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Abstract—Disturbances in roadway networks due to 
increases in demand or drops in network capacity can 
severely degrade the performance of the system. The 
robustness of a roadway network to such disturbances 
has been investigated using a variety of methods lead-
ing to disparate robust network designs. This paper 
introduces a unifying framework for understanding and 
applying different robust network designs based on the 
context of traffic disturbances and design goals. It pres-
ents the objectives, requirements and examples of robust 
network design with long-term (planning) and short-
term (operation) goals. A sample case study is presented 
to assess a short-term robust network design using traf-
fic assignment. The preliminary testing results com-
pared to conventional User Equilibrium and System 
Optimal traffic assignment, demonstrate 20% and 10% 
travel time savings with demand increase and supply 
reduction, respectively.

I. Introduction

R
ecently, significant attention has been devoted to 
designing robust real-world networks that can handle 
the possible impacts caused by disturbances, such 
as system malfunctions, weather conditions, cyber 

attacks, terrorist activities, unexpected demands, incidents, 
etc. [1]–[3]. Examples of networks that can be affected by 
these disturbances include electric grids, computer net-
works, communication networks, financial networks, safe 
water networks, and transportation networks. In order to 
assess the robustness of a network, it is crucial to quantify 
the importance of its nodes and links to the performance of 
the overall network under such disturbances [4]. For exam-
ple, the New York JFK airport is a very important node in the 
US air traffic network, because it acts as a hub between hun-
dreds of other smaller airports. Therefore, any disturbance 
to the operations of the JFK airport could have considerable 
impact on the overall US air network performance.
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In the context of road networks, several studies have 
looked at the general problem of designing road networks 
[5], [6]. Such studies relied on optimization models to design 
a network or make an optimal investment decision in order 
to satisfy the route choice specifications of network users, 
while minimizing total travel cost [5], [6]. The past few years 
in particular have seen a substantial effort in developing 
methods for measuring the robustness of road networks [7]–
[11]. However, there has been a variety of approaches to net-
work robustness addressing different types of traffic distur-
bances, resulting in disparate methods for robust network 
designs and their associated optimization problems. For 
example, Ip et al. [12] solved a resource allocation problem 
for choosing long-term road building projects by maximiz-
ing the robustness of a road network to severe traffic con-
ditions. Koulakezian et al. [11] solved a traffic assignment 
problem for choosing short-term traffic routing by maxi-
mizing the robustness of a road network to frequent traffic 
demand/supply variations.

Contributions: This paper introduces a unifying frame-
work enabling the research community and transporta-
tion planners/operators to understand and apply different 
robust network designs based on the context of traffic dis-
turbances (severity and frequency) and design goals (short-
term and long-term). Moreover, it systematically presents 
the objectives, requirements and examples of robust net-
work design with long-term (planning) and short-term 
(operation) goals, which have been lacking in the literature. 
In addition, it illustrates the potential benefits of robust net-
work design through a simple case study, while introducing 
a systematic evaluation methodology for robustness met-
rics; featuring additional simulations and novel formula-
tions compared to the previous short paper [11].

In this paper, we first introduce this framework, starting 
with the various contexts of robustness based on the types of 
traffic disturbances in Section II. We then investigate in Sec-
tion III the goals and requirements for developing a robust 

network design (short-term and long-
term), discussing recent examples from 
the literature. In Section IV, we present 
a sample study using traffic assignment 
to achieve short-term robust network de-
sign with frequent disturbances. Finally, 
we conclude in Section  V and discuss 
future work in Section VI. This research 
was funded by the Ontario Research 
Fund grant on Connected Vehicles and 
Smart Transportation [13].

II. Context of Robustness
In this section, we define the sensitivity 
of road networks to traffic disturbances 
and the possible contexts for robustness 
according to the severity and frequency 

of disturbances. We then define robustness and discuss how 
it can be measured.

A. Sensitivity of Road Networks
The impact of traffic disturbances on networks is illus-
trated in Fig. 1. Traffic disturbances cause various changes 
in the network, which may subsequently cause changes in 
some performance measures of the network.

Based on these definitions, the sensitivity of a road net-
work to a disturbance [14] is defined as the change in a per-
formance measure, divided by the magnitude of the change 
in the network due to the traffic disturbance, as shown in 
Equation 1.

	 Sensitivity Change in network
Change in performancemeasure

= � (1)

For instance, an incident on a highway might cause 
changes in the network, including taking away 30% of the 
highway capacity (and possibly altering the demand on the 
highway and on alternate roads, etc.) Therefore, the high-
way could be considered insensitive to incidents of this 
nature if this 30% capacity drop only causes a 10% increase 
in travel times (a chosen performance measure of inter-
est), and considered sensitive if it leads to a 90% increase 
in travel times.

B. Severity of Traffic Disturbances
The severity of traffic disturbances defines the extend of 
network changes. For example, disturbances can lead to:

■■ Normal traffic conditions, with minor variations in de-
mand, minor incidents and changing weather conditions.

■■ Severe traffic conditions, including major incidents, nat-
ural disasters, and severe weather conditions.
In normal traffic conditions, the road topology is usu-

ally left intact, with certain performance degradation. 
However, severe traffic conditions include cases when 

Traffic Supply Changes: Changes in 
Network Topology, Loss of Link 

Capacity, or of Connectivity

Traffic Demand Changes: Random Daily
Changes or Traffic Changes

Due to Events

Travel Time Changes: Time to Traverse a
Network or Time Required to Evacuate a

Whole Network

Other Performance Measures: 
Traffic Flow, Energy Consumption, 

Emissions or Toll Revenue, Etc.

Changes in the Network

Changes in Performance Measures

Traffic Disturbances

Fig 1 Impact of traffic disturbances [4].
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demand tremendously exceeds capacity in parts of the net-
work or when connectivity of the road network is greatly 
impacted, such as the case of evacuation scenarios. Severe 
traffic conditions typically lead to severe changes in per-
formance measures also; thus certain special performance 
measures, such as the time required to evacuate a network, 
may be of interest in such cases.

C. Frequency of Traffic Disturbances
The frequency of traffic disturbances affecting the net-
work is another factor to consider. For example, traffic 
disturbances can be classified as frequent and infrequent 
[4]. Traffic operators consider another associated notion 
of disturbances, namely their predictability of occurrence, 
defining them as predictable, if it is relatively easy to predict 
them, and unpredictable otherwise. Given these classifica-
tions of disturbances, a possible set of examples for traffic 
disturbances includes:

■■ Frequent predictable: A pedestrian at a crossing near a 
stadium before a sports game

■■ Frequent unpredictable: A pedestrian at the same cross-
ing next to the stadium on a cold Sunday morning

■■ Infrequent predictable: Incidents during a storm, if the 
storm was predicted

■■ Infrequent unpredictable: An earthquake damaging roads. 
Therefore, considering the severity, frequency and pre-

dictability of traffic disturbances helps better understand 
the impacts of disturbances on network performance.

D. Robustness of Road Networks
The robustness of a road network can thus be defined as the 
ability to maintain acceptable performance under a set of 
traffic disturbances [15]. Acceptable performance refers to 
reasonable travel times, delays, energy consumption, etc. 
compared to disturbance-free or average typical traffic 
conditions [14]. A formal definition of road network robust-
ness should consider the context of robustness based on 
the severity, frequency and predictability of traffic distur-
bances. As illustrated in Fig. 1, each disturbance within this 
context leads to a corresponding set of network changes .ni  
Therefore, based on Equation 2, a road network is robust 
if the maximum change in a key performance measure of 
interest, divided by the magnitude of the change in the net-
work ,ni  over all possible network changes due to distur-
bances within its context, is small:

	 max Change in network(n )
Change in performancemeasure

is small
ini

� (2)

This definition is independent of the context of distur-
bances. However, the magnitude of network and perfor-
mance changes varies with this context. Therefore, to study 
the network robustness under emergency evacuation cases 
for example, the context of robustness is the set of severe, 

infrequent, and unpredictable traffic disturbances [12]. On 
the other hand, the context of a minor incident is the set of 
recurrent traffic disturbances in normal traffic conditions [1].

Note that even after considering the context of distur-
bances that could affect a road network and choosing a per-
formance measure such as travel time in the network, cal-
culating Equation 2 for all possible network changes, caused 
by all possible disturbances within this context, is usually 
not computationally feasible. Therefore, robustness met-
rics have been proposed to varying degrees of success in 
capturing the essence of Equation 2. Metrics have achieved 
this by modeling key changes in the network and/or per-
formance measures (shown in Fig. 1) due to a set of distur-
bances within the context assumed for a network, rather 
than modelling all possible network and performance 
changes caused by disturbances.

For example, assume that average node degree (number 
of neighbors a node is connected to) is a robustness metric 
for a network under the context of severe conditions. Based 
on this metric, a network is robust if the change of its aver-
age node connectivity under this possible set of disturbances 
is small (see Equation 2), i.e. below a certain threshold cho-
sen by the road planner/operator. However, since this metric 
only captures a change in the network (without taking into 
account any changes in performance measures), it offers an 
incomplete or partial view of network robustness. Similarly, 
other metrics capture network robustness with varying 
degrees of accuracy.

In addition, robustness metrics can be further classified as:
■■ Static, if they incorporate network changes and/or static 

performance measures that do not change with time, e.g. 
free-flow travel times, in the modelling process.

■■ Dynamic, if they incorporate both network changes 
and explicitly model temporal variations, such as travel 
times, queuing, spread of congestion and dynamic net-
work and performance changes in general.

Static metrics have low computational complexity compared 
to their dynamic counterparts, but lack in the ability to cap-
ture short-term performance changes due to traffic distur-
bances. The next section will discuss the various objectives 
of robust network design, shedding light on the roles of static 
and dynamic metrics in various network design problems.

III. Robust Network Design
Road network designs can have both long-term and short-
term objectives. While long-term objectives typically 
address regional planning needs, usually performed by 
transportation planners, short-term design objectives 
address managing the day-to-day operations of a road 
network, usually performed by traffic engineers and sys-
tem operators. Recently, analyzing the robustness of road 
networks to traffic disturbances has played an influen-
tial role in road network design, including the decision 
of where to invest, aiming to make road networks more 
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robust. This section discusses both long-term and short-
term robust network designs, highlighting the benefits 
of analyzing network robustness in each case and pro-
viding insights on the robustness metrics proposed for 
these designs.

A. Long-Term Robust Network Design
Long-term network design implies designing a region-
wide road network or updating an existing one to accom-
modate normal traffic disturbances, due to varying traf-
fic demand, occurrence of incidents, and changing living 
and employment locations. This requires forecasting 
population growth, land use and traffic demand [16]. In 
addition, it could include planning for disaster situations 
with severe traffic disturbances, which could require 
emergency evacuation due to an earthquake, nuclear 
spill, etc. [17]. Defining robustness metrics is key to guide 
these long-term planning goals with explicit optimiza-
tion of network robustness. Examples of robust long-term 
design goals include:

■■ Making policy decisions to prioritize building new roads 
to alleviate the performance degradation of critical roads

■■ Optimizing emergency evacuation plans to manage the 
usage of critical parts of the network

■  ■ �Changing directions of exist-
ing roads or particular lanes of 
roads to limit the effect of sea-
sonal traffic demand variations 
on critical roads.
To help planners achieve long-

term robust network design goals, a 
robustness metric should satisfy the 
following criteria:

■■ Network-wide measure: The metric should quantify the 
impact of traffic disturbances on the network as a whole.

■■ Component-specific measure: should identify the critical 
links/nodes for a robust system performance [4].

■■ Directed: should be capable of modeling the asymmet-
ric demand inherent in road networks, as they are rep-
resented by directed graphs (some existing metrics for 
instance assume symmetrical links between nodes, 
which is not the case in transportation networks).
In Table 1 we provide a set of proposed robustness met-

rics for long-term robust network design, and summarize 
these metrics against the requirements defined above. In 
this section, we summarize the robust metrics proposed in 
the literature (with their original metric names) by identi-
fying the context of disturbances considered and the asso-
ciated design goals, in light of the framework setup in Sec-
tion II and Section III.

Resilience and Friability [12] are static robustness met-
rics in the context of severe, infrequent and unpredictable 
disturbances, with the goal of guiding policy decisions on 
where to invest in expanding the road network. In a net-
work that models cities as nodes and passageways between 
cities as paths/routes, the resilience of a node is defined as 
the weighted average of the number of passageways it has to 

all other nodes using city population as a 
node weight. Consequently, network resil-
ience is calculated as the weighted sum 
of node resiliences. Moreover, friability is 
defined as the reduction in network resil-
ience upon removing a node or a link from 
the network. Based on these robustness 
metrics, a robust network design problem 
is formulated to prioritize the investment 
on road expansion project(s)—among sev-
eral possible projects - to maximize the 
resilience and minimize the friability of 
the network subject to budget constraints 
[12]. The definitions of resilience and fri-
ability metrics do not fully capture network 
robustness as defined in Equation 2. For 
instance, they do not consider the capaci-
ties of links, their importance to the whole 
network, or their impact on performance 
measures such as travel time or through-
put. In addition, friability needs to be 

Recently, analyzing the robustness of road networks to traffic 
disturbances has played an influential role in road network 
design, including the decision of where to invest.

Metric Source Solution
Network-Wide 
Measure

Component-
Specific Measure Directed

Resilience [12] Average of node 
resiliences

Friability [12] Decrease in 
network resilience

Diameter 
change

[18] Min. net. diameter 
increase

Alternative 
paths

[7] Based on no. of 
alternate paths

Fastest-path 
betweenness

[8] Weight: no. of 
restaurants

Estimating 
travel time

[9] Shortest path 
assignment

Vehicle loss 
hours

[4] Estimating partial 
link blocking

Table 1. Robustness metrics for long-term road network design.
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computed for every network node 
after removing it and recomputing 
the resiliences of its neighboring 
nodes, which is computationally 
inefficient. While the aim of priori-
tizing road expansion investment 
to improve resilience and friability 
aligns with transportation planner 
goals, an additional requirement to 
convince policy makers to secure 
funding for these roads requires 
clarifying the potential savings this additional achieved 
robustness provides relative to a base case of not building 
new roads for example. For instance, this could possibly be 
in terms of time required to evacuate a network.

Diameter change [18] is a static metric in the context of 
severe, infrequent unpredictable disturbances for bus traffic 
networks. A network is considered to be robust if the increase 
in the network diameter (the largest number of links that need 
to be traversed between any pair of nodes) upon the removal of 
nodes, due to disturbances, is small. This metric is dependent 
on few low-degree but high-load nodes in the network, a prop-
erty that defines the topology of bus networks [18]. Therefore, 
it could be used to promote bus network designs with highly-
connected stations. However, since roadway networks have 
more complex routing options and design parameters com-
pared to a fixed pre-defined set of routes for bus networks, 
this metric does not well represent road network robustness.

Derrible [7] presents a similar static metric called 
Alternative Paths for metro networks. This metric is cal-
culated as ,( | |) | |r L NT mn= -  where n  is the number of 
cycles in a network with | |N  nodes and | |Lm  multiple links 
(between nodes, used to provide redundancy). This metric 
works well for the topology of metro networks, but seems 
implausible for urban road networks, which have different 
network topologies.

Leung et al. [8] propose the static Node-Weighted Fast-
est-Path Betweenness metric in the context of frequent dis-
turbances within normal traffic conditions. The between-
ness of a node k with respect to flows from source node 
s to destination node d is defined as the proportion of the 
shortest paths from s to d that traverse node k. The overall 
betweenness of node k is the sum of the betweenness values 
over all source-destination (s-d) pairs [19]. Node-weighted 
fastest-path betweenness uses the free-flow travel times 
of each link based on road class and length to determine 
the shortest paths in the betweenness calculation and also 
considers the importance of a node by using the number 
of restaurants in its vicinity as a node weight. To show the 
potential benefits of this metric, correlations with traffic 
conditions were performed in [8]. At first glance, this metric 
looks promising for promoting long-term designs to handle 
frequent disturbances; however, it uses an odd node weight 
and assumes free-flow travel times in its calculation. These 

assumptions are questionable for common traffic flow pat-
terns in real roadway networks, as shown by the average 
correlation results with traffic conditions provided in [8].

Another metric proposed in the context of frequent 
disturbances within normal conditions is the estimat-
ing travel time heuristic [9]. The objective of this met-
ric is to estimate the impact of a link failure on the total 
system travel time and design the network to reduce this 
impact. For this purpose, it does not require removing 
each link and re-running a traffic assignment algorithm. 
Instead, it requires running an assignment algorithm once 
to find the initial assignment, then fixing link costs based 
on this assignment and calculating link failure effects on 
total travel time by only rerouting the affected traffic using 
shortest path routes. However, given the dynamics of road 
networks and the considerable effect of traffic flowing from 
shortest-path routes into alternate routes, this metric can-
not sufficiently model the dynamic movement of vehicles in 
the presence of frequent disturbances in the network.

Vehicle loss hours [4] is a similar static metric for frequent 
incidents within normal traffic conditions. It is evaluated 
with travel times from a macroscopic traffic assignment tool 
and a marginal incident computational model based on prob-
abilities and properties of incidents on links. It estimates the 
effect of drivers using alternate routes using percentages of 
rerouting upstream of an incident. Performance results with 
this metric [4] show that it is unable to model spillbacks caused 
by incidents. Such a robustness metric can possibly provide 
a modeling capability to design road networks with reduced 
impact from incidents. However, this capability is limited by 
its macroscopic model that simplifies driver behavior and by 
its inability to model spill-back effects to accurately represent 
the propagation of shockwaves upstream of an incident.

B. Short-Term Robust Network Design
Traffic engineers are responsible for the day-to-day opera-
tions of the road network and the associated short-term net-
work designs. In most cases, traffic engineers consider the 
context of frequent and infrequent disturbances under nor-
mal traffic conditions. However, severe disturbances might 
be of interest in the case of preparing a real-time dynamic 
emergency evacuation plan that can cope with short-term 
traffic disturbances. Short-term network design requires 

A network is considered to be robust if the increase in the 
network diameter (the largest number of links that need to be 
traversed between any pair of nodes) upon the removal of 
nodes, due to disturbances, is small.
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managing both the traffic demand and the network sup-
ply in a road network. Supply-side management strategies 
include, for instance, ramp metering [20], Variable Message 
Signs (VMS), Variable Speed Limits (VSL) [21], and chang-
ing road directions dynamically. Demand-side management 
includes Advanced Travel Information Systems (ATIS) [22] 
and congestion pricing [23].

Analyzing network robustness metrics helps in directing 
these operation goals to achieve a robust road network in 
day-day operations in the presence of disturbances. It helps 
to pro-actively control traffic demand and supply, consider-
ing the possible effect of disturbances that might occur, by 
optimizing for robustness rather than minimizing travel 
times during daily operations [24]. In other words, the 
impact of disturbances can be mitigated, leading to more 
stable road networks, by incorporating robustness metrics 
into the objective functions of real-time demand manage-
ment and supply optimization, such as ramp metering, 
congestion pricing, VSL, VMS and dynamic road direction 
change. To guide such short-term robust network design 
objectives, a robustness metric should satisfy the following 
requirements (in addition to the requirements of long-term 
design discussed earlier):

■■ Scalable: should have low computational complexity 
relative to network size.

■■ Dynamic: Should capture both dynamic changes in 
traffic performance measures and effects of network 
changes as shown in Fig. 1.

■■ Measurable in Real-time: Should be easily measured 
using real-life traffic monitors, such as road sensors and 
sensors in connected vehicles.
A set of robustness metrics proposed for short-term 

robust network design is shown in Table 2. Here, we describe 
and compare them based on the established requirements.

Vulnerability [1] is a dynamic robustness metric pro-
posed in the context of frequent incidents within nor-
mal traffic conditions. Defined as the ratio of actual flow 
(demand) to available capacity of links, it is calculated 
for network links using an initial traffic assignment and 
its variation is studied with a reduction of the number of 
lanes for links in the network. The results in [1] show that 
link-based metrics, including this metric, are insufficient 

to capture the effects of blocking a link (for example due 
to an incident or construction) on the whole network [1]. 
Using loop detectors on the roads, the flow on the links can 
be estimated and therefore this metric is scalable and can 
guide a response towards achieving robustness by possi-
bly maximizing the weighted average for flow to available 
capacity ratios in network links. It is important to note that 
this metric assumes that when demand exceeds capacity, 
the network (or link) will operate at capacity. Although this 
is the case in many networks types such as computer net-
works, it is not the case in road networks. In road networks 
if demand exceeds capacity, throughput will degrade due to 
excessive turbulence in the traffic stream [25]. This could 
lead to measuring low flow values not because there is 
unused capacity but because the traffic stream is congested 
and not moving well. As a result, this metric is not suitable 
for congested networks.

The Unified Network Performance Measure (UNPM) 
[10] is a dynamic metric proposed in the context of frequent 
disturbances in normal traffic conditions. Given a network 
topology G  and the equilibrium demand vector D between 
its source-destination (s-d) pairs, UNPM is defined as:

	 ( , )G D n

D
,

sd

sd

sd
s d

e e
m

= =
/

� (3)

where nsd  is the number of s-d pairs in the network, and Dsd  
and sdm  are the equilibrium demand (numbers of cars) and 
the equilibrium disutility for s-d pair sd, respectively [10]. 
This is called a measure of efficiency as it computes the aver-
age demand to cost ratio for all s-d pairs, where cost is the 
total travel time for vehicles on an s-d pair. Therefore, this 
ratio is the service rate of vehicles (and the inverse of aver-
age vehicle travel time) for each s-d pair and e  is an average 
of this ratio over all s-d pairs in the network [10]. This metric 
is suitable for directed networks and can guide a response 
maximizing the UNPM measure by rerouting traffic for s-d 
pairs with high sdm  to other routes. However, the demand 
vector it needs cannot be calculated from real-time road and 
vehicle sensors, which provide traffic data in terms of flows 
for example, without identifying which s-d pairs they belong 
to. Consequently, this measure provides an offline analysis 

Metric Source Solution
Network-Wide 
Measure

Component-
Specific Measure Directed Scalable Dynamic

Measurable 
in Real-Time

Vulnerability [1] Link flow over available capacity

UNPM [10] Mean of s-d pair throughputs

UNPM robustness [10] Variation with capacity decrease

Network criticality [11] Weight over betweenness

Table 2. Robustness metrics for short-term road network design.
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tool of robustness through a simu-
lator, assuming full knowledge of 
traffic demands between s-d pairs.

Nagurney et al. [10] present 
another metric called UNPM 
Robustness based on Equation 3. 
Given a vector of link capacities 

,C  this metric ( )Ra  is defined as 
the relative performance retained 
when the vector of link capacities is reduced to C$a  with 
the scalar factor )( , ]: (( %),R0 1 100#!a e e=a a  where 
ea  and e  are the network performance measures calculated 
by Equation 3 with the original capacities and remaining 
capacities, respectively. However, this scalar reduction in 
link capacities should not be generalized as incidents only 
affect specific links in the network and reduce various link 
capacities differently depending on the severity of the inci-
dent. Therefore, this metric is not suitable for robust short-
term network design.

Lastly, network criticality [11] is a dynamic metric pro-
posed in the context of frequent disturbances within normal 
traffic conditions. Assume that a random-walker starts from 
a source node s in the network, then chooses a neighbor at 
random with equal probability and goes there. It continues 
wandering around until it reaches a specified destination 
d, where it stops. Thus, similar to the notion of fastest-path 
betweenness explained earlier, the random-walk between-
ness of a node k with respect to flows from s to d is the pro-
portion of the random walks from s to d that traverse node k. 
The overall betweenness of node k is the sum of this quan-
tity over all s-d pairs. Therefore, the point-to-point network 
criticality of node k  for trajectories from s to d  is [19]:

	
( ) ( )

W
b d b s

sd
k

k

sk dk
x =

+
� (4)

where ( )b dsk  is the random-walk betweenness of a node 
k  for pair s-d, the inverse of travel time is used as the link 
weight wl  for link l  (taking into account that road links 
with long travel times are undesirable), node weight is 
defined as ,W w

)( ll kk Ao=
!
/  and ( )A ko  denotes the set of 

outgoing links attached to node .k
In generic random-walks, in which the probability of 

transitioning along a link is proportional to the weight of 
the link, sd

kx  is independent of k  [19]. Consequently, the 
average network criticality x  (of the whole network) is 
defined as the mean of all point-to-point network criticali-
ties and it can be shown to be proportional to the trace of 

[ ],L lij=+ +  the Laplacian matrix of the graph [19]:

	 ( ) ( )n n n Tr L1
1

1
2

sd
s, d

x x=
-

=
-

+/ � (5)

This metric supports short-term robust design as it cap-
tures variations in traffic demand or supply using real-

time measurements with graph weights, where optimiz-
ing for network criticality minimizes steep increases in 
average link travel times by guiding short-term responses 
for rerouting away from critical links (with low weights). 
Note that network criticality is inherently for undirected 
graphs. Therefore, to be used for directed road networks, 
an undirected symmetric matrix of the graph defined as 
W W W 2sym

T= +^ h  is used, where W  denotes the link 
weight matrix and WT  denotes the transpose of W  [19]. 
Thus, network criticality has a limitation as it approximates 
directed road networks by undirected graphs. However, this 
can be resolved by developing a similar robustness metric 
for road networks by adapting the directed version of net-
work criticality defined in [26] for usage in road networks.

C. Robust Network Design Discussion
After analyzing robustness metrics proposed for long-term 
and short-term network design, we can see that they capture 
the essence of Equation 2 with varying degrees of success.

Robustness metrics proposed for long-term network 
design have mostly been static, with some metrics using 
estimation techniques by modeling some aspects of traffic 
flow variation. For this reason, they mostly fail in modeling 
changes in performance measures as needed by Equation 
2. Metrics such as resilience or friability can help transpor-
tation planners make policy decisions to build new roads 
while reducing the impact of unpredictable disturbances. 
However, for developing long-term robust network designs 
in the presence of regular disturbances, further analysis is 
required to clearly model the impacts of such disturbances 
and determine the critical components of a network. This 
requires using dynamic metrics showing the impact of dis-
turbances on various traffic flow measures and conditions. 
In addition to long term planning, the network can ben-
efit from short-term robust design techniques, such as, for 
instance, robustness-maximizing dynamic traffic assign-
ment, presented in the next section. Operating the net-
work with robust traffic assignment will not only enhance 
the daily operation but may also reduce the need for more 
expensive long term infrastructure expansion.

Robustness metrics for short-term network design are 
dynamic and primarily deal with frequent disturbances in 
normal traffic conditions. The most promising metrics are 
the UNPM and network criticality metrics as they can help 
detect the onset of congestion due to disturbances and guide 

Robustness metrics for short-term network design are  
dynamic and primarily deal with frequent disturbances  
in normal traffic conditions.
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a short-term response to re-optimize network robustness. 
Nevertheless, both of these metrics have a computational 
complexity of ( ),| | | |O N L$  for a network with | |N  nodes 
and | |L  links. Therefore, for real-time use, novel methods 
should use distributed and high-performance computing 
strategies to reduce the computation times for these met-
rics, yet still achieve a high degree of calculation accu-
racy. Moreover, the practical usage of the UNPM measure 
requires the estimation of the demand vector between s-d 
pairs in the network based on real-time traffic measure-
ments captured in the field.

IV. Sample Study
This section presents a sample study for a short-term 
robust network design for a traffic assignment problem 
using robustness metrics. The goal is to show benefits of 
robust network design and introduce a systematic evalua-
tion methodology for robustness metrics. We first formulate 
the traffic assignment problem and then present the perfor-
mance results.

A. Traffic Assignment Problem Formulation
This section provides the problem formulation for a static 
traffic assignment [27], including with the system model 
used and the traffic optimization problem formulation.

1) System Model: Suppose that the road network topology is 
given by a directed graph , , ,( )G N E W  where , ,N E  and W  
denote the node set, link set, and link weight matrix, respec-
tively. While a link represents a road segment between nodes 
i  and j and denoted by ,( )l i j=  with weight ,wl  a node rep-
resents a trip origin/destination/junction of road segments. 
The sets of outgoing links and incoming links of a node k  
are denoted by ( )A ko  and ),(A ki  respectively. We assume 
that the analysis period of interest is taken as a peak period 
with relatively high demand and vehicles request, receive 
and follow guidance information from the network operator. 
From the operator’s perspective, these requests make up the 
triple , ,( ( ))s ,d dsc  where ,s d, and ( )dsc  denote the traf-
fic source, destination and the demand from s to d, respec-
tively, for each s-d pair. Travel times are calculated using the 
volume-delay function (VDF) referred to as the BPR (Bureau 
of Public Roads) Formula, shown in Equation 6 [25]:

	 ( )t V t C
V.1 0 15l fl

l

l
4

= +c c mm � (6)

where ( )t Vl  is the average vehicle 
travel time as a function of the flow 
Vl  on link ,l tfl  t is the free-flow 
travel time on link ,l  and Cl  is the 
theoretical capacity of a highway 
link, around 2000 veh/hr/lane # 
number of lanes for highways, as 
defined by the Highway Capacity 
Manual 2000 [28]. Note that lower 

capacity values are to be used for arterials and local roads.
2) Traffic Problem Formulation: The objective is to find 

the assignment of vehicles on each path and link during 
the period of interest. We can formulate the optimization 
problem for a network minimizing total travel time, called 
System Optimal (SO), subject to traffic flow conservation 
constraints [27].
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The objective function in problem (7) is the total travel 
time for all vehicles in the network and is based on both 
the flows Vl  and the individual travel times ( )t Vl  on each 
link in the network. The flow conservation constraint needs 
to be satisfied for every node k and entry ( )dsc  of the traf-
fic matrix, where V ( )

l
sd  is the flow of link l  for traffic from 

source s to destination d  and ( )xd  is the Kronecker delta 
function. Under very light traffic conditions, SO would assign 
all traffic to the shortest paths (also called an all-or-nothing 
assignment). As demand levels increase relative to capacities, 
SO assigns traffic to routes with lower marginal travel times, 
minimizing the total travel time in the road network [25].

We also define the traffic optimization problem for the 
User Equilibrium (UE) Assignment, which seeks to maxi-
mize user welfare by minimizing individual travel times of 
all users in the system [25]. This is done through an assign-
ment where all alternate routes between an s-d pair have 
the same travel time. As no user can reduce their travel time 
by choosing another route, UE is an equilibrium assign-
ment. Therefore, the objective function in (7) is replaced 
with minimize t ( d ,)x xl

V

l 0

l/ #  where t ( )x dx,l
V

0

l#  is the 
area under the volume-delay curve defined by Equation 6, 
given volume Vl  on link l  and the minimization is done 
over all network links [25].

The traffic optimization problem minimizing network 
criticality (Tau) replaces the objective function in (7) with: 
minimize x  as defined in Equation 5, where link weight 

.( )w t V1l l=  To calculate this metric, an undirected sym-
metric matrix of the graph defined as W W W 2sym

T= +^ h  

For real-time use, novel methods should use distributed  
and high-performance computing strategies to reduce the 
computation times for these metrics.
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is used, where W  denotes the link weight matrix and WT  
denotes the transpose of W  [19]. This optimization distributes 
traffic flows such that it minimizes the use of critical links, 
making the network only incur minimal increases in link travel 
times subject to traffic disturbances (as needed by Equation 2). 
In addition, this optimization problem remains convex (since 
the weight defined satisfies the condition that an increase in 
the weight also increases the desirability of using the link), and 
thus can be solved efficiently using a similar solution proce-
dure to that of SO, reaching a unique solution [19].

Lastly, we define the traffic optimization problem maxi-
mizing the UNPM measure by replacing the objective func-
tion in (7) with maximize UNPM, as defined in Equation 3. 
This problem maximizes the network robustness by maxi-
mizing the traffic demand-to-cost ratio for all s-d pairs in 
the network, in order to get the highest network efficiency 
possible. The convexity of this optimization problem and 
the uniqueness of its solution are also guaranteed given 
the monotone link weight function used, using a similar 
solution procedure to that of SO [10]. The robustness of the 
assignment algorithms defined here are discussed next.

B. Performance Results
The simulation test network includes the major highways 
in the metropolitan Toronto area, as shown in Fig. 2. Note 
that there are 2 links in opposite directions between ev-
ery pair of nodes in the network (shown with bidirectional 
links for simplicity) and the link weights shown represent 
the number of lanes in each direction. The traffic demand 
includes equal traffic from 6 s-d pairs, producing vari-
ous levels of congestion throughout the network. We are 
interested in analyzing the robustness of the solutions of 
the 4 static traffic assignment algorithms defined in sub-
section IV-A (we are implementing these algorithms with a 
dynamic traffic assignment simulator). Therefore, we first 
run these traffic optimization problems and find the as-
signments for SO, UE, Tau and UNPM based on the initial 
traffic demand and supply. Next, we model frequent traf-
fic disturbances in terms of increases in demand and de-
creases in number of lanes due to incidents. After applying 
these disturbances and without rerunning the traffic op-
timization again, we measure the increases in travel time 
given the original assignment solutions for each of SO, UE, 
Tau and UNPM to assess their robustness to traffic distur-
bances. Based on Equation 2, the set of changes considered 
in the network include increases of up to 30% in demand 
and removing up to 2 lanes from a link, and the key perfor-
mance measures of interest are the average travel time in 
the network and its increase. The assignment algorithms 
have no a priori knowledge of disturbances or their prob-
ability distribution. This is an important distinction from 
algorithms based on stochastic optimization that explicitly 
consider within the optimization problem: the traffic dis-
turbance uncertainty using probability distributions [3], 

[29], or the probability of network links to operate below 
their capacities when serving different traffic patterns de-
viating from the average condition [30].

1) Effect of Increasing Demand: We study the robustness 
of SO, UE, Tau and UNPM by analyzing the effect of increas-
ing demand on their solutions. This increase is the differ-
ence between the ideal case of expected demand and the 
actual demand occurring the road network. Examples for 
the demand increase include: special events, unexpected 
surge in demand in parts of the network in response to road 
closures nearby the network, and additional traffic demand 
to vehicles that do not have any wireless or vehicular com-
munication capabilities; thus cannot receive en-route navi-
gation updates, resorting to a shortest path route based on 
their prior experience. This traffic, which is randomly gen-
erated on the 6 s-d pairs with a normalized Gaussian dis-
tribution, is equivalent to 10% to 30% of the original traffic 
and results are averaged over 10 runs.
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Fig. 3 shows the percentage increase in average travel 
times for the assignment methods while increasing demand 
by 10% to 30%. The % increase of the travel times is the 
smallest for Tau, followed by SO and UNPM with UE hav-
ing the largest increase in travel times. The performance 
degradation is far worse in the case of a 30% increase in 
demand, where travel times go up by more than 90% for 
UE while they increase by around 80% for SO and UNPM, 

and by less than 60% for Tau.  
This indicates that meeting the 
equilibrium  conditions  for  UE 
results in a less forgiving network 
and does not lead to robustness in 
the presence of disturbances. Note 
that we only increase demand by 
up to 30% as the network is already 
congested at this point and further 

increases will lead to the breakdown of several highways 
in the network.

We can also use the raw average travel times to evaluate 
the robustness of these methods, instead of the % increase 
of average travel times. These are shown in Fig. 4, where 
the first 4 columns indicate the travel times of the origi-
nal assignments and the subsequent columns indicate 
the resulting/new calculated average travel times using 

the original assignments with increases 
in traffic demand of 10%, 20% and 30%. 
The travel times for Tau are the highest 
before any increases in demand, with the 
difference being around 5% compared to 
the SO travel times. This is the price to 
pay or the trade-off for gaining robust-
ness. However, with increasing demand, 
Tau provides the lowest travel times start-
ing from a 10% demand increase and 
performs much better than SO, UE, and 
UNPM for the case of a 30% increase. 
This explains the significant deteriora-
tion in terms of travel time increases for 
UE, SO and UNPM also observed in Fig. 3. 
In addition, the performance results of 
UNPM are almost comparable to that of 
SO, deteriorating slightly more than SO 
with increases in traffic demand.

2) Effect of Decreasing Supply: Here, we 
study the effect of decreasing traffic sup-
ply due to an incident or weather condi-
tions by removing 1 lane from 1 link, and 
measuring the new travel time experi-
enced by the original traffic assignment. 
The lane removal is repeated for all links 
1-by-1 and the results are averaged. The 
same procedure is repeated for removing 
2 lanes. Fig.  5 shows the % increase in 
average travel times for the assignment 
methods due to removing one lane and 
2 lanes. It is the smallest for Tau, espe-
cially in the 2-lane case, followed by SO, 
UE and UNPM, which leads to the largest 
travel time increase. The performance of 
UNPM is especially deteriorating in this 
case due to the high traffic it originally 
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Note that we only increase demand by up to 30% as the 
network is already congested at this point and further increases 
will lead to the breakdown of several highways in the network.
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assigns to the link from node 1 to node 10 in Fig. 2, which 
only has 3 lanes and its capacity has been reduced by 
33% and 66% in the cases of removing 1 lane and 2 lanes, 
respectively. In the latter case, the performance degra-
dation is around 33% for UE and UNPM, while it is only 
around 23% for Tau.

The raw average travel times are shown in Fig. 6, with 
the original travel assignment times and those with reduc-
tions in the number of lanes. The original travel times for 
Tau are the highest as before. They are also high for the 
case of removing 1 lane, since a lane is removed from 
only one of the links at a time, making it a lighter distur-
bance compared to adding 10% additional demand. How-
ever, Tau provides the best performance when 2 lanes are 
removed, with UNPM providing the worst performance, 
as explained earlier.

V. Conclusion
In this paper, we provided a unifying framework for 
developing a robust design for road networks. After estab-
lishing the various contexts of robustness based on the 
types of traffic disturbances, we presented a definition of 
robustness in road networks. Moreover, we discussed the 
objectives, requirements and examples of long-term and 
short-term robust network design, including planning 
and operations. Finally, a sample study was presented 
for a short-term robust network design with a design 
using traffic assignment. This showed that robust assign-
ment algorithms, especially with network criticality as a 
robustness metric, lead to solutions that yield suboptimal 
travel times under expected traffic conditions, but that 
deliver high performance over a range of unexpected 
traffic disturbances, even achieving better travel times 
than the SO algorithm under certain traffic disturbances.

VI. Future Work
Although encouraging results were obtained in this 
research and a number of research questions were 
answered for developing a robust design for road net-
works, a number of questions still exist to further extend 
and enhance the system. The following are our plans for 
future research:
1)	 Integration with a dynamic traffic assignment (DTA) 

model: This step would include formulating a robust DTA 
algorithm to capture the time-dependent demand and 
the dynamic interaction between demand and supply 
while capturing congestion within transportation net-
works using a large-scale network model for the Greater 
Toronto Area.

2)	 Computational efficiency and system scalability: This 
step would include a modified mathematical representa-
tion of robust metric values to minimize the number of 
function evaluations and have a reasonable run-time for 
the assignment algorithm.
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