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The motion of a hydrophobic ferrofluid droplet placed in a viscous medium and driven
by an externally applied magnetic field is investigated numerically in an axisymmetric
geometry. Initially, the drop is spherical and placed at a distance away from the magnet.
The governing equations are the Maxwell equations for a non-conducting flow, momentum
equation and incompressibility. A numerical algorithm is derived to model the interface
between a magnetized fluid and a non-magnetic fluid via a volume-of-fluid framework.
A continuum-surface-force formulation is used to model the interfacial tension force as
a body force, and the placement of the liquids is tracked by a volume fraction function.
Three cases are studied. First, where inertia is dominant, the magnetic Laplace number
is varied while the Laplace number is fixed. Secondly, where inertial effects are negligible,
the Laplace number is varied while the magnetic Laplace number is fixed. In the third
case, the magnetic Bond number and inertial effects are both small, and the magnetic
force is of the order of the viscous drag force. The time taken by the droplet to travel
through the medium and the deformations in the drop are investigated and compared
with experimental studies and accompanying simpler model of Mefford et al. (2007). The
transit times are found to compare more favorably than with the simpler model.

1. Introduction
Ferrofluids consist of magnetic nanoparticles in a colloidal solution. Recent develop-

ments in the synthesis and characterization of ferrofluids are motivated by biomedical
applications (Liu et al. 2007), where the treatment of retinal detachment is one example
(Mefford et al. 2007). A small amount of ferrofluid is injected into the vitreous cavity
of the eye and guided by a permanent magnet inserted outside the scleral wall of the
eye. The drop travels toward the side of the eye, until it can seal a retinal hole. The
time taken for the drop to migrate is an important quantity which needs to be predicted,
and which must be relatively short for the feasibility of this procedure. A simplified ex-
perimental model of this complex system is investigated in Mefford et al. (2007) with
a ferrofluid drop, assumed to be a solid sphere, which moves through a highly viscous
Newtonian fluid that represents the vitreous material (Nickerson et al. 2005). By treating
the sphere as a magnetic particle, the magnetic force acting on it can be simplified as
FM (x) = VM(x)μ0(dH/dx), where V is the volume of the sphere, M is the magneti-
zation of the ferrofluid droplet, μ0 is the permeability of vacumm, and dH/dx is the
gradient of the magnetic field H with respect to the distance x from the permanent
magnet. This magnetic force is balanced with the viscous drag force on the sphere in
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Stokes flow given by 6πηR0U(x), to find the expression for U(x). Integrating this over
the distance to the magnet, an approximate time of travel was obtained and then com-
pared with experiments conducted with a sphere filled with a liquid of viscosity 50 Pa s
(sodium hyaluronate ProviscTM solution commonly used in eye surgery). Their theoreti-
cal value was found to exceed the experimentally measured transit time by roughly 50%.
The authors noted one phenomenon in their experiments which was not included in their
theory: at larger drop sizes, the shape deformed from a sphere to a teardrop as it acceler-
ated toward the magnet. Separation of the tail of the teardrop was sometimes observed,
resulting in smaller droplets that take longer to travel to the magnet. Another aspect
of their estimate for the transit time is the use of the drag coefficient for a solid sphere
rather than the viscosity-dependent value for a liquid sphere (Clift et al. 1978). The lat-
ter improves the gap between theory and experimental data but still leaves significant
discrepancies due to drop deformation and coupled motion inside the drop.

The understanding of the above process is important for the efficient manipulation of
the procedure. For instance, the size and the shape of the ferrofluid droplet can influence
the motion of the droplet as it travels in a viscous medium. To investigate the response
of a ferrofluid droplet to an applied magnetic field or to the capillary effects requires
a thorough understanding of ferrohydrodynamics in such a system. The mathematical
formulation of the flow of a ferrofluid is described by Rosensweig (1985). In this paper, we
present a methodology for the numerical modeling of a two-phase system of immiscible
fluids, a ferrofluid and a non-magnetic viscous medium. The magnetic force competes
with the interfacial tension force and viscous drag to deform the drop. Previous numerical
studies are limited to equilibrium shapes of ferrofluid drops (Lavrova et al. 2006, 2004)
and interface instabilities (Bashtovoi et al. 2002; Matthies & Tobiska 2005; Knieling
et al. 2007). In all these studies, a finite element method was used in which the governing
equations of the magnetic liquid are coupled by the force balance at the interface and
the surface tension is applied as a boundary condition at the interface. Here, we develop
a numerical model, described in section 3, and simulate the field-induced motion of a
ferrofluid droplet in a viscous medium, with results presented in section 4.

In this paper, the drop is assumed axisymmetric and deformable. We assume the drop
size is small compared with the distance to the boundary of the eye. The magnetic field
that is measured in the absence of the drop is used to generate boundary conditions.
We investigate the transit time and drop shapes for a number of conditions that include
those of Mefford et al. (2007).

2. Governing equations
A ferrofluid drop is suspended in a viscous medium that is non-magnetizable, as shown

in figure 1. We assume that upon the placement of the magnet, the drop is instantly mag-
netized. The classical equations for the evolution of the two-fluid system are the Maxwell
equations, the incompressible Navier-Stokes equations, and a constitutive relationship
for the magnetic induction B (T), magnetic field H (A m−1), and magnetization M
(A m−1) (Lavrova et al. 2006). In SI units, M = χmH and

B(x, t) =
{
μ1H in the ferrofluid
μ0H in the viscous medium , (2.1)

where the magnetic permeability of the ferrofluid is μ1 = μ0(1 + χm), and χm is its
magnetic susceptibility. μ0 = 4π× 10−7 N A−2 is the permeability of vacuum, as well as
many other non-ferromagnetic materials. The Maxwell equations for a non-conducting
fluid are ∇·B = 0 and ∇×H = 0. The latter yields a magnetic scalar potential ψ, where
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Motion of ferrofluid droplets 3

Figure 1. Schematic of the initial configuration. The computational box covers 0 � z � Lz,
0 � r � Lr. Initially, a spherical ferromagnetic drop of radius R is placed a distance L from the
magnet at (r, z) = (0, 0).

H = ∇ψ. The former yields

∇ · (μ∇ψ) = 0. (2.2)

The permeability is a constant per fluid, and jumps in value across the interface, so that
ψ(x, t) changes as the interface evolves.

The boundary condition on the magnetic field is reconstructed from the experimental
measurements of Mefford et al. (2007). In the absence of the drop, they measured the
magnitude H(z) as a function of distance from the magnet, z, and fitted the data to a
5th degree polynomial, as shown in figure 2. The scalar potential is then a 6th degree
polynomial φ(0, z) = P6(z) along the axis of the cylindrical domain. In the absence of
the drop, φ satisfies Laplace’s equation 1

r
∂
∂r (r ∂φ

∂r ) + ∂2φ
∂z2 = 0. If there is a solution, it is

analytic and has r2-symmetry. The ansatz φ(r, z) = P6(z)+ r2P4(z)+ r4P2(z)+ r6P0(z)
yields

φ(r, z) = P6(z) − 1
4
r2P ′′

6 (z) +
1
64
r4P

(iv)
6 (z) − 1

(36)(64)
r6P

(vi)
6 (z). (2.3)

This yields the boundary condition, and also approximates an initial condition when the
drop is relatively small. The lateral size of the computational domain is chosen to be
sufficiently large so that it is consistent with the assumption that results do not change
if a larger size were used (see section 4.1). These checks were done by calculating the
solution for double the lateral domain size.

The magnetic potential ψ is calculated from equation (2.2). In axisymmetric cylindrical
coordinates,

1
r

∂

∂r

(
μr
∂ψ

∂r

)
+

∂

∂z

(
μ
∂ψ

∂z

)
= 0 in Ω, (2.4)
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Figure 2. Measured data for the magnetic field from figure 3 of Mefford et al. (2007) (�) and
fifth degree polynomial fitted to the data (—) as functions of the distance from the magnet.

where Ω denotes the computational domain. The boundary conditions for ψ on the
domain boundaries ∂Ω are defined as

∂ψ

∂n
=
∂φ

∂n
on ∂Ω, (2.5)

where ∂/∂n = n · ∇, and n denotes the normal to the boundary ∂Ω.
In order to impose the boundary condition in our numerical model, we perform a

transformation of variables to ζ: ψ = φ + ζ, where φ is the potential field without the
magnetic medium. One can then rewrite (2.2) such that

∇ · (μ∇ζ) = −∇ · (μ∇φ), (2.6)

where ∇ · (μ∇φ) vanishes everywhere except on the surface between the drop and the
surrounding fluid ∂Ωf and

∂ζ

∂n
= 0 on ∂Ω. (2.7)

The well-known Langevin function L(α)=coth α − α−1 is used to describe the mag-
netization M = |M| behavior of the ferrofluid versus the strength of the magnetic field
H:

M(H) = MsL

(
μ0m|H|
kBT

)
H
|H| , (2.8)

where the saturation magnetization Ms and the magnetic moment of the particle enter
as parameters, T denotes the temperature, and kB is the Boltzmann’s constant. Figure 3
compares M vs H for the measured data of Mefford et al. (2007) and the Langevin fit.
It is evident that the Langevin function fits the respective experimental data reasonably
well.

Each liquid is identified with a color function,

C(r, z, t) =
{

0 in the viscous medium
1 in the ferrofluid drop, (2.9)

which advects with the flow. The position of the interface is given by the discontinuities
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Figure 3. Magnetization behavior of the ferrofluid containing 7 vol. % of magnetite (Fe3O4)
particles with a mean diameter of 7nm for figure 3 of Mefford et al. (2007). Measured data (�)
is compared with the Langevin fit (—), assuming each of the magnetite particles has a total
magnetic moment ≈ 2 × 10−19A m2.

in the color function. The fluid equation of motion is

ρ
du
dt

= −∇p+ ∇ · ηS + Fs + ∇ · σm, Si,j =
1
2
(∂uj

∂xi
+
∂ui

∂xj

)
, (2.10)

where Fs denotes the continuum body force due to interfacial tension,

Fs = γκ̃nδS , κ̃ = −∇ · n. (2.11)

γ denotes the coefficient of interfacial tension, n = ∇C/|∇C| is the normal to the in-
terface, δS = |∇C| is the delta-function at the interface, and κ̃ is the curvature. The
viscous stress tensor is ηSi,j where the rate of deformation tensor is Si,j . The magnetic
stress tensor σm is derived in the Appendix to be BHT, so that the equation of motion
becomes

ρ
du
dt

= −∇p+ ∇ · ηS + Fs + ∇ ·BHT, (2.12)

to be interpreted as a weak formulation.

3. Numerical Methodology
In the absence of an initially imposed velocity and gravity, and using the following

normalizations for a drop of initial radius R0,

x∗ = x/R0 , t
∗ = tη0/(ρ0R

2
0) , η

∗ = η/η0 , ρ
∗ = ρ/ρ0,

u∗ = uρ0R0/η0 , p
∗ = pρ0R

2
0/(η0)

2 , H∗ = H/H0,

the equation of motion becomes

ρ∗
du∗

dt∗
= −∇∗p∗ + ∇∗ · η∗S∗ + La Fs

∗ + Lam ∇∗ · σ∗
m, (3.1)

where the subscript 0 refers to the droplet; i.e., ρ0 and η0 are the ferrofluid density and
viscosity, respectively, and H0 is the characteristic scale of the magnetic field strength.
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The Laplace number,

La = γρ0R0/η
2
0 , (3.2)

is the ratio of the surface tension to the viscous drag (note that La = 1/(Oh)2 where
Oh is the Ohnesorge number). The magnetic Laplace number (or magnetic Reynolds
number),

Lam = μ0H
2
0ρ0R

2
0/η

2
0 , (3.3)

is the ratio of the magnetic force to inertial force. The ratio of magnetic force to interfacial
tension force is named the magnetic Bond number (Baygents et al. (1998); Voltairas et al.
(2002)),

Bom = Lam/La. (3.4)

A volume-of-fluid algorithm on a marker-and-cell (MAC) grid of equidistant mesh Δ
and a computational domain Lr × Lz is used. The discretized color function gives the
volume fraction of the ferrofluid. The advection of the volume fraction function is La-
grangian, and the piecewise linear interface reconstruction scheme (PLIC) is used to
calculate the interface position at each time step. The details of the method for the
Navier-Stokes equations are given in Lafaurie et al. (1994); Li & Renardy (1999); Li
et al. (2000); Scardovelli & Zaleski (1999) and not repeated here. Briefly, a provisional
velocity field is first predicted and then corrected with the pressure field that is cal-
culated as a solution of a Poisson problem. Interfacial tension is discretized using the
continuum-surface-force model (Brackbill et al. 1992). The new aspect is the extension
of the algorithm to the ferrofluid.

The magnetic potential field is discretized using second-order central differences and
is computed as a solution of the Poisson problem (2.6). In axisymmetric coordinates, the
discretization of (2.6) at cell (i, j) yields

∇ · (μ∇ζ)i,j =
1
ri,j

ri+1/2,jμi+1/2,j(
∂ζ
∂r )i+1/2,j − ri−1/2,jμi−1/2,j(

∂ζ
∂r )i−1/2,j

Δ

+
μi,j+1/2(

∂ζ
∂z )i,j+1/2 − μi,j−1/2(

∂ζ
∂z )i,j−1/2

Δ
, (3.5)

where, for instance for the cell face (i+ 1/2, j),

(
∂ζ

∂r
)i+1/2,j =

ζi+1,j − ζi,j
Δ

. (3.6)

A weighted harmonic mean interpolation is used to compute μ at cell face (i+ 1/2, j):

1
μi+1/2,j

=
1
2
(

1
μi,j

+
1

μi+1,j
),

where
1
μi,j

=
1 − Ci,j

μ0
+
Ci,j

μ1
,

and the discretized color function Cij represents the volume fraction of the ferrofluid
in cell (i, j) (Patankar 1980). Analogous relationships can be written for other faces of
a cell. The right hand side of (2.6) is discretized similarly. The boundary condition for
cells on the solid boundary is a second-order discretization of a zero gradient boundary
condition for ζ: ∂ζ/∂n = 0. A multigrid Poisson solver is then used to obtain the solution
of the resulting linear set of equations.
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Figure 4. Location of the velocities and the magnetic stress tensor components on a MAC grid.
Corner values of the magnetic stress tensor components (rz, at �) are calculated from cell-center
values (•).

The spatial discretization of the velocity field is based on the MAC grid in figure 4.
Therefore, the evaluation of the components of the magnetic stress tensor requires the
evaluation of gradients at faces. In axisymmetric coordinates, the divergence of the mag-
netic stress tensor is discretized as

er :
1

ri+1/2,j

ri+1,j((σm)rr)i+1,j − ri,j((σm)rr)i,j

Δ

+
((σm)rz)i+1/2,j+1/2 − ((σm)rz)i+1/2,j−1/2

Δ

ez :
1

ri,j+1/2

ri+1/2,j+1/2((σm)rz)i+1/2,j+1/2 − ri−1/2,j+1/2((σm)rz)i−1/2,j+1/2

Δ

+
((σm)zz)i,j+1 − ((σm)zz)i,j

Δ
, (3.7)

where the components such as (σm)rr are defined in the Appendix. Second-order central
differences are used to discretize the components of the magnetic stress tensor at the
center of a cell and a simple averaging from cell center values is used to extrapolate the
magnetic stress components to cell corners.

4. Results
Numerical simulations are presented in three parts. Section 4.1 concerns tests of the

numerical implementation by focussing on the resulting magnetic fields and by testing
for convergence of the solution with grid refinement. Section 4.2 presents a parametric
study, varying Lam for fixed La, and vice versa. Section 4.3 contains the application of
our model to the experimental data of Mefford et al. (2007), and examines time taken
by the drop to reach the magnet.

Table 1 provides a comprehensive overview over the sets of simulations presented in the
remainder of this section. For section 4.3, the magnetic susceptibility is computed using
the Langevin function via (2.8), and this yields improved agreement with experimental
data over the linear variation defined by a constant χm. The characteristic scale of the
magnetic field strength H0 is taken to be 1 kA m−1 in all the cases in section 4.2,
since this is of the same order as the magnetic field strength which is initially inducted
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section § 4.2 § 4.2 § 4.3

2R0(mm) 2.5 1 1, 1.8, 2
Lr 1.6R0 4R0 4mm
Lz 12.8R0 24R0 16mm
Δ R0/20 R0/12 R0/8, R0/9, R0/10
ρ0 1.32 ρv 1.32 ρv 1320 kg m−3

η0 1.5 ηv 1.5 ηv 80 kg m−1s−1

ρv 998 kg m−3

ηv 50 kg m−1s−1

χm 0.25 0.25 *
H0(kA m−1) 1 1 1
La 5.15 0.002, 0.01, 0.04, 0.1, 0.4
Lam 0.3, 1.5, 3.6 0.05
Bom 0.06, 0.3, 0.6, 1.2 24, 5, 1, 0.5, 0.1 0.031,0.056,0.063

Table 1. Overview of the sets of simulations presented in sections 4.2-4.3.
* The magnetic susceptibility for § 4.3 is computed using the Langevin function.
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Figure 5. Calculated transit times at different mesh sizes in units of initial drop radius R0. Re-
sults are shown to be convergent as the mesh is refined. The parameters are those of section 4.3.

by the magnet on the droplet placed about 12 mm away from the permanent magnet
(cf. figure 2). Note that the magnetic field strength varies with location and the choice
of a characteristic scale is not straightforward. Thus, as the droplet moves toward the
magnet, the effective magnetic Laplace number increases well beyond our nominal value.

4.1. Magnetic field and imposed boundary condition

Figure 5 shows a convergence test for the calculated travel times, at different mesh sizes
in units of the initial droplet radius R0. A droplet of radius 1 mm is centered at a distance
10 mm away from the bottom of the 16 mm × 4 mm domain. The time that is required
for the droplet to reach the bottom of the domain is calculated at different mesh sizes to
demonstrate the spatial convergence of the numerical results. The magnetic susceptibility
used in this case is considered to be constant and χm = 0.25.

We demonstrate the effectiveness of our methodology by presenting the results of the
simulated applied magnetic field using the magnetic field boundary condition (2.3), com-
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Figure 6. Distribution of the magnetic field (kA m−1) along the centerline of the computational
domain. The computed magnetic field along the centerline of the domain in the absence of the
drop (-) is compared with the measured magnetic field generated by a permanent magnet (�)
from Mefford et al. (2007). The computed magnetic field in the presence of a 2 mm droplet (—)
is superposed when the droplet is placed at distances (a) 12 mm, (b) 8 mm, and (c) 4 mm from
the magnet, respectively. χm = 1.

pared with values measured along the centreline of the domain by Mefford et al. (2007).
Figure 6 shows the computed magnetic field along the centerline of the 16 mm × 4 mm
domain (-) compared with the measured magnetic field generated by a permanent mag-
net in the absence of a droplet (�). The agreement is excellent, and this also provides
a check that the lateral boundary of the computational domain is sufficiently far away
from the drop.

In figure 6, the computed magnetic field in the presence of a 2 mm diameter droplet
centered at distances 12 mm, 8 mm, and 4 mm from the bottom of the computational do-
main are also presented. Comparison of the variation of numerical results of the magnetic
field across the interface is used to check the necessary continuity of B · n.

In figure 7, the magnetic field lines and contour plots of the magnetic field amplitude
are plotted for cases of a 2 mm diameter droplet centered at distances 12 mm, 8 mm,
and 4 mm from the bottom of the computational domain. The magnetic field lines in the
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viscous medium that is non-magnetizable are distorted in the presence of the ferrofluid
droplet due to having different permeability.

4.2. Variation with La and Lam.

Past theoretical studies have shown that microscopic ferrofluid droplets (2-20μm) de-
form to prolate droplets in the direction of the uniform applied magnetic field (Bacri
& Salin 1982). Here we also numerically observe that drops elongate in the presence of
non-uniform magnetic fields. The computational domain is 1.6R0 × 12.8R0. A freely sus-
pended ferrofluid droplet of radius R0 (1.25 mm) is initially centered at (0, 10.4R0). The
permanent magnet is at the bottom of the domain. At the walls, the velocities satisfy no
slip. Due to symmetry, only half of the domain is simulated. The mesh size is Δ = R0/20.

The results of the ferrofluid drop elongation upon the magnetic Laplace number Lam

are presented. The value of the magnetic susceptibility is χm = 0.25 and chosen to be
constant during the process. The density ratio is ρdroplet/ρviscous = 1.32 and the viscosity
ratio is ηdroplet/ηsurrounding = 1.5. The Laplace number is La = 5.15. Figures 8(a-d)
show droplet shapes for magnetic Laplace numbers Lam = 0.3, 1.5, 3, and 6 at non-
dimensional times τ = tη0/(ρ0R

2
0). These figures show that the increase of the magnetic

field results in a drop elongation in the direction of the applied magnetic field. While for
Lam = 0.3 the shape of the droplet remains almost round for all time (figure 8(a)), higher
magnetic Laplace numbers result in a dramatic deviation from round shapes to further
elongated shapes forming columnar configurations. Figures 8(a-d) show that increase of
the magnetic Laplace number Lam results in a continuous drop prolation accompanied
by a deformation from a round shape to a tear-drop shape. At the highest magnetic
Laplace number, (figure 8(d)) small surface undulations begin to appear on flat sides of
the front of the droplet.

Figures 9(a-d) depict velocity fields at τ = 560, 15, 3.3, and 1 corresponding to Lam =
0.3, 1.5, 3, and 6, respectively. The motion of the droplet is a function of the variation of
the magnetic field within the droplet, i.e. the front of the droplet feels a higher magnetic
force than the back of the droplet. This effect can be observed from velocity fields in
figures 9(b-d) where the portion of the droplet closer to the magnet accelerates much
faster towards the magnet rather than the section at the back of the droplet.

Ferrofluid drops with different interfacial tension energies deform differently under an
applied magnetic field. A lower surface tension can result in the deviation from a round
shape to a prolate ellipsoid structure which can consequently lead to a higher droplet
velocity. A freely suspended ferrofluid droplet of radius R0 (0.5 mm) is initially centered
at (0, 20R0). The permanent magnet is at the bottom of the domain. At the walls, the
velocities satisfy no slip. Due to symmetry, only half of the domain is simulated. The
mesh size is Δ = R0/12, and the computational domain is 4R0 × 24R0. Figure 10 plots
the calculated transit times for Laplace numbers La = 0.002, 0.01, 0.04, 0.1, and 0.4 for
fixed Lam = 0.05. It is evident that the velocity of the droplet varies as a function of the
Laplace number for low inertia. A lower surface tension alters the shape of the droplet
which accounts for the variation in the velocity of the droplet.

In figures 11(a-e), the motion of ferrofluid droplets are shown at different Laplace
numbers at non-dimensional times τ . At low Laplace numbers, the round droplet deforms
in the direction of the applied magnetic field forming a prolate shape which in turn
influences the motion of the droplet. In figures 8-9, the magnetic Bond number varies
from 0.06 to 1.2 with increase in Lam, and results in highly deformed drops for the higher
Bom. Similarly, though at lower inertia, figure 11 shows that as the Laplace number varies
from 0.002 to 0.4, Bom decreases from 24 to 0.1, and drop deformation decreases. Hence,
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Figure 7. Magnetic field lines (left) and contours of the magnetic field amplitude (kA m−1,
right) in the presence of a ferrofluid droplet in a non-magnetizable medium. A droplet of diameter
2 mm is centered at distances (a) 12 mm, (b) 8 mm, and (c) 4 mm above the bottom of the
computational domain. χm = 1.
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Figure 8. Droplet shapes at different magnetic Laplace numbers, at fixed La = 5.15: (a) Lam =
0.3, τ = 0, 410, 500, 560 (b) Lam = 1.5, τ = 0, 7.5, 11.2, 15 (c) Lam = 3, τ = 0, 1.9, 2.6, 3.3 (d)
Lam = 6, τ = 0, 0.6, 0.9, 1. The magnetic Bond numbers are Bom = (a) 0.06, (b) 0.3, (c) 0.6,
(d) 1.2.

at both order 1 inertia and small inertia, the drop deforms more for higher Bom, where
the effect of magnetic force is more important than interfacial tension force.

When increasing the magnetic Laplace number, the differential between the force at the
front of the drop to that at the rear becomes more pronounced and may become strong
enough to overcome the tendency of surface tension to keep the drop round. Conversely,
when keeping the magnetic Laplace number constant but varying the Laplace number,
the ratio of the magnetic effect to the surface tension effect becomes more favourable as
the Laplace number becomes small, and the fact that the strength of the magnetic force
is differentially higher at the front becomes more important. Note that a comparison
of figures 8 and 11 shows quite different drop shapes for comparable magnetic Bond
numbers. Hence, the evolution of drop shapes is dependent on both the magnetic Laplace
number and the Laplace number.

4.3. Simulation for the parameters of Mefford et al. (2007)

The simulation results of the magnetic field-induced motion of PDMS ferrofluid droplets
in a viscous medium are presented. The diameter and initial position of the ferrofluid
drop are varied. At the walls, the velocities satisfy no slip. Due to symmetry, only half
of the domain is simulated.

A series of computations are performed to calculate the time taken by the ferrofluid
droplet through the viscous medium until the magnet is reached. The droplet models
a PDMS ferrofluid, with density 1320 kg m−3, and viscosity 80 Pa s. The interfacial
tension is estimated at 0.02 N m−1. The viscous medium with density of 998 kg m−3 and
viscosity of 50 Pa s models the viscous humor in the eye.

We calculate the travel times for drop diameters 2 mm, 1.8 mm, and 1 mm, positioned
at distances 11 mm, 12 mm, and 12 mm away from the bottom of the domain, respectively.
The magnetic Laplace number is of the order of 10−7, so that inertia is not important.
Moreover, numerical results are checked to be independent of Lam in the asymptotic
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Figure 9. Velocity fields at different magnetic Laplace numbers with fixed La = 5.15: (a)
Lam = 0.3, τ = 325, (b) Lam = 1.5, τ = 15, (c) Lam = 3, τ = 3.3, (d) Lam = 6, τ = 1. The
magnetic Bond numbers are Bom = (a) 0.06, (b) 0.3, (c) 0.6, (d) 1.2.
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Figure 11. Droplet shapes at different Laplace numbers with fixed Lam = 0.05: (a)
La = 0.002, τ = 0, 75, 112.5, 131.9, (b) La = 0.01, τ = 0, 75, 112.5, 133.2, (c) La = 0.04,
τ = 0, 75, 112.5, 131.2, 138.7, (d) La = 0.1, τ = 0, 75, 112.5, 131.2, 138.7, 142.5, (e) La = 0.4,
τ = 0, 75, 112.5, 131.2, 138.7, 142.5, 145.2. The magnetic Bond numbers are Bom = (a) 24, (b) 5,
(c) 1, (d) 0.5, (e) 0.1.

Droplet Distance from Simulation Experimental
diameter [mm] magnet [mm] time [s] time [s]

1.0 12 960 900
1.8 12 270 240
2.0 11 170 150

Table 2. Comparison of numerical and experimental (Mefford et al. 2007) travel times for
varying droplet sizes, initially at various distances from the magnet.

range Lam << 1 even when Lam is taken to be of order 0.1. Since the timestep required
for accuracy in the numerical simulations is less restrictive for larger Lam, an optimal
value is found to minimize the total computational time. The parameter that influences
drop shape is the ratio of magnetic force to interfacial tension force given by the magnetic
Bond number, ranging from 0.03 to 0.06. The experimental data of Mefford et al. (2007)
is fitted with a Langevin function to describe the magnetization versus the magnetic
field. For the first and second cases, the mesh size is set to Δ = 0.1 mm and the timestep
is Δt = 0.001 s. For the third case, the mesh size is set to Δ = 0.0625 mm and the
timestep is Δt = 0.0005 s. Table 2 shows that the computed travel times predict the
experimentally observed values well.

Figures 12(a-c) show shapes of the droplet as it travels through the viscous medium. As
expected, higher velocities are computed for larger droplets and the travel time increases
significantly for droplets placed further away from the magnet compared to a droplet
placed closer. Also, a larger droplet deforms from a sphere to an oval as it approaches
the magnet. This illustrates how the magnetic field gradient in the domain contributes
to the deformation of the droplet, since the front of the droplet experiences a greater
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Figure 12. Droplet shapes for different diameter droplets positioned at various distances away
from the bottom of the domain and driven by a magnetic field through a viscous medium with
a viscosity of 50 Pa s. (a) A 2 mm diameter droplet placed 11 mm away from the bottom of the
domain, (b) a 1.8 mm droplet placed 12 mm away from the bottom of the domain, and (c) a
1 mm droplet placed 12 mm away from the bottom of the domain. The magnetic Bond numbers
are Bom = (a) 0.063, (b) 0.056, (c) 0.03.

magnetic force in comparison to the back of the droplet. However, the shape of the
smaller droplets remains nearly circular at all times except when they are about to hit
the solid surface. Also, the deformation of the 1 mm diameter droplet (figure 12(c)) is less
dramatic when it is close to hitting the target, which is due to a higher surface tension
effects and a decrease of the droplet velocity. These results are typical of the behavior at
low magnetic Bond numbers: (a) 0.063, (b) 0.056, and (c) 0.03.

Figure 13 shows the velocity fields at times t = 120, 160, and 170 s for a droplet of 2 mm
diameter placed 11 mm away from the bottom of the domain. This figure provides further
details on the motion of the droplet. The velocity fields clearly demonstrate the following
stages in drop evolution: at an early stage, the flow occurs approximately downwards and
only in the region close to the droplet. A vortical flow in the viscous medium forms in
front of the droplet. As the droplet approaches the magnet, these vortices induced in the
viscous medium become stronger. When the droplet reaches the bottom of the domain
the vortices move towards the top of the droplet. At this stage, the flow inside the droplet
is pumped outward from the center of the droplet and results in the flattening of the
droplet and consequently a decrease in the droplet height.

5. Conclusions
We present a derivation for a model and numerical method to simulate the fluid motion

coupled with the magnetic field and associated interfacial tension force in the flow of a
ferrofluid droplet through a viscous medium under the influence of an externally applied
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2 mm diameter placed 11 mm away from the bottom of the domain. Bom = 0.06.

magnetic field. The ferrohydrodynamic equations and a simple constitutive law are used
to model the magnetic force acting at the interface. The numerical boundary condition
for the simulation of the magnetic field is based upon measured values at the centerline
of the domain in the absence of the drop. A conservative representation of the magnetic
field force for immiscible two-fluid systems is derived.

The droplet undergoes dramatic deformation due to the presence of an external mag-
netic field gradient. Its shape is influenced by the magnetic Bond number, as well as
inertia. The simulations show that the droplet velocity is mainly influenced by the com-
petition between the magnetic force which is proportional to the volume, and the viscous
drag force which is proportional to the radius. Hence, the larger the drop, the faster
the speed. The initial distance between the ferrofluid droplet and the external magnet is
varied, and the simulated transit times agree well with the experimental measurements
of Mefford et al. (2007). Our study shows that the deformation of the drop accounts for
the difference in the transit times between prior models based on a spherical drop and
the experimental data.

This research is supported by NSF-DMS 0405810, NCSA TG-CTS060013N, and NSF-
ARC Materials World Network for the Study of Macromolecular Ferrofluids (DMR-
0602932 -LX0668968). We thank O. T. Mefford for discussions and data, and the referee
who provided extensive comments for improvement.
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Appendix A
The force acting on a magnetic particle of magnetic moment m is μ0(m·∇)H (Rosensweig

1985). For a magnetized body, this leads to a force density

F = μ0(M · ∇)H. (A 1)

This expression for the magnetic force, however, is not meaningful in the presence of
an interface where both M and H have discontinuities. We therefore use the alternative
form

F = ((B − μ0H) · ∇)H = (B · ∇)H− μ0(H · ∇)H. (A 2)

Taking account of Maxwell’s equations div B = 0 and curlH = 0, we find

F = div(HBT − 1
2
μ0∇|H|2). (A 3)

This conservative form remains meaningful in the presence of discontinuous interfaces.
We now set σm = HBT. The second term, − 1

2μ0∇|H|2 is proportional to the identity
matrix, and is absorbed into the pressure field for the entire domain. This does not alter
the interfacial force balance because it is implicitly consistent with the weak formulation
which is discretized.

In axisymmetric coordinates the magnetic stress tensor is

σm = μ

⎡
⎢⎢⎣

(
∂φ
∂r

)2
∂φ
∂r

∂φ
∂z 0

∂φ
∂r

∂φ
∂z

(
∂φ
∂z

)2

0
0 0 0

⎤
⎥⎥⎦ , (A 4)

and

∇ · σm =
[
1
r

∂

∂r
[r(σm)rr] +

∂

∂z
[(σm)rz]

]
er (A 5)

+
[
1
r

∂

∂r
[r(σm)rz] +

∂

∂z
[(σm)zz]

]
ez,

where er and ez are unit vectors in r and z directions.
In the momentum equation (2.12), the rate of deformation tensor in axisymmetric

coordinates is

Si,j =

⎡
⎣ 2∂vr

∂r
∂vr

∂z + ∂vz

∂r 0
∂vr

∂z + ∂vz

∂r 2∂vz

∂z 0
0 0 2 vr

r

⎤
⎦ , (A 6)

and

∇ · ηS =
[
1
r

∂

∂r
(rηSrr) +

∂

∂z
ηSrz − 1

r
ηSθθ

]
er (A 7)

+
[
1
r

∂

∂r
(rηSrz) +

∂

∂z
ηSzz

]
ez.
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