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Abstract: Latent nystagmus (LN) is the by-product of
fusion maldevelopment in infancy. Because fusion
maldevelopment—in the form of strabismus and am-
blyopia—is common, LN is a prevalent form of pathologic
nystagmus encountered in clinical practice. It originates
as an afferent visual pathway disorder. To unravel the
mechanism for LN, we studied patients and nonhuman
primates with maldeveloped fusion. These experiments
have revealed that loss of binocular connections within
striate cortex (area V1) in the first months of life is the
necessary and sufficient cause of LN. The severity of LN
increases systematically with longer durations of binoc-
ular decorrelation and greater losses of V1 connections.
Decorrelation durations that exceed the equivalent of 2–3
months in human development result in an LN prevalence
of 100%. No manipulation of brain stem motor pathways is
required. The binocular maldevelopment originating in
area V1 is passed on to downstream extrastriate regions
of cerebral cortex that drive conjugate gaze, notably
MSTd. Conjugate gaze is stable when MSTd neurons of
the right and left cerebral hemispheres have balanced
binocular activity. Fusion maldevelopment in infancy
causes unbalanced monocular activity. If input from one
eye dominates and the other is suppressed, MSTd in one
hemisphere becomes more active. Acting through down-
stream projections to the ipsilateral nucleus of the optic
tract, the eyes are driven conjugately to that side. The
unbalanced MSTd drive is evident as the nasalward gaze-
holding bias of LN when viewing with either eye.
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L atent nystagmus (LN) is a common subtype of path-
ologic nystagmus observed in human and nonhuman

primates (1). It is linked strongly to binocular maldevel-
opment in infancy, from either strabismus or deprivation of
monocular spatial vision (amblyopia).

LN is characterized by a conjugate horizontal slow-phase
drift of eye position that is directed nasalward with respect
to the viewing eye (2,3). When viewing switches from eye
to eye, the direction of the slow-phases reverses instantan-
eously: leftward when the right eye (RE) is fixating and
rightward when the left eye (LE) is fixating (Fig. 1). The
severity of the nystagmus (and its conspicuity during clinical
examination) increases when one eye is covered, hence the
term latent. When the nystagmus is evident with both eyes
open, it is called manifest LN.

LN is distinguished easily during clinical examination
from congenital nystagmus, also called the infantile nys-
tagmus syndrome (INS), by the fact that LN has
instantaneous reversal of direction with alternating fixa-
tion. By eye movement recording, it is distinguished also
in waveform. The waveform of LN is always that of de-
creasing velocity and linear trajectory, whereas that of INS
is of increasing velocity and pendular trajectory (2). Eye
movement recordings or high magnification clinical
inspection with a slit-lamp biomicroscope or ophthal-
moscope frequently reveals a superimposed small tor-
sional movement.

Seminal contributions to our understanding of the
clinical features of LN have been made by Dell’Osso et al
(2,4), who have also clarified the historical origins of LN’s
various terms. In 1872, Faucon (5) first described what we
now appreciate as manifest LN. In 1912, Fromaget and
Fromaget (6) introduced the term nystagmus latent. These
early reports of LN were reviewed by Sorsby (7) in 1931.

From the Departments of Ophthalmology and Visual Sciences (LT,
AW, PF) and Anatomy and Neurobiology (LT, AB), Washington
University School of Medicine, St Louis, Missouri; Department of
Ophthalmology and Vision Sciences (MR, AW), University of Tor-
onto, Ontario, Canada; and the Yerkes Regional Primate Research
Center (DB), Atlanta, Georgia.

Supported by a Grant EY10214 (L.T.) from the National Institutes of
Health, AWalt and Lilly Disney Award for Amblyopia Research from
Research to Prevent Blindness (L.T.), Summer Student Research
Scholarship from the University of Toronto Faculty of Medicine
(M.R.), Grant MOP 67104 (A.W.) and a New Investigator Award
(A.W.) from the Canadian Institutes of Health Research.

Address correspondence to Lawrence Tychsen, MD, Room 2 South
89, St Louis Children’s Hospital, Washington University School of
Medicine, One Children’s Place, St Louis, MO 63110; E-mail: tychsen
@vision.wustl.edu.

276 Tychsen et al: J Neuro-Ophthalmol 2010; 30: 276-283

State-of-the-Art Review

Copyright © North American Neuro-ophthalmology Society.Unauthorized reproduction of this article is prohibited. 



The oxymoron manifested latent nystagmus was introduced
by Kestenbaum (8) in 1947, who emphasized that LN is
often observed in patients with strabismus when they view
with both eyes open.

Although infantile esotropia is the leading association
with LN, any disorder that perturbs development of bin-
ocular fusion in infancy, such as monocular or severe
binocular deprivation, will produce LN and manifest LN
(9,10). The National Institutes of Health Committee on
Eye Movement and Strabismus classification (11) has
therefore recommended that the terms LN/manifest LN be
replaced by the etiologic descriptor fusion maldevelopment
nystagmus.

DEVELOPMENT OF FUSION ELIMINATES
NASALWARD VISUAL CORTEX BIASES

Behavioral studies have shown that the postnatal de-
velopment of binocular sensory and motor functions in
normal infant monkeys parallels that of normal infant
humans but on a compressed time scale: one week of
monkey development approximates 1 month of human
(12–15). Binocular disparity sensitivity and binocular fu-
sion are absent in human and monkey neonates. Stereopsis
emerges abruptly in humans during the first 3–5 months of
postnatal life (16–20) and in monkeys, during the first 3–5
weeks (14), achieving adult-like levels of sensitivity.

V1 horizontal axonal connections are key components of
fusion development and maldevelopment (Fig. 2). Binoc-
ularity in primates begins with horizontal connections be-
tween V1 ocular dominance columns (ODCs) of opposite
ocularity (21–23). These connections are immature in the
first weeks of life, conveying crude weak binocular responses
(24–26). Maturation of binocular connections requires
correlated (synchronous) activity between right eye and left
eye geniculostriate inputs (27,28). Decorrelation of inputs
(Fig. 3), produced by binocular noncorrespondence, causes
loss of horizontal connections over a period of days in V1 of
kittens (27,29). The inference from our experimental results
and clinical studies is that similar losses occur over a period
of weeks in V1 of monkeys and over a period of months in
V1 of children. Binocular decorrelation also promotes in-
terocular suppression (Fig. 4) as a further hindrance to
fusion (1).

In the first months of life in humans and weeks of life in
monkeys, monocular motion visual evoked potentials reveal
a nasotemporal asymmetry (30–33). Monocular preferential
looking testing reveals greater perceptual sensitivity to na-
salward motion (34). Monocular pursuit and optokinetic
tracking reveal biases favoring nasalward target motion
(12,35–38). These nasalward motion biases are pronounced
before onset of sensorial fusion and stereopsis but system-
atically diminish thereafter. They are retained in subtle form
in normal adult humans and can be unmasked using

FIG. 1. Nasalward gaze asymmetries in strabismic human
and monkey. A. Latent nystagmus in gaze holding. When
the subject views with the right eye, both eyes have
a nasalward slow-phase drift, followed by temporalward
refoveating fast-phase microsaccades. The direction of
the nystagmus reverses instantaneously when the left eye
fixates so that the slow phase is nasalward with respect
to the fixating eye. B. Pursuit. Horizontal smooth pursuit
is asymmetric during monocular viewing. Pursuit is
smooth (normal) when target motion is nasalward in the
VF. Pursuit is cogwheel (low gain) when the target moves
temporalward. The movements of the 2 eyes are conju-
gate, and the direction of the asymmetry reverses in-
stantaneously with a change of fixating eye so that the
direction of robust pursuit is always for nasalward motion
in the visual field (likewise for OKN).

FIG. 2. Neuroanatomic basis for binocular vision. Mon-
ocular retinogeniculate projections from left eye (tem-
poral retina, nasal visual hemifiled) and right eye (nasal
retina, temporal hemifield) remain segregated up to and
within the input layer of ocular dominance columns
(ODCs) in V1, layer 4C (striate visual cortex). Binocular
vision is made possible by horizontal connections be-
tween ODCs of opposite ocularity in upper layers 4B and
2/3 (as well as lower layers 5/6, not shown). RE inputs =
red; LE inputs = blue.
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contrived monocular stimuli (39,40). If normal maturation
of binocularity is impeded by eye misalignment or monoc-
ular deprivation, the nasalward biases persist and become
pronounced (34,41–47). The nasalward gaze bias is the key
feature of the fusion maldevelopment syndrome. Other
common findings are loss of stereopsis, interocular sup-
pression, strabismus, and smaller amplitude torsional/vertical
oscillations of the eyes.

BINOCULAR DECORRELATION FROM
VARIOUS CAUSES BEGINS THE
LN CASCADE

Clinical studies of children (43) and adults (2,4,44,48) with
LN have inspired a series of behavioral, physiological, and
neuroanatomic studies in nonhuman primates (NHPs) who
had LN associated with naturally occurring (22,23,49–55) or
experimentally induced (1,10,56–65) infantile strabismus.
The common finding of these experiments is that the prev-
alence and severity of LN correlate systematically with the age
of onset and duration of binocular decorrelation in infancy.

The most common clinical cause of binocular decorre-
lation is strabismus, which in human infants is over-
whelmingly esotropic (convergent) (66). Early onset
esotropia exceeds exotropia by a ratio of 9:1. Esotropia is
also the most common form of naturally occurring stra-
bismus in NHPs (67,68). It may therefore be considered the

paradigmatic form of strabismus in primates. However, any
prolonged deprivation of normal binocular experience in
early infancy can cause binocular decorrelation (e.g.,
monocular congenital cataract, uniocular high ametropia in
hyperopia or myopia, uniocular neonatal vitreous hemor-
rhage, uniocular corneal clouding, dense bilateral cataracts).
In NHP models, monocular deprivation (uniocular am-
blyopia) or severe binocular deprivation (bilateral ambly-
opia) (10,57,63) produced by eyelid suturing (the thin
translucent eyelid of NHPs mimics a congenital cataract,
allowing diffuse luminance to the retina but blocking spatial
vision) is also used to generate LN. But an important fact to
note is that loss of spatial vision is not required; the majority
of human and NHP infants with strabismus alternate fix-
ation initially and have no amblyopia (69). The necessary
and sufficient factor is binocular decorrelation, not lack of
sharp visual acuity.

Decorrelation durations that exceed the equivalent of
3 months in human infant development result in an LN
prevalence of 100% (1,65,70). Perturbing these inputs from
the first week of life causes LN, but delaying the pertur-
bation to the time of onset of normal fusion and stereopsis
(the equivalent of age 2–4 months in human) is equally
effective (71). The severity of the resultant LN corresponds

FIG. 3. Horizontal connections for binocular vision to
layer 2–4B of V1 in normal (correlated activity) primates
(A) and strabismic (decorrelated) primates (B). V1 of
normal primates is characterized by equal numbers of
monocular and binocular connections. In strabismic pri-
mates, the connections are predominantly monocular.
RE inputs = red; LE = blue; binocular = violet.

FIG. 4. Metabolic activity in neighboring ocular domi-
nance columns (ODCs) within V1 of normal primates (A)
and strabismic primates (B). In normal primates, layer 4C
stains uniformly for the metabolic enzyme cytochrome
oxidase (brown), indicating equal activity in right eye and
left eye columns. In strabismic primates, a narrow mon-
ocular zone within the dominant ODCs (shown here as left
eye) shows normal metabolic activity (brown), but ODCs
belonging to the suppressed eye (shown as right eye) and
binocular border zones between ODCs are pale, connoting
abnormally low (suppressed) activity.
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to the severity of loss of binocular connections between
ODCs of opposite ocularity in visual area V1 and the se-
verity of interocular suppression (1,72). Area V1 feeds
forward to extrastriate areas MT/MST known to be im-
portant for gaze holding and gaze tracking, such as smooth
pursuit, optokinetic nystagmus (OKN), and the short-
latency ocular following response (73–76).

MALDEVELOPMENT IN V1 IS PASSED ON
TO MEDIAL TEMPORAL AND MEDIAL
SUPERIOR TEMPORAL AREAS

Visual areas V1, V2 (prestriate cortex), medial temporal
(MT), and medial superior temporal (MST) of the cerebral
cortex are major components of the conjugate gaze pathway
(77). Each of these areas in normal primates contains di-
rectionally selective binocular neurons (78–81). MST in
each cerebral hemisphere encodes ipsiversive gaze (74,82–84).
MST in turn projects downstream to the brain stem vi-
suomotor nuclei that generate eye movements, including
the nucleus of the optic tract (NOT), medial vestibular
nucleus, and interconnected abducens and ocular motor
nuclei (77,85). In primates, subcortical inputs to NOT may
play a minor role (for reviews of the physiology of NOT and
its role in LN see the work of Mustari and colleagues, as well
as Hoffmann) (9,10,86). But the dominant pathway is from
MST to brain stem. The dominant role of the cortical
pathway, and the minimal role of a subcortical pathway, is
reinforced by studies of children. Neuroimaging of visual
cortex, combined with eye movement recordings, has shown
absence of visually driven pursuit or OKN in cerebrally
blind infants (87,88).

One mechanism for the gaze-holding asymmetry would
be overrepresentation of nasalward neurons within visual
areas V1 through MT in the immature/strabismic cortex.
However, directional and binocular responses of neurons in
V1, V2, and MT have been investigated in infant monkeys,
as well as in monkeys with early onset strabismus, and no
overrepresentation of neurons selective for nasalward mo-
tion has been found (26,61,89,90). Rather than over-
representation of nasalward neurons, the mechanism
appears to be lack of connectivity of and suppression of
temporalward neurons. In strabismic animals, binocular
(excitatory) responses are reduced and interocular sup-
pression is increased (89–91). These physiological abnor-
malities have neuroanatomic correlates. In V1 of strabismic
monkeys, binocular connections are deficient (22,23) and
interocular metabolic activity is suppressed (53,92,93).

BINOCULAR DECORRELATION UNMASKS
AN INNATE NASALWARDMONOCULARBIAS

LN is always linked to abnormal binocular development in
infancy. This important clinical observation motivated the
studies of NHPs, which have provided the functional-

structural correlations needed to explain the pathophysi-
ology. The translational value of NHP studies cannot be
overstated. The NHP studies have provided the pivotal facts
necessary to explain one of the most common clinical ocular
motor disorders. The NHP studies have also motivated
repair of fusion earlier in infancy (94), thereby preventing
LN or reducing its severity.

LN is caused by an afferent binocular visual pathway
defect. The binocular defect unmasks a directional bias
encoded in the cerebral gaze pathways. Normal binocular
development (fusion) in the first months of life eliminates
the directional bias; abnormal development (maldeveloped
fusion) exaggerates the bias. If fusion goes unrepaired in
infancy, the directional bias persists permanently through-
out adult life (1,95).

A key implication emerging from the NHP studies is
that the visual cortex in each cerebral hemisphere is wired
innately for nasalward motion. The innate wiring is mon-
ocular. To generate temporalward gaze holding, signals
must traverse binocular connections, unimpeded by inter-
ocular suppression. If normal binocularity fails to develop,
the system remains predominantly monocular and asym-
metric, incapable of driving temporalward gaze holding or
robust temporalward pursuit/OKN (10,43,44,61,66,90).
LN is an abnormal monocular bias added on to a normal
ipsiversive hemispheric gaze bias.

HYPOTHETICAL SIGNAL FLOW FOR LN

Figure 5 illustrates the mechanism for LN, showing the
circuit mediating gaze holding in primates and the role of
binocular connections. Shaded structures indicate less active
visual and motor neurons caused by occlusion of one eye or
interocular suppression. The circuit on the right depicts the
pathways and visuomotor component structures in a pri-
mate with LN.

The flow is from top to bottom, starting from the
monocular visual field (VF) of the fixating (or viewing) RE.
The nasal and temporal VFs in primates are unequal in area,
with a bias favoring the larger temporal hemifield. Retinal
ganglion cell fibers (RGC) from the nasal and temporal
retinas decussate at the optic chiasm, synapse at the lateral
geniculate nucleus (LGN), and project to alternating
monocular RE and LE ODCs in V1. During development,
RGCs from the nasal retina outnumber and establish
connections earlier than those from the temporal retina.
The LGN laminas corresponding to the nasal retina
(laminas 1, 3, and 5) contain more neurons and develop
earlier than those from the temporal hemiretina (laminas 2,
4, and 6). Within the LGN, the neurons remain monocular,
with no binocular interlaminar interaction.

The monocular bias, favoring nasal hemiretinal inputs, is
passed on to the ODCs of area V1. In each V1, ODCs
representing the nasal hemiretina (temporal visual hemi-
field) occupy slightly more cortical territory than those
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representing the temporal hemiretinas (nasal hemifield), but
each ODC contains neurons sensitive to nasalward (left-
ward) versus temporalward (rightward) visual motion.
Receptive field neurons in V1 and MT are simplified here
as half circles to match their corresponding hemifields. The
arrows indicate the directional preference of the neurons.
The visual area neurons (including those beyond V1 in area
MT) are sensitive to both nasalward and temporalward
motion (26,61,89), but only those encoding nasalward
motion are wired innately through monocular connections
to gaze (eye motion) neurons in the MST area (congregated
in the dorsal-medial portion or MSTd). MSTd in each
cerebral hemisphere encodes ipsiversive gaze (74,82–84),
which is nasalward gaze in relation to the contralateral eye
(leftward for MST in the left cerebral hemisphere and
rightward for MST in the right hemisphere) (90).

The only difference between the LN primate’s visual
cortex and the normal primate’s visual cortex is a paucity of
binocular horizontal connections (23,72) (compounded by
interocular suppression (53,92,93)). The paucity is depicted
as a lack of diagonal RE ODC to LE ODC connections,
absent in the LN cortex (right side of figure), and present
in the normal cortex (left side of figure). In the cortex of
normal primates, access to MSTd for temporalward gaze
requires binocular connections to homoversive neurons
within neighboring ODCs that have opposite ocularity (LE
ODC neurons when viewing with the RE). The pathway
from V1/MT to MSTd requires efferent projections
through the splenium of the corpus callosum (96,97).

MSTd efferents project to the ipsilateral brain stem
NOT (85,98) and to ipsiversive-related brain stem struc-
tures (medial vestibular nucleus, dorsolateral pontine nu-
cleus, and ocular motor nuclei of cranial nerves 3 and 6).

RECONCILING CURRENT KNOWLEDGE
WITH PREVIOUS LN HYPOTHESES
IN HUMANS

Based on clinical observations and eye movement record-
ings in humans, several mechanisms have been proposed as
the cause of LN. Ishikawa (99) thought that LN could be
explained as a hyperactive stretch reflex of the medial rectus
muscles, which drove the viewing eye nasalward. Although
the muscular basis is untenable, he drew further attention to
the linkage of LN with other nasalward visuomotor biases,
notably infantile esotropia.

Dell’Osso et al (2,4) hypothesized that LN arose from
a confusion of egocentric direction caused by strabismus.
Patients with unilateral or alternating strabismus view at any
given moment with one eye predominantly. The viewing
eye is displaced laterally with respect to the midline of the
head. This displacement is not present with binocular fu-
sion. With fusion, the perceptual center (cyclopean eye)
coincides with midline. The incongruity between the body
midline and the laterally displaced monocular view was

FIG. 5. Neural network diagrams showing visual signal
flow for pursuit and gaze holding in strabismic and nor-
mal primates. A paucity of mature binocular connections
explains behavioral asymmetries evident as asymmetric
pursuit/optokinetic nystagmus and latent fixation nys-
tagmus. In all primates, pursuit area neurons in each
hemisphere encode ipsilaterally directed pursuit. Signal
flow is initiated by a moving stimulus in the monocular
visual field (VF), which evokes a response in visual area
neurons V1 and MT. Each eye at birth has access,
through innate monocular connections, to the pursuit
area neurons in MSTd of the contralateral hemisphere.
Access to pursuit neurons of the ipsilateral hemisphere
requires mature binocular connections. In fusion mal-
development (right column), retinal ganglion cell fibers
from the nasal and temporal hemiretina (eye) decussate
at the optic chiasm (chi), synapse at the lateral genic-
ulate nucleus (LGN), and project to alternating rows
of ODCs in V1 (visual area rectangles). In each V1, ODCs
representing the nasal hemiretina (temporal visual
hemifield) occupy slightly more cortical territory than
those representing the temporal hemiretina (nasal
hemifield), but each ODC contains neurons sensitive to
nasally directed and temporally directed motion (half
circles shaped like the matching hemifield; arrows in-
dicate directional preference). Visual area neurons, in-
cluding those beyond V1 in area MT, encoding nasally
directed motion are wired innately—through monocular
connections—to the pursuit area. In normal primates
(left column), binocular connections are present, linking
neurons with similar orientation/directional preferences
within ODCs of opposite ocularity (diagonal lines be-
tween columns). When the subject views with the right
eye, visual neurons preferring nasally directed motion
project to the left hemisphere pursuit area and visual
neurons preferring temporally directed motion project to
the right hemisphere pursuit area. Temporally directed
visual area neurons gain access to pursuit area neurons
only through binocular connections. Call = corpus
callosum. Bold lines = active neurons and neuronal
projections.
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believed to generate a neural command driving the viewing
eye toward midline, that is, nasalward. By revising confusion
of egocentric direction to unbalanced, infantile, monocular
interhemispheric MSTd drive, the hypothesis of Dell’Osso
et al (2,4) can be updated to fit well with current biology.
Volitional manipulation of interhemispheric activity can
also alter LN direction. Dell’Osso et al (100) reported
a monocular patient with LN who could do so by imagining
viewing through the lost eye (replaced by an ocular
prosthesis).

The notion of unbalanced cerebral hemisphere activity as
a cause of nystagmus was emphasized by Sharpe et al
(101,102). and by Zee (103). They proposed an imbalance
of pursuit tone to explain a linear conjugate slow-phase drift
of the eyes toward the more active hemisphere in adult
patients with unilateral parietooccipital damage and normal
binocular vision. Although they did not extrapolate their
hypotheses to include a mechanism for LN, their insights
may be considered important contributions.

van Dalen (39) pointed out that a subtle form of LN can be
evoked in normal adult humans when viewing monocularly
by flashing light in a Ganzfeld at high temporal frequencies.
A current interpretation would be that by eliminating all gaze-
stabilizing and fusional cues, while simultaneously activating
visual motion neurons, the Ganzfeld unmasks the vestiges of
the infantile nasalward bias. Kommerell and Mehdorn (48)
emphasized the association of LN with impairment of tem-
poralward OKN under conditions of monocular viewing. The
nasotemporal OKN asymmetry was postulated to cause LN
through mechanisms that remained to be worked out.
Tychsen and Lisberger (44) postulated a defect in naso-
temporal motion sensitivity within extrastriate visual areas
MT/MST as the cause of both LN and pursuit/OKN
asymmetries in humans with maldeveloped fusion. The work
in humans by each of these investigators motivated the NHP
experiments reviewed here that have helped to reveal the bi-
ology of LN.
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