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Abstract—Congestion in a transportation network is usu-
ally the result of either an increase in traffic demand, i.e.
the desire of drivers to use the transportation network, or
a decrease in traffic supply, i.e. the traffic capacity, which
is affected by weather conditions, incidents, etc. In either
case, congestion reduces the efficiency of the transportation
network and increases the travel time of vehicles in the
network. In this paper, we leverage the benefits that Vehicle-
to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) commu-
nications provide in Intelligent Transportation Systems (ITS),
to optimize traffic assignment in transportation networks. In
particular, we formulate a convex optimization problem for
a transportation network and minimize network criticality, a
new graph metric that measures centrality. The robustness of
this solution is studied and compared to that of the System
Optimal Equilibrium (SOE) Optimization. The results show
that using network criticality provides robustness (lack of
sensitivity) to both increases in traffic demand and decreases
in traffic supply, thus reducing traffic congestion.

Index Terms—Network Criticality, Robustness, Transporta-
tion, ITS, Flow Assignment.

I. Introduction

Urban transportation optimization has long been an
active research field. Over the past decades, the devel-
opment of mathematical optimization theories as well as
faster and more capable computers has enabled solutions
to problems that were previously intractable in this
field [1]. A widely adapted objective function for traffic
optimization and a major factor affecting customer sat-
isfaction is travel time, defined as the time for a vehicle
to travel from its source to its destination. The problem
of minimizing travel time is often solved by finding
the best timetable for the network, because scheduling
is realized by determining the departure time for each
vehicle. The problem is generally difficult to solve as
even testing the feasibility of a timetable is NP-hard [1].
Some approaches to solving this problem include: inte-
ger programming [2], extension of integer programming
using cycle bases [3], quadratic semi-assignment models
[4], graph-theoretical approaches [5], etc.

The robustness of solutions has also been studied
extensively. Yim et al [6] measure robustness by esti-
mating the probability of overloading the links and they
solve the problem of minimizing such probability using
a genetic algorithm. Yao et al [7] take uncertainty into
account when building the linear programming model

for a surface transportation network. They show how the
solution outperforms the nominal deterministic solution
when the system parameters change due to uncertainty.
Ceylan et al [8] take a different approach by performing
sensitivity analysis on travel time in a transportation net-
work under equilibrium. Based on the analysis, a genetic
algorithm-based flow estimator is designed to solve the
Area Traffic Control (ATC) problem and Stochastic User
Equilibrium (SUE) problem [8], [9] simultaneously.

Contributions: In this paper, instead of incorporating
estimation of the uncertainties into the traffic model,
we design a convex optimization problem that is ag-
nostic to possible system changes. The proposed solu-
tion is inherently more robust to system changes than
the System Optimal Equilibrium (SOE) Optimization,
which minimizes the total travel time of all users in a
transportation network [9]. Our novel approach solves
the traffic assignment problem using network criticality,
a graph metric measuring robustness of a network.
We show that this method achieves robustness (lack of
sensitivity) to unforeseen events, such as more traffic
or accidents on the road. This will be especially useful
during the deployment stages of Vehicular Ad-hoc NET-
works (VANETs), where not all vehicles have Vehicle-to-
Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) commu-
nication devices installed, thus traffic estimation on the
transportation network could be inaccurate. In addition,
our optimization problem remains convex, and thus can
be solved efficiently.

The rest of this paper is structured as follows. Section
II provides a brief review of network criticality in graphs.
Section III introduces the system model and details
the proposed optimization problem, while achieving
robustness or minimizing travel time. It also poses the
sensitivity analysis and discusses how it is measured in
this paper. Evaluation results are discussed in section IV.
The paper is concluded in section V.

II. Review of Network Criticality

Network criticality in network science is a graph
metric measuring the robustness of a network [10]. It
reflects the effect of environmental changes such as traffic
variation and capacity changes. A network is modeled
as an undirected weighted graph, where the weight of a
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link denotes the desirability of the link. On this network,
a random-walk is defined with transition probability ma-
trix [pr(l) = pr(i→ j)] where the elements are functions of
link weights and denote the probability of transitioning
from node i to neighbor node j along link l = (i, j).

Suppose a random-walker starts at s and stops when
it arrives at node d for the first time. The random-walk
betweenness bsk(d) of a node k for source-destination pair
s − d is defined as the average number of visits to node
k by the random-walker. The betweenness reflects the
centrality of that node, which measures the importance
of the node relative to the entire network. Based on
betweenness, the point-to-point network criticality of
node k for trajectories from s to d is defined as [11]:

τk
sd =

bsk(d) + bdk(s)
Wk

(1)

where Wk =
∑

l∈Ao(k) wl, and Ao(k) denotes the set of
outgoing links attached to node k.

In the generic random-walks considered in this paper,
the transition probability from node i to its neighboring
node j is proportional to the weight of link l = (i, j) (i.e.
high weight due to low travel time):

pr(l) =
wl∑

e∈Ao(i) we
(2)

In addition, for generic random-walks, τk
sd is inde-

pendent of k [10]. Consequently, the average network
criticality τ (of the whole network) is defined as the mean
of all point-to-point network criticalities and it can be
shown to be proportional to the trace of L+ = [l+i j], the
Laplacian matrix of the graph [10]:

τ =
1

n(n − 1)

∑
s,d

τsd =
2

n − 1
Tr(L+) (3)

Network criticality has many useful interpretations in
communication networks such as congestion and aver-
age travel cost [12],[13]. Specifically, as it captures the
average centrality of the network through betweenness,
a higher criticality value implies that part of the network
is more critical, thus more sensitive to environmental
changes such as variation in capacity or load distri-
bution. As a result, minimizing criticality reduces the
centrality of links in the network, and therefore leads to
a more robust solution. In this paper, network criticality
is used as an alternative objective function to the total
travel time to achieve robust traffic assignment in a
transportation network.

III. Problem Formulation

In this section we define the system model and derive
the convex optimization problem with two different
objectives. We also describe our approach for analyzing
the sensitivity of the solutions.

A. System Model
Suppose that the network topology is given by a

directed graph G(N,E,W), where N, E, and W denote the
node set, link set, and link weight matrix, respectively.
A link between nodes i and j is denoted by l = (i, j)
with link weight wl. The sets of outgoing links and in-
coming links of a node k are denoted by Ao(k) and Ai(k),
respectively. The weight matrix is in general asymmetric;
however, in calculating the network criticality in this
paper, we use an undirected symmetric matrix of the
graph defined as Wsym = W+WT

2 , where WT denotes the
transpose of W [10].

We take the viewpoint of an Intelligent Transportation
System (ITS) Service Provider (Public or Private) that
receives traffic requests from vehicles to use the trans-
portation network, through V2V or V2I communications.
Each request is a triple (s, d, γs(d)), where s, d, and γs(d)
denote the traffic source node, traffic destination node,
and the number of vehicles requesting to go from source
s to destination d, respectively. This is summarized in
a traffic matrix Γ = [γs(d)] showing the traffic demand
between each pair of nodes. In transportation, unlike
what is common in wireless networks, metrics such as
capacity, flow and density are all defined as rates (at
a specific point of the road network and at a specific
instant) [9]. Thus, we consider the traffic matrix to be a
set of traffic rates, i.e. traffic requests per unit time.

In order to quantify the travel time of each vehicle on
a link, we use the link performance function referred to
as the BPR (Bureau of Public Roads) Formula [9]:

t(Vl) = t f l

(
1 + 0.15

(Vl

Cl

)4)
(4)

where t(Vl) is average vehicle travel time as a function of
demand volume (flow) Vl on link l, t f l is free-flow travel
time (no congestion) on link l, and Cl is the practical
capacity of the link (around 1600veh/hr/lane × number
of lanes). Therefore, if demand Vl exceeds Cl by 60% on
a link due to rush hour congestion for example, travel
time will be double that of free-flow travel time on that
link. Finally, t f l is calculated as the ratio of the length of
the link to the average vehicle free-flow speed.

We can now formulate an optimization problem in
which a desired convex objective function is minimized
subject to traffic flow conservation constraints.

B. Optimization Problem Formulation
We aim to find a traffic flow assignment strategy such

that a traffic matrix Γ is satisfied and a convex objective
is minimized. For a specific node k and entry γs(d) of the
traffic matrix, the conservation of flow can be stated as:∑

l∈Ao(k)

Vsd
l −

∑
e∈Ai(k)

Vsd
e = γs(d)δ(k − s) − γs(d)δ(k − d) (5)

where V(sd)
l is the flow of link l for traffic from source s

to destination d and δ(x) is the Kronecker delta function.
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After adding link flow summation and non-negativity
constraints, the optimization problem for a transporta-
tion network minimizing network criticality, called
MinNC, can be summarized as follows:

minimize τ (6)
subject to

∀s, d ∈ N, ∀l, e ∈ E, ∀k ∈ N∑
l∈Ao(k) Vsd

l −
∑

e∈Ai(k) Vsd
e = γs(d)δ(k − s) − γs(d)δ(k − d)

Vl =
∑

s,d Vsd
l

Vl ≥ 0

We would like to have robustness in the traffic distri-
bution; therefore, we choose the inverse of the average
travel time t(Vl) as the weight of each link l: wl = 1

t(Vl)
,

where t(Vl) is calculated using Equation 4. After sym-
metrization, this weight can be used to evaluate τ in
optimization problem (6). MinNC distributes traffic flows
such that τ is minimized, which in turn enhances the
robustness in the traffic distribution.

We also define the traffic optimization problem mini-
mizing total travel time, called MinTT, as follows:

minimize
∑

l∈E t(Vl) × Vl (7)
subject to

∀s, d ∈ N, ∀l, e ∈ E, ∀k ∈ N∑
l∈Ao(k) Vsd

l −
∑

e∈Ai(k) Vsd
e = γs(d)δ(k − s) − γs(d)δ(k − d)

Vl =
∑

s,d Vsd
l

Vl ≥ 0

The objective function in problem (7) is the total travel
time for all vehicles in the network and is based on both
the flows Vl and the individual travel times t(Vl) (calcu-
lated using Equation 4) on each link in the network. At
low congestion, MinTT maximizes the flow Vl assigned
to links with short lengths (small t f l) and large number of
lanes (large Cl). At high congestion, MinTT intelligently
adjusts the flow assignment to reduce the flow Vl as-
signed to links with high t f l or low Cl. Thus, it provides
the optimal static flow assignment for minimizing total
travel time in transportation [9]. In Section IV, we will
compare the performance results of MinNC and MinTT,
along with the robustness of their solutions.

C. Sensitivity Analysis

Sensitivity analysis deals with studying how much the
value of an optimal solution will change in case of a
change in the input or in one or more of the problem
parameters [14]. It is important here to distinguish be-
tween the notion of criticality and optimality. An optimal
solution is the one with the lowest objective value.
A critical (sensitive) solution is the one that changes
significantly when there is a small change in the input or
in the problem parameters [15]. In the context of trans-
portation, it is very hard to get an exact estimation of

Fig. 1. Metropolitan Toronto highway map

the traffic traveling through the transportation network
[9]. Therefore, it is almost as important to get a robust
solution, i.e. one with low criticality, as it is to get an
optimal one. The main argument in this paper is that
although MinNC gives a slightly larger total travel time
than MinTT, the MinNC solution is more robust, i.e. less
sensitive.

We measure sensitivity with two approaches. The first
approach is more theoretical and is based on the shadow
price interpretation of the Lagrange multiplier [16]. The
Lagrange multiplier is defined as the rate of change of
the optimal value divided by the rate of change of a
constraint; thus the smaller the value of the Lagrange
multiplier, the less sensitive the solution. This means
that you can relax the constraint, in our case the flow
conservation constraint, and still have a small increase in
the optimal value of the problem. The second approach
(shown in Section IV) directly measures the change in
travel time in case of uncertainty in demand and supply.
In the first test, we change the demand by adding some
extra traffic to the network. This additional traffic is
assumed to be from vehicles that do not have any V2V or
V2I communication capabilities; thus cannot send their
traffic requests to the ITS Service Provider. These vehicles
therefore resort to taking a shortest path solution. In
the second test, we decrease the supply capacity by
assuming the network is experiencing some kind of
event, an accident for example. This is done by blocking
one or two lanes in different links of the network. We
average the effect over all links and study the increase
in the average travel time of all vehicles in the network.

IV. Simulation Results

The simulation test network is shown in Fig. 1, repre-
senting the major highways in the metropolitan Toronto,
Canada. The ten nodes define highway boundaries or
key points on a highway where the number of lanes
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Fig. 2. Link Utilization for MinNC and MinTT

change. These nodes could be both inputs and outputs
of traffic, e.g. A traffic source-destination pair can be
represented by node 1 and node 9, whereby a certain
number of vehicles enter the highway map from node 1
(generating node) and leave the map at node 9 (absorb-
ing node). It is evident from the existence of loops in
Fig. 1 that there are multiple possible routes for such
a traffic to be satisfied. Moreover, the coordinates of
these nodes correspond to accurate geographic locations,
based on an origin defined in a 2-dimensional space.
Therefore, the edges joining these nodes (shown in blue
in Fig. 1) represent highway segments with accurate
lengths, used to calculate t f l using a 100 Km/hr average
vehicle free-flow speed. The capacity of each link is
calcuated as 1600veh/hr/lane × number of lanes.

Here, we provide the simulation results based on the
network setup discussed above. The simulations include
the solution of MinNC and MinTT when the traffic
matrix has 6 source-destination pairs, enough to show
different levels of congestion. Note that these pairs of
nodes are not connected directly, thus, flows have to be
sent through other nodes in the network. We start the
simulations with this traffic matrix and multiply it with
a constant traffic scaling factor in order to observe the
response of the network with increasing congestion.

Fig. 2 shows the change in the distribution of link uti-
lization as a function of the traffic factor. By distributing
the flows better among links, MinNC manages to load
balance the network, leading to less congestion in the
operating links. For example, even in the highest traffic
scenario, with a factor of 3.9, only 70% of the links are
utilized more than 80% with MinNC, as opposed to 92%
of the links being utilized more than 80% with MinTT.
This is achieved by maintaining high weights based on
the required traffic flows in the network. MinNC forces
the distribution of flows among various links, in order
to provide more robustness to unexpected events, which
are not taken into account in the MinTT case.

Fig. 3 shows the average travel time resulting from
MinNC and MinTT. Though MinNC results in a longer
average travel time, the percentage difference is at most
8%. This is the small price paid to achieve robustness
with the MinNC solution.
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As a theoretical measure of robustness, Fig. 4 shows
the second norm of the Lagrange multiplier vector cor-
responding to the flow conservation equality constraint,
versus the weight of the MinTT objective in the multi-
objective optimization problem (based on both MinTT
and MinNC). As seen in Fig. 4, increasing this weight
makes the problem more sensitive; resulting in a less
robust solution. This means that any change in the state
of the network (ex. higher traffic demand) will lead to a
lower change in the objective if this weight is reduced.
Therefore, MinTT is more sensitive to such changes.

A. Effect of Increased Demand
In this section, we study the robustness of MinNC and

MinTT by analyzing the effect of increasing demand on
their solutions (Fig. 5). We assume that there is additional
traffic demand from vehicles that do not have any V2V
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or V2I communication capabilities; thus cannot send
their requests to the ITS Service Provider. Therefore, they
resort to a shortest path solution. The sum of this traffic
(randomly generated on the 6 source-destination pairs
with a normalized Gaussian distribution) is equivalent
to 10% to 30% of that of the original traffic and the results
are averaged over 10 different runs. As more traffic
enters the network, the advantage of criticality becomes
more apparent. The percentage increase in average travel
time for all vehicles in case of MinNC is less than that
of MinTT. The gain ranges from around 5% in the first
case with 10% extra traffic, up to over 30% in the third
case with 30% extra traffic.

B. Effect of Decreased Supply
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In this section, we study the effect of decreasing sup-
ply, as an effect of an accident, malfunctioning vehicles
or even some serious weather conditions that degrade
the state of the road network. We simulate this effect by
removing a lane from each link separately, and measure
the new travel time experienced by the same original
traffic. Then we average over all network links. The
same is done for the case of 2 lanes removed. In terms
of average travel time Fig. 6, MinTT performs better
for lightly loaded network. The two curves approach
each other as the network becomes more congested and

eventually, MinNC gives a lower average travel time
than MinTT in the case of 2 blocked lanes. In terms of the
percentage increase in average travel time Fig. 7, MinNC
always performs better with a gain of up to 5% in the
two blocked lanes case.

V. Conclusion

In this paper, we formulated a convex optimization
problem to assign the traffic flows to transportation links
while achieving robustness. Our approach to formulate
the optimization problem incorporates network critical-
ity, a robustness metric from graph theory. This solution
was tested under various changes in traffic conditions,
such as increases in traffic demand or decreases in traffic
supply. The results showed how our optimization solu-
tion is more robust than the System Optimal Equilibrium
(SOE) Optimization, especially when approaching high
levels of congestion.
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