
 1

N E W
Next Eternity Web Server

ECE299: Server Project

NEW Developers:
Madhureema Dutta
Sargunjit Singh Bawa
Akshay Ahooja

Date Submitted:
April 15, 2006

 2

EXECUTIVE SUMMARY

In February 2006, group 59 of ECE299 started on the development of NEW –

Next Eternity Web Server - a web-server that manages and shares web-based

applications accessible to remote computers connected from anywhere to the Internet at

anytime. This report presents an in depth design evaluation and description of NEW,

drawing its comparison to in-market web servers. NEW’s design has met all its required

specifications while being efficient, graceful and reliable and hence successful.

This report is divided into three major sections detailing NEW’s design

description, testing and finally its design evaluation. NEW implements several extension

features including Logging, Content Types, Virtual Web Hosting, Automatic Pathname

Expansion, GET and POST dynamic requests, Concurrency (Multithreading), Clustering

(redirection, load balancing, and heart beating), and Load Generation Testing.

The design description contains an explanation of how each feature works; the

testing section gives us an insight into how each of these features were vigorously

tested, and finally the design evaluation analyzes these features. Each of these sections

is supported with visuals which aid their understanding.

The report discusses all the factors affecting the design of NEW and how it

evolved over time. It also explains some of the vital design decisions that were required

and how they affected the final product. An overall evaluation assesses NEW to be a

robust and reliable server, but not a fast one. The server does not fail, and performs

exceptionally within its defined constraints. Its weakness arises when comparing to

commercial products, where its concurrent connection number is significantly low, and

page load time is quite high.

 3

TABLE OF CONTENTS

 Page #

Introduction 1

Design Description 1

Content Types 1

Virtual Web Hosting 2

Dynamic Content Handling 3

Automatic Pathname Expansion 4

Concurrency (Multithreading) 5

Clustering (Load Balancing) 6

Testing 9

Design Evaluation 11

Conclusion 12

Appendix A – Class Index 13

Appendix B – Component Algorithm Overview 14

Appendix C – New Diagnosis 17

Appendix D – Load Generation Testing Algorithm 18

 1

INTRODUCTION

The present report is an in-depth design analysis of NEW – Next Eternity Web

Server - a web server built by group #59 as a requisite for the ECE299 course. A request

for proposal was presented to the team to design a non-trivial object-oriented software

system which closely imitates a commercial web server. The main purpose of the project

was to gain experience in implementing a larger software system and working on

software in groups.

To meet this request the team designed software written in C++ language,

operating on Solaris platform which functions and has enhancements like server

management, protocol processing like a commercial web server. Indeed the design of

NEW meets all the expectations of the project and was graded 90% successful by the

ECE299 TA.

The goal of this report is to discuss and evaluate the design of “NEW”. The report

is divided into three main parts comprising of design description with a brief overview

and mode of implementation of the enhancements included in the software, testing

which includes the various stages of testing and the “load generator” software developed

for testing the efficiency of the design and lastly design evaluation of the software NEW

in comparison to commercial web servers.

DESIGN DESCRIPTION

� Refer to Appendix B for all Design Description flowcharts

CONTENT-TYPES

To build upon the simple web server which handled only “.html” pages, it was

decided to give NEW the ability serve other content types to bring our server at power

 2

with in market web-servers. Some of these included PDF, JPEG/JPG, AVI, SWF, etc.

files. This feature was incorporated by making the appropriate changes to the “Content-

Type:” header before returning it to the user in httpserver (Refer to Appendix A and B).

If(File Extension = “.jpg”)
Return header = “Content-Type:image/jpg”
Else if(File extension = “.txt”)
Return header = “Content-Type:text/plain”
…

VIRTUAL WEB HOSTING

The motivation behind virtual web hosting is to have the flexibility of allowing the

web-server to serve multiple domain names using the same IP address.

To further illustrate its importance in the web-server, the domain names offered

by the University of Toronto are used as an example: namely “eecg.toronto.edu “, and

“eecg.utoronto.ca”.

As a design decision the group decided that the domain name “eecg.toronto.edu”

will exclusively map to a directory “public_www1” and “eecg.utoronto.ca” to directory

“public_www2”. The absolute pathnames are parsed from a configuration file, named

config.txt. Thus the client request differentiated on the basis of these domain names

would have access to files only in their respective directories. The following algorithm is

a part of (Refer to Appendix A and B).

Extract the domain name from the URL:
 If(Domain name = “eecg.toronto.edu”)
 Set file directory = “public_www1”
 If(Domain name = “eecg.utoronto.ca”)
 Set file directory = “public_www2”
 So on for as many domain names as required….

 3

DYNAMIC CONTENT HANDLING

Often clients request specific data to be interpreted by a program, and expect a

custom response to their demand. A classic example of a server handling dynamic data

is a google.com web-server where the client specifies a search field and is returned data

corresponding to that search. In general, client dynamic requests to web servers fall into

two categories: GET requests, and POST requests. NEW has the ability to supports

both.

Dynamic GET requests: In this case the client specifies the parameters to the dynamic

program in the URL itself. Our web-server parses the URL separates out the dynamic

program and its parameters and feeds them into the dynamic program to generate an

output which is then returned to the client. Once this custom output is generated and

sent to the client the return file is deleted. To take our web-server a step further we

incorporated the possibility of passing multiple parameters through the URL.

E.g.: http:/ugsparc213.eecg.toronto.edu?portfolio.dyn?param1=August%param2=31

Where different parameters are separated by a ‘%’.In which case we parse the URL

such that data separated by a ‘%’ character corresponds to different parameters.

To test for dynamic GET requests we incorporated a program that solves the

towers of Hanoi and takes the number of discs as input through the URL and returns to

the client a detailed way to solve step by step the towers of Hanoi.

Dynamic POST requests: POST requests are used when the data to be inputted is quite

large and can not be added to the URL. In this case our web server stores the client

input into a file and uses this file as input to the dynamic program, after which it

proceeds to return the output in a similar manner as GET requests.

To test Dynamic Post Handling we incorporated a simple program that concatenates 5

strings which can be inputted using telnet:

 4

POST /concat.dyn http/1.1
Content-Length: 25

Parameter1 = Concatenate
Parameter2 = this
Parameter3 = string
Parameter4 = for
Parameter5 = me please.

AUTOMATIC PATHNAME EXPANSION

Up until this added feature, NEW connected to all clients in a similar fashion,

regardless of their individual needs. Automatic Pathname Expansion adds a personal

touch, by giving each user his/her own directory of servable web pages. Any relative

URL (ex. where relative URL is “index.hml” in www.cnn.com/index.html), which starts

with a twiddle (“/~bob”), is treated as a username login.

The directory of all usernames is stored in a text file within our root directory

labeled users.txt. This includes all usernames and their destination home folders

separated by a colon. An example is given below:

 NameA: /new/users/a
 NameB: /new/users/b
 NameC: /new/users/c
 …
On start of the server, this text file is parsed and stored into a link list called users.
Once the user has connected onto the server, a very simple algorithm is followed:

 If (first letter of relative URL = “~”)
 Search for username in users list
 If (username not found)
 Return back an error page
 Else

Return back default index page or directory listing from
username’s home directory

This extension is implemented inside httpserver, as one of the many options

available after connected to NEW (refer to Appendix X). The group decided to implement

this feature to allow for some security when processing information. Separate folders

can be created for each user, and allow those users to only access the files we allow. If

Output:

Concatenate this string for me please.

 5

files of different security level’s are to be created with their respective files, each user

can only have access to the allowed files.

CONCURRENCY (MULTITHREADING)

� Refer to Appendix B for redirection and heartbeat flowcharts

Multithreading NEW allowed more than one connection to be processed

concurrently. Instead of having one Socket (refer to Appendix X) connecting to one

client, the one Socket was used to create a new Socket within what is called a thread. A

thread acts as a separate CPU. Each thread runs your program as a separate entity,

and does not interfere with any other connections. We used this functionality, and

wrapped each connection into a separate thread.

This extension had large implications on our design. The main class Server

waited for connections and then wrapped the httpserver class’s Run() method in a

thread for processing the request. Multithreading in Server was implemented using the

following algorithm:

Main:
 if (num_threads < max_threads)
 Wait for connection:

Establish connection
Open thread to handle connection
Go back to waiting for the connection

Once the new thread was open, it called the httpserver class’s Run() function

which followed the following algorithm:

Thread:
 Update thread information (global values)
 Parse request
 Send required file/Default page
 Any error handling (ErrorHTML page)
 Kill thread (adjust global variables)

 6

This extension was very important because it created a solid base server to work

on top of. Using this extension, several new extensions were added, including server

redirection in Web Server Clustering, explained later in this report.

With the ability of several threads running at concurrent times, there came a

need to be able to shut down the server when a need for maintenance occurs. This

ability is labeled GRACEFUL SERVER SHUTDOWN, and follows a very simple algorithm. All

major while loops, for accepting connections and parsing requests are controlled be a

Boolean variable flag_terminate, which stays 0, unless otherwise specified. When the kill

–HUP <process> is ran on command prompt, the Signal class interrupts the program

and simply changes flag_terminate to a 1. This forces the server to decline all new

connections, but, does not close any running connections. Once all connections are

closed, it shuts down the server since it cannot enter into the main loop any longer. The

important factor in this shutdown is that no running threads are suddenly ended, but

rather gracefully terminated.

WEB SERVER CLUSTERING

Robustness and reliability are two features that test a web-server’s functionality.

A group decision to implement Web Server Clustering was chosen to enhance the

functionality, reliability and robustness of NEW.

The need for Clustering: A good web-server serves thousands maybe millions of

clients per second. It is not possible that a single server handle all these requests

simultaneously, quickly and efficiently without failing at some point of time. Therefore we

must divide and conquer this problem and to do so web server clustering was added to

NEW.

How it works: Rather than a single computer/server handle all requests there

exists a computer/server dedicated to redirecting client requests (the dispatcher) to other

 7

servers running with the same directories and files. This balances the net load by

dividing it among a number of web-servers running as helpers or Clusters to the main

dispatcher.

Design Implications: Incorporating Web-server Clustering had many drastic

design implications and can thus be justified as one of the most important design

decision made by the group during this project. Web-Server Clustering could be divided

into two major sections namely, 1) launching clusters and redirecting client requests, 2)

detecting cluster failures and re-launching those clusters.

General design overview: To implement web-server clustering two new classes

were added: Dispatcher and Heartbeat. These will be discussed later.

According to our design the main program (Server.C) also under went many

changes. Since the same code was now required to run either as a dispatcher/cluster or

a normal server, the team decided to separate code using if conditions:

If (operation mode = “dispatcher”)
{ Launch Clusters
 Redirect client requests to clusters.
 Request “heart-beat” from clusters.
}

If (operation mode = “cluster”)
 Start “heart-beat” with dispatcher

If (operation mode = “server”)
 Do normal processing without the above.

Launching clusters and redirecting requests (in dispatcher mode only):

The number of clusters to launch at startup is specified in the config.txt file.

Therefore at startup the main program (in Server) reads the config.txt file and launches

each of the clusters using the Dispatcher::Launch() command.

If(operation mode = “dispatcher”)
While (number of clusters in the config.txt file)
 Launch each server using Dispatcher::Launch() command.

 8

Once launched the dispatcher redirects incoming client requests to each of those

clusters in a cyclic manner. This is done by adding a public data member ‘redirectedhost

‘to class httpserver. Each time a new client connection is created it is assigned a

redirectedhost depending on the redirection algorithm, as follows:

Set relay counter = 0;
While (infinite)
 Every time a new connection is created.
 Assign that connection a redirected host corresponding to relay.
 Increment relay
 If (relay = number of clusters)
 Set relay back to 0;

Once assigned a redirected host the dispatcher returns a response,

HTTP/1.1 302 Found
Content-Type: text/plain
Content-Length: 0
Location: http://redirectedhost:54020/hey.txt
Connection: Close

Telling the client web-browser to request the same data from another web-server

(cluster) running at a location specified by the Location header.

With several server’s running and accepting connections, it becomes very difficult

to detect failures. For example, if a server that the dispatcher is redirecting to is to crash,

it will be never known unless some mechanism for detecting failure is devised. For this,

a heartbeat between each cluster and the dispatcher was implemented.

NEW’s Lifeline - The Heartbeat: The heartbeat is the sending and receiving of constant

characters from each cluster to the dispatcher. This is done on a separate port and

Socket for each cluster, so it does not interfere with other connections.

Dispatcher’s Run() Algorithm:
While (forever)
Traverse through list of server’s
 If (current server is not connected)
 Display message on terminal
Launch remote server using “ssh” command
 Else
 Read in character

 9

 Get next Server in cluster (if last server, restart list)

Heartbeat’s Run() Algorithm:
Create new Socket and listen on a different port
While (forever)
 Accept a new connection with the dispatcher
 Write a character to the dispatcher
 Close connection

These two classes constitute of the heartbeat, and begin at the startup of the

server. The heartbeat adds on to the robustness and reliability of any web server.

TESTING

The testing of software of such huge proportions is a time intensive task and

hence was conducted in two stages. The first stage consisted of module wise testing

and the second stage was testing with a specially designed software “load generator”

which was used to check the efficiency of the NEW.

MODULE-WISE TESTING

The initial testing was performed on each enhancement separately and then

testing the other enhancements of the web server with the addition of the new

enhancement. Since it was a large software system, black box and white box testing on

the whole system was quite improbable. Hence the team approached defensive

programming mechanism right from the start of the program, assuming that all input will

be incorrect, explicitly checking all requirements and exhaustively checking all

conditionals. Each new enhancement was checked for utility with reasonable input,

robustness by checking what happens with invalid inputs, reliability with long running

tests and performance. This involved checking each module with boundary conditions

and corner cases. Allocation and deletion of memory for every object created was taken

into account for proper memory management. When added concurrency, the server

was ran, and requested from several computers multiple times to make sure of its

 10

reliability. After each enhancement was checked with individual test programs, they were

incorporated in the main program of the server and then similar checks for robustness

and functionality was performed to check that the newly added enhancement worked as

per specifications with the main program and all previously added features. Every bug

encountered by a team member was logged in a text file for the information of every

team member.

After detailed testing and debugging of each individual enhancement with the

main program and other enhancements, a software was designed to further test and

measure the efficiency of the integrated web server.

LOAD GENERATOR

 A special software called “Load Generator” was designed to test the efficiency of

the server. The load generator consisted of three parts. The first part involved generation

of static files of varied sizes in the main directory. Static files are divided into four classes

on their sizes and nine files of each size was generated. The rand() function from the

standard library was utilized to decide size of the files within each class. After populating

the directory with static content, load generator connects to the web server to send

browser requests for the generated files and receives the server response. For this the

team utilized the ClientSocket class provided. Connection was established with the

server by first generating a client socket and then send() and recv() functions of the

socket class were utilized to send and receive files from server. A request for a file

named class0_5.html looks like this:

Get /class0_5.html HTTP/1.1

The third and the most important part of the load generator was comparison of requests

and responses for efficiency of server and statistics logging. Stat_log.txt was generated

for this purpose which recorded the number of connections, number of successes,

 11

number of failures, total number of bytes received, sustained bandwidth and response

time.

 Hence we see that the load generator is an important piece of software for

measuring efficiency of the design. Not only does it measure the efficiency but also

records the statistics for easier comprehension.

 The algorithm for the Load Generator which highlights the basic functioning of

the program covered in Appendix D.

DESIGN EVALUATION

In order to provide a fair evaluation for NEW, two factors will be taken into

consideration: design, and functionality. NEW has been designed to work as a robust

web server with minimal thread capacity. Due to minimal experience of the group in

server programming, a concurrent web server provides a solid base to work with. The

server includes all basic components of a web server, including logging of data. Up till

this point NEW is just a one connection server. Adding multithreading allowed the group

to enhance the server with several important features. One of these includes clustering.

The use of clustering took NEW from a simple, to a moderate or even an advanced

server. Incase of increased load, it is very simple to add on cluster servers to deal with

the overflow of requests. This not only improves functionality of the server, but also its

speed. That extension, added on with the robustness of heart beating, makes NEW very

reliable.

To evaluate NEW’s functionality in a quantitative sense, several factors where

taken into consideration. In order to compare how NEW placed among the professional

servers, help from the website of Vertain Software <www.vertain.com> was taken. When

testing NEW against Vertain’s testing protocols, the average page speed was tested to

 12

be 7.45 seconds. Benchmarking to all other major server’s, tested on the same site,

comes to an average of 4.38 seconds. A 3 second difference is large in the professional

market, and will have to be worked on if decided to sell NEW. A full diagnosis is

available in Appendix C.

When looking into extreme cases, it shows NEW cannot handle a large number

of concurrent connections when in regular server mode. To compare, professional

servers can handle hundreds of thousands, and even millions of connections at one

time. A limit of 50 threads was installed in order to keep page loading time at its highest.

It was noted that at high thread counts (past 30), the server would respond very slowly.

Clustering, on the other hand, easily doubles, triples, or exponentially grows that

number. Each cluster adds an extra 50 threads, which makes NEW expandable.

An overall evaluation assesses NEW to be a robust and reliable server, but not a

fast one. The server does not fail, and performs exceptionally within its defined

constraints. Its weakness arises when comparing to commercial products, where its

concurrent connection number is significantly low, and page load time is quite high.

CONCLUSION

 Based on the engineering decisions taken during the development of

NEW, as well as its design evaluation, the server is rated as being successful on

its requirements. NEW includes all the features of a professional web server,

while only lagging in timing and number of concurrent requests. Each decision

taken has taken NEW to the next level of web serving, proving to be robust,

reliable, and consistent.

 13

APPENDIX A
CLASS INDEX

Class Name Description

ClientSocket A class to be able to connect to the server, as a client

Config Creates a linked list using listNode

Copy For Dynamic Handling

dispatcher To accept heartbeats from each cluster, and restart clusters if needed

Hanoi Dynamic program to solve Towers of Hanoi problem

Heartbeat To send heartbeats to dispatcher

HTTPMessage Parses the incoming requests

HTTPrequest Saves the request parameters in an array

httpserver class directed by Server to send for parsing requests, and send

responses

listNode to create each individual node for Config linked list

log_file to create and update error, access, and debug log files

Mutex to lock access for certain sections of code

Server Class with main() method. Sends requests to appropriate destinations

socket create socket connections

ssbuf to wrap a buffer around a socket connection

Thread to create individual threads and call the Run() method of the thread’s

class

 14

APPENDIX B
COMPONENT ALGORITHM OVERVIEW

SERVER

 15

HTTPSERVER

 16

DYNAMIC CONTENT HANDLING

CLUSTERING

Redirection and Heartbeat

 17

APPENDIX C
NEW DIAGNOSES

Diagnoses performed at: http://www.websiteoptimization.com/services/analyze/

URL: http://ugsparc231.eecg.toronto.edu:54027/netscape.html

Title: Netscape.com

Date: Report run on Fri Apr 14 23:11:44EDT2006

Diagnosis

Global Statistics

Total HTTP Requests: 42

Total Size: 186172 bytes

Object Size Totals

Object type Size (bytes)

HTML: 72163

HTML Images: 74725

CSS Images: 0

Total Images: 74725

Javascript: 26686

CSS: 12598

Multimedia: 0

Other: 0

External Objects

External Object QTY

Total HTML: 1

Total HTML Images: 36

Total CSS Images: 0

Total Images: 36

Total Scripts: 4

Total CSS imports: 1

Total Frames: 0

Total Iframes: 0

Download Times*

Connection Rate Download Time

14.4K 144.49 seconds

28.8K 72.35 seconds

33.6K 62.04 seconds

56K 37.30 seconds

ISDN 128K 11.56 seconds

T1 1.44Mbps 1.19 seconds

*Note that these download times are
based on the full connection rate for
ISDN and T1 connections. Modem
connections (56Kbps or less) are

corrected by a packet loss factor of
0.7. All download times include

delays due to round-trip latency with
an average of 0.2 seconds per
object. With 42 total objects for this

page, that computes to a total lag
time due to latency of 8.4 seconds.
Note also that this download time

calculation does not take into
account delays due to XHTML
parsing and rendering.

 18

APPENDIX D
LOAD GENERATOR TESTING ALGORITHM

Get populating directory from user

If(directory != directory specified in config file)

 Echo error message on terminal

 Exit program

If (directory == directory specified in config file)

 Populate directory

 Get size of file using rand()

 Generate file

 Continue populating for number specified in config file

 Get time of day using gettimeofday() = time 1

 Connect to web server

 Create new Client Socket

 Send requests using send()

 Receive response using recv()

 Continue process for all generated files

 Get time of day using gettimeofday() = time 2

 Generate Stat_log.txt

 Log in statistics :

[no. of connections] [no of successes] [no. of failures] [total bytes

received] [response time (time 2 – time 1)] [sustained bandwidth =

total bytes/response time]

 Exit from program

