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Abstract—The assessment of real-time intelligent transporta-
tion system (ITS) applications, such as traffic management and
adaptive route guidance systems, requires the use of fast and
near real-time dynamic traffic simulation models. Even off-line
applications, used for testing planning scenarios, often require
fast-enough traffic simulation models that enable the required
repetitive simulations. This is even more critical for large-scale
networks with millions of vehicles. This paper investigates the
speedup of DTA simulation models, using compiler optimizations
and parallelism. DynusT as a widely used DTA model was
evaluated as a test case, while its results could be generalized
because we have used real-networks and calibrated them using
real data sets in the Greater Toronto and Hamilton Area (GTHA).
Extensive testing is performed to evaluate various dimensions for
speed-up including: network size, number of processors, various
optimization levels and operating systems. The performance
results show that compiler optimizations and parallelism allow
to: 1) double the speed required for a 4-hour simulation after 12
iterations to reach equilibrium, and 2) bring down the initial
simulation time (required for network loading) by 2.5 times;
enabling the testing of various real-time ITS applications.

I. INTRODUCTION

The requirements of a dynamic traffic assignment (DTA)
model for modelling ITS applications can be categorized
into two modes of use: off-line and on-line. Off-line models
are typically used to quantify the performance of existing
conditions or investigate the effectiveness of ITS strategies.
These applications typically require multiple iterations and
scenario evaluations using limited computational resources [1].
The need for on-line DTA applications arises in cases where
monitoring the transportation network, estimating the network
state, and forecasting the next state all are required to be done
in real-time to assist operators and management centers in
taking informative decision and implement mitigation strate-
gies in real-time. For example, in urban networks, detecting
the arrival patterns and presence of vehicles at a traffic light
enables algorithms to estimate the network state (e.g. queue
length), and therefore take appropriate action (e.g. control the
green time of a traffic light) in real-time. Another example,
in rural networks, detecting a high probability of an accident
(using incident detection algorithms) would trigger a set of
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traffic management strategies that need to be evaluated in real-
time depending on the characteristics of the accidents.

The need to dynamically model the time-varying flow
of vehicles has generated many contributions in developing
DTA-based simulation models. The first set of models, called
“micro-simulation” models, represent the behavior of each
vehicle based on car-following, gap acceptance and lane choice
models [1]. Models such as PARAMICS [2], AIMSUN [3],
VisSim [4], have a great level of detail and computational
complexity; thus, their successful use has been commonly
limited to relatively small size networks [1]. The need to model
larger networks with reasonable computational times has led
to the development of “mesoscopic” simulation models, which
provide less detail in modeling of individual vehicle move-
ments but are less cumbersome computationally. Examples
include CONTRAM [5], DYNASMART [6] and DynusT [7].

Nevertheless, even mesoscopic simulation models in their
typical form do not satisfy real-time requirements when
analysing large metropolises with millions of vehicles [8].
The required run-time of DTA models typically consists of 2
components: 1) initial simulation required for network loading
and assigning the demand, 2) iterative simulation to reach
a certain convergence criterion. The initial simulation run-
time depends on the number of vehicles in the simulation
and assigning a shortest path for them; while the iterative
simulation run-time depends on the efficiency of the iterative
traffic assignment algorithm, used to reach the convergence
criterion [7], [9]. Thus, when reporting on run-time of DTA
simulation models, it is important to breakdown the time
for these 2 components. For example, the run-time for 4
simulation hours (Morning Peak period, from 6-10 AM) of the
Greater Toronto and Hamilton Area (GTHA) model, reaching
equilibrium conditions after 12 iterations, on a Windows
machine (using 8 processing cores) is approximately 5.5 hours,
while the required time for the initial simulation time and
network loading is approximately 42.5 minutes. In our view,
these computational times make it challenging to assess real-
time traffic management strategies and adaptive route guidance
systems. Moreover, in cases where only the initial simulation
run (referred to as One-Shot simulation in the literature [10])
is required, e.g. to model the effects of incidents, construction
and weather conditions, that run-time of 42.5min in the case
of the GTHA, is way beyond what could make the simulation
output useful to warn or give drivers alternate routing options.

Therefore, research attention has been devoted to speeding
up DTA-based microscopic and mesoscopic simulation models
using 2 sets of approaches: 1. Using Parallelism with multi-
threading and 2. Partitioning the traffic network into segments
handled by different processors [9]. One example of using



parallelism is SEMSim traffic simulation [11], which uses
multi-threading to speed-up an agent-based micro-simulation,
based on the assumption that the agents in SEMSim have
complete routes to follow in order to reach their destinations,
which reduces the number of route calculations required. An-
other example is CPU/GPU-based speedup for a mesoscopic
simulation based on the “Entry Time-based Supply Framework
(ETSF)”, which uses the assumption that vehicles on the same
lane of a segment are moving at the same speed at a time
step [12]. Major issues that need to be considered with such
approaches include load-balancing, inter-processor communi-
cation and synchronization between processors [9], [12]. On
the other hand, an example of using partitioning is MALTA
[13], where a network partioning and recursive on-line load
balancing tool is used outside of the DynusT [7] mesoscopic
simulator for achieving speedup. Major issues that need to be
considered for such approaches include finding good partitions,
re-calculating the traffic demand matrices after partitioning,
minimizing overheads, and modelling traffic dynamics across
segment boundaries [9]. Due to the complexity and major
issues of using partitioning, the speedup in this paper is based
on using parallelism and compiler optimization. However, key
differences from [11] and [12] in this paper include focusing
on mesoscopic simulation and not imposing assumptions that
reduce DTA accuracy as the ones used in [11] and [12].

Contributions: This paper discusses the speedup of DTA
simulation models using compiler optimizations and paral-
lelism, and enabling them to run on Linux, designed for High-
Performance Clusters. DynusT, which stands for Dynamic Ur-
ban Systems for Transportation [7], was used as a mesoscopic
simulation platform to determine the efficiency of the compiler
optimization and parallelisation on a number of simulation
models with different network sizes to test the scalability of
the system. The experimental setup was tested on calibrated
networks, that had used real data to generate the transportation
demand and build the network geometry [14]. This makes the
interpretation and generalization of the results suitable to be
used in actual implementations of real-time ITS strategies.

In this paper, we first provide a background on User
Equilibrium Assignment and describe how it is achieved in
DTA models in Section II. Section III and Section IV present
the improvement options using compiler optimizations and
parallelism of the DTA model, respectively. Section V presents
the context of the DynusT DTA model used and the specific
optimizations made on it. Section VI presents the performance
results of the system on a 2 large-scale models in the GTHA.
Finally, we conclude and discuss future work in Section VII.

II. USER EQUILIBRIUM TRAFFIC ASSIGNMENT

This section provides a background on the User Equilib-
rium (UE) Assignment and its implementation in DynusT.

A. Background on User Equilibrium

Traffic assignment is the problem of routing vehicles on a
road network from their origins to their desired destinations,
given a road topology with network links and a set of vehicle
trip demands, represented by an Origin-Destination (O/D)
matrix [15]. Assumptions used for a traffic assignment include:
1. all vehicles/users start at the same time, 2. users are rational;

Figure 1: Iterations in a DynusT simulation

they try to reduce their own travel cost, if possible, 3. Demand
is constant; although in reality, it varies within the day, day
to day and with cost, 4. supply is constant; neglecting the
occurrence of incidents or the building of new roads, and 5.
users have perfect knowledge of routes and costs.

The User Equilibrium (UE) Assignment method seeks to
maximize each user’s welfare, by minimizing individual travel
times of all users. This is done through an assignment where
all alternate routes between an O/D pair have the same travel
time. As no user can reduce his or her travel time by choosing
another route, UE is an equilibrium assignment. This is called
a static UE assignment in the literature [15]. On the other
hand, the dynamic UE assignment relaxes the assumption that
all users start at the same time, and instead minimizes travel
times such that only vehicles departing at the same time on
routes between an O/D pair will have the same travel time
[10]. Dynamic traffic simulators implement dynamic UE since
it best models traffic behavior of users on real transportation
networks. They also relax some of the other assumptions listed
above, such as varying supply with incidents, specifying sets
of vehicles that have knowledge of routes and costs, varying
demand, etc., to model different traffic scenarios.

B. User Equilibrium implementation in DynusT

DynusT [7] is a dynamic mesoscopic traffic simulator, as
described above, which means that it adjusts link costs mid-
simulation based on their use. In order to simulate UE, DynusT
iterates over the following steps (1-4), illustrated in Figure 1:

1) DynusT analyses which route is the shortest for
each vehicle, and assigns vehicles initial paths. This
is similar to an unfamiliar driver chosing a route
assuming free-flow conditions.

2) DynusT performs an initial simulation, in which
drivers follow the assigned routes to completion
without changing course. This updates the route costs
based on the routes taken by the drivers.

3) These initial conditions leave some vehicles tak-
ing routes with higher cost than their alterna-



Figure 2: Adding vehicles mid-simulation in DynusT

tives. DynusT will perform dynamic assignment, re-
assigning a % of the vehicles to their respective best-
routes according to the calculated route costs [10].

4) It will then perform a simulation again, and updates
the route costs based on this dynamic assignment.

DynusT will then repeat steps 3 and 4, reassigning traffic
based on the latest simulation, and re-simulating with this new
assignment. It will stop when one of the following occurs:

1) The simulation iterates a maximum number of times,
as assigned by the user running the simulation.

2) The simulation reaches convergence, defined as when
all vehicles have no incentive to switch routes, i.e.
when the gap between the current assignment solution
and the ideal shortest route time, divided by the total
shortest path times (a ratio called the relative gap), is
below a pre-specified tolerance level [10].

Each simulation emulates a period in time, and as the
simulation time progresses, new vehicles navigate through the
network. Assigning the routes for these new vehicles based on
the shortest paths (determined at the start of the simulation)
does not represent reality simply because network conditions
dynamically change over time. That is why it is important to
distinguish between what is referred to as the instantaneous
travel time (cost) vs experienced travel time (cost) within a
transportation network. The instantaneous travel time refers to
the travel time calculated when the routes are generated with-
out considering congestion during subsequent time periods,
while experienced travel times account for the times needed for
traversing various links using the expected congestion state of
those links during the times of entering those downstream links
[10]. As illustrated in Figure 2, DynusT performs basic shortest
path analysis and assigns routes for newly generated vehicles.
These new vehicles then form a part of the simulation and
continue in the same manner as the ones loaded in the previous
time step. This process repeats many times per simulation
(known as assignment interval), once for each new batch of
vehicles entering the network.

It is important to note that due to its algorithmic structure
and software implementation, DynusT is capable of performing
DTA on regional-level networks over a long simulation period.
This is primarily due to the Anisotropic Mesoscopic Simula-
tion (AMS) algorithm [16] used in DynusT to perform the

traffic assignment. As a mesoscopic algorithm, DynusT does
not simulate car following, lane changing and gap acceptance
within individual vehicles (as a microscopic simulator would),
however it emulates system responses to factors affecting
individual vehicles, such as queues for making left turns. AMS
simulates groups of vehicles which are in close proximity using
the so-called “Speed Influencing Region” (SIR), enabling it
to differentiate speeds and other characteristics for vehicles
on the same link but in different SIRs. This is in contrast to
other mesoscopic models that imprecisely assume that traffic
flow/speed/density are uniform along these links [16]. The next
sections present the compiler optimizations and parallelism
that can be used to speed up DTA model run-times.

III. COMPILER OPTIMIZATIONS

Compiler Optimizations are modifications to how algo-
rithms are implemented in the processors to maximize their
efficiency, reducing their run-time [17]. There are many com-
piler optimizations that are possible for every programme
code. These optimizations generally require understanding of
the algorithm being implemented and exploiting that provides
options for further speedup using parallelism. These options
include manual optimization and automatic optimization.

Figure 3: Loop unrolling example, modified from [18]
A. Manual Optimization

Manual optimization is making a set of changes in the way
a code is compiled, based on specific knowledge of certain
bottlenecks in it [17]. One example is loop optimizations,
which act on statements that execute the same operation until
the condition to exit the loop is satisfied. These optimizations
can lead to significant speedup as programs can spend the
majority of their run-time inside loops that might be designed
inefficiently [18]. Figure 3 shows an example of loop unrolling,
where the body of the loop is unrolled into 2 independent
statements that can be easily executed on 2 separate processors
at the same time, giving a speedup of around 2 [18].

B. Automatic Optimization

Automatic optimization is allowing the compiler to look
through the code automatically to try to find options for
automatic parallelism [17]. There are 4 different optimization
levels for codes written in C, C++ or Fortran and compiled
with the Intel C++ Compiler (ICC) [19]:

1) When compiled with “O0” for “optimization level 0”,
the code is completely unoptimized.

2) “O1” is optimized to create the smallest (by size
rather than time) optimized code in most cases.

3) “O2” is optimized as far as it can deterministically
speed up the code.

4) “O3” has aggressive optimizations applied based on
heuristic approaches that are likely to boost the speed,
but not guaranteed. These include automatic loop
unrolling for all loops (which could be beneficial or
disadvantageous based on the specific scenario).



Figure 4: Critical sections resulting in wasted resources

IV. PARALLELISM

Programming for a high-performance environment to
achieve speedup makes use of a number of techniques to max-
imise efficiency. Multi-core computers have multiple, separate
processors (or processor cores), which individually execute
sequential commands. The code executed on each processor
(core) is known as a thread, and aims to utilize powerful
multi-core computers to speed up execution time. While a
perfectly parallel programme can run n-times faster utilizing n
threads, there are a number of issues that may limit speedup
in practical applications. In the following sections we discuss
speedup techniques using parallelism and their limitations.

A. Critical Sections of Code and Load Balancing

Critical sections of a programme are sections in which all
threads must be at the same place in order for the critical
section to run. This is usually due to data the algorithm needs
from all the threads, which requires that all threads to finish
calculating the needed data for the algorithm to continue. This
is problematic because processors that finish first must wait
until the slowest one finalizes its execution before continuing.
To illustrate, in the case of DynusT, there are 3 sections
of explicit critical code, as well as 12 places in which a
parallel section ends. Since the sequential section following
each ending parallel section will need data calculated in the
parallel section, this serves as an implicit critical section. It
forces all processors to catch up to the same point before any
of them can continue into the sequential code.

Critical sections become especially important if the number
of calculations is not spread evenly amongst all processors. For
instance, Algorithm A is run in parallel over 4 processors in
Figure 4, but 3 processors must wait idly while 1 finishes a
longer job before the first critical section. It then parallelises
again, but due to poor load balancing between the processors,
over half of the processor-time is wasted. If the first critical
section in Figure 4 was omitted, then some of the differences
between processor execution times would be cancelled, im-
proving the execution time significantly. Note that exploiting
the knowledge of these critical sections enables making certain
compiler optimizations to improve the load balancing between
the processors and thus lead to further speedup.

B. Sequential Sections

Another shortcoming of parallel code is that it does not
always scale linearly with the number of processors running

Figure 5: Asymptotic run-time change with more processors

it. A major bottleneck here is sections of the code that must
run in series - that cannot be made parallel. Regardless of
how many processors we have, the same amount of time must
be spent on the serial sections, thus limiting how many times
faster the overall code can run. This is called the speedup (S)
and this limit is quantified by Amdahl’s Law [20]:

S =
1

f + 1−f
P

where, S is the speedup; i.e. how many times faster the parallel
code runs on multiple processors than its serial counterpart on
1, where P is the number of processors being used, and f is
the fraction of the code that can run in parallel (0 ≤ f ≤ 1).
This means that increasing the number of processors does not
proportionally increase the speedup. In Figure 5, we see an
example of code that has an f of 0.5 (50% parallelisable, 50%
serial). This makes a theoretical speedup of:

S =
1

0.5 + 1−0.5
P

and taking the limit of infinite processors,

lim
P→∞

(S) =
1

f
=

1

0.5
= 2

This is a well-known corollary of Amdahl’s law, and means
that the speedup cannot exceed 2. This is because as we
increase the number of processors, the parallel code’s execu-
tion time decreases, however the serial code’s execution time
remains constant. As the number of processors approaches∞,
the execution time approaches the serial code’s time, as seen
in Figure 5. This however, represents the ideal case, in which
the parallel section scales linearly (doubling the processors
doubles the speed). This is not always achievable, due to delays
at critical sections as described earlier.

C. Parallelism with Threading

Running a programme using multi-threading involves using
the OpenMP compiler extension to implement its explicit
parallelism. Threaded code runs across all processors in a
single machine — this enables having parallel code running on



at most the number of processors on the machine. For instance,
a dual-core machine can only run two threads efficiently. The
number of processors a programme is executed on is therefore
limited to the number of cores on the machine.

D. Parallelism across Nodes

If we wish to add more processors than the number
available on one machine, we can use multiple machines. In
most high-performance environments, these are called nodes,
and are connected with network cables but are distinct units.
A major drawback of multi-node processing is that there must
now be communication between the nodes, something that
takes time. Furthermore, as described in Section IV-B there are
diminishing returns on adding processors. For these reasons,
most DTA models do not use parallelism across nodes. The
next section covers the context of the DynusT DTA model
used and the specific optimizations to exploit its speed up.

V. THE CONTEXT OF THE DYNUST DTA MODEL

This section discusses how compiler optimizations and
parallelism were used to speed up the DynusT DTA model.

A. Compiler Optimizations on DynusT DTA Model

After analyzing the implementation of the traffic assign-
ment algorithms in the DynusT DTA model (Section II-B)
and their performance in detail, we performed many manual
optimizations within the DTA model (to enable achieving
further speedup using parallelism), including the following: 1.
vectorising matrix calculations (e.g. directly summing a vector
of vehicle data rather than 1-by-1), 2. removing unnecessary
code jumps using loop unrolling, and 3. changing the imple-
mentation to reduce memory-access, by making it use as much
of the processor cache as much as possible, rather than system
memory [18]. In addition, the DTA model was run using the
3 automatic optimization levels, O0, O2 and O3 (O1 was not
used as it optimizes for space rather runtime).

B. Parallelism in DynusT

Analysing how parallelism can be used to speed up the
DynusT DTA model, our findings showed that explicit critical
sections occur only 3 times in DynusT. One of these occur-
rences is in the section of code that moves all vehicles mid-
simulation (vehicles move along a road as time progresses).
Periodically in the simulation, DynusT needs to write the
information (e.g. location) for each vehicle to an array to use
it later for dynamic assignment. It is important that all vehicle
locations written to this array are written at the same time, thus
making this code a critical section. Since this section occurs
in a loop to move all vehicles, the parallel-critical transition
scenario similar to Figure 4 happens many times (two are
illustrated). For instance, if this cycle were to occur once for
each vehicle, the run-time would increase proportionally to
the number of vehicles. This amplifies the delay caused by the
critical section, for a large network like the Greater Toronto
and Hamilton Area with 1.6 million vehicles.

Based on our analysis, DynusT has an empirical f value
of 0.163 (the serial part of the code takes 16.3% of the total
time with 1 processor as explained in Section IV-B). Thus, its

(a) GTHA Network (b) GTA Network

Figure 6: Layout of the GTHA and GTA networks

theoretical speedup is 1/f = 6.126. This represents the ideal
case with infinite processors, where the parallel section run-
time scales down linearly with the number of processors. This
is not the case in DynusT, due to delays at critical sections
as described in Section IV-A, which leads to its run-time not
reaching that asymptote, as explained in detail in Section VI-C.

Finally, running with OpenMP enables DynusT to run
parallel operations, such as assigning vehicles to a route based
on the costs for each route — item 3 in Figure 1. Thus, we
used multiple processors to achieve speedup in DynusT (up to
8 processors based on the theoretical speedup findings). The
performance analysis results with DynusT are discussed next.

VI. APPLICATION TO DYNUST: PERFORMANCE
ANALYSIS

In this section we apply the compiler optimization and
parallelism approaches discussed above into DynusT, a meso-
scopic simulation software that is widely used in many
cities. DynusT is originally designed as a Windows-based
programme. As many High Performance Computing (HPC)
facilities [21] are rapidly emerging to be running on Linux
systems, the DynusT source code was converted to run on
Linux as a first step. As Windows and Linux differ in their
performance running the same programme, we discuss some
of these differences and show extensive testing on the perfor-
mance of DynusT for Linux under various conditions.

A. Experimental Setup

In order to assess the performance of the proposed speed-
up approaches, the experiments were designed to study the
following factors: efficiency (with number of CPUs and op-
timization levels), performance in various systems (Linux vs
Windows), and scalability (with different network sizes).

Table I: Sizes for the GTHA and GTA networks

GTHA GTA
n 11,713 14,225
m 29,184 26,444
v 1,981,571 1,602,717

The simulation test networks include those of the Greater
Toronto and Hamilton Area (GTHA) [14] and the Greater
Toronto Area (GTA), which have been extensively calibrated
using real data. These networks are shown in Figure 6 and they
differ in size (shown in Table I), based on these 3 criteria: 1.
n, the number of nodes (intersections) and origin/destination



Figure 7: DynusT CPU usage for 12 iterations

Figure 8: DynusT Memory usage for 12 iterations

points in the network, 2. m, the number of links (roads) in
the network, and 3. v, the number of vehicles making a trip in
the simulation. Each simulation emulates the morning traffic
period from 6 am to 10 am, and a number of iterations to reach
user equilibrium conditions. In the case of the 2 test networks,
the number of iterations required for convergence was found
to be 12. The loading pattern of the vehicles is shown in
Table II; although we feed the demand every minute, this
table aggregates the demand for every 30-min interval to show
the profile of the vehicles loaded into the network. Extensive
testing was performed on the performance of DynusT under
various conditions, using memory use, CPU use and execution
time as metrics. The number of processors used ranges from 1
(serial) to 8 on an Intel Core I7 workstation with 12GB RAM
and the compiler optimization levels used are optimization
level 0, 2 and 3.

Table II: Vehicle Loading Profile (in thousands of vehicles)

Time 0- 30- 60- 90- 120- 150- 180- 210-
(min) 30 60 90 120 150 180 210 240
GTHA 137 172 291 347 496 370 261 144
GTA 112 147 243 295 416 317 216 115

B. CPU and Memory Usage

DynusT executes a DTA algorithm described in Section
II-B, using multi-threading with OpenMP (described in Section
IV) for efficiency. To illustrate the required resources to run

Figure 9: CPU and memory usage during one iteration.
Dashed: CPU in %, and solid: memory in GB/100.

the GTHA network until convergence (using 12 iterations), a
series of figures are created. In Figures 7 and 8, the CPU usage
and memory usage are illustrated against the actual run-time
(x-axis) for 12 iterations, respectively. Additionally, Figure 9
helps provide more insights into the resources allocated during
one iteration (after the 0th iteration).

Figures 7 and 8 show fluctuations in CPU and memory
usage with the evolution of the simulation iterations. These
correspond to the steps of the DTA algorithm described in
Section II-B. On the one hand, the 0th iteration (during which
network-loading and initial short paths are generated for all
vehicles as shown in Figure 1) exhibits a large memory peak as
seen in Figure 8 and takes longer than subsequent iterations, as
expected. On the other hand, Subsequent iterations only assign
newly generated vehicles to shortest paths based on DynusT’s
traffic assignment algorithm (described in Figure 2).

Figure 9 provides a clearer view of the iterative simulation
(the initial section until around 8.5 min), and the dynamic
assignment following it, described in Section II-B. It also
shows the variation in CPU usage, where the periods using
1 CPU (100% CPU Usage, rather than 400%) represent the
serial sections of DynusT’s code execution.

As seen in Figures 8 and 9, the memory usage within a
typical iteration increases overall as the simulation progresses.
However, a large drop of memory (and CPU) is observed
around the 8 min mark in Figure 9; this is due to freeing
of memory and writing vehicle info into files (usually by 1
processor) to be used for reassigning some vehicle paths during
the dynamic assignment step. Note that this period for writing
vehicle info to files is higher (lower) when the number of
vehicles in a network is higher (lower). Other drops in memory
are attributed to freeing of memory between iterations and
within each iteration, seen around the 1.5 and 4.5 min marks
in Figure 9, before new vehicles are loaded into the network
(described in Figure 2). Overall, the maximum memory usage
reaches around 9GB, seen in Figure 8, which is below the
memory capacity of the simulation workstation.



C. Evaluation with Compiler optimizations and Parallelism

In addition to the manual optimizations implemented (as
discussed in Section III-A), this section discusses how the
execution time of DynusT can be reduced using 2 methods: 1.
Compiler optimizations, through automatic parallelism, with
levels 0, 2, and 3 for optimization, and 2. Explicitly parallel
code, using OpenMP. This is defined by the number of cores
DynusT is “allowed” to use in one of its configuration files.

Table III summarizes how the run-time of DynusT for the
GTHA network changes using different compiler optimization
levels and number of cores. The columns break down each
section of a DynusT run into the following components: The
“Initial Simulation” time, is for the 0th iteration, i.e. items
1 and 2 of Figure 1. The “Iterative Simulation” column
lists how long the iterative simulations (item 4 in Figure 1)
took, averaged over all iterations. Likewise, the “Dynamic
Assignment” column lists the averaged execution times for
assignment in-between simulations (item 4 of Figure 1). The
total execution time simply equals initial simulation + number
of iterations × (iterative simulation time + dynamic assignment
time). Note that the optimization levels O0, O2, and O3 (O1
was not used as it optimizes for space and its runtime is very
similar to O0) and the number of cores are included in the 2nd

column next to the operating system used. The first 4 rows
help compare the optimization levels O0, O2, and O3, and the
remaining rows shown in Table III are all using the O3 setting.

Comparing the run-times with 4 cores between optimiza-
tion levels 0, 2, and 3 (rows 3, 4, and 8), there is a drop in
execution times, of almost 50% between O0 and O3. The drop
is also similar for the serial case when comparing optimization
levels O0 with O3 (rows 2 and 5). Although the aggressive
optimizations applied with the O3 setting are not guaranteed
to speedup run-time due to the heuristic methods they use, they
provide better speedup than optimization level O2 here.

Comparing the total run-times with increasing number of
cores (1 to 8) with O3, rows 5-12 in Table III, show the
expected asymptotic behaviour, reaching a minimum time with
4 cores or a speedup of 1.9x (row 8). However, as the number
of cores increases beyond 4, the run-time increases. This is
because beyond a certain number of cores, the communication
latency between the cores cancels out and then surpasses the
benefits of the multi-core speedup. Putting these two results
together indicates that the optimal conditions for DynusT’s
overall speedup are optimization level 3 running on 4 cores.

On another note, the execution time of the initial simula-
tion, goes down to only 16.5 min (2.5x speedup compared to
serial) using 8 cores (has less critical sections). This saving
in initial simulation time is essential in cases where 10’s
or 100’s of initial simulations are required. For example,
determining the optimal toll structure for a regional highway
network requires multiple evaluations of dynamically assigning
of vehicles into the network in response to the toll structure.

Finally, the run-times on Windows improve with higher
optimization levels and an increasing number of cores (not
shown in Table III), reaching the lowest times with 8 cores
(shown in row 1). However, the total time is 1.7x longer and
the initial simulation time is 2.4x longer than the times of
Linux O3 - 4 Cores (row 8). This is due to 1. the manual
optimizations made on the DynusT code after converting it to

Table III: DynusT execution times on the GTHA network

Row Exec. Time Initial Iterative Dynamic Total (12-
(hh:mm:sec) Simulation Simulation Assignment iterations)

1 Windows O3 00:42:29 00:14:28 00:09:24 05:33:18- 8 Cores

2 Linux O0 - 01:50:18 00:11:39 00:48:41 13:54:26Serial

3 Linux O0 - 00:36:39 00:07:35 00:21:12 06:21:544 Cores

4 Linux O2 - 00:19:25 00:05:30 00:10:12 03:27:514 Cores

5 Linux O3 - 00:44:35 00:07:17 00:20:20 06:16:03Serial

6 Linux O3 - 00:17:17 00:07:10 00:09:37 03:38:432 Cores

7 Linux O3 - 00:20:56 00:05:20 00:10:55 03:35:593 Cores

8 Linux O3 - 00:17:54 00:05:10 00:09:51 03:18:064 Cores

9 Linux O3 - 00:17:28 00:05:36 00:09:48 03:22:105 Cores

10 Linux O3 - 00:16:57 00:05:42 00:09:50 03:23:166 Cores

11 Linux O3 - 00:16:33 00:05:50 00:09:59 03:26:297 Cores

12 Linux O3 - 00:16:27 00:06:06 00:10:01 03:29:528 Cores

run on Linux (discussed in Section III-A), 2. the removal of
extra visual DynusT pop-ups that are computationally intensive
in Windows and 3. the higher control that Linux provides to
multi-threaded programmes (rather than randomly pausing the
computation of a core due to various Windows interrupts).

D. Variation with Network Size

In addition to analyzing the performance with compiler
optimizations and parallelism on the GTHA network, we have
examined DynusT’s performance on the smaller GTA network
(Figure 6), to determine whether the compiler optimizations
and parallelism can provide the same improvements in run-
time as the GTHA network. The same analysis as in the
previous section was conducted on the GTA network, which
is a subset of the GTHA network (see Table I).

Similar to Table III, Table IV shows the execution times
for the GTA network. We see a considerable drop in execution
time, of almost 50% between O0 and O3 with 4 cores (rows
3 and 8 in Table III). Moreover, we observe a speedup of 1.9x
as the number of processors increases from 1 to 4, similar to
the GTHA. However, the run-time is lowest for 5 (rather than
4) processors for the GTA, reaching a speedup of 2x. This
is because the amount of data being communicated between
processors for the GTA network (with 23% fewer vehicles) is
less than that in the GTHA network, allowing the usage of 1
more processor before the communication latency cancels out
and surpasses the multi-core speedup. This was also observed
with a shorter period for writing vehicle info to files in the GTA
network (not shown here) between the iterative simulation
and dynamic assignment for example compared to the period
around the 8-min mark in Figure 9, due to the lower number
of vehicles in the network. In addition, the execution time of
the initial simulation for the GTA, goes down to only 13 min
(2.9x speedup) using 8 cores. This shows that reducing the
amount of information being communicated in a parallellised
DTA model enables getting further speedup using more cores.
Alhough it is desirable to draw general conclusions about run-



Table IV: DynusT execution times on the GTA network

Row Exec. Time Initial Iterative Dynamic Total (12-
(hh:mm:sec) Simulation Simulation Assignment iterations)

1 Windows O3 00:17:00 00:09:14 00:09:40 04:05:51- 8 Cores

2 Linux O0 - 01:31:31 00:09:05 00:39:35 11:15:23Serial

3 Linux O0 - 00:31:31 00:06:22 00:20:55 05:58:544 Cores

4 Linux O2 - 00:17:39 00:05:21 00:09:18 03:13:274 Cores

5 Linux O3 - 00:37:36 00:06:15 00:19:34 05:46:46Serial

6 Linux O3 - 00:14:17 00:06:17 00:09:01 03:17:502 Cores

7 Linux O3 - 00:14:05 00:05:49 00:09:05 03:12:533 Cores

8 Linux O3 - 00:14:02 00:05:32 00:09:02 03:08:444 Cores

9 Linux O3 - 00:13:43 00:04:41 00:09:05 02:58:595 Cores

10 Linux O3 - 00:13:13 00:04:54 00:09:26 03:05:136 Cores

11 Linux O3 - 00:13:00 00:04:59 00:09:25 03:05:407 Cores

12 Linux O3 - 00:13:08 00:05:10 00:09:08 03:04:548 Cores

time as a function of network size, it is important to note
that the results presented here only reflect the size and the
conditions of the GTHA and GTA networks. Therefore, a more
thorough analysis using more test cases is required to reach
such generalization.

VII. CONCLUSION

This paper focused on the speedup of DTA simulation
models because of the needs to have numerous evaluation runs
for optimization and to enable real-time traffic management
applications. The methodologies included using both compiler
optimizations and parallelism. DynusT as a widely used DTA
model was evaluated as a test case, while its results could
be generalized because we have used real-networks and cal-
ibrated them using real data sets in the Greater Toronto and
Hamilton Area (GTHA). Extensive testing was performed to
evaluate various dimensions for speed-up including: network
size, number of processors, various optimization levels and
operating systems. The results showed that compiler opti-
mizations and parallelism allowed the execution time for a
12-iteration simulation run and an initial simulation to be
reduced using around 4 cores by around 50% and the 60%,
respectively. Moreover, they provided an important insight
that speed-up with increasing number of cores is achievable
but up to a certain point, depending on the communication
latency between the cores. Therefore, reducing the amount of
information being communicated in a parallellised DTA model
enables getting further speedup using more cores. An added
contribution of this work is that the Linux version of DynusT
works on more high-performance clusters, and can thus be run
using the fastest available processors. Future work includes
using the modified DynusT to run a congestion pricing ITS
application and a robust DTA algorithm for the GTA network.
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