strictly false,
but observationally adequate, simplifying assumption must also have been clear
to the Hellenistic mathematicians. Secondly, at least by Ptolemy’s time, the sun
was not actually a point in the celestial sphere, but was rather closer to the
earth, below the outer planets, and with a varying distance from the earth.
Hence, the two-sphere model could not have been regarded as an accurate
depiction of the sun in its relation to the earth, but simply as a mathematical
model depicting the perceived location of the sun on the sphere of the cosmos
from the perspective of the earth.

There are clear indications in Analemma 2 and 3 that Ptolemy thought of
the overall model of the cosmos in just these sorts of perceptual terms. In
Analemma 2, Ptolemy calls this simplified model of the sun in the cosmos,
orientated to the local horizon, the ‘world sphere’, and he says that the great
circles in this sphere that can be taken to determine the position of the sun
‘move with the sun’.25 Hence, they can be imagined to be great circles of the
world sphere laying in planes that pass through the sun. Furthermore, when
he describes the position of the sun in more detail, both in Analemma 2, in
general terms, and in Analemma 3, in setting out the model with letter-names,
he refers to the solar position as the ‘solar ray’—which we can understand as
the line along which we see the sun, drawn from the earth, through the sun,
out to the sphere of the cosmos.

25 These great circles are discussed in detail below.
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2.4. The analemma model

The analemma model can be found in three ancient sources—Vitruvius’
Architecture IX.7, Heron’s Dioptra 35, and Ptolemy’s Analemma—and a few
medieval Arabic sources. Although in medieval sources, analemma methods
are used to solve a range of problems in spherical astronomy, in the extant
ancient sources, they are almost always used on the analemma model described
in this section.26 The model itself is naturally suited to handle the seasonal
hours of Greco-Roman daily life, ηs, and hence was closely associated with
gnomonics (γνωμονική), the science of sundials. Here, I simply describe the
model, with no attempt to derive this description from the sources.

The ancient analemma model is orientated towards a coordinate system of
the local horizon and meridian, and can model the motion of the sun, on
both its annual and daily paths—that is, the model can be used to specify the
location of the sun, relative to local coordinates, given the terrestrial latitude,
φ, the declination of the sun as a function of its longitude, δ(λ), and the time
of the day, in hours, η.

In Figure 5, the local meridian is the great circle of the analemma NBSA,
line NS is the orthogonal projection of the great circle of the horizon, line
CD is that of the great circle of the equator, and line PnPs is the line joining

26 An exception is Ptolemy’s Planisphere 18, which employs an analemma construction; see
Sidoli and Berggren, ‘The Arabic Version’, pp. 132–133.
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the celestial poles, perpendicular to CD. The orientation of lines NS and CD
determine the terrestrial latitude, φ, because, in great circle NBSA, arc NPn is
the elevation of the pole—that is, arc NPn = φ.

Since the horizon is motionless, while the cosmos rotates about PnPs, the
orthogonal projection of both the horizon and the equator into the meridian
will remain fixed. The same is not true, however, of the ecliptic. Indeed,
the ecliptic will only be orthogonal to the analemma twice daily, when the
solstitial colure coincides with the local meridian—and, indeed, the ecliptic is
not represented as such in Ptolemy’s Analemma.

The proper position of the sun on the ecliptic, λ, can, however, be modeled
on the analemma with the use of an auxiliary circle, FHGI, arranged such that
its center lies on the diameter of the equator and it cuts the great circle of the
analemma so that the arcs CH and CI are both equal to the obliquity of the
ecliptic, ε. In this case, where F represents the vernal equinox, H the summer
solstice, G the autumnal equinox, and I the winter solstice, if arc FJ = λ is
cut off equal to the arc of solar longitude from the vernal equinox at Ari 0°,
then arc CK of the analemma will be equal to the declination of the sun at
this time, δ(λ).27

Then, since throughout the course of a day the sun will travel on a course
roughly coinciding with the circle of its declination, which we can call its
day-circle, the local position of the sun can be modeled on the day-circle
folded and rotated into the plane of the analemma.28 In Figure 5, when the
sun is at FJ = λ, in its annual course, it can be imagined to travel uniformly
on semicircle KOL throughout the course of the day; or when it is at the
winter solstice, FJI = λ, it will travel on semicircle IQM. For example, if a
given day in the spring or summer begins at midnight, the sun will start at,
say, K and move along arc KO until sunrise, passing over the horizon at point
O, and then move up to midday at L and return back along LO in the
afternoon to sunset at O, finally returning to K at the following midnight. In
fact, the second position of K will be somewhat altered because of the daily
longitudinal movement of the sun of about 1°, but analemma methods do not
take this into account.

The final given magnitude, the hour η, is marked off along the day-circle.
In the case of the seasonal hours of daily life, ηs, each of the arcs LO, OK, or
MQ, QI are divided into six equal parts for the six hours between the horizon
and the meridian. Although this is not discussed in the ancient sources, it

27 Neugebauer, A History, p. 845, shows this using methods consistent with Greek geometric
practice.

28 Heron, in his Dioptra 35, refers to this circle as the ‘daily circle’ (ἡμερήσιος κύκλος); see
Schöne, Herons von Alexandria Vermessungslehre, pp. 302–306, or Acerbi and Vitrac, Metrica,
pp. 103–106.
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would also be possible to model the astronomer’s equinoctial hours, ηe, by
dividing the complete semicircle of the day-circle into twelve equals parts.

In fact, however, Ptolemy’s Analemma works with further simplifying
assumptions. In the first place, the circle FHGI, which is called the menaeus
(from μηναῖος, meaning ‘monthly’) by Vitruvius,29 is not found in Ptolemy’s
presentation. Instead, he simply takes δ as given at one of four solar declinations
corresponding to the beginnings of the twelve zodiacal signs—namely,

δ = 0° for λ ≈ 0°, 180°,
δ = 11 2/3°(= 11;40°) for λ ≈ 60°, 120°, 240°, 300°
δ = 20 1/2°(= 20;30°) for λ ≈ 30°, 150°, 210°, 330°, and
δ = 23 1/2 1/3°(= 23;50°) for λ ≈ 90°, 270°,

and refers to the semicircle constructed at a given declination as the ‘monthly
circle’ (μηνιαῖος κύκλος). Hence, in what follows, for the sake of explicating
his text, I will use Ptolemy’s terminology and refer to the day-circle of the
sun as its month-circle.

These three declinations may have been determined, for example, through
a table such as that in Almagest I.15, or they may have been values taken
by Ptolemy from previous work in gnomonics, having been computed using
chord-table trigonometry directly on the analemma model.30 Whatever the
case, although these declinations are those of evenly distributed longitudes of
30°, they are, as declinations themselves, rather unevenly distributed—since
their differences are 11;40°, 8;50°, and 3;20° respectively. This is perhaps an
indication that, in the Analemma, Ptolemy was more interested in the symmetry
of his presentation, and the role of symmetry in his instrumental practice,
than in the precision of any device that might be made with these methods.

As we have just seen, both Vitruvius and Ptolemy speak of a ‘monthly’
division of the annual solar cycle, presenting us with a kind of zodiacal month.
Of course, there is no discussion of the duration of these months, and given
the level of precision evident in Ptolemy’s presentation this is probably not
important, but these months are clearly a division of the sun’s annual progress
through the stars into twelve parts. The ancient tool that was used to track
the course of the sun through the stars, often noting its passage into each of
the twelve zodiacal signs, was the parapegma.31 Hence, the analemma appears
to have been directly related to the two most conspicuous devices used to

29 Soubiran, Vitruve. De l’architecture, p. 29.
30 It may be significant that Ptolemy states the declination using the proper parts (unit

fractions) of standard Greek arithmetical practice, not the sexagesimal fractions of his mathematical
astronomy. The values used in the Analemma are what we would get if we rounded the values
in the Almagest to the nearest 0;05°—see Almagest I.15, Heiberg, Syntaxis mathematica, vol. I,
p. 72. We do not know if Ptolemy derived these values in this way.

31 See Lehoux, Astronomy, especially pp. 70–97.



48 NATHAN SIDOLI48 NATHAN SIDOLI

regulate the cycles of daily life in the Greco-Roman world: the sundial and
the parapegma.32

From the description given in this section, it is clear that, like the two-sphere
model, the analemma model functioned as a simplified geometrical configuration
that facilitated geometrical and computational problem-solving. We will see
below, in reading passages of the Analemma, that Ptolemy’s mathematical
practice clearly distinguished between the assumption of the model itself, as
an overall geometrical configuration, and the assumption of given values that
may be assumed as parameters of the problem-solving activity.

3. Ptolemy’sAnalemma
The text of the Analemma is known to us from two sources—fragments of
a 5th–7th century text palimpsested in Ambrosianus graec. L 99 sup., Am,
and a 13th century Latin translation by William of Moerbeke contained in
Vaticanus Ottobonianus lat. 1850, O—which is probably also incomplete. The
Ambrosianus codex is an 8th century copy of Isidore’s Etymologiae that contains
eight bifolia that were repurposed from manuscripts that once contained
mathematical material, of which twelve pages came from a copy of Ptolemy’s
Analemma.33 The Ottobonianus codex is an autograph by Moerbeke of his
translations of Greek mathematical works, focusing on Archimedes, of which the
final three folia contain his translation of the Analemma (ff. 62–64)—ending
somewhat abruptly with a single mathematical table and no colophon. The
Latin text, with many corrections, was first published by Commandino,34 the
Greek fragments and the Latin text were critically edited by Heiberg,35 and
the Latin was reedited by Edwards, who also provided an English translation.36

32 It is worth noting that Ptolemy’s own parapegma text, the Phases of the Fixed Stars,
does not work with zodiacal months, but rather divides a solar year into the twelve 30-day
months of the Egyptian calendar, which was also used for astronomical purposes; see Lehoux,
Astronomy, pp. 261–309. On the other hand, given the low level of precision evidenced in the
Analemma itself, it is possible that Ptolemy regarded his ‘monthly circles’ as corresponding to
these Egyptian months.

33 The pages of the codex that contain the Analemma, in the order of the Ptolemaic text,
are as follows: 119, 120, 139, 140, 137, 138, 143, 144, 129, 130, 117, 118.

34 Commandino, Claudii Ptolemaei Liber de analemmate.
35 Heiberg, ‘Ptolemäus de Analemmate’, and Id., Opera astronomica minora, pp. 189–223.
36 Edwards, Ptolemy’s Περὶ ἀναλήμματος. Since we do not have Greek for the whole text, I

will often use the Latin text as the primary source. By relying on Moerbeke’s translation of
Ptolemy’s Tetrabiblos and of the Archimedean corpus, I will not always translate the Latin
literally, but will make some informed guesses about the original Greek terminology behind
the Latin even where we do not have corresponding fragments in the palimpsest. See Clagett,
Archimedes; and Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos.

Although I have made my own translation of the text, I have often been guided by that of
Edwards, and in the mathematical passages there is little significant difference.
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Although the Greek manuscript numbers the text differently than Heiberg,
and the Latin manuscript presents the treatise in continuous prose, I will follow
Heiberg’s numbering in presenting a short outline of the text:37

1: A short dedication to Syrus, explaining that we will take the approach
‘of those men in lines’ (uirorum illorum in lineis),38 since there is
need of a more mathematical conception of natural theory and a more
natural-theoretic conception of mathematics.

2, 3: A discussion of the coordinate system from first principles, explaining that
three dimensions are used to measure a volume, both in magnitude and in
number, and that a point on a sphere can be determined by the motion of
three circles of the ‘world sphere’ (spera mundi)—the horizon, the meridian
and the vertical—about one of their own diameters as determined by
their intersections, producing three pairs of angles—hectemorius-meridian,
horarius-vertical, and descensivus-horizon.39 A description of the analemma
model using letter-names.

4: A description of the system of ‘the ancients’—which did not use the
hectemorius circle.

5: A few refinements to the conventions so that no coordinate arc need be
taken as greater than a quadrant.

6: (a) An introduction of the mathematical goal of the treatise—an instrumental
determination, using the analemma, of the six arcs set out in the introduction;
(b) followed by a synthetic proof that a certain angle in the analemma
diagram is equal to the hectemorius angle on the sphere.

7: Geometric construction of an analemma diagram containing all six angles,
with no proof, for the situation in which the sun is near an equinox.

8: Geometric construction of an analemma diagram containing the same for
any other longitudinal position of the sun.

9: (a) A short discussion of instrumental practice, in which Ptolemy points out
that on the analemma any of the six principal arcs can be determined using
‘linear demonstrations’—that is, computational, indeed, trigonometric
methods (διὰ τῶν γραμμῶν; per lineares demonstrationes, per numeros);40
(b) followed by a metrical analysis for the determination of all six arcs
in the case in which the sun is at an equinox.

37 Since not all of the numbers in the Greek fragments have been preserved, it is not
possible to be certain where all of the divisions were placed in this version of the text.

38 Presumably geometers.
39 These angles are defined below; see page 51.
40 See note 74 for a discussion of the meaning of the phrase διὰ τῶν γραμμῶν.
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10: A metrical analysis for the determination of all six arcs for any other
longitudinal position of the sun.

11: (a) General description of the drawing and the instruments (compass and
set square) used to make analog, or nomographic, computations; (b)
followed by a detailed description of the production of an analemma
plate used for carrying out analog calculations.

12: Instructions for producing all six angles on the analemma plate while
drawing no new lines, for the situation in which the sun is near an
equinox.

13: Instructions for producing all six angles on the analemma plate while
drawing no new lines, for any other longitudinal position of the sun.

14: (a) Instructions for producing the angles of ‘the ancients’ on the analemma
plate; (b) followed by a discussion of which pairs of angles, and taken
in which direction, determine the position of the sun.

15: Table of all six angles for the latitude of Meroe, φ = 16;25°, when the
sun is at Can 0°, δ(λ = 90°) = 23;50°, for the position of the sun at the
horizon, at the end of each of the five pairs of seasonal hours between
the horizon and midday, and at the meridian.

It is likely that there were once more tables—perhaps 28 or 49, filling out
the seven latitudes mentioned in the text and the four declinations of the
beginnings of the twelve signs of the ecliptic.41 It might be supposed that
there was once more text following these tables, but nothing in the extant
treatise compels us to this position.

In order to follow Ptolemy’s mathematical approach, we will focus on
explaining in detail only a few sections of the treatise—in each case, explicating
only the meridian-hectemorius angle pair, since the three pairs are mathematically
analogous and an understanding of one pair will suffice to grasp the overall
approach. We will first look at the general exposition of the world sphere in
Analemma 2 and 3. This will be followed by the synthetic proof in Analemma
6 that a certain angle of the analemma diagram is equal to the hectemorius
angle. We will then read passages from the metrical analysis in Analemma 10,
showing that if the terrestrial latitude, φ, solar declination, δ(λ), and seasonal
hour, ηs, are given, then the hectemorius and meridian angles are also given.

41 Edwards, Ptolemy’s Περὶ ἀναλήμματος, p. 106, n. 506, states that the total number of tables
should have been 49 tables—that is, the seven latitudes by the four declinations, three of which
must be taken both to the north and to the south. Neugebauer, A History, pp. 854–855, states
that there should have been 28 tables—presumably believing that Ptolemy would have made
further use of the symmetries between the sets of seasonal hours to reduce the total number of
tables.
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Figure 6: The world sphere as described in Analemma 2 (modern figures)

Finally, we will follow through the nomographic calculation of the hectemorius
and meridian angles on the analemma plate in Analemma 13.

4. Ptolemy’s world sphere
In Analemma 2, Ptolemy explains that three dimensions are sufficient to
determine a volume (moles) in both magnitude and number, so that, in the
world sphere, we need only three great circles and their diameters, set at right
angles.42 Because the discussion in Analemma 2 concerns the world sphere itself,
it does not make reference to a lettered diagram—which makes it somewhat
difficult to follow. In order to explicate this section, however, we will describe
the objects that Ptolemy introduces using a modern diagram, Figure 6, which
does not correspond to anything in the manuscript sources.

In Figure 6 (left), the three great circles of the world sphere will be
taken as (a.1) the horizon, NESW, dividing the hemisphere above the earth
from that below, (a.2) the meridian, NBSA, dividing the eastern and western
hemispheres, and (a.3) the vertical, EBWΑ, dividing the northern and southern
hemispheres; and the diameters will be (b.1) the equatorial diameter, EW,
(b.2) the meridional diameter, SN, and (b.3) the gnomon, AB. Clearly, in this
context, we are describing the cosmos using local coordinates, orientated to
the position of the observer on the earth.

When these three circles are moved ‘with the sun’ (cum sole) about
their diameters, (c.1) the horizon produces the hectemorius, rotating about
the equatorial diameter, (c.2) the meridian produces the horarius, rotating

42 Moerbeke often uses moles to translate ὄγκος, which in this context would mean
‘volume’—see Clagett, Archimedes, p. 34.
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about the meridional diameter, and (c.3) the vertical produces the descensivus
(καταβατικός), rotating about the gnomon. When any one of these circles is
raised ‘above the earth with the solar ray’ (cum solari radio super terram) it will
produce two inclinations: (1) an angle contained by lines, between the solar ray
and the diameter about which the circle rotates, and (2) an angle contained
by planes, between the movable plane and its stationary counterpart—and ‘as
far as they are given, the position of the [solar] ray is also fixed’ (quibus datis
et positio radii determinatur). The final section of Analemma 2 is somewhat
obscure because Ptolemy is setting out his own terminology at the same time
as that of the ancients, but the main point is that each of the angle pairs
hectemorius-meridian, horarius-vertical, and descensivius-horizon can be used to
specify the location of the solar ray.

For example, in Figure 6 (right), when the hectemorius, ERMW, is inclined
with the solar ray, RO, the equatorial diameter, EW, and RO create the
rectilinear ̸ EOR, which can be measured by arc ER, while the plane of
the hectemorius creates an angle with its stationary counterpart, the horizon,
ESWN, which can be measured by arc MS of the meridian. Hence, the position
of the sun can be determined by arc ER of the hectemorius and arc MS of
the meridian. Indeed, it is clear that if arc ER has the range 0°–180° and
arc MS the range 0°–360°, any point on the sphere can be named in these
coordinates. In fact, however, Greek geometers did not consider angles greater
than 180°, and Ptolemy will introduce conventions in Analemma 5 that will
insure that these six principal arcs will always have a range of 0°–90°.43

Analemma 2 is a discussion of how we can understand the position of the
real sun in term of local coordinates—it speaks of the world sphere and of
movable circles being carried with the sun with no reference to a lettered
diagram. The angles that determine the position of the sun are described in
terms relative to the position of the observer in the center of the cosmos. The
use of the diagrams in Figure 6 helps a modern reader to follow Ptolemy’s
description, but it is not faithful to his approach, which is to describe the
situation as taking place around us—with no appeal to the terminology of
modeling or supposing.

This changes in Analemma 3, which Ptolemy introduces with the following
words: ‘In order that the sequence (consequentia) of the angles and what is
modeled (quod supponitur) should fall more within our view, in fact, let there
be a meridian circle, ABGD.”44 He then proceeds to give a description using a

43 There may have been practical reasons for this. For example, the graduated quadrants on
his analemma plate only measure 0°–90°—which may have to do with the fact that a compass
large enough that its radius would be equal to the diameter of his analemma plate would be
rather cumbersome.

44 In translating this and the following Latin passages, I have not attempted to render the
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Figure 7: Analemma 3: (left) manuscript figure of the world sphere; (right) modern figure. All
of the elements in the diagram are on the eastern hemisphere, which faces us.

lettered diagram, Figure 7, of the meridian circle and the circles to the east.
Hence, Figure 7 depicts the eastern hemisphere of the model, such that all of
the lines we see are on the outer surface of the sphere, facing us. Circle ABGD
is the meridian, semicircle AEB is the horizon, and semicircle GED is the
vertical. The semicircles HZET, AZKB and GZLD are the hectemorius, the
horarius and the descensivus, respectively. Thus, the arcs which were mentioned
as determining the solar ray are (ZE,AH ) as hectemorius-meridian, (ZA,GK )
as horarius-vertical, and (ZG,EL ) as descensivius-horizon.

Analemma 3 is devoted to the description of a certain geometric object
and it does not deal with the world sphere, the real sun, or the actual solar
ray.45 Hence, the purpose of Analemma 3 is to describe a model—namely the
geometric object introduced—that will henceforth stand in for objects in the
real world. The rest of the Analemma deals only with this geometric model.

5. Themathematical approach

In order to understand the mathematical methods of the Analemma, we will
follow through the determination of a solar position in local coordinates for
one of the three angle pairs, namely the hectemorius-meridian pair.

Latin literally but have been guided by the fact that scilicet and various forms of qui, ipse,
idem, and so on, are used by Moerbeke to translate various functions of the definite article,
whose usage in Greek mathematical prose is well known; see Clagett, Archimedes, pp. 43–44;
Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos, p. 14, and Federspiel, ‘Sur l’opposition’.

45 The mention of the ‘ray’ that appears at the beginning of Analemma 3 is actually a
reference back to the solar ray introduced in Analemma 2, stating that point Z marks its
position in the model.
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Figure 8: Analemma 6. Elements in gray do not appear in the manuscript diagram.

5.1. A synthetic proof

Analemma 6 begins with an introduction to the rest of the work. Ptolemy states
that, with the foregoing as preliminaries, we will now set out the ‘instrumental
determinations’ (ὀργανικαὶ λήψεις, instrumentales acceptiones)46 of the coordinate
angles. This appears to be a reference to the overall aim of the treatise of
producing a physical analemma plate for making analog computations. Indeed,
Ptolemy makes it clear that he will only supply a proof (ἀπόδειξις) for a single
determination (λῆψις)—that of the new hectemorius arc, which he himself has
introduced.47 Hence, if we think of the remaining mathematical sections as
establishing the methodological soundness of carrying out analog computations
on the analemma plate, we can understand why Ptolemy would refer to this
material generally as addressing ‘instrumental determinations’.

Brushing off the case in which the sun is at one of the equinoxes as trivial,
for the remaining solar positions Ptolemy gives a proof that a certain arc on
the analemma is equal to the hectemorius arc, as follows (Figure 8 (left)):48

Now, as for the remaining monthly [circles],49 let there be a meridian circle, ABGD,
in which a diameter of the horizon is AB, and at right angles to this along the

46 The Greek is a conjecture by Edwards, Ptolemy’s Περὶ ἀναλήμματος, p. 94, n. 454, based
on the Greek of the following passage.

47 Heiberg, Opera astronomica minora, pp. 194–195; Edwards, Ptolemy’s Περὶ ἀναλήμματος,
pp. 94–95, 136.

48 The Greek for this passage is essentially complete, so I have translated Heiberg’s text, but
kept the letter-names of Moerbeke’s Latin. In the palimpsest, this passage concludes Section 1.

49 That is, besides the month-circles at the equinoxes.
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gnomon is GD, and the center of the sphere of the sun is E,50 while ZHT is a
diameter of one of the monthly parallels north of the equator, upon which, in the
same plane let an eastern semicircle, ZKT, be imagined (νοείσθω).51
And let KH be produced upright upon ZT,52 such that section (τμῆμα) ZK of the
parallel [circle] is made to be above the earth, and with arc KL being cut off,53 let a
perpendicular, LM, be produced from L to ZT.54 And, with center M and distance
ML, let a point, X, be determined on the meridian,55 and let EL, MN, EX, and MX
be joined,56 and let EO be produced upright upon EN.57 I say that angle OEX is
equal to the sought angle.58

For, let semicircle ZLT be imagined (νοείσθω) as rotated (ἐπεστραμμένον) to its
proper position, that is, the perpendicular to the plane of the meridian. And let
a perpendicular, EP, be produced, as the equatorial diameter, to the same plane.59
Then, LM being a perpendicular to the meridian, it is obvious that straight lines
EN, ML, and EP are in a single plane perpendicular to ABGD.60 Likewise, [it is
obvious] that EN is the common section of the hectemorius circle and the meridian,61
while LE is in line with the solar ray,62 and the sought angle, which is contained by
the ray and the equatorial diameter, is LEP. For, since EL is equal to EX,63 and
ML to MX,64 and EM is common, therefore angle MEL is equal to angle MEX.65
But angle MEP is right, and angle MEO,66 therefore the remaining angle LEP 67

50 This is a clear indication that Ptolemy thinks of the analemma model as a simplifying
assumption, since by his time it was well known that the sun does not orbit the earth in a
simple sphere—although the model may have been developed at a time when this was still
held to be so.

51 The MS reads νοείσθαι, Heiberg corrects to νοείσθω.
52 Elements I.11; set square.
53 This is the arc of the seasonal hour, ηs.
54 Elements I.12; set square.
55 Elements I.post.3; compass. See the discussion of this construction below.
56 Elements I.post.1; side of set square.
57 Elements I.11; set square.
58 Namely, the hectemorius arc.
59 Elements XI.12. That is, the line about which the hectemorius rotates.
60 Elements XI.6, 7 and 18.
61 Elements XI.3.
62 Note the clear language of modeling here. Ptolemy does not assert that LE is the line of

the solar ray, but is in line with it—that is, models it.
63 They are both radii of the sphere.
64 By construction.
65 That is, because △MEX ∼= △MEL, by Elements I.8.
66 Following this, both the Greek and the Latin include the phrase ‘and since angle EML’

(έπει καὶ ἡ ὑπὸ τῶν ΕΜΛ, quoniam et qui sub EML), which appears to be an interpolation,
and has been noted as such by the modern editors.

67 Here the manuscript includes the phrase ‘to angle MEX, that is’ (τῇ ὑπὸ ΜΕΞ τουτέστιν,
ei qui sub MEX hoc est), which does not make sense and has been marked as an interpolation
by the modern editors.
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Figure 9: Perspective diagram for Analemma 6. Elements in gray do not correspond to any
element in the manuscript diagram.

is equal to angle XEO. Which was to be shown.68

The key to understanding Ptolemy’s argument is to consider the analemma
figure as a representation of the solid sphere. There are a number of indications
that this was Ptolemy’s intention. The expression that he uses when he speaks
of the monthly parallel, ‘let it be imagined’ (νοείσθω), is a standard expression
in Greek geometric texts used to introduce solid constructions that cannot be
fully, or accurately, represented by the plane figure.69 When the semicircle of
the parallel month-circle is introduced in the construction, it is imagined to be
in the plane of the analemma, because it is, in fact, perpendicular to this plane.
Ptolemy makes this clear in the proof when this circle is imagined rotated into
its ‘proper position’—namely, where it is found in the solid configuration. It
seems likely that Ptolemy’s readers could be expected to know how to view
an analemma diagram as a solid configuration, or perhaps to have read the
text while working with a solid sphere.

In order to illustrate this point, we will explain the argument with a
perspective diagram. Considering Figure 9, let BPA be the local horizon and
BGA the local meridian. Then the terrestrial latitude, φ, and the annual position

68 Heiberg, Opera astronomica minora, pp. 195–198; Edwards, Ptolemy’s Περὶ ἀναλήμματος,
pp. 43–46.

69 See, for examples, Elements XII.13, 16, Conics I.52, 54, 56, and Theo. Spher. I.19. The
expression is also found many times in Archimedes’ corpus. For a discussion of the various
ways in which this verb is used to introduce objects, see Netz, ‘Imagination’.
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of the sun, δ(λ), are given by the inclination of the pole and the declination of
the month-circle of the sun, TKLZ. Ptolemy makes no mention of this, simply
assuming that they are fixed by the geometry of the figure. With TKLZ as the
month-circle, section KLZ, being above the horizon, represents the motion of
the sun from sunrise in the east to midday. Hence, the seasonal hour, ηs, must
be taken as given along this arc, say as arc KL. This arc is taken as arbitrary
in the construction. Because Analemma 6 is a theorem of synthetic geometry,
however, there is no mention of any objects being given.70

Then, since L is the position of the sun and P is the east point of the
local horizon, the hectemorius is the great circle PLN passing through P and
L, and the hectemorius arc is PL. The construction then amounts to using
analemma methods to project these points onto the analemma plane, while
the proof amounts to showing that the arc that results from this projection is
equal to arc PL.

The hectemorius circle is first projected orthogonally onto the analemma
as line NMEN ′, such that P maps to E, and L to M (M.1, M.2). Next, the
location of L on the hectemorius is rotated into the plane of the analemma
in two ways, by the method set out in the first example treating analemma
methods above, Section 2.1. That is, L is mapped to the intersection of the
circle about center M with distance ML, which is perpendicular to line EN,
with the analemma circle, at point X. This construction is effected by taking
X as the intersection of a circle drawn about center M with distance ML. In
this way, L maps to X. The circle that produces X is not actually drawn in
the plane of the analemma—probably because arc lengths are not preserved
on it. Then, we project one of the endpoints of the diameter about which
the hectemorius rotates into the analemma by erecting a perpendicular to the
orthogonal projection of the hectemorius circle, NEN ′, at E, so that P maps
to O (M.3)—effectively, rotating the hectemorius circle into the plane of the
analemma (M.4). Ptolemy does not talk about the hectemorius circle as rotated,
he simply constructs the points X and O in the plane, first with the distance
of a circle that is not itself drawn and then by constructing a perpendicular.
The production of point X with distance ML is an interesting construction
because it differs from any construction performed in the problems of Elements
I–VI, insofar as the circle about center M is not actually drawn—only the
point that is cut off by the circle is produced. In the Elements, such points
are cut off on lines, as justified by Elements I.3, but not on circular arcs. We
may regard this construction as an analemma construction, and we will see

70 In general, Greek mathematicians only use the language of givens when treating problems,
or in theorems written to facilitate certain problem-solving practices—for example, we do not
read of objects being given in the synthetic theorems of the Elements; see Acerbi, ‘The Language’,
and Sidoli, ‘The Concept’.
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that such constructions are often employed in the nomographic procedures
on the analemma plate. Finally, with points X and O produced, it is a
matter of elementary geometry to show that △MEL ∼= △MEX, so that
90°− ̸ MEL = 90°− ̸ MEX, that is arc LP = arc XO.

The analemma diagram, Figure 8, represents three circles in three different
planes superimposed upon one another in the plane of the figure—which is
the analemma. The circle of the meridian, ADBG, lies in the plane of the
figure. The circle of the hectemorius, NPN ′, is perpendicular to the plane
of the figure and intersects it in line NEN ′. The month-circle, TKLZ, is
perpendicular to the plane of the figure and intersects it in line THMZ.
Although I have spoken of rotations and projections to help explain the solid
configuration that motivates the construction, all but one of the constructive
steps presented in the proof in Analemma 6 are carried out directly in the
plane of the analemma—following what appears to have been a common
practice among Greek geometers for handling solid configurations.71 Moreover,
because this is ostensibly a purely geometric argument, I have justified each
constructive step with a problem, or postulate, from the Elements as well as
by operations of a set square and compass as described in Analemma 11.

The next two sections of the Analemma set out the constructions for the
remaining five angles with no proofs.72 For our purposes, here, we will simply
note that the arc of the meridian, which completes the angle pair with the
hectemorius, is equal to arc AO in Figures 8 and 9.

This synthetic proof—which makes explicit reference to the solid sphere—pro-
vides the background to understanding analemma methods. Since we will not
return to the solid configuration in this discussion, it may be helpful to
summarize the analemma construction of the hectemorius-meridian angle pair.
The hectemorius arc is found as follows:
Hec.1: The diameter of the hectemorius circle is found by taking the orthogonal

projection of the solar position, L, onto the meridian plane, M (M.1);
and then joining this with the center, E, extended to produce NMEN ′

(M.2).
Hec.2: The hectemorius arc is found by rotating the hectemorius circle into

the plane of the meridian circle about its diameter, NMEN ′ (M.4), such
that P, or E, the east point, maps to O, and L, the solar position, maps
to X. Using analemma methods, we find X by taking the intersection of a

71 See note 11, above.
72 Luckey, ‘Das Analemma’, cols 25–26, gives a clear account of how the remaining analemma

constructions are related to the solid sphere. Following these descriptions it would be a relatively
simple matter to reconstruct proofs along the lines of Analemma 6. For a summary of the
constructions of all the arcs in the analemma, see Guerola Olivares, El Collegio Romano,
pp. 81–101.
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circle of radius ML about center M, or a perpendicular erected to NEN ′

at M, with the analemma, and we find O by taking the intersection of a
perpendicular to NEN ′ erected at E with the analemma (M.3).

Because the meridian circle is in the same plane as the figure, which is the
analemma plane, the analemma construction of the meridian arc is somewhat
simpler:
Mer.1: The diameter of the hectemorius circle is found, as before, by taking

the orthogonal projection of the solar position, L, onto the meridian
plane, M (M.1); and then joining this with the center, E, extended to
produce NMEN ′ (M.2).

Mer.2: The meridian arc is found by rotating the hectemorius circle about
NMEN ′, such that, as before, P, or E, maps to O, and the meridian arc is
cut off on the meridian circle between O and A—the south point (M.4).
Again, using analemma methods, we simply erect the perpendicular from
E to NEN ′ (M.3).

5.2. A metrical analysis

In Analemma 9, after introducing the methods of nomographic computation
discussed above, Ptolemy explains that each of the six principal arcs can also
be calculated using geometric, indeed trigonometric, means:73

Such a determination, for those who prefer, would also exist precisely by means
of lines (διὰ τῶν γραμμῶν),74 although it would be easily brought about through

73 Again, I have translated the Greek for this passage.
74 Διὰ τῶν γραμμῶν is a technical expression in Ptolemy’s writings; see Heiberg, Syntaxis

mathematica, vol. I, pp. 32, 42, 251, 335, 380, 383, 416, 439; vol. II, pp. 193, 198, 201,
210, 321, 426, 427, 429; Heiberg, Opera astronomica minora, pp. 202, 203. It designates the
geometric means through which a computation can be, or has been, carried out, either by
elementary geometry, or by chord-table trigonometry. When it is used in the Almagest, it is in
reference to either an actual calculation or to a metrical analysis, where the later is understood
as showing that the former is, in principle, possible. As Edwards, Ptolemy’s Περὶ ἀναλήμματος,
p. 107, n. 512, suggests, the phrase is closely related to chord-table trigonometry, and in a
number of places in the Almagest it clearly must indicate computation through chord-table
trigonometry; see Heiberg, Syntaxis mathematica, vol. I, pp. 251, 335, 380, 439; vol. II,
pp. 321, 426, 427. In a number of other places it refers to a computation, which, considering
the context, was almost certainly carried out through chord-table trigonometry; see Heiberg,
Syntaxis mathematica, vol. I, pp. 383, 416, 439; vol. II, p. 429. And, finally, in some cases it
refers to a metrical analysis that is intended to justify a computation; see Heiberg, Syntaxis
mathematica, vol. II, pp. 193, 198, 201, 426.

We find two uses of the phrase διὰ τῶν γραμμῶν in reference to the same metrical analysis,
which, taken together, make it clear that we must understand this metrical analysis as justifying,
or standing in for, trigonometric calculation; see Heiberg, Syntaxis mathematica, vol. II, pp. 426,
427, and Nathan Sidoli, ‘Mathematical Tables’, pp. 25–26.
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the analemma itself, even if it is not exactly the same as that through geometrical
demonstrations (διὰ γραμμικῶν ἀποδείξεων), but rather near enough for theory in
agreement with the senses, to which the practical goal of the proposed task leads.75

He then provides what I call a metrical analysis to show that given the
declination of the sun, δ(λ), terrestrial latitude, φ, and seasonal hour, ηs, each of
the six angles is also given—for λ = 0° and λ = 180° in Analemma 9, and for
all other λ in Analemma 10. A metrical analysis is a type of argument about
what is given that is found in the writings of both Heron and Ptolemy, in
which each step can generally be justified by reference to theorems of Euclid’s
Data, but which itself justifies, or establishes the possibility of, a computational
procedure involving arithmetical operations—adding, subtracting, multiplying,
dividing, and taking square roots—and, in the case of Ptolemy, entries into a
chord table.76 After reading one of Ptolemy’s metrical analyses, we will discuss
the significance of this type of argument.

In the foregoing passage, the distinction between producing the final
determinations ‘by means of lines’, or ‘through geometrical demonstrations’, on
the one hand, and those brought about ‘through the analemma itself ’, on the
other, addresses the fact that there will probably be slight differences in the
values obtained through chord-table trigonometry, as justified by the metrical
analyses of Analemma 9 and 10, and those obtained through the analog,
or nomographic, methods, that will be provided in Analemma 12–14. Here,
Ptolemy claims that the minor differences in these values will not undermine
the overall validity of the analog calculations, which will produce values good
enough for the practical goals of the treatise.

After giving the metrical analysis for the six angles in the case where the sun
is at one of the equinoxes, in Analemma 9, the passages of metrical analysis
in Analemma 10 that concern the hectemorius-meridian pair read as follows
(Figure 10):77

75 Heiberg, Opera astronomica minora, pp. 202–203; Edwards, Ptolemy’s Περὶ ἀναλήμματος,
p. 50.

76 Metrical analysis is my terminology, but this type of argument is called an ‘analysis’ by
Heron throughout his Measurements, and by Pappus in his commentary on Ptolemy’s Almagest
V; see Rome, Commentaires, p. 35. I have not found a passage where Ptolemy himself refers
to this type of argument as an ‘analysis’. I have discussed elsewhere the role of this type of
argument with respect to mathematical tables in the Almagest; see Sidoli, ‘Mathematical Tables’,
pp. 25–26. See also the discussion by Acerbi, ‘I codici stilistici’, pp. 201–208; note, however,
that his attempt to rewrite Ptolemy’s prose should be treated with caution—there is good reason
why Ptolemy does not include the passages that Acerbi adds to the text (see n. 107, below).

77 Only the beginning of this passage is preserved in Greek; I have translated first from the
Greek and then from the Latin. In the palimpsest this passage begins Section 5. Here I translate
only those passages necessary for the determination of the hectemorius-meridian angle pair.
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As for the remaining monthly [circles],78 let meridian ABGD be set out along with
the diameters upright upon one another and axis EZ. And let a diameter, HTK, of
any of the southern monthly parallels to the equator be produced through, upon
which let semicircle HLK imagined (νοούμενον)79 to the east be drawn.80 And let axis
EZL be extended,81 obviously bisecting diameter HTK at T and semicircle HK at L.82
And let line MN be produced through [as a perpendicular] to HT,83 dividing the
section, HN, of the semicircle above the earth from that below the earth. And with
arc NX being determined as the given hours,84 let a perpendicular, XO be produced
from X to HM.85 And through O let perpendiculars upon AE, POR, and upon GE,
SOC, be produced through.86

Then, since arc HTK of the meridian is given,87 and the double of line ET
subtends its remainder in the semicircle, the ratio of HTK and ET to the diameter of
the meridian will be given.88 Likewise, since arc AZ, of the elevation [of the pole], is
given,89 angle MET of right-triangle MET will also be given. So, the ratio of ET to
each of EM and MT will also be given,90 and, moreover, that of diameter HK to each
of them.91 But, the double of line MT subtends the double of arc LN, so arc LN will

78 That is, besides the month-circle at the equinoxes.
79 The use of ‘imagined’ is a reminder that, in order to understand the analemma diagram,

we must consider it as a representation of a solid configuration.
80 The assumption of this configuration produces the first two given magnitudes: φ and δ(λ).
81 Elements I.post.2; side of the set square.
82 Elements III.3, I.def.17.
83 Elements I.11; set square. The location of M on the horizon is specified in the phrase that

follows. The fact that this line must be perpendicular is made explicit in Moerbeke’s Latin.
84 This is the final given magnitude, ηs.
85 Elements I.12; set square.
86 Elements I.12; set square.
87 In terms of the Data, this is so because both meridian ADBG and line HK are assumed

to be given in position, so that, by Data 25 and 26, line HK is given in position and in
magnitude, so that, by Data Def.8, arc HTK is given in position and magnitude. Edwards,
Ptolemy’s Περὶ ἀναλήμματος, p. 111, n. 537, points out that computationally this follows since
arc HZK = 180°−2δ(λ).

88 That is (HTK : diameterm) and (ET : diameterm) are given. The first ratio is given by
Data 1. The second ratio is given because, by Data 88, ̸ HEK is given, so that, by Data 2, half
of it, ̸ HET is given. Then, by Elements I.32 and Data 4, the angles of △HET are given, so
that, by Data 40, △HET is given in form. Then, by Data Def.3, (ET : EH ) = (ET : radiusm)
is given, so that, by Data 8, (ET : diameterm) is given. In terms of computation, the use of
Data 88 would involve entering into a chord-table, as would the computation of ratios based
on angles implied by the use of Data 40.

89 This is φ—assumed to be given by the geometric configuration, or by taking the meridional
altitude of the pole, in degrees.

90 That is, since by Elements I.32 and Data 4, the angles of △MET are given, by Data 40,
(ET : EM ) and (ET : MT ) are given. The computation of these ratios would involve entering
into a chord-table.

91 That is, by Data 8, (EM : diameterm) and (MT : diameterm) are given.
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also be given,92 as well as the remainder NXH from a quadrant.93 But NX is given,94
therefore both LX and XH will be given.95 But, the double of line XO subtends the
double of arc HX, and the double of line OT [subtends] the double of arc XL,96 so
the ratio of XO and OT to diameter HK is given,97 and because of this also to that of
the meridian.98 But, since the ratio of TM [to diameterm] is also given,99 the ratio of
MO [to diameterm] will be given.100 And it is that as EM to MO, so is TM to MP
and ET to OP,101 for the triangles EMT and OPM are equiangular.102 Therefore, the
ratio of MP and OP to the diameter of the meridian is given.103 On account of this,
also the ratio of ES [to diameterm], and of the whole of EMP, which is OS [to
diameterm, will be given].104

With these things demonstrated, with center O and distance OX let a point of
the meridian, Y, be determined.105 […] And let EY […] and EO […] be joined.106

92 That is, since by Data 2, 2MT is given, arc 2LN is given by Data 88. Computationally,
we enter into a chord-table.

93 Data 4.
94 This is determined by ηs. Geometrically, it is simply assumed as given by taking the

seasonal hour from sunrise to noon going from N through X to H, or from noon to sunset
going back from H to N. Arc NH can be divided into six parts using one of the various
trisections of an angle preserved in Greek sources; see Heath, A History, vol. I, pp. 235–244.
Computationally, arc NX = ηs · arc NH/6; see Edwards, Ptolemy’s Περὶ ἀναλήμματος, p. 112,
n. 542.

95 Data 3 and 4.
96 That is, in semicircle HLK, by Data 87, 2XO and 2OT are given; so by Data 2, XO and

OT are given.
97 Data 1.
98 That is, by Data 8, (XO : diameterm) and (OT : diameterm) are given. The Greek

fragment ends here—we continue with Moerbeke’s Latin. With regard to my translation choices,
see note 44, above.

99 That is, (TM : diameterm) is given, as shown above.
100 That is, since (TO : diameterm) and (TM : diameterm) are given, by Data 8, (TO : TM )

is given. Hence, by Data 5, (TO : (TO − TM )) is given. Hence, again by Data 8,
((TO−MT ) : diameterm) = (MO : diameterm) is given.

101 Elements VI.4.
102 Elements I.15 and 32.
103 That is, (EM : TM ) = (MO : MP ), and (EM : ET ) = (MO : OP ), and each of

(EM : TM ) and (EM : ET ) are given, so by Data 8, (MP : diameterm) and (OP : diameterm)
are given.

104 That is, since (ME : diameterm) and (MP : diameterm) are given, by Data 8, (ME : MP )
is given. Hence, by Data 6, ((ME + MP ) : (ME )) is given. Hence, again by Data 8,
((ME+MP ) : diameterm) = (OS : diameterm) is given.

105 Elements I.11; compass.
O reads G in place of Y—which error was noted by the modern editors.

106 Elements I.post.1; side of the set square. Heiberg, Opera astronomica minora, pp. 206–209,
Edwards, Ptolemy’s Περὶ ἀναλήμματος, pp. 54–56.
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Figure 10: Analemma 10: Partial diagram of the analemma. Objects which do not concern
the hectemorius-meridian angle pair have been omitted. Elements in grey do not appear in the
manuscript diagram.

As before, in Figure 10, the solar position is projected into the analemma in
two ways. Since O is the orthogonal projection of the solar position, X, onto
the plane of the meridian—produced by dropping a perpendicular from X to
the diameter of the solar month-circle, HK (M.1)—the line OE, joining O
with the orthogonal projection of the east point, E, will be the diameter of the
hectemorius circle (M.2). Hence, the hectemorius arc, YE ′′, will be produced by
rotating the hectemorius circle into the meridian (M.4)—that is, by taking Y
on the analemma circle such that OY = OX, and erecting EE ′′ perpendicular
to OE (M.3). Since, by Elements I.29, ̸ YEE ′′= ̸ EYO, Ptolemy will simply
work with ̸ EYO—probably to avoid having to produce EE ′′ in an already
cluttered diagram. The meridian arc is found by extending the diameter of the
hectemorius circle, OE, to meet the meridian at E ′, and taking the arc between
this intersection and the south point, arc AE ′. Since arc AE ′= ̸ PEO, Ptolemy
simply works with this angle—again to avoid producing any unnecessary lines.

Up to this point in the metrical analysis, Ptolemy has dealt with all lines
in terms of ratios to other lines. This practice agrees with that found in the
Almagest for plane trigonometry, and derives from the fact that when we
enter into a chord table with an angle, the resulting chord is always given in
terms of the radius of the circumscribing circle—that is, as a ratio.107 In what

107 This is the reason why Acerbi, ‘I codici stilistici’, pp. 204–208, has gone too far in
attributing to Ptolemy claims about given lines in his rewriting of the ancient text.
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follows, however, he will assert that the radius of the meridian is given, and
he will then state the other lengths as also given—that is, given in terms of
the diameter of the meridian.

The foregoing passage continues to argue that the six principal arcs are
all given. We read only those passages pertaining to the hectemorius-meridian
pair:108

Since, then, in the preceding, the angle EOY was shown to be right,109 while
hypothenuse EY, being a radius of the meridian, is given,110 as well as OY, being equal
to OX,111 angle EYO, containing that of the hectemorius circle, will be given.112 […]
Then, since both OP and EP, of right-angled [triangle] EOP are given,113 hypothenuse
EO and angle OEP, which makes the meridian arc, will be given.114 […]115

The foregoing metrical analysis constitutes a general argument that, where
δ(λ), φ, and ηs are assumed as given, the two arcs of the hectemorius-meridian
angle pair are also given—that is fixed, or determined. The argument, as all
extant metrical analyses, works on two levels: (1) as a purely geometrical
proof, in which each step can be justified by theorems of the Data, and (2) as
the articulation of an effective computational procedure, involving the basic
arithmetic operations, taking square roots and entries into a chord-table.116 That
is, in the Analemma, for Ptolemy, given means both geometrically given—that is,
producible using the constructive methods of Elements I–VI—and numerically
given—that is, computable as some numerical value.117

As he stated at the beginning of Analemma 9, this argument constitutes
a demonstration that these arcs can be determined ‘by means of lines’ (διὰ
τῶν γραμμῶν)—that is, they are computable through geometric, or rather

108 There is no Greek for this passage.
109 This is a reference to the argument in Analemma 6, in which it was shown, in Figure 8,

that △LME ∼= △XME and LM was imagined as constructed perpendicular to the plane of
the meridian.

110 That is, assumed as given—given by the geometry of the figure, or taken, as say 60p,
following the practice of the Almagest.

111 Data 2, since (OX : diameterm) was shown to be given.
112 Data 43. Computationally, this involves entering a chord-table.
113 Data 2, since (OP : diameterm) and (OS : diameterm) were shown to be given.
114 EO is given by Data 52, 3 and 55; so that, by Data 39, ̸ OEP is given. Calculating this

angle would involve Ptolemy’s usual convention of taking OP when OE is assumed as given,
and entering a chord-table.

115 Heiberg, Opera astronomica minora, p. 209; Edwards, Ptolemy’s Περὶ ἀναλήμματος, p. 56.
116 Edwards, Ptolemy’s Περὶ ἀναλήμματος, pp. 115–117, gives an example calculation following

Ptolemy’s methods that proceeds along the same lines as that established by Ptolemy’s metrical
analysis.

117 Ptolemy does not express any concern with the fact that the numerical value used to
express certain geometric objects will not be perfectly precise.
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trigonometric, methods.118 In the context of this treatise, this is contrasted
with the analog computations that will be outlined below. The determinations,
and likewise computations, ‘by means of lines’ are said to be more precise than
those of the nomographic procedures to which we now turn.

5.3. An analog computation

In Analemma 11, Ptolemy describes the production of an analemma plate, on
which ‘with only the compass and the set square’ (διὰ μόνου τοῦ τε καρκίνου
καὶ τοῦ ὀρθογωνίου πλατύσματος)119 constructions of the six principal arcs can
be carried out.120 The plate is a ‘drum-shaped plane’ (τυμπανοειδὲς ἐπίπεδον) on
which certain, permanent lines are drawn. Ptolemy gives instructions for how
this plate should be made using a lettered diagram that serves as a sort of
mathematical recipe for a physical construction. The finished plate, however,
would probably not have had labels on it, as in Figure 11.

The plate may be made of inscribed lines on bronze or stone, or colored
lines drawn on wood, which is then covered with wax so that the horizon and
gnomon can be drawn in the wax.121 The wooden tablet—which we will treat
here—is inscribed with red lines for the meridian and the diameter of the
equator and black for three month-circles. Quadrants, graduated at 1° intervals,
are produced on one or both sides of the equator, as well as in one of the
quadrants of the outer circle. In each quadrant of the outer circle a set of seven
marks is drawn for the elevation of the pole at seven well-known latitudes, φ, of
Greco-Roman geography: 16 1/3 1/12°, 23 1/2 1/3 °, 30 1/3 °, 36°, 40 1/2 1/3 1/12°, 45°,
and 48 1/2°.122 Three month-circles are inscribed corresponding to the following
solar declinations, δ(λ): 23 1/2 1/3°, 20 1/2°, and 11 2/3°.123 The first month-circle
is used when the sun is at the tropics, in the signs of Cancer or Capricorn
(λ ≈ 90°, 270°); the second is used when the sun is in Gemini, Leo, Sagittarius
or Aquarius (λ ≈ 60°, 120°, 240°, 300°); the third is used when the sun is
in Taurus, Virgo, Scorpio or Pisces (λ ≈ 30°, 150°, 210°, 330°); while the
equator is used when the sun is in Aries or Libra (λ ≈ 0°, 180°). The wooden
plate is orientated by rotating it such that the elevation corresponding to the
given terrestrial latitude, φ, is in the zenith and drawing the horizon and the
gnomon in the wax. In the operations to be described below, arcs will be set

118 See note 74 for a discussion of the meaning of the phrase ‘by means of lines’ (διὰ τῶν
γραμμῶν).

119 Literally, ‘crab’ and ‘rectangular plate’.
120 Heiberg, Opera astronomica minora, p. 212.
121 Presumably working with bronze or stone involved having a number of different sets of

plates for the different latitudes.
122 These latitudes should be compared with those in Almagest II.6 and Geography I.23.
123 These should be compared with the declinations in Almagest I.5.
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Figure 11: Analemma 11: The wooden analemma plate, rotated to carry out computations at
the latitude of Rhodes, φ = 36°. Red lines are shown in gray, dotted lines are to be drawn in
the wax.

out on the meridian. These arcs can then be measured by carrying them, with
the compass, to one of the graduated quadrants at the side, which have the
same diameter as the meridian.

In order to follow the method of the analog computation, we will read
Analemma 13 closely, with a new diagram for each step of the procedure.124
Analemma 13, in which Ptolemy describes the analemma-plate computation
for the six principal angles, begins as follows:125

Again, [1] let a diameter of any one of the monthly circles be modeled, and let it be
ZHTK, upon which is the eastern semicircle ZLK.126 [2a] And with center T and

124 Luckey, ‘Das Analemma’, cols 32–39, gives a complete account of the nomographic
computation for all of the angles. See also the account by Guerola Olivares, El Collegio Romano,
pp. 122–131.

125 There is no Greek text for this part of the treatise; I translate Moerbeke’s Latin—omitting
those passages unnecessary to the computation of the hectemorius-meridian pair.

126 L has not actually been produced yet, so at this point it serves as an unspecified name
for the semicircle. The positioning of L and M in the diagram provided by Heiberg, Opera
astronomica minora, p. 219, which accurately reflects that on O f. 64v, is incorrect.
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Figure 12: Analemma 13: Computing on the analemma plate, steps [1] and [2]: (left) initial
set up, determination of δ(λ) and φ; (right) determination of L, the position of the horizon
on the month-circle.

distance TA, let a point of the meridian, L, be determined,127 by which ZL—the
semicircle above the earth—and LK—below the earth—are separated. [2b] But point
L is determined with the set square (per platinam rectangulam) if the angle will have
been brought to H such that the other side is fitted to ZK—for what the remaining
side cuts on the semicircle will be the point [L ], because the perpendicular produced
from H of HK will be the [common] section of the planes of the horizon and the
monthly circle.128

In the first step, [1], we orientate the plate to the given latitude—say
φ = 36°, the latitude assumed for Rhodes—and draw the horizon, AB, and the
gnomon, GD, into the wax on the plate. In the actual procedure, we would
not need to label these lines, but we label them in Figure 12 for the sake of
clarity. We then chose one of the month-circles, which will determine H and
T—the plate can be rotated 180° so that any month circle can be taken in
the northern or southern direction.

The second step, [2], can be carried out in two ways. We determine the
point on the month-circle that divides between day- and night-time, L, by [2a]
either using the compass to take the intersection of a length TL = TA on the
month-circle, [2b] or using the set square to take the perpendicular from H,
the intersection of the diameter of the month-circle and the horizon. That we
must set TL = TA is clear from considering the solid configuration—as hinted

127 The fact that TA = TL can be shown by considering the solid configuration—see below.
128 Heiberg, Opera astronomica minora, p. 219; Edwards, Ptolemy’s Περὶ ἀναλήμματος,

pp. 68–69.
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Figure 13: Analemma 13: Computing on the analemma plate, steps [3] and [4]: (left)
determination of the day- and night-time hours; (right) projection of the hours onto the
diameter of the month-circle.

at in the text. If ZLK is rotated into its proper position, A and L will both lay
on the great circle of the horizon and T is some point on the gnomon. Since
the gnomon is perpendicular to the horizon and passes through its center, by
an argument similar to that in Theodosius’ Spherics I.1, the distances from T
to every point on the great circle of the horizon are equal.

Analemma 13 continues, as follows:
Then, [3] let each section [ZL and LK] be divided equally in 6, and with these points,
[4] by an application of the set square let points on ZK made by perpendiculars to
it from the divisions determined on the semicircle be determined.129

It is not stated, in step [3], how to perform the division of the daytime
arc into six parts. Various possibilities come to mind. We could use one of
the purely geometrical solutions to this problem that are extant in the ancient
sources—for example, one from among those treated by Pappus in Collection
IV.130 Indeed, Pappus tells us that he showed how to trisect an angle in his
lost commentary to the lost Analemma of Diodorus.131 Alternatively, the plate
itself could be used to perform this division as follows:

• We draw an auxiliary circle with the same radius as the month-circle,
concentric with the meridian,

129 Heiberg, Opera astronomica minora, p. 219, Edwards, Ptolemy’s Περὶ ἀναλήμματος, p. 69.
130 See Hultsch, Pappi Collectionis, pp. 272–288, and Sefrin-Weis, Pappus. Book 4, pp. 146–155.

Heath, A History, vol. I, pp. 235–244, gives an overview of the ancient solutions to trisecting
an angle.

131 See Hultsch, Pappi Collectionis, pp. 244–246.
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Figure 13: Analemma 13: Computing on the analemma plate, steps [3] and [4]: (left)
determination of the day- and night-time hours; (right) projection of the hours onto the
diameter of the month-circle.
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Then, [3] let each section [ZL and LK] be divided equally in 6, and with these points,
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It is not stated, in step [3], how to perform the division of the daytime
arc into six parts. Various possibilities come to mind. We could use one of
the purely geometrical solutions to this problem that are extant in the ancient
sources—for example, one from among those treated by Pappus in Collection
IV.130 Indeed, Pappus tells us that he showed how to trisect an angle in his
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129 Heiberg, Opera astronomica minora, p. 219, Edwards, Ptolemy’s Περὶ ἀναλήμματος, p. 69.
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Figure 14: Analemma 13: Computing on the analemma plate, steps [5] and [6]: (left)
determination of the solar position, M, and its projection onto the diameter of the month-circle;
(right) determination of the solar position on the hectemorius circle in the plane of the
meridian, X.

• we transfer the daytime arc to this auxiliary circle with the compass,
such that one endpoint falls on the axis that bounds the outer graduated
quadrant,

• we project the other endpoint onto the outer graduated quadrant with
the set square,

• we read off the angle measure on the graduated quadrant and divide this
value by six,

• we mark this value off on the graduated quadrant and project this arc
back onto the auxiliary circle, and

• we transfer this arc back to the month-circle with the compass and mark
it off six times.

Since both the geometrical and analemma plate methods of producing the
hours are non-trivial, it seems likely that Ptolemy took his readers to have
some familiarity with these sorts of constructive procedures.

Step four, [4], is carried out by lining up one side of the set square on
the diameter of the month-circle such that the other side passes through the
hour points—as is made explicit in the text. The points on the diameter of
the month-circle are then marked at the angle of the set square.

The text continues, as follows:
But, [5] let one of them that is above the earth be that at M,132 and the ordinate

132 This is the given hour, ηs.
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Figure 15: Analemma 13: Computing on the analemma plate, steps [7] and [8]: (left)
determination of the diameter of the hectemorius circle and of the east point of the hectemorius
circle in the plane of the meridian; (right) determination of the hectemorius-meridian pair, XF
and OA.

with it, N, of those on ZH. Then, [6] with center N and distance NM, let point X
be determined on the meridian.133

Step five, [5], simply consists in choosing a pair of corresponding points
along arc LZ and line HZ for the solar position of the sun at the given hour,
M, and its projection onto the diameter of the month-circle, N.

In step six, [6], we find the projection of the solar position onto the rotation
of the hectemorius into the plane of the meridian—that is, the plane of the
analemma. Following the first example of the analemma methods in Section
2.1 and the construction provided in Analemma 6, this is found by setting the
stationary end of the compass on N, the mobile end on M, and then marking
the intersection of the mobile end with the meridian at X.

The material from Analemma 13 that concerns the hectemorius-meridian
pair concludes as follows:

And, [7] with the side of the set square brought to points E and N such that it
cuts the meridian at O, [8] arc XO will make the complement of the hectemorius,134
and that from X to the other intersection of the set square and the meridian, [F,] is
the hectemorius […] Again, arc AO will make that of the meridian […]135

133 Heiberg, Opera astronomica minora, p. 219; Edwards, Ptolemy’s Περὶ ἀναλήμματος, p. 69.
134 O reads ZO in place of XO—which error was noted by the editors.
135 Heiberg, Opera astronomica minora, pp. 219–220; Edwards, Ptolemy’s Περὶ ἀναλήμματος,

p. 69.



 MATHEMATICAL METHODS IN PTOLEMY’S ANALEMMA 7170 NATHAN SIDOLI

A B
E

D
K

Z

G

H

T
L

M

N

X

O

F

A B
E

D
K

Z

G

H

T
L

M

N

X

O

F

Figure 15: Analemma 13: Computing on the analemma plate, steps [7] and [8]: (left)
determination of the diameter of the hectemorius circle and of the east point of the hectemorius
circle in the plane of the meridian; (right) determination of the hectemorius-meridian pair, XF
and OA.

with it, N, of those on ZH. Then, [6] with center N and distance NM, let point X
be determined on the meridian.133

Step five, [5], simply consists in choosing a pair of corresponding points
along arc LZ and line HZ for the solar position of the sun at the given hour,
M, and its projection onto the diameter of the month-circle, N.

In step six, [6], we find the projection of the solar position onto the rotation
of the hectemorius into the plane of the meridian—that is, the plane of the
analemma. Following the first example of the analemma methods in Section
2.1 and the construction provided in Analemma 6, this is found by setting the
stationary end of the compass on N, the mobile end on M, and then marking
the intersection of the mobile end with the meridian at X.

The material from Analemma 13 that concerns the hectemorius-meridian
pair concludes as follows:

And, [7] with the side of the set square brought to points E and N such that it
cuts the meridian at O, [8] arc XO will make the complement of the hectemorius,134
and that from X to the other intersection of the set square and the meridian, [F,] is
the hectemorius […] Again, arc AO will make that of the meridian […]135

133 Heiberg, Opera astronomica minora, p. 219; Edwards, Ptolemy’s Περὶ ἀναλήμματος, p. 69.
134 O reads ZO in place of XO—which error was noted by the editors.
135 Heiberg, Opera astronomica minora, pp. 219–220; Edwards, Ptolemy’s Περὶ ἀναλήμματος,

p. 69.

MATHEMATICALMETHODS IN PTOLEMY’S ANALEMMA 71

In step seven, [7], we determine the diameter of the hectemorius circle by
placing the angle of the set square at the center of the figure and passing one
side over point O so that the other side falls above the earth, at point F.

In the final step, [8], we note that XF is the hectemorius arc and AO is the
meridian arc. These can be measured by placing the compass points at their
endpoints and then transferring them to the graduated quadrant at the equator.

By following a series of physical manipulations of this sort, each of the six
principal arcs can be computed nomographically.

6. Conclusion

Following the details of Ptolemy’s presentation of the Analemma, as we have
done in this paper, has made it clear that the analemma methods, as a loose
collection of problem-solving methods in the science of gnomonics, were closely
associated with various instrumental practices. We have seen both a restriction
to operations that can be performed by abstractions of realizable instruments
and explicit instructions for the production and use of an analemma plate as
a tool for analog computations. This basis in instrumental practice, and its
justification through metrical analysis, appears to have been a significant part
of Ptolemy’s mathematical bequest to scholars of the mathematical sciences in
the late ancient and medieval periods. This explicitly instrumental approach,
which is not found in the extant writings of authors like Euclid or Diophantus,
was, nevertheless, an important aspect of the Greek mathematical sciences.136

Although there is one theorem in the Analemma, the analemma methods,
as they are preserved in ancient and medieval sources, were clearly focused
around problem-solving—based on operations that can be performed with a
real compass and set square. This provides us with an interesting example of a
mathematical practice that is clearly the articulation and abstraction of an actual
instrumental practice. In fact, the contrast between the constructive methods
of gnomonics and those of Euclid’s Elements, allows us to cast the Euclidean
problems in a new light. It is often claimed that Euclid’s postulates derive from
the operations of a compass and a straightedge,137 but in fact they are more
abstract than this. For example, Elements I.post.1 can be used to join points
that are any distance apart, such as in Elements I.2, which a straightedge cannot
do. Of course, one could argue that the postulates in the Elements suppose
an indefinitely long straightedge—but there is no such thing. Again, Elements
I.16 requires that Elements I.post.2 be used to extend a line to any assumed
length, which a straightedge cannot do, since every actual straightedge is finite.

136 I have used this interpretation of Ptolemy’s Analemma as both computational and
instrumental to give an interpretation of the mathematical methods underlying Heron’s Dioptra
35 as an application of analemma methods; see Sidoli, ‘Heron’s Dioptra 35’.

137 See, for one of many examples, Mueller, Philosophy, pp. 15–16.
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Elements I.post.3 is used to produce a circle about a given point as center and
passing through another given point, which can be at any distance from the
center. Again, this is not possible with a real compass—since every compass
has a fixed finite radius. Moreover, as its application in Elements I.2 shows,
Elements I.post.3 cannot be used to produce a circle about a given point with
a given radius—but any actual compass can perform this operation. Hence, it
has sometimes been argued that Elements I.post.3 concerns the operation of
a compass that closes when it is no longer in contact with the plane—but
again, there is no such compass.138 In this way, we can contrast the level of
abstraction allowed in the Elements with that allowed in the Analemma, in
which every problem can be carried out with constructive operations that are
direct abstractions of the physical manipulations of a compass that can operate
with given radii and a set square—both of some preassigned, definite size.

Another interesting feature of the Analemma is its concern with providing
multiple methods for computing the same value. It is clear from the way in which
Ptolemy presents his procedures that a primary goal of the text is to provide
nomographic techniques, but this is proceeded by a full argument that the values in
question are both geometrically determined and computable through chord-table
trigonometry. This presentation constitutes a multilevel argument that the pro-
cedure—geometrical, computational, and nomographical—is complete. At the
most basic level, the theorems of the Data implied by the steps of the metrical
analysis insure that the geometric magnitudes are fixed; at the next level, the
metrical analysis itself provides confirmation that there is an effective procedure
for computing the value; and at the final level, the articulation of a geometric
and computational procedure assures us that the physical manipulations of the
analog computation will produce results that, although perhaps not terribly
precise, are, in principle, sound.

Although there is no evidence that Ptolemy’s Analemma was translated into
Arabic, the gnomonics of his predecessor Diodorus certainly was, and there
is clear evidence that mathematicians working in Arabic were familiar with
analemma methods already at the time of Ḥabash al-Ḥāsib in the early 9th
century.139 These methods must have come directly or indirectly from Greek
sources—since there is no evidence of analemma methods in other ancient
cultures.140 Hence, since Ptolemy’s Analemma presents the most complete

138 Heath, A History, vol. I, p. 246, recounts this interpretation of Euclid’s postulate by
Augustus De Morgan.

139 Edwards, Ptolemy’s Περὶ ἀναλήμματος, pp. 152–182, gives a full study of what is known
of Diodorus’ life and work. For evidence of the translation of, at least parts of, Diodorus’ work
into Arabic, see Kennedy, The Exhaustive Treatise, pp. 157–166, and Hogendijk, ‘Geometrical
Works’.

140 It used to be argued that analemma methods provide the best explanation for certain
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with given radii and a set square—both of some preassigned, definite size.

Another interesting feature of the Analemma is its concern with providing
multiple methods for computing the same value. It is clear from the way in which
Ptolemy presents his procedures that a primary goal of the text is to provide
nomographic techniques, but this is proceeded by a full argument that the values in
question are both geometrically determined and computable through chord-table
trigonometry. This presentation constitutes a multilevel argument that the pro-
cedure—geometrical, computational, and nomographical—is complete. At the
most basic level, the theorems of the Data implied by the steps of the metrical
analysis insure that the geometric magnitudes are fixed; at the next level, the
metrical analysis itself provides confirmation that there is an effective procedure
for computing the value; and at the final level, the articulation of a geometric
and computational procedure assures us that the physical manipulations of the
analog computation will produce results that, although perhaps not terribly
precise, are, in principle, sound.

Although there is no evidence that Ptolemy’s Analemma was translated into
Arabic, the gnomonics of his predecessor Diodorus certainly was, and there
is clear evidence that mathematicians working in Arabic were familiar with
analemma methods already at the time of Ḥabash al-Ḥāsib in the early 9th
century.139 These methods must have come directly or indirectly from Greek
sources—since there is no evidence of analemma methods in other ancient
cultures.140 Hence, since Ptolemy’s Analemma presents the most complete

138 Heath, A History, vol. I, p. 246, recounts this interpretation of Euclid’s postulate by
Augustus De Morgan.

139 Edwards, Ptolemy’s Περὶ ἀναλήμματος, pp. 152–182, gives a full study of what is known
of Diodorus’ life and work. For evidence of the translation of, at least parts of, Diodorus’ work
into Arabic, see Kennedy, The Exhaustive Treatise, pp. 157–166, and Hogendijk, ‘Geometrical
Works’.

140 It used to be argued that analemma methods provide the best explanation for certain
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explanation we have of the mathematical conceptions underlying analemma
methods, and since these methods were so fruitfully applied in the classical
Islamic period, if we want to fully understand the medieval development of
analemma methods, we should begin with a firm basis in Ptolemy’s text. The
key features of the Analemma that should inform our reading of the medieval
sources are (1) its essentially projective approach and (2) its interest in the
mathematical justification of the methods of analog computation.

Finally, the Analemma provides a well-contained example of the approach to
mathematical astronomy developed in the Hellenistic period and still practiced
by Ptolemy and others in the Roman Imperial period.

• A geometric model is posited, with relatively little attempt to argue that
it is a sound representation of the physical world.

• The model itself becomes the object of geometrical investigation and
geometrical claims that can be made about the model are assumed,
without comment, to apply also to the world.

• Numerical values, which are ostensibly empirical, enter into the model
as given parameters for computation.

• The mathematical methods of computation (λογιστική) are mixed with
the constructive methods of geometry, with no evidence for the division
of these two areas of mathematics that we find, for example, in the
Elements and certain philosophical authors.

• The geometrical methods of the Data are used as a theoretical basis for
a computational practice that is understood as producing measurements
of various aspects of the underlying geometric model.

Mathematical scholars of the late ancient and medieval periods, who read
Ptolemy as a mathematician, found in these aspects of his approach various
methods to articulate, critique and revise in their effort to further develop the
mathematical sciences.
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