

THE BUS ARBITER

ECE298 Final Design Project
 in collaboration with ECE241

ECE, University of Toronto

 Team Members:
Madhureema Dutta-
993737248;
Akshay Ahooja-
993829452

Date Submitted:
 December 2, 2005
Tutorial:
 #15, Ms. Jessica Gardiner

EXECUTIVE SUMMARY

 A request for proposal was presented to the design team of Akshay Ahooja and Madhureema

Dutta to design and implement a digital system. This report presents the analysis of the digital system

developed by the University of Toronto design team comprising of the aforementioned members for the

ECE298 and ECE241 courses. The proposed system is called the “Bus Arbiter”, designed using

Quartus software which implements Arbitration Protocol between CPU and DMA, and Parallel and

Serial memory modules. The design resembles the Arbitration Protocol of a computer at a very minor

level, but includes all the complexities of the Protocol. This design not only had a 95% success rate but

it also had some added features to make the design original and user friendly. The Arbiter acts as a

“traffic controller” which permits the high priority device (CPU) to interrupt the progression of the low

priority device (DMA). The display of arbiter signal on an LED, display of the contents of the two

memory modules on the two seven-segment displays on the UltraGizmo board and the demonstration

of the transfer of data from devices and memory modules on the VGA screen make the design user

friendly.

 The report is divided into six main sections that include system overview, user interaction,

component description, design description, testing, engineering decisions, and project management.

The system overview gives a basic idea of the working of the design. The user interaction details the

step-by-step procedure the user needs to follow to work the design. The component description section

described the components and their working and then the design description is the working of the

integrated system. Testing and engineering decisions details the failed and successful decisions and

also enumerates the added features of the design. Lastly, the project management section consists of

the project planning and proposed schedules that were established for the design team to follow.

 This report discusses all the factors affecting the design of this digital system and the process

through which the design was created.

TABLE OF CONTENTS

 Page #

Introduction 1

System Overview 2

User Interaction 2

Component Description 3

 Finite State Machines 4

 Other Components 6

Design Description 7

 Sub System Design 7

 Full System Design 9

Testing 10

Engineering Decisions 12

Project Management 12

Conclusion 13

Appendix A – Important Terms 14

Appendix B – Flow Diagrams 15

Appendix C – State Diagrams 17

Appendix D –MUX Configuration 19

Appendix E – Waveforms and Schematics 20

Appendix F – Gantt Chart 22

Appendix G – Source Code** 23

**Only included in 241/298 Technical TA version

 1

INTRODUCTION

 The present report is an in-depth design analysis of the digital system built by Akshay Ahooja

and Madhureema Dutta as a requisite for the ECE241 and ECE298 courses. A request for proposal

was presented to the team to design and implement an advanced multi-staged digital system in a

creative way with the possibility of using a VGA display via finite state machines. The main purpose of

the project was to gain experience dealing with the design of a larger digital system and to deal with the

issues in going from a large fuzzy idea to a concrete multi tiered digital system.

To meet this request the team built a hardware based design called the “Bus Arbiter” using

Altera Quartus software which implements Arbitration Protocol between different devices and memory

modules. The design was kept within scope by selecting the two primary devices, CPU and the Direct

Memory Access (DMA), and two memory modules. The design provides an insight on the reading and

writing of user requested data to user specified memory modules and copying and swapping of data to

user specified memory modules. Indeed the design meets all the expectations of the project and was

graded 95% successful by the ECE241 TA.

In addition to the basic model of an arbitration protocol, the design also has some added

features which make it unique. The Arbiter which is a major component of the design, acts as a “traffic

control” which permits the high priority device (CPU) to interrupt the progression of the low priority

device (DMA). The arbiter signal is also displayed on an LED which makes the design user friendly.

Another user friendly feature of the design the display of the contents of the two memory modules on

the two seven-segment displays on the UltraGizmo board. The transfer of data from devices and

memory modules is also demonstrated on the VGA screen. The design also has a “swap” feature which

allows the user to swap data between any two memory addresses. Hence the design not only meets

the required specs of the project but its added features make it unique and user friendly.

 2

SYSTEM OVERVIEW:

The Bus Arbiter is a multi-stage system that slightly mimics the process of several prioritized

devices sending information across a bus to their respective memory modules. At the user end, there

are four choices available based on the input. One can read or write to the memory modules by

sending in an address and desired data. Furthermore, the user can copy and swap data between

memory modules by sending in two addresses. An additional feature in this design is the ability for the

top priority device to interrupt the lower priority device. If the lower priority device is processing

information, the higher priority device can interrupt, complete its process and go back to the lower level

device to finish its previous procedure. It must be noted that the lower priority device cannot be

activated while the higher priority device is busy.

This digital system was designed entirely on Altera Quartus using its Schematic and Verilog

HDL editors. It was then burned onto a Flex10K board (25Mhz Clock) and used in combination with the

Ultragizmo Board.

USER INTERACTION:

In order for the user to use any of the above features, the following steps must be followed:

Please refer to the User Interaction Chart (FAST Diagram) in Appendix B.

1. Turn on System: Place on_off switch to high

2. Select Read, Write, Copy, or Swap

a. For Read/Write, place rw_dma switch to high

Read: place rw_cs switch to low

Write: place rw_cs switch to high

b. For Copy/Swap, place rw_dma switch to low

Copy: place rw_cs switch to low

Swap: place rw_cs switch to high

3. Start: Place Go switch to high

4. For Read:

 3

a. Enter Address: Set up address in the DIP Switches and set ready switch to high

b. Data in address entered will show on its respective 7-Segment display

For Write:

a. Enter Address: Set up address in the DIP Switches and set ready switch to high

b. Set ready switch back to low

c. Enter Data: Set up data in DIP Switches and set ready switch to high

d. Set ready switch back to low

For Copy / Swap:

e. Enter First Address: Set up address in the DIP Switches and set ready switch to high

f. Set ready switch back to low

g. Enter Second Address: Set up address in DIP Switches and set ready switch to high

h. Set ready switch back to low

5. Stop: Place Go switch to low

NOTE: interruption of ready or write can only occur while copying or swapping. If at any point in

Step 4, an interruption can be instantiated by toggling the Go switch from high, to low, back to high.

The interruption will go through Step’s 4-5, and once completed, will return back to pre-interrupt

state.

COMPONENT DESCRIPTION

To implement the above features, the design was broken up into four FSM’s: Central

Proccessing Unit (CPU), Direct Memory Access (DMA), Read-Write-Copy-Swap Controller (RWCS),

and Video Graphics Array (VGA). There were three other major system components also: The Arbiter,

Parallel Input/Output Memory Module, and Serial Input/Output Memory Module.

 4

mu

Clock

rw_dma

rw_cs

Go

ready

busy_dma

on_off

reset

cpu_dma

request

dma_go

EA

ED

RM

RCpu

RDma

scpu

sdma

sreset

cpu

inst1

Figure 1: CPU Symbol

FINITE STATE MACHINES

CENTRAL PROCESSING UNIT (CPU):

 The CPU is a top priority device responsible for the reading and

writing features. It is the most important FSM, as it holds the power over

the entire design. All the initial inputs of the user (excluding memory

storage values) are directly connected and controlled by the CPU. Once

the CPU examines initial user inputs, after the machine is turned on using

the on_off switch and started using the Go switch, it communicates with

the other FSM’s accordingly. The CPU and DMA collaborate to make the

Central Control Station.

 The CPU controls the master reset signal (on_off switch), as well as the request line, when it is

ready for more data. The CPU practices “handshaking”, a familiar protocol for communication between

two devices, in order to get data from the user. This FSM stays in a steady state as long as the user

has not toggled the Go switch. Once it has been toggled, the CPU reads in what feature the user would

like to use (explained in the User Interaction section). If the feature is a CPU feature (reading or

writing), it requests for the first address and enables the “A” register to store the value once it is

obtained. The value is obtained by toggling the ready switch once the data is set up on the DIP

Switches. If the feature is set to “write” it will then again perform handshaking to obtain the data, and

then enable the “D” register in order to store that value.

DIRECT MEMORY ACCESS (DMA):

 The DMA is the other major FSM that is responsible for the copying and swapping features. It is

also responsible to know how much of its task it has completed at each stage, so that if an interruption

is to occur, it can start off where it left off, once it is allowed to continue. It does this by storing a “0” in

the “P_CS” register if it is copying, and a “1” if it is swapping. Furthermore, once the first address is

 5

melue

Clock

dma_go

dma_allowed

ready

rw_cs

PState

P_CS

busy_dma

request

EA1

EA2

CState

C_CS

enable

reset

SC

SS

dma

inst

mu

Clock

on_off

EA

ED

SC

SS

MA

MA1

MA2

WE1

WE2

ED1

ED2

sel_cpudma

sel_a1a2

sel_mem

sel_dd1

sel_d1d2

rm1

rm2

rwcs

inst3

Figure 2: DMA Symbol

Figure 3: RWCS
Symbol

obtained, this FSM enables the “PState” register to store a “1”, signaling it has

crossed the first step to completing its task. At every instance the DMA is

activated, it refers back to these registers to know where to begin procedure

from. For both copying and swapping features, the DMA performs handshaking

with the user to obtain the first and second address. It then enables registers “A1”

and “A2”, respectively, to store the inputs. The CPU and DMA collaborate to

make the Central Control Station.

READ-WRITE COPY-SWAP CONTROLLER (RWCS):

 The RWCS FSM is responsible for interacting with the memory modules

and carrying out the read, write, copy and swap tasks. It has the ability to

enable two registers, “D1” and “D2”. “D1” is connected directly to the memory

modules for writing purposes, while “D2” is a register to hold a temporary value

while implementing a swap. The following is a basic outline of the four features:

Read: on the input of an address, A1, searches in respective memory module

and displays its data

Write: on the input of an address, A1, and data, D1; the write feature stores D1 in A1

Copy: on the input of two addresses, A1 and A2; data from A1 is copied into memory location A2.

 Procedure: Data of A1 stored in D1, and written into address of A2.

Swap: on the input of two addresses, A1 and A2, data from A1 is stored in A2, and the data in A2 is

stored in A1 simultaneously.

 Procedure: Data of A1 stored in D1, and data of A2 stored in D2. Data in D2 stored in address

in A1, and data in D1 stored in address in A2.

 6

C

d

P

S

Figure 4: VGA display of the CPU
writing data into Serial I/O memory
module

VIDEO GRAPHICS ARRAY (VGA):

 The VGA FSM works in conjunction with VGACon1 in order to display the implementation of

each feature on the VGA Display. It waits for a start signal from

one of the devices or memory modules, and then writes one

pixel on the device which is working, and one pixel on the

memory module it is interacting with. Figure 4 shows an

example of the CPU writing data into the Serial Input/Output

memory module (memory modules are discussed on page 7).

Using the write_request input, and the write_allowed input (from VGACon) VGA follows the following

basic procedure, similar to handshaking, in order to communicate with the VGA screen via VGACon:

1. Set write_request to “1”, and if write_allowed is not “1”, wait for the high signal

2. Once write_allowed is “1”, keep write_request at “1” for one clock cycle.

3. Set write_request to “0” and wait for write_allowed to go back to “0”

When sending in the request signal, the colour, row, and column are also specified on the colour[2..0],

row[5..0], and column[5..0] outputs respectively. Once a new procedure is begun by the user, the green

pixels written during the previous procedure are rewritten by black pixels following the same procedure

explained above. The initial screen is provided to the VGA by a MIF file.

OTHER COMPONENTS:

THE ARBITER:

 The Arbiter is the traffic controller of the Central Control Station. Its output is an input into the

DMA called dma_allowed, which is only at “1” (the DMA is allowed to be active) when the CPU is not

1 VGACon is a VHDL module written by Deshanand Singh and edited by Aaron Egier as a communicator between any self
written module and the VGA screen. Nov 26, 2004

 7

busy. The DMA is only allowed to start or continue with its process while dma_allowed is at “1”. The

Arbiter consists of an XOR gate with cpu_dma (at “1” when CPU is busy), and on_off switches as the

inputs. The Arbiter acts as a passageway towards the memory modules.

MEMORY MODULES:

There are two memory modules in this digital design; Parallel Input/Output memory module and Serial

Input/Output memory module. The memory locations entered in by the user are between the

hexadecimal values 016 and F16 (00002 – 11112). The Parallel I/O memory module consists of the

addresses between 016 and 716 (00002 – 01112), while the Serial I/O memory module consists of

addresses between 816 and 1516 (10002 - 11112). Both memory modules are synchronous with the

clock, and can hold 4-bit words. The results of the reading memory modules are displayed on two 7-

Segment displays, one for each module. The storage registers between the incoming inputs and the

memory modules are known as the Input Data Accumulator.

DESIGN DESCRIPTION

Before discussing the full system design, it is necessary to look into the inner workings of some

important subsystems. How the interruptions work between the CPU and DMA, and the way the

memory is processed into each module are two important subsystems to look at.

SUB SYSTEM DESIGN:

MEMORY ALLOCATION PROCESSING: (refer to Appendix D for further information)

In order for data to be transferred from the Input Data Accumulator to its respective memory

modules, a Memory Allocation Processing system was designed. This was necessary since the

memory modules only have one input for data and one input for address, while there are outputs of

data and addresses coming from multiple different registers in the Input Data Accumulator. This system

is a collection of multiplexers all controlled by the RWCS FSM in order to control the flow of data.

 8

The first multiplexer, mux_CpuDma, controls flow based on what FSM is controlling the

activated procedure. For example, if the user is writing, mux_CpuDma will only allow data flow from

registers “A” and “D” (CPU controlled address and data registers). Similarly, if the user is swapping, a

DMA implemented feature, mux_CpuDma will only allow data from registers “A1” and “A2” (DMA

controlled address’s registers).

The second multiplexer, mux_AA1_DA2, controls whether it wants information from the first

user input or the second user input, depending on what process it is computing. The third multiplexer,

mux_mem, controls storage of data being read from the Parallel I/O or Serial I/O memory module.

There is also a multiplexer, mux_DD1, connected to the “D1” register (register connecting to data lines

of both memory modules). During writing, the “D” register (controlled by CPU) has data flow, and while

copying or swapping, the contents out of mux_mem have the data flow. The final multiplexer in Memory

Allocation Processing, mux_D1D2, is used for the purposes of copying and swapping. As stated above,

the “D1” register has connection to the data lines of the memory modules, but this is so through this

multiplexer. The other choice is register “D2”, which stores a temporary value necessary during

swapping procedures.

HIGH PRIORITY INTERRUPTION: (refer to Appendix E for further information)

The high priority interruption gives certain devices priority over the others. In this design, this is

provided inside the Central Control Station. The CPU has top priority, while the DMA has second

priority. The interruption can occur while the DMA is busy. While getting either the first address or the

second address, the user can toggle the Go switch with “cpu_dma” at “0”, in order to activate a CPU

feature. Once the CPU has completed its task, control will be given back to the DMA to complete its

task where it left off.

 First is a reminder of how the DMA knows where it left off its last task. It successfully knows this

by storing a “0” in the “P_CS” register if it is copying, and a “1” if it is swapping. Furthermore, once the

first address is obtained, this FSM enables the “PState” register to store a “1”, signaling, it has crossed

 9

the first step to completing its task. Also, while the DMA is busy, it constantly sends a busy_dma signal

to the CPU.

When the machine is turned on, the dma_allowed signal is set to high. But if there was an

interruption, it is suddenly set to low, and that sends DMA into its initial stages, with busy_dma still on

high. Once the CPU completes its task, it checks for this busy_dma signal, and as in this case it would

be on high, it will reactivate DMA. Once DMA begins in its initial stages it checks the “P_CS” and

“PState” registers, and goes to the appropriate stage accordingly. At the end of DMA’s process, the two

registers are reset.

Simulation waveforms of this priority interruption can be found in Appendix E.

FULL SYSTEM DESIGN

With knowledge of each component and subsystem, the full system design can now be

discussed. Once the design is loaded onto the board, all the FSM’s are on their initial stages, and all

registers are reset. Only the CPU moves on to its next stage when the system is turned on using the

on_off switch.

On the basis of the user inputs (refer to User Interaction on page 2), the CPU either performs

the reading/writing task or sends control over to the DMA to perform the copying/swapping task. The

DMA is activated using a dma_go signal which is pulsed by the CPU. The DMA stays in its initial stages

before the pulse. Once the data has been collected from the user via CPU or DMA, and stored in their

appropriate registers inside the Input Data Accumulator, there is a pulse going to RWCS and VGA for

read, write, copy and swap, named EA, ED, SC and SS, respectively. This activates RWCS and VGA

to go to its read, write, copy or swap stage to start the appropriate procedure. Selecting the proper

multiplexers in the Memory Allocation Processing and enabling the write_enabled signals in either

memory module, the proper feature is implemented. There are secondary registers “Mn” for each

address register “A”, “A1” and “A2” that hold the most significant bit of the address. This is used as an

 10

Figure 5: Integrated System Flow

indication for which memory module to store the data in. If the value in “Mn” is “0”, then it is stored in

the Parallel Input/Output memory module, while if it is “1” it is stored in the Serial Input/Output memory

module. Also, using the procedure outlined in the Video Graphics Array section on page 4 the proper

pixels are printed onto the screen. Also, the locations of memory being read will be displayed on the

Seven-Segment displays. There are two displays showing one memory module each. LED’s also

display the request, Arbiter and on_off signals.

Once the tasks are completed, all FSM’s go back to their initial stages, while the CPU waits for

the next Go signal. If on_off is to go to low, all registers in the Input Data Accumulator will be reset, as

well as the CPU will go to its initial stage.

TESTING

The testing of the design was conducted in two stages. The first stage consisted of module wise

testing and the second stage was the testing of the integrated system.

MODULE-WISE TESTING

 The initial testing was performed on each component separately. Each FSM was separately

tested by its corresponding simulations in Altera Quartus. Extensive individual simulations were

performed to exhaust all possible test cases. Quite a few errors were discovered during this initial

 11

testing process. One of them was that the cpu_dma signal continued to stay high even after the CPU

had finished processing. Hence it created major problems because the dma_allowed signal never went

to high and the DMA was never allowed to process. The error was found out by tracing the CPU FSM

Verilog code which showed that in some stages of the FSM the cpu_dma was not changed back to

low.

Another important crisis was to fix the “interrupt” feature. To keep the stage of the DMA

conserved during interruption, two temporary storage registers were used- one to indicate if both

addresses had been input and the other to indicate if DMA was copying or swapping. The addition of

these two registers made the “interrupt” feature 100% flawless.

Initially four different FSMs were designed to perform the read, write, copy and swap features.

Testing showed that memory module consisted of a single enable signal. Hence to accommodate four

different FSMs a four option selection multiplexer was required which created simulation errors. Hence

the four different FSMs were integrated as one RWCS FSM which performed all the four functions

based on user specified selection and the idea for the multiplexer was dropped.

After detailed testing and debugging of each individual module the design was integrated and

testing was performed on the integrated system.

INTEGRATED TESTING

 Integrated testing was done by simulations and testing the completed design on the Altera

board. Incorrect results were displayed on the seven segment displays which were caused by

inaccurate connections in the final schematic. The read, write and copy features worked correctly but

problems were encountered with the swap feature. The Quartus simulation showed correct results but it

failed to work on the Altera board. Due to time constraints the error could not be fixed.

 Another problem encountered was with the VGA display. Quartus failed to recognize the VGA

FSM as a state machine due to inexplicable reasons. Two ECE241 TAs looked into the matter and

 12

came to a conclusion that it may be due to a bug in Quartus. Due to these reasons integrated testing

couldn’t be completed and hence the design couldn’t be made perfect.

 ENGINEERING DECISIONS

 The “Bus Arbiter” design implemented by the design team has added features which make it

original and user friendly. The greatest feature of the design is the priority queue in which the CPU is

given priority over the DMA. This feature was added to resemble the actual design of a computer. For

effective working of the priority queue, the interrupt feature was added to the design which allowed the

high priority device (CPU) to interrupt the functioning of the low priority device (DMA) and after the

processing of the CPU the DMA resumes from the point it left off. This feature added complexity to the

design and made it original.

 Another important engineering decision was that except the on_off signal all other signals were

made toggle ready and not steady state signals. So if the user by chance flips any switch back while

the design is in operation, it doesn’t obstruct the processing.

 The arbiter signal is displayed on an LED for easy comprehension of the user and the contents

of the two memory modules were displayed on the seven segment displays of the Ultragizmo board to

reflect the accuracy of the design. Also, the transfer of data between the devices and the memory

modules is displayed on the VGA screen. All these added features and the engineering decisions taken

make the design original and user friendly.

PROJECT MANAGEMENT

 The design team decided on milestones for each lab period and prelab time and distributed the

work accordingly. Smaller components of the design were written individually but most of the FSMs

were written and the testing was done as a team to minimize integration problems. Most of the allotted

 13

time was consumed in debugging of FSMs and hence due to time constraints the design turned out to

be 95% successful.

 Refer to the Gantt chart provided in Appendix F for details regarding milestones set and tasks

completed.

CONCLUSION

The “Bus Arbiter” design proved to be a fairly successful digital project and provided a lot of

practical experience to the design team. The swap feature which worked perfectly in simulation failed to

work when loaded on the Altera Flex 10K board. All other features performed exactly according to the

theoretical design. Correct data was read and written into correct memory modules and also rightly

copied between memory addresses. The seven segment display proved the accuracy of the design.

The VGA display couldn’t be made to operate due to inexplicable behavior of Altera Quartus software.

Though the “Bus Arbiter” resembles the Arbitration Protocol of a computer at a very minor level, it

includes all the complexities of the Protocol and so the complexities of the Hex keypad were avoided by

using the DIP Switches for input. Considering the complexity of the project and the time constraints the

project was judged 95% successful by the ECE241 TA. Hence the “Bus Arbiter” can be judged a

successful completion and a learning experience.

 14

Figure A.1 - Handshaking

APPENDIX A
IMPORTANT TERMS

Handshaking: (Excerpt from ECE241F Lab 6 – J. Rose, University of Toronto, ECE)

To transmit data between two devices, it is
often necessary to provide what are called
 “handshaking” signals that ensure that the
data is received correctly, particularly when
two devices are running at very different
speeds. Consider the situation illustrated in
 Figure A.1, in which n bits of data are to be
transmitted from Device #2 to Device #1. When Device #1 requires new data, it raises the
Data_Request line high (to “1”). Once Device #2 sees this and has placed the correct data on the
n Data lines, it raises the Data_Ready line high. When #1 has taken the data (typically by storing it
in a D- register) it lowers the Data_Request line after which #2 lowers the Data_Ready line.
Device #1 can only raise a new request after the Data_Ready line is lowered. This procedure is
called a “full handshake” and ensures that the data is transferred correctly, even when the two
devices are running at vastly different speeds.

High: setting a desired input/output to “1” – Vcc.

Low: setting a desired input/output to “0” – ground.

Pulse: To turn a signal to high for one clock cycle, instead of keeping it on for an indefinite period of

time.

Toggle: to change the signal of a switch. In the case of this system, to change it from 0 1 0 or from

1 0 1, depending on what its previous state is.

MIF File: a file that is hard coded into VGACon, as an initial file to display once the VGA is displayed.

XOR Gate: follows the following truth table

X0 X1 F

0 0 0

0 1 1

1 0 1

1 1 0

 15

APPENDIX B
FLOW DIAGRAMS

FAST Diagram

Turn on system
Place on_off switch to high

Setup Read/Write or Copy Swap
For Read/Write, place cpu_dma switch
to low

Read: place rw_cs switch to low
Write: place rw_cs switch to high

For Copy/Swap, place cpu_dma switch
to high

Copy: place rw_cs switch to low
Swap: place rw_cs switch to high

Setup address location
Set DIP switches to appropriate 4-bit
address location and place ready switch
to high once Go button is high

Read Write Copy Swap

Data in Address
specified is

displayed on 7-
Segment display

Place ready switch
to low

Enter in Data to
write to address

and write
Place ready switch
back to low, set up
data on DIP
switches and place
ready switch back
to high

Start
Place Go switch to high

Enter in Second
Address to copy

into
Place ready switch
back to low, set up
data on DIP
switches and place
ready switch back
to high

Enter in Second
Address to swap

with
Place ready switch
back to low, set up
data on DIP
switches and place
ready switch back
to high

Stop
Place Go switch to low

Off
Place on_off switch to low

Process shown on VGA

&

Interrupt
Setting Go

switch to low

 16

Signal Flow Diagram

 17

APPENDIX C
STATE DIAGRAMS

CPU FSM

 = handshaking (refer to Appendix A for more information)

OFF

ON

GO

RW
Read/
write

CS
Copy/
swap

READ

WRITE

ADD-
RESS

ADD-
RESS

DATA

on_off = “1” Go = “1”

rw_dma = “1” rw_dma = “0”

rw_cs = “1”rw_cs = “0”

busy_dma = “1”

busy_dma = “1”

busy_dma = “0”

busy_dma = “0”

ED = “1”
Start RWCS FSM

EA = “1”
Start RWCS FSM

scpu = “1”
Start VGA FSM

sdma = “1”
Start VGA
FSM

dma_go = “1”

Start DMA FSM

 18

DMA FSM

= handshaking (refer to Appendix A for more information)

STEADY START

GO

COPY

SWAP

ADD-
RESS 1

ADD-
RESS 2

ADD-
RESS 1

ADD-
RESS 2

SC = “1”

Start
RWCS
FSM

SS = “1”

Start
RWCS
FSM

Go = “1”

P_CS = “1” P_CS = “0”

PState = “0”

PState = “1”

PState = “0”

dma_allowed = “0”

Intterrupt!

dma_allowed = “0”

Intterrupt!

dma_allowed = “0”

Intterrupt!

dma_allowed = “0”

Intterrupt!

dma_go =
“1”

From

CPU FSM

PState =
“1”

 19

APPENDIX D
MEMORY ALLOCATION MULTIPLEXER CONFIGURATION

0

1

0

1

0

1

0

1

0

1

0

1

D

A2

A1

A

sel_cpudma

sel_cpudma

sel_a1a2

sel_mem
sel_dd1

sel_d1d2

M1

M2

D
D1

Memory module
address lines

D1

D2

Memory module data
lines

mux_CpuDma

mux_AA1_DA2

mux_a1a2

mux_mem
mux_DD1

mux_D1D2

 20

APPENDIX E
WAVEFORMS AND SCHEMATICS

Start DMA Start DMA

Interruption!

MUX Selects

Read Write Copy Swap

Figure E.1: Integrated Design - Swap simulation

Figure E.3: RWCS – read, write, copy and swap simulations

Figure E.2: Integrated design - interruption simulation

 21

 22

Figure F.1: Gantt Chart of Project 2

APPENDIX F
GANTT CHART

 23

APPENDIX G

SOURCE CODE

