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Abstract
The simulation of axisymmetric drop impact onto a solid surface is now commonplace, but precise agreement
between simulation and experiment is elusive, particularly when capillary effects are important. The reason
is related to the complex relationship between the contact angle and the contact line velocity. In fact,
most results are generated by assuming a constant value of the contact angle, or perhaps two values, for
advancing and receding contact lines. Here, a methodology similar to [1, 2, 3] was implemented for the
accurate calculation of surface tension forces in a volume-of-fluid based model, and the methodology was
extended to phenomena with moving contact lines. Different models of contact angle variation with contact
angle velocity were then implemented, to consider the effect of different choices of the relationship between
the contact angle and the contact line speed on predictions of drop impact.
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Introduction
The numerical simulation of interfacial flows has

a wide range of engineering applications. In many
of these applications surface tension matters. What
complicates the simulation of such flows is the pres-
ence of moving contact lines, and the surface ten-
sion associated with these. In numerical treatment
of moving contact lines, contact angles are required
and applied as a boundary condition at the contact
line. The equilibrium contact angle θeq, which is a
static contact angle, can be measured experimen-
tally. However, the dynamic contact angle (at a
moving contact line) is not in general equal to the
static contact angle, rather, it is well known that the
contact angle of the advancing and receding contact
lines depends on the velocity of the moving contact
line. However, determining this relationship is a dif-
ficult problem.

Renardy et al. [4] used a volume-of-fluid method
to impose a fixed contact angle condition in two di-
mensions. Liu et al. [5] modeled moving contact lines
assuming constant advancing θa and receding θr con-
tact angles. Baer et al. [6] developed a finite element
moving mesh model with a simplified linear relation-
ship between the contact angle and the contact line
velocity. Šikalo et al. [7] studied the drop impact
using a volume-of-fluid based method and a moving
contact line model with dependence on the instan-
taneous advancing/receding contact line velocity.

Here, a recent methodology for the accurate es-
timation of surface tension forces in a VOF frame-
work [1, 2, 3] is implemented and extended to in-
terface reconstructions and moving contact lines [8].
We have developed a model for evaluating surface
tension forces to high order accuracy and applied it
to moving contact lines. Our method is based on the
volume-of-fluid reconstruction of interfaces and ac-
counts for the dynamics of contact lines. Our code is
an extension of an early version of the ”Gerris” code
of Popinet [9] for the solution of the incompressible
Euler equations [10]. The code did not include a sur-
face tension implementation nor an implementation
to model viscous stresses. Over the past few years,
we have implemented surface tension and variable-
viscosity models in the code, and recently, we have
developed a model for moving contact lines and in-
corporated it into the code, for the simulation of
moving contact lines.

In the following sections, we present a brief de-
scription of the model, an overview of our numer-
ical methodology, and a description of the tech-
nique for curvature evaluation and the implemen-
tation of the contact angle boundary condition. We
also present two examples where contact lines drive

motion, to demonstrate the accuracy of the model.
Finally, we present computational results that com-
pare three dynamic contact angle models applied to
inclined droplet impacts, where the contact line ve-
locity varies along the moving contact line.

Formulation of the problem
The Navier-Stokes equations govern an incom-

pressible two-phase flow:

Ut + ∇ · (UU) =

−1
ρ
(∇p + ∇ · (µ(∇U + ∇UT )) + Fb)(1)

where U(X, t) is the velocity field, ρ(X, t) is the den-
sity, µ(X, t) is the viscosity, and Fb represents any
body forces acting on the fluid. Density and vis-
cosity may vary from phase to phase, but are as-
sumed constant in a particular phase. Each fluid is
considered to be incompressible; thus the continuity
equation

∇ · U = 0 (2)

is valid for the whole domain. For a two fluid system,
a characteristic function f (= 0 in fluid 1, and = 1 in
fluid 2) is used to track the evolution of the interface.
The advection equation for f is expressed as

∂tf + U · ∇f = 0 (3)

Solving this equation for f leads to volume-weighted
formulae for the density and viscosity:

ρ = ρ1 + (ρ2 − ρ1)f (4)

µ = µ1 + (µ2 − µ1)f (5)

where subscripts 1 and 2 refer to the two fluid phases
respectively.

An adaptive refinement projection method
based on a variable-density fractional-step scheme
is utilized to discretise equations (1)-(5) in space
and time. Variables are collocated at cell centers
and advection terms are discretised using a second-
order upwind scheme. A multilevel Poisson solver is
used to calculate the pressure. A face-centered ve-
locity field is exactly projected, and the cell-centered
velocity field is approximately projected, onto a
divergence-free velocity field, with the pressure field
obtained as the solution of a Poisson equation. Since
face-centered velocities are divergence-free, volume
fractions are advected using these velocities. The
”Continuum Surface Force” (CSF) approach [11] is
used to discretise the surface tension which is then



included in the momentum equation (1) as a com-
ponent of the body force.

The domain is discretised using adaptive grids.
The grid is locally refined by recursively dividing it
into subgrids. In this algorithm, cells that satisfy a
given criterion are seeded for refinement/coarsening.
Different criteria can be used to decide if a newly re-
fined grid is to be created. One attractive approach,
for example, is to refine the region around the inter-
face of a two-phase flow. This can be used to gener-
ate a high resolution adaptive remeshing around the
interface which results in more accurate calculations.

The volume-of-fluid model
In the VOF methodology, the discretised form

of the characteristic function f represents the frac-
tion of a cell filled with one of the fluid phases. Away
from an interface, f = 0 or 1; in cells cut by an inter-
face f is between zero and one. From one timestep
to the next, this interface representation is advected
in order to obtain new values of volume fractions in
each cell. A VOF method consists of two steps: an
interface reconstruction, followed by the advection
of the reconstructed pieces. A ”piecewise linear in-
terface calculation” (PLIC) as in [12] is used, along
with a Lagrangian advection algorithm. In the PLIC
technique, given the volume fraction in an interface
cell and an approximate normal vector to the inter-
face, a linear/planar interface is constructed within
each cell, corresponding exactly to the normal and
the volume fraction. Methods for calculating the in-
terface normal and curvature, and for implementing
the contact angle boundary condition, are described
in the following sections.

Normals, curvatures, and a surface tension
model

In a CSF/VOF methodology, surface tension
FST = σκδ is evaluated as a volume force [11], where
the delta function δ is usually discretised as ∇f̃ ,
and the curvature κ is evaluated as −∇· (∇f̃/|∇f̃ |),
where f̃ is a smoothed volume fraction field. Unfor-
tunately, this approach can be very inaccurate, and
this becomes most apparent when surface tension
forces dominate a phenomenon.

It has been recently shown [13, 14] that for a
CSF/VOF-based methodology, there are two ingre-
dients for the accurate representation of surface ten-
sion forces. The first is a proper discretisation of the
delta function δ; as in [13] and [14], we approximate
δ as ∇f .

The second ingredient is the accurate estimation
of interface curvature κ [1, 2, 3, 13]. The method we
have implemented is that of Sussman [1] and Fran-
cois et al. [3], in which a height function (HF) is

reconstructed from volume fractions and used to es-
timate the interfacial curvature to second order ac-
curacy.

Here, we extend this methodology to problems
with moving contact lines. We have implemented
height functions to evaluate κ and FST at contact
lines, that yield accurate estimates of κ and FST

and, that converge with mesh refinement. In our
implementation, height functions are also used for
computing normals to an interface, which leads to a
more accurate estimation of normals and, that also
converge with spatial refinement. This guarantees
that the normal vector ~n(X) to an interface is dis-
cretised in a way that is consistent with the discreti-
sation of the curvature κ.

The height function technique
The HF methodology is a VOF based technique;

a local height function is defined as the summation
of volume fractions in a direction most normal to
an interface, which we evaluate via a simple finite
difference discretisation of ∇f . In two dimensions,
a 7×3 stencil is constructed around a cell (i, j), as
illustrated in figure 1. In this case, |ny| > |nx|, there-
fore, height functions are constructed by integrating
volume fractions in the vertical direction as

hi,j =
j+3∑
j−3

fi,j∆yj (6)

where ∆yj denotes the mesh size in the y-direction.
These height functions can then be used to compute
the curvature and normals at the center of the cell
(i, j):

κ =
hxx

(1 + h2
x)3/2

(7)

~n(X) =
[

hx

−1

]
(8)

where hxx and hx are discretised using second-order
central-differences. In 3D, consider the case of |ny| >
|nz|&|nx|. Nine height functions are defined as

hi,j,k =
j+3∑
j−3

fi,j,k∆yj (9)

and the curvature and normals at the center of the
cell (i, j, k) can be written as

κ =
hxx + hyy + hxxh2

y + hyyh2
x − 2hxyhxhy

(1 + h2
x + h2

y)3/2
(10)



Figure 1. 2D example of a 7×3 stencil used to
construct height functions.

~n(X) =

 hx

hy

−1

 (11)

Contact angle boundary condition
The orientation of the interface near the contact

line reflects the contact angle, which is the angle be-
tween the normal to the interface and the normal to
the solid surface at the contact line. The implemen-
tation of the contact angle boundary condition both
for the curvature and normal is first explained for
two dimensions, and then for three.

In 2D, the contact line is a point where the in-

Figure 2. The contact angle θ defines the normal
~ns to the interface.

Figure 3. An example of extrapolating a height
function at the contact line to calculate a height
function in the ghost cells.

Figure 4. 3D illustration of the contact line.

terface meets a solid surface. Figure 2 shows a 2D
contact line and the contact angle θ. At the center
of contact line cells, the normal ~n(X) is re-oriented
to reflect the contact angle θ.

To calculate the curvature at the contact line,
we limit this discussion to 45 ≤ θ ≤ 135, so that
the height functions are constructed horizontally, as
illustrated in figure 3. An extrapolated height is
needed in the so-called ”ghost cells” to compute the
curvature at the contact line. This is obtained by re-
quiring that the line through hj=−1 and hj=0 reflect
the contact angle, i.e. ~ns is perpendicular to the line
that passes through hj=−1 and hj=0 (figure 3).

The approach used in two dimensions cannot be
easily extended to 3D contact lines. Consider a layer
of cells in the x− y plane just above a solid surface
(figure 4). For cell (i, j, 0), for example, the compo-
nent of a cell centered normal in the x − y plane is
defined as

~n(x, y) =
[

∂h/∂y
−1

]
(12)

where in this case, x is the direction most normal to
the contact line. The z−component of the normal is
then defined to reflect the contact angle.

To evaluate the curvature, the local height func-
tion for the contact line cell is constructed either in



the x or y direction depending on the largest compo-
nent of the normal in the x−y plane. At each contact
line cell, for a given contact angle, ghost cell height
functions are required to estimate the curvature: us-
ing the normal vector ~n(x, y) which was computed
for cell (i, j, 0) (figure 4), and the prescribed con-
tact angle, the height functions in the domain are
extrapolated to the ghost cells to reflect the contact
angle.

Numerical results on surface tension driven
flows

In this section, we present the results of our nu-
merical algorithm applied to contact line-driven phe-
nomena. First, consider a sessile 2D semicircle ini-
tially at rest, when suddenly a non-equilibrium con-
tact angle is imposed. Due to the difference between
the equilibrium contact angle and the initial contact
angle (θ = 90◦), the free surface will move toward a
circular shape defined by the prescribed contact an-
gle. Figure 5 illustrates results of a circle of radius
R = 0.25 positioned at (0.0,−0.5) in a 1×1 domain
with outflow boundary conditions everywhere and
no-slip boundary condition at y = −0.5. The Ohne-
sorge number is Oh = 1.2× 10−2. The density ratio
is 103 and the viscosity ratio is 102. The prescribed
contact angle is set to either θ = 60◦ or θ = 120◦.
The results are computed on an adaptive mesh with
the highest resolution equal to 1/256. Figure 5
shows sequences of configurations for θ = 60◦ and
θ = 120◦. The two frames at the bottom of figure
5 show the simulations at steady state; the VOF re-
constructions are virtually identical to the circular
analytic profiles.

The above simulations were repeated for a hemi-
sphere in three dimensions. Figure 6 demonstrates
sequences of configurations for either θ = 60◦ or
θ = 120◦. Again, the two frames at the bottom
of figure 6 show the results at steady state. A test
of our 3D code is its ability to maintain symme-
try during an axisymmetric process. Figure 7 illus-
trates the steady state contact lines for θ = 60◦ and
θ = 120◦, computed using the HF technique. Figure
8 presents results of the same tests computed using
the technique of [12, 11]. As can be seen in figure
8, results are not symmetrical. As a result of our
numerical implementation, simulations have drasti-
cally improved and remained axisymmetric through-
out such simulations.

Numerical results on three-dimensional in-
clined impact

To demonstrate the moving contact line model,
we present results of inclined impacts where the con-
tact angle varies with contact line velocity. A wa-

Figure 5. Snapshots of 2D droplet shapes, for θ =
60◦ (left) and θ = 120◦ (right) applied to an initial
semi-circle, at non-dimensional times τ = tσ/(µD)
of 0, 10, 20, 30, 40 and 50 (from top to bottom).

ter droplet of 2 mm diameter falls downward at 1
m/sec onto an inclined surface at an angle α = 45◦.
The corresponding Reynolds and Weber numbers
are: Re = 2000 and We = 27 respectively.

A general correlation for contact angle as a func-
tion of contact line velocity is not available in the
literature. For these results, we implemented three
simple contact angle models (more advanced models
can be easily implemented once established). These
simple models rely on values of the contact angle
at rapidly advancing (θa) and receding (θr) contact
lines; the three models differ in the way in which
these two values are bridged at small contact line
velocities; see figure 9. Figures 10 and 11 depict a
comparison of the simulation results obtained with



Figure 6. Snapshots of droplet shapes, for θ =
60◦ (left) and θ = 120◦ (right) applied to an initial
hemisphere, at non-dimensional times τ of 0, 2.5, 5,
7.5, and 15 (from top to bottom).

Figure 7. Contact lines at steady state for θ =
60◦ (left) and θ = 120◦ (right), corresponding to
the results of figure 6. Normals and curvatures are
calculated using HF methodology.

Figure 8. Contact lines at steady state for θ = 60◦

(left) and θ = 120◦ (right). Normals and curvatures
are calculated using older algorithms [12, 11].

these three different models. The difference is obvi-
ously most significant at later stages of impact.

Figure 9. Models of dynamic contact angle versus
the contact line velocity VCL.

Figure 10. Comparison of normal views of the im-
pact of a 2 mm diameter water droplet at 1 m/sec
onto an 45◦ incline, based on three different models
of dynamic contact angle, at times 1, 5, and 10 msec
(from top to bottom). From left to right, models 1,
2, and 3 (figure 9).

Conclusion
An adaptive 3D model of droplet impact has

been developed for the accurate calculation of sur-
face tension forces in a VOF-based model. The
model accounts for the dynamics of contact lines
in a way that is consistent with the HF approach
to modelling surface tension. The model was used
to simulate inclined impacts for three simple models
of dynamic contact angle versus contact line veloc-
ity and the simulation results were presented. The
results demonstrated that a small difference in the



Figure 11. Comparison of side views of the impact
of a 2 mm diameter water droplet at 1 m/sec onto
an 45◦ incline, based on three different models of
dynamic contact angle, at times 1, 5, and 10 msec
(from top to bottom). From left to right, models 1,
2, and 3 (figure 9).

contact angle model can lead to different fluid defor-
mations during droplet impact.
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