
Electronic Publishing:
Politics and Pragmatics

New Technologies in Medieval and Renaissance Studies
Volume 2

MEDIEVAL AND RENAISSANCE TEXTS AND STUDIES

VOLUME 401

Electronic Publishing:
Politics and Pragmatics

Edited by
Gabriel Egan, Loughborough University

NTMRS Series Editors
William R. Bowen and Raymond G. Siemens

Iter Inc.
in collaboration with

ACMRS
(Arizona Center for Medieval and Renaissance Studies)

Tempe, Arizona
2010

Published by Iter, Inc. and
ACMRS (Arizona Center for Medieval and Renaissance Studies)
Tempe, Arizona
© 2010 Iter Inc. and the Arizona Board of Regents for Arizona State University.
All Rights Reserved.

Library of Congress Cataloging-in-Publication Data

Electronic publishing : politics and pragmatics / edited by Gabriel Egan.
 p. cm. -- (New technologies in medieval and Renaissance studies ; v. 2)
(Medieval and Renaissance texts and studies ; v. 401)
 Includes bibliographical references.
 ISBN 978-0-86698-449-2 (alk. paper)
 1. Scholarly electronic publishing. 2. Communication in learning and
scholarship--Technological innovations. 3. Humanities--Digital libraries.
4. Library materials--Digitization. 5. Criticism, Textual--Data processing.
6. Transmission of texts. I. Egan, Gabriel.
 Z286.E43E4385 2010
 070.5'797--dc22
 2010043523

ISBN 978–0–86698–021–0 (online)

∞

This book is made to last.
It was typeset in SIL Gentium at the
Institute for Research in Classical Philosophy and Science (Princeton).
It is smyth-sewn and printed on acid-free paper to library specifications.
Printed in the United States of America

The publication of this volume has been supported by grants
from the Senate of Victoria University in the University of Toronto
and the Renaissance Society of America.

Contents

Editor’s Acknowledgements ix

Introduction
Gabriel Egan 1

 Part One. Creating Electronic Publications: The Politics
 and Pragmatics of Tools, Standards, and Skills 15

The Impact of Computers on the Art of Scholarly Editing
Peter Shillingsburg 17

Digitizing George Herbert’s Temple
Robert Whalen 31

A First-Principles Reinvention of Software Tools for Creative
Writing and Text Analysis in the Twenty-First Century
Jeff Smith 63

Mechanick Exercises: The Question of Technical Competence
in Digital Scholarly Editing
Alan Galey 81

A Historical Intermezzo: Is TEI the Right Way? 103

SGML, Interpretation, and the Two Muses: A Critique of TEI
P3 from the End of the Century
Ian Lancashire 105

Lancashire’s Two Muses: A Belated Reply
Murray McGillivray 121

 Part Two. Disseminating Electronic Publications:
 The Politics and Pragmatics of Publication 137

How We Been Publishing the Wrong Way, and How We
Might Publish a Better Way
Peter Robinson 139

Contentsvi

Open Access and Digital Libraries: A Case Study of the
Text Creation Partnership
Shawn Martin 157

From Edition to Experience: Feeling the Way towards
User-Focussed Interfaces
Paul Vetch 171

The Book of English: Towards Digital Intertextuality and
a Second-Generation Digital Library
Martin Mueller 185

Afterword
John Lavagnino 205

Contributors 215

Mechanick Exercises: The Question of Technical
Competence in Digital Scholarly Editing

Alan Galey
University of Toronto

alan.galey@utoronto.ca

Technical competence and the unknown

There are known knowns; there are things we know that we
know. There are known unknowns; that is to say, there are things
we now know we don’t know. But there are also unknown un-
knowns; there are things we do not know we don’t know.

Donald Rumsfeld, U.S. Defense Department Briefing, 12 February
2002

To borrow the former U.S. Defense Secretary’s infamous epistemology, how
might we characterize the various types of unknowns in digital scholarly
editing, and what do editors need to know about using the Web as a deliv-
ery platform? Ever a cause for anxiety and wistfulness among overextended
scholars, this kind of question takes on a particular urgency as born-digital
scholarly editions become viable. (By born digital I mean not simply editions
that begin life as computer files—nearly all scholarly writing must be born
digital in this sense by now—but rather editions designed for use primarily
in digital environments rather than print.) The traditional humanities cur-
riculum can equip new scholars with knowledge of bibliography (enumera-
tive, analytical, historical, descriptive, and textual [Greetham 1994, 5–8]),
palaeography and codicology, history of the book trades, stemmatics, lan-
guages, literary criticism, editorial theory, biography, intellectual history,
reception history, theatre history, archival research methods, and other core
competencies; but what does digital editing add to this already formidable
list? A recent job advertisement for a “Postdoctoral Fellow in Early Modern
Textual Studies and Digital Humanities” invites applicants with competence
in “TEI P5; XML, XSLT, XSL and XHTML encoding; XQuery; eXist XML da-
tabases; JavaScript; Ruby on Rails; PHP; CSS; and web-based SQL database
projects using PostgresSQL and mySQL” (ETCL 2008).

© 2010 Iter Inc. and the Arizona Board of Regents for Arizona State University.
All rights reserved

ISBN 978–0–86698–021–0 (online) ISBN 978–0-86698–449–2 (print)
New Technologies in Medieval and Renaissance Studies 2 (2010) 81–101

Mechanick Exercises82

Such piling-up of knowledge domains on an editor’s list of things to learn can
seem as daunting as the labours of Hercules, the greatest mythic to-do list
of antiquity. Erasmus even compared it to the thankless labours of textual
scholarship in his Adages: “I should like to know who would not be frightened
off ... from engaging in such work, unless he be a real Hercules in mind, able
to do and suffer anything for the sake of serving others” (Erasmus 1964, 194;
Jardine 1993, 41–45). Erasmus lived in a time of scholar-printers such as John
Froben and Aldus Manutius, and their legacy of encyclopaedic skill sets is
still detectable in Joseph Moxon’s account of the printer’s art from 1683–84
(our earliest surviving manual of the trade):

A Correcter should (besides the English Tongue) be well skilled in
Languages, especially in those that are used to be Printed with us,
viz. the Latin, Greek, Hebrew, Syriack, Caldæ, French, Spanish, Italian,
High Dutch, Saxon, Low Dutch, Welch, &c. neither ought my innu-
merating only these be a stint to his skill in the number of them.
(Moxon 1683, 2:260, Mm4v)

Erasmus’s question remained a good one in Moxon’s time, and even five
centuries later. Continuing the trope of the copious list, Jerome McGann re-
sponds to digital competence-inflation in the persona of a besieged humani-
ties scholar: “What are you saying? Learn UNIX, hypermedia design, one or
more programming languages, or textual markup and its discontents? Learn
bibliography and the sociology of texts, ancient and modern textual theory,
history of the book?” (McGann 2005, 107). McGann’s answer, and the one
reflected in the state of the field today, is a clear yes: these are exactly what
textual scholars and other humanists must learn if they are to have a voice
in the digital reconstitution of the human record.

Yet we lack a name for the type of individual who embodies this synthesis
within scholarly editing. The term corpus editor, as defined by Gregory Crane,
David Bamman, and Alison Jones, describes something close, in that he or she
“occupies a middle ground between the algorithm-heavy, knowledge-light
approaches of computer science and the wholly manual practices of tradi-
tional editing” (Crane, Bamman, and Jones 2007, 52), but their definition still
depends upon Fordist notions of specialization. Many computer scientists
have always been knowledge-heavy—the best ones, in my experience, make
a virtue of curiosity that puts humanists to shame—and many traditional
editors have always combined “manual practices” with theoretical inquiry.
Frederick Brooks, in his landmark book on the organization of labour and
knowledge in software engineering, had to reach outside his own discipline

ALAN GALEY 83

for the term architect as a metaphor for the individual entrusted with the
conceptual integrity of a project (Brooks 1995, 41–50 & passim).

It was the need to move beyond this two-cultures divide which prompted
Northrop Frye, in an unlikely but resonant keynote address to the 1989 con-
ference of the Association for Computing in the Humanities, to remind us
that

three of the most seminal mechanical inventions ever devised,
the alphabet, the printing press, and the book, have been in hu-
manist hands for centuries. The prestige of humanists in the past
came largely from the fact that they lived in a far more efficient
technological world than most of their contemporaries. It is true
that today they are sometimes confused about the new possibili-
ties opening up in front of them, though hardly more so than the
rest of the human race. (Frye 1989, 8)

Although scholarly editors have been looking to digital technologists for
answers to questions about the relation of labour to knowledge, it is worth
heeding Frye’s reminder that humanists have themselves been technologists
and information architects all along.

If the emerging field of digital textual studies lacks a clear answer to my
initial question—what does a digital scholarly editor need to know?—it is
because any answer depends upon complex relationships between labour,
epistemology, and technology, which extend beyond any primarily techni-
cal discussion. The following chapter applies the Rumsfeldian taxonomy to
scholarly editing and suggests ways digital editors can address questions of
technical competence based on the close historical parallels between the
digital humanities and textual studies as fields. For the purposes of this dis-
cussion, I take digital editor to mean anyone undertaking a scholarly edition
or similar project designed for delivery over the Web (at this time the main
delivery system for digital editions), and technical competence to mean the
minimum knowledge required for progress in the absence of specialist con-
tractors and research assistants.

Known knowns: Humanities computing and textual scholarship

In the inaugural volume of Literary and Linguistic Computing Susan Hockey re-
ports on a workshop held at Vassar College in 1986 that addressed the same
question of what humanists need to know about computing (Hockey 1986,
228). She remarks that the place of programming in the curriculum generat-

Mechanick Exercises84

ed much discussion but little consensus apart from agreement that the now-
outdated languages “PASCAL, BASIC, and SNOBOL were all thought suitable”
for humanists to learn at the amateur level (Hockey 1986, 228). However, the
rationales posited by workshop members at the time have endured: that pro-
gramming inculcates “mental discipline” just as Latin language training has
done for centuries; that programming reveals computers’ capabilities and
limitations alike; and that programming stretches the mind to inspire new
ways of thinking about problems (Hockey 1986, 228). More recently, Geoffrey
Rockwell echoes the same desire for high-level integration: “The important
thing is the integration of skills preparation with intellectual preparation.
We shouldn’t hide skills and technique—they are what makes [sic] digital
humanities different from other programs. Instead, we should think of our
programs as an art” (Rockwell 2003, 243).

The integration Hockey and Rockwell describe has long been an ideal difficult
to achieve in practice. Peter Shillingsburg similarly attempts to integrate the
skill sets of editing and computing, though his book’s most recent edition
was published before the emergence of the Web as the dominant delivery
system (Shillingsburg 1996). Typesetting and other document-centric ways
of conceptualizing digital editions are inadequate to the mixed ontologies of
Web 2.0, where it is becoming increasingly difficult to tell the difference be-
tween a page and a program. Attempts to articulate stable known knowns for
digital editing illustrate the value of understanding programming’s benefits
in abstract terms, as an intellectual exercise independent of any particular
language or tool.

The editors of a recent Modern Language Association (MLA) collection, Elec-
tronic Textual Editing, note the problem that “there are currently few manu-
als, summer courses, or self-guided tutorials that would help even trained
textual editors transfer their skills from print to electronic works” (Burnard,
O’Keeffe, and Unsworth 2006, 16). (An exception is University of Victoria’s
Digital Humanities Summer Institute, which combines the best aspects of
a skills workshop, international conference, and summer camp.) However,
Burnard and his co-authors write from amid the abbreviations that repre-
sent scholarly editing in its most institutionalized form: the MLA’s Commit-
tee on Scholarly Editions (CSE), formerly the Centre for Editions of American
Authors (CEAA), and the Text Encoding Initiative (TEI). David Greetham
calls this “an ex cathedra statement from the policing organization of our
discipline(s)” (Greetham 2007, 133). As the publishers of guidelines for schol-
arly work, the MLA, CSE, and TEI represent textual scholarship’s archival
tradition: the part of the discipline that shares many librarians’, archivists’,

ALAN GALEY 85

and information technologists’ reverence for professional standards, best
practices, and, most of all, the institutionalizing of a professional desire for
“reproducing and uniting the best standards so far developed” (Burnard,
O’Keeffe, and Unsworth 2006, 16).

Yet editorial theory and practice over the past quarter-century have come to
embody a deep scepticism of institutionalized orthodoxies. Textual scholars
today have been trained amid the debates sparked by intensely contested
editions such as the Hans Walter Gabler Ulysses, the George Kane and E. Talbot
Donaldson Piers Plowman, the Edinburgh Editions of Walter Scott’s Waverley
novels, the 1986 Oxford William Shakespeare: The Complete Works (including the
two-text King Lear, and a three-text Lear in its reincarnation as the Norton
Shakespeare), the three-text Arden 3 Hamlet, and the 2007 Oxford Thomas
Middleton: The Collected Works. To these projects we can add more general top-
ics of debate, especially focussed in Shakespeare studies, such as unediting,
the (allegedly) bad quartos, multiple-text editions, performance, canonicity,
the gendering of texts, the intentions of Shakespeare and his company with
regard to publishing playbooks, and the very idea of literature as a distinct
category of texts. Should the skills training that comes from “manuals, sum-
mer courses, [and] self-guided tutorials” communicate the questions at stake
in these debates or simply compartmentalize them?

Few of textual scholarship’s known knowns have gone uncontested, espe-
cially toward the end of the twentieth century, and there has been little
consensus-based progress toward so-called best practices. Instead, dissensus
has given us something better: a critical tradition to parallel the archival
tradition, advancing knowledge through contestation, debate, and the inclu-
sion of voices from outside the specialist field of scholarly editing, especially
from postcolonial studies, book history, performance studies, gender and
sexuality studies, film and media studies, and critical theory. To distil edit-
ing into a set of institutionally sanctioned practices is to neglect this critical
tradition, and to underestimate the challenges it raises. Understanding the
often-unacknowledged friction between the critical and archival traditions
must be the first thing a digital scholarly editor needs to know, since it will
determine how one relates to everything else. This conclusion hardly dis-
pels the unease voiced by Erasmus and McGann, nor does it yet tell us what
a digital scholarly editor needs to know. What, then, are the undiscovered
regions of the knowledge domain of digital scholarly editing, and how might
we identify them on the map of what we do and do not know?

Mechanick Exercises86

Known unknowns: Foundational technical skills for digital editors

This section describes four technical subjects that are normally the domain
of Web programmers, but which digital scholarly editors would do well to
understand. I mostly omit discussion of specific software packages because
editing is not a task for any one piece of software in the way that a single word
processor serves most scholars for writing. I echo William Turkel and Alan
MacEachern’s premise in their website The Programming Historian (required
reading for digital editors) favouring a polyglot approach to technologies
and languages. No single technology can do everything, despite proprietary
software often being marketed commercially as a capital-S Solution (such as
Adobe Flash). Encoding, text analysis, and interface design are intellectual
endeavours not reducible to abbreviations—text encoding, for example, is
about much more than learning any single markup language—but there is
nonetheless a need for stable, extensible technologies that enable a range of
practice, from the simple to the complex. Some favour the development of
a tool or suite of tools, but I am sceptical that these could be anything other
than a scholar-built counterpart to Dreamweaver, a tool so generalized that
one must bypass its own interface (using the code view pane) to do much
specialized or original work. The following list therefore names four areas
of knowledge of technical fundamentals that will likely remain pertinent
despite the coming and going of software and tools.

1) The history of Web browsers. Browsers, like word processors, are ubiquitous
and, therefore, often unnoticed. In the 1990s it was not uncommon to hear
the words Netscape or Explorer used to describe any browser regardless of
whether it was actually Netscape’s Navigator software or Microsoft’s rival In-
ternet Explorer. A major recent development in browsers is the maturation
of the Web as a platform for delivering applications, not just documents as in
the original conception for the Web (Berners-Lee 1990). Scholarly editing is
conceptually document-oriented (suited to text encoding) rather than algo-
rithmic (suited to data structures and object-oriented design). Yet browsers
are spaces where documents, data structures, and algorithms merge into
hybrid forms with complex ontologies. The browser’s helpful View Source
function gives easy access to a document’s source code in HyperText Markup
Language (HTML) or eXtensible Markup Language (XML), but increasing
complexity in Web architectures means that there is often more to a website
than is visible in the source code. Browsers also have a history of conflict
with one another and with the very principle of standardized design. Brows-
ers from different makers are not the same, and a single browser may not
always function identically on different operating systems.

ALAN GALEY 87

Ideally one should be able to design Web-based materials according to the
independent recommendations of the World Wide Web Consortium (W3C)
and have that design function identically on different browsers, as opposed
to writing individual workarounds for a specific browser. That ideal was far
from reality during the period known as the browser wars, waged largely
between Netscape and Internet Explorer since the mid-1990s. We are closer
to that ideal now with the Mozilla Firefox browser, which is reasonably stan-
dards-compliant and platform-consistent, and to a lesser extent with Safari
and recent versions of Internet Explorer, though there are many browsers
beyond these major ones, and almost all cling to proprietary implementa-
tions of certain features. Wikipedia’s entries on Web browsers and their
history are useful entry points to this topic (and are reliable at the time of
writing), but digital editors should also read a detailed history of this most
important of tools (Haigh 2008, 125–47). Digital editors should also become
familiar with the online documentation for the major browsers and their de-
sign communities, the Mozilla Developer Center and the Microsoft Developer
Network.

2) Text encoding and markup. Markup of written texts precedes digital com-
puting by centuries, from word-separation by spacing to modern punctua-
tion (Parkes 1992). Although encoding and markup are sometimes conflated
under the term tagging, it is necessary to understand the distinction between
text encoding formats such as ASCII and Unicode and markup languages such
as XML. There is also value in understanding markup in more abstract terms
than the adding of tags to texts, but that topic is beyond the scope of this
discussion (McGann 2004). In particular, one should be aware of how Unicode
translates symbols that stand for letters or punctuation visible on the screen
into machine-readable codes and back again (Wittern 2007). This knowledge
is important for all editors since the careless migration of digital texts be-
tween operating systems and applications can introduce errors even though
no one has made a typographical error. The Anglocentric history of comput-
ing means that keyboards and software handle accented letters awkwardly,
so editors working in languages other than English, especially those using
non-Latin alphabets, will need to know Unicode well. Even editors working
solely in English may need to account for ligatures, swash letters, and other
typographical and scribal phenomena.

Systems for marking up texts with tags have a long and varied history, from
typesetting software to Standard Generalized Markup Language (SGML) to its
Web-oriented derivative, but it is fair to say that XML has superseded them
for the present. Along with XML we have several related technologies for key

Mechanick Exercises88

tasks: eXtensible Stylesheet Language Transformations (XSLT), for transform-
ing XML into new forms; XPath, for accessing specific sets of entities within
XML documents; and XQuery, for running more complex queries than XPath
normally handles. These technologies are usually combined with one another;
for example, an XSLT stylesheet is itself an XML file, and uses XPath to select
parts of the target document to transform. Perhaps the most fundamental
value of XML is its capacity to enforce internal consistency and external con-
formance by means of a schema or Document Type Definition (DTD), a formal
abstraction of the rules that the document is supposed to follow.

A project-wide schema or DTD is a tremendously helpful error-control mech-
anism, and writing it can be an exercise in formalizing one’s assumptions
about one’s material. The TEI guidelines represent a large-scale, multidisci-
plinary, and collaborative effort to extend this thinking to the full range of
materials that humanists might represent using markup. TEI is more than
just a tagset; it is also a mechanism for validating files tagged according to
its vocabulary, a protocol for customizing its own tagset, a community for
sharing tools and resources, and, most valuably, a locus of debate about hu-
manities materials that makes a virtue of the constraints of markup. In other
words, the TEI guidelines should be regarded not simply as a solution to a
problem, but as a vocabulary to enrich our questions.

The TEI’s Gentle Introduction to XML is a good place to start, though humanists
will need to look further for introductions to XSLT, XPath, and other related
technologies (see the TEI Consortium’s website for links to resources). Now
that the three major browsers contain XML parsers, one can do a great deal
even with the simplest combination of tools: a text editor and Web browser.
However, it is helpful to have a single XML editing program that allows one
to validate files against schemas and DTDs, run XPath queries, execute XSL
transformations, and perform other tasks in one place. Currently the pro-
prietary XML editor oXygen provides this functionality and includes the TEI
schema.

3) Regular expressions. The simplest and most robust tool for searching and
manipulating strings of texts is the standardized grammar known as regular
expressions. Basic parts of this grammar will be familiar to anyone who has
used a wildcard character in a simple search, as when using Plo*man to find
matches with Ploughman or Plowman, and Le?r to find matches with Lear or
Leir. Since the grammar is standardized, its rules apply more or less con-
sistently across different programming languages and environments, from
JavaScript to Perl to PHP (a recursive abbreviation for “PHP: Hypertext Pre-

ALAN GALEY 89

processor”). Understanding regular expressions has intellectual value be-
yond practicality; it also disciplines the mind to think about patterns within
written language, as Hockey describes, and thus could serve as the basis for
user-driven searches of digital editions (Egan 2005).

4) Ajax. Scholars planning digital editions often lack a framework to hold
these and other technologies together. With the advent of Firefox as the first
popular, standards-compliant, cross-platform Web browser, there has been
renewed interest in Web applications that meet third-party standards and
build on the free and open-source software ethos. One framework has come
to be known by the acronym Ajax, or Asynchronous JavaScript and XML, and
is a composite of five elements:

1. standards-based presentation using eXtensible HTML (XHTML) and
Cascading Style Sheets (CSS);
2. dynamic display and interaction using the Document Object Model
[DOM];
3. data interchange and manipulation using XML and […] XSLT;
4. asynchronous data retrieval using the XMLHttpRequest object;
5. and JavaScript binding everything together.
 (Garrett)

Some implementations of Ajax add two more components: an XML database
such as eXist or Tamino, and a server-side language such as PHP or Java to
handle interaction between the database and the client-side JavaScript. Fur-
ther layers may come into play at the server side, usually requiring advanced
expertise and access.

In the Ajax architecture, the interface and the underlying functionality that
manipulates the data are closely integrated, written in the same language
(JavaScript) and located in the same files. Matthew Kirschenbaum suggests
why this kind of integration is important: “from a developer’s perspective,
the interface is often not only conceptually distinct, but also computationally
distinct” in many older architectures, and “it wasn’t until the comparatively
recent advent of languages like Visual Basic that it even became practical
to program both a user interface and an application’s underlying function-
ality with the same code” (Kirschenbaum 2004, 524–25). This combining of
interface and functionality replicates the humanistic design principle that
presentational forms are inseparable from analytical functions because a
text’s meaning is constituted in part by its material form.

Mechanick Exercises90

Three general points may be added. Firstly, the most important skill, un-
derwriting all others, is the ability to learn new skills quickly and indepen-
dently. Yet autodidacticism must be balanced with the second point, that
learning how to write code does not necessarily mean one has learned to
write good code that is concise, legible, efficient, and elegant. Programming
is no less an art than rhetoric, and learning the vocabulary of any one lan-
guage is only the beginning; more advanced topics include data types, data
structures, search and sort algorithms, and object-oriented design. Finally,
anyone embarking on a digital edition that requires server resources beyond
static web page hosting, such as XML databases and server-side scripting
in a language like PHP, will soon encounter the always complex interface
between the technological and the institutional. Although it is not difficult
to set up a local server on one’s own computer—using a package such as
MAMP (Mac, Apache, MySQL, PHP) for the Apple Macintosh, or its Microsoft
Windows counterpart XAMPP (X-platform, Apache, MySQL, PHP, Perl)—do-
ing the same on a university Web server may require considerable skill in
navigating the politics and pragmatics of institutional research support.

Unknown unknowns: Interface and divisions of knowledge

Rumsfeld identified the category of the “unknown unknown” as the most
dangerous of all, and in digital editing that category has often manifested
itself in matters of interface. Many scholarly editing projects begun in the
1990s did not anticipate how difficult and resource-intensive interface de-
sign would be (Kirschenbaum 2004, 524–25), nor how many opportunities for
new research it presented. Bethany Nowviskie, for example, reflects on the
project history of the Rossetti Archive:

Why did we neglect interface until it was almost too late? … [P]art
of the reason … was … an unsavory combination of condescension
toward and blind faith in programmers. Our own clarity on the
subject has increased, I think, precisely in step with our education
in technical issues, programming and stylesheet languages—all the
things that academics are too likely to leave to others. (Nowviskie
2000)

The lesson here is that project organization and “education in technical is-
sues” must be closely integrated from the outset, not left to “others,” lest
unknown unknowns manifest themselves without warning.

Projects today still encounter a lack of tools for visualizing the digital edi-
tion and making latent intellectual structures meaningful on the screen. This

ALAN GALEY 91

gap receives little attention because of the wealth of resources researchers
now enjoy in related areas like text encoding and text analysis, which have
evolved along with their own working languages of choice. A neophyte com-
puting humanist sitting down to learn the fundamentals of text analysis or
text encoding soon learns what tools he or she needs on the workbench in
order to make something happen and to produce the early results, however
modest, that are essential to the success of the autodidactic learning process.
This is known as the hello world! stage, in which the traditional first task upon
learning a new programming language is to make those words appear on the
screen. For text analysis and text encoding there are also resources ready to
help, like those offered by the TEI and the Text Analysis Portal for Research
(TAPoR), but there is no corresponding centralized resource for interface
design in the humanities.

One could formulate the problem like an examination question for the pres-
ent generation of digital humanists:

 XML is to markup as Perl is to text analysis

 as __________ is to interface design.

One should think carefully before filling in any one acronym or tool. The
widespread assumption throughout the late 1990s that hypertext would
solve all technical and theoretical problems has proven chimerical. For many
theorists and non-specialist commentators, hypertext was an empty vessel
into which they poured their hopes without bothering to understand digital
texts at the level of code—they simply did not know how much they did not
know. The pattern persists, and whereas the technologies mentioned above
represent known unknowns, this blank represents the unknown unknown
continuing to obtrude into contemporary digital humanities’ orderly world
of tools.

No single tool or technology can provide the things we have not yet learned
to expect from a digital edition, yet consumerist reliance on commercial
applications may lead non-specialists to think of interface development as
simply a matter of tags, stylesheets, and hyperlinks. The prevailing think-
ing in software marketing, especially since the late 1990s, crystallizes in the
word solution as a noun meaning software that solves a problem as soon as it
comes out of the box. What You See Is What You Get (WYSIWYG, pronounced
whizzywig) Web-design software encapsulates complexity, simplifying de-
sign to the point where Web authoring becomes a species of word process-
ing—hence the idea of a web page, symptomatic of the constraints imposed

Mechanick Exercises92

by document-oriented computing. What you see is what you get, but you get
only what you can see. Even Ajax may not be the right answer to the blank in
the above homology, since the question may contain a category error. Per-
haps we need not so much an acronym as an art, to echo Rockwell.

Among digital editing projects one finds two characteristic responses to the
existence of unknown unknowns. One is the DIY ethos in which individual
scholars stay on top of the copious desiderata of programming languages
and databases. Turkel and MacEachern describe the best rationale for this
ethos in The Programming Historian: “If you don’t program, your research pro-
cess will always be at the mercy of those who do” (Turkel and MacEachern
2007, ch. 2 sec. 2), which is also the message of the present chapter. However
admirable such an approach might be in terms of individual autonomy and
work ethic, it is difficult for many scholars to sustain in terms of time and
career development. (A helpful document in that regard is an MLA report
titled “Guidelines for Evaluating Work with Digital Media in the Modern
Languages.”) A more debilitating side-effect of prioritizing technical work
can be what Anthony Kenny calls “distortion of research” (Kenny 1992, 9), a
neglect of the important non-digital aspects of humanities scholarship, es-
pecially the critical debates ongoing in one’s area of study. As Kenny warns,
“There is a danger that projects may be undertaken not because they are
likely to lead to academically interesting results, but simply because they are
susceptible to computerization” (Kenny 1992, 9).

The other common response to unknown unknowns is the collaborative
ethos in which one delegates labour—and with it, knowledge—to team mem-
bers or contractors, with the lead editor providing skills in project manage-
ment and funding procurement instead of first-hand technical competence.
Shillingsburg argues:

Scholarly editors are first and foremost textual critics. They
are also bibliographers and they know how to conduct literary
and historical research. But they are usually not also librarians,
typesetters, printers, publishers, book designers, programmers,
web-masters, or systems analysts. ... [Thus] textual scholarship
requires the services of Internet technologists. (Shillingsburg
2006, 94–96).

Shillingsburg’s conclusion, however appealing, perpetuates the black-boxing
inherent in the WYSIWYG approach, in which the user can work without ever
having to see the underlying code. Similarly, a shared technology services

ALAN GALEY 93

model like Project Bamboo’s, tempting to over-taxed textual scholars, car-
ries the risk that cross-disciplinary influence will flow in only one direction,
from the supposedly technology-oriented disciplines like computer science,
information studies, and cognitive science to the text-oriented humanities,
but not back again. Although encapsulation is essential to computing gen-
erally, people are not software, and we should be cautious about applying
principles of software design to project organization, interdisciplinarity, and
human relationships.

There is a growing division between projects where the humanists regard
the technologists as providing services, and those where it is difficult to tell
the humanists and the technologists apart. (I now actively avoid the former
kind of project.) The division deepens with the belief, popular with digital
humanists and funding agencies, that collaboration is self-evidently good.
Yet collaborating specialists may dig ever deeper into their disciplinary
niches, drawing rigid borders between what they need to know and what
they do not. By contrast, it can be liberating and enlightening for a non-
technical humanist to start a digital project by painstakingly learning to
write her own DTD or schema, treating it as an intellectual exercise in the
modelling of materials and not rote implementation of rules dictated by past
practice. Ideally, one emerges with a better understanding of one’s materials
and one’s digital tools and of the relationship between them, which in the
humanities may be anything but straightforward. The most viable collabora-
tions are intellectual ones, based on the meeting of different minds where
all parties emerge changed; the least viable are those that attempt only to
balance out skills deficiencies. At worst, the latter approach can render ap-
prenticing scholars (postdoctoral fellows, research assistants) more valuable
as continuing subordinates than as future colleagues bound for careers be-
yond the project.

Thus one may become too technically competent or competent for the wrong
reasons. A gifted programmer working on scholarly editions risks exploitative
collaborations or conceiving of research materials and questions exclusively
in terms of computation. To prevent this, literary and textual scholars must
overcome two conceptual constraints. The first is the idea of infrastructure
as the guarantor of excellent research. (I use the word excellent here mind-
ful of Bill Readings’s cautions about its stealth function in academic politics
[Readings 1996, 21–43]). Although infrastructure of the kind that Shillings-
burg describes is worthwhile and necessary (Shillingsburg 2006, 80–125), the
broader institutional discourse still tends to use infrastructure to denote
equipment, tools, and shared services rather than knowledge and the capac-

Mechanick Exercises94

ity to hire knowledgeable people. The second constraint is the assumption
of an unbridgeable gap between those working with code and those working
with texts and ideas, such that a humanities scholar and a programmer can-
not be the same person. To draw a distinction between programming and
abstract, poetic thinking is to misunderstand both. Yet in many electronic
editing projects the labour divides precisely along these lines: editing stops
where interface design begins, with another specialist entering the picture,
often as a research assistant rather than an equal collaborator. The division
of labour between programming and humanistic inquiry is often necessary,
but the division of knowledge is impoverishing.

Conclusion: The missing term

I have argued above that digital editors need to possess technical skills them-
selves, not just in their research assistants and collaborators, and that the
distinction between skills and knowledge is artificial. Does, then, a digital
scholarly editor need to be a programmer too or merely able to hire one? If
one is committed to the critical tradition of scholarly editing, not just the
heaping-up of digitized texts and tools, the answer must be that the project
leader should be a programmer, even if she does not do most of the pro-
gramming. True technical competence cannot be bought. A more heartening
rationale for humanists learning programming is described by Stephen Ram-
say in a conversation with Turkel and the hosts of the Digital Campus podcast,
Dan Cohen, Mills Kelly, and Tom Scheinfeldt, in an episode on humanities
programming. Ramsay describes the empowerment he felt by learning
how to control his digital environment at the level of code—how to “build
it, hack it, break the warranty” (Cohen, Mills, and Scheinfeldt 2008, 30.00).
For him and his students, upon crossing the programming threshold “the
digital world ... suddenly seems ... less deterministic than it might have been
before.” Kirschenbaum makes a similar case to a mainstream audience in a
recent Chronicle of Higher Education: “Computers should not be black boxes
but rather understood as engines for creating powerful and persuasive mod-
els of the world around us. … I believe that, increasingly, an appreciation of
how complex ideas can be imagined and expressed as a set of formal proce-
dures—rules, models, algorithms—in the virtual space of a computer will be
an essential element of a humanities education” (Kirschenbaum 2009, B10).

Behind Ramsay’s and Kirschenbaum’s rationales we may detect the lib-
eral arts tradition of the enlightened, autonomous individual, technically
equipped to make informed judgments of a kind that Alan Liu expresses
more pointedly: “My highest ambition for cultural criticism and the creative

ALAN GALEY 95

arts is that they can in tandem become ‘ethical hackers’ of knowledge work—
a problematic role in the information world but one whose general cultural
paradigm needs to be explored” (Liu 2004, 7–8). With all these convincing
rationales available, what remains to prevent humanists from becoming pro-
grammers? All the technological conditions have been in place long before
now: computers are cheap; the tools are free (from browsers and text edi-
tors to XML databases like eXist, and local server environments like MAMP);
online tutorials and knowledge bases are free and ubiquitous; online com-
munities for new programmers are thriving and ready to help (and free); the
open-source ethos has resulted in many reusable Web programming compo-
nents being made available for free; and the Web as a distribution platform is
mostly free (though servers and their support do cost money). Where, then,
are all the programming humanists?

An explanation for their absence may be found in the fourth, unstated cat-
egory of Rumsfeld’s taxonomy, as Slavoj Žižek explains:

What [Rumsfeld] forgot to add was the crucial fourth term: “un-
known knowns,” things we do not know that we know—which
is precisely ... the disavowed beliefs and suppositions we are not
even aware of adhering to ourselves. ... The situation is like that
of the blind spot in our visual field: we do not see the gap, the
picture appears continuous. (Žižek 2008, 457)

A disdain for the mechanical constitutes the most potentially troublesome
blind spot for digital scholarly editing, and the unknown known it conceals
is the idea that computers are venues for labour and not for thinking. This is
a distinction as old as the liberal arts that gave rise to the modern university
system. By invoking the liberal arts tradition in his defence of learning code,
quoted above, Rockwell implicitly contextualizes programming and similar
skills within the humanities’ known knowns (as Hockey does by invoking
Latin). It is worth remembering, though, that the liberal arts tradition draws
its rationale from the often-unstated Aristotelian distinction between the
liberal arts and the servile arts (Adler 1937, 430–44; Burke 2000, 84). If the
liberal arts are traditionally defined as those needed by a free citizen of the
state, then the servile (or useful) arts are those needed by the servants of the
citizens, like the rude mechanicals of A Midsummer Night’s Dream.

Yet that dichotomy is transforming into something else even as the differ-
ence between digital humanities and other humanities disappears. Liu de-
scribes this related ideological formation:

Mechanick Exercises96

Wherever the academy looks in the new millennium, it sees
the prospect of a world given over to one knowledge—a single,
dominant mode of knowledge associated with the information
economy and apparently destined to make all other knowledges,
especially all historical knowledges, obsolete. Knowledge work
harnessed to information technology will now be the sum of all
worthwhile knowledge—except, of course, for the knowledge of
all the alternative historical modes of knowledge that undergird,
overlap with, or—like a shadow world, a shadow web—challenge
the conditions of possibility of the millennial new Enlighten-
ment. (Liu 2004, 7)

With Liu’s argument in mind, it is worth recalling that the object of Greetham’s
critique of the MLA’s Electronic Textual Editing collection was not what knowl-
edge the book offers its readers, but how the book assumes that knowledge
should function in the world. If the archival tradition and its conservative
worldview embody the kind of illusory continuity that Žižek describes—an
ideology, in other words—then we need a critical tradition that operates in
the gaps of the digital humanities as an Enlightenment project, making the
discontinuities visible.

Such a critical tradition might regard programming as a link to historical
modes of knowledge work that resist what Liu calls the “one knowledge” of
the information economy. Early modernists in particular should be sensitive
to the fluidity between the liberal and servile arts, since the dichotomy be-
gan to lose its coherence in the period leading up to Moxon’s time in the late
seventeenth century (Prest 1987, 13). Indeed, as Jonathan Sawday describes
in a chapter on early modern “reasoning engines,” Francis Bacon and other
seventeenth-century thinkers attempted to rescue the idea of the mechani-
cal from its past associations with socially inferior labour, though at the cost
of a certain instrumentalism (Sawday 2007, 210–16). The same ambivalent
transformation may happen in our time as digital editing, along with digital
knowledge work in the humanities generally, comprise not the “tradesman’s
entrance” to the academy, as Willard McCarty calls it, but rather “a com-
puting that is of as well as in the humanities: a continual process of coming
to know by manipulating representations” (McCarty 2004, 265). The digital
humanities at their best represent not only a synthesis of disciplines, but also
a synthesis of different types of labour and knowledge.

Ours is not the first generation of textual scholars to reckon with the prob-
lem of mechanical knowledge. Book history, an interdisciplinary cousin and

ALAN GALEY 97

historical contemporary of the digital humanities, has reckoned with applied
technical knowledge in its own conception of its known unknowns. As the
New Bibliographers’ chronicler F.P. Wilson contends,

often ... the bibliographer reaches conclusions that are demon-
strable and irreversible. The reason is that he is dealing with an
Abel Jeffes or a James Roberts not in his relations with other hu-
man beings, whether of the government, or the Stationers’ Com-
pany, or the playhouse, but in his relations with a mechanical
process (Wilson 1970, 34).

Bibliography and book history have been negotiating between the different
epistemologies of the mechanical, linguistic, and aesthetic for decades. D. F.
McKenzie, for example, did not just lead the reintegration of bibliography
with book history and literary interpretation, but also established and oper-
ated the Wai-te-ata Press at Victoria University of Wellington, New Zealand,
using an 1813 Stanhope hand-press that he operated himself and used to
teach his students (McKitterick). This figure of the scholar at the press, at-
tempting to guarantee what Brooks called “conceptual integrity” in software
design (Brooks 1995, 256), returns us to Moxon’s Mechanick Exercises:

it is necessary that a Compositor be a good English Schollar at least;
and that he know the present traditional Spelling of all English Words,
and that he have so much Sence and Reason, as to Point his Sentences
properly: when to begin a Word with a Capital Letter, when (to ren-
der the Sence of the Author more intelligent to the Reader) to Set some
Words or Sentences in Italick or English Letters, &c. (Moxon 1683,
2:198, Ee1v)

What Moxon is writing about, and what he demonstrates here in print, is the
fundamental link between the details of text and the ubiquity of markup:
the latent architecture of information that gets manifested and modified
through the productive constraints of a mechanical process. The difference
between Moxon’s technology and the ones I have described above is one of
scale but not of nature. What digital textual scholars need to know, then, may
be learned by reckoning with our unknown knowns concerning knowledge
work, and by rediscovering what we already know about our own mechanic
exercises.

Mechanick Exercises98

Note

This essay reflects conversations with many people, and I particularly wish
to thank Gabriel Egan, Matthew Bouchard, Martin Mueller, Harvey Quamen,
Stephen Ramsay, Seamus Ross, students in my 2008–9 graduate seminars, and
audiences at gatherings organized by the Society for Digital Humanities, the
HCI-Book group, and the Folger Shakespeare Library. Any errors are my own.

WORKS CITED

Adler, Mortimer Jerome. 1937. Art and Prudence: A Study in Practical Philosophy.
New York: Longmans.

Berners-Lee, Tim. 1990. Information Management: A Proposal. http://www.
w3.org/History/1989/proposal.html.

Brooks, Frederick P. 1995. The Mythical Man-Month: Essays on Software
Engineering. 2nd ed. Reading, MA: Addison Wesley.

Burke, Peter. 2000. A Social History of Knowledge: From Gutenberg to Diderot.
Cambridge: Polity.

Burnard, Lou, Katherine O’Brien O’Keeffe, and John Unsworth. 2006.
Introduction. In Electronic Textual Editing, 11–21. New York: Modern
Language Association of America.

Cohen, Dan, Kelly Mills, and Tom Scheinfeldt. 2008. Digital Campus Episode 25:
Get With the Program. April 21. http://digitalcampus.tv/2008/04/21/
episode-25-get-with-the-program/.

Crane, Gregory, David Bamman, and Alison Jones. 2007. ePhilology: When
the Books Talk to Their Readers. In A Companion to Digital Literary
Studies, ed. Susan Schriebmann and Ray Siemens, 29–64. Malden, MA:
Blackwell.

Egan, Gabriel. 2005. "Impalpable Hits: Indeterminacy in the Searching of
Tagged Shakespearian Texts." A conference paper delivered on 17
March at the 33rd annual meeting of the Shakespeare Association
of America in Bermuda, 17–19 March. http://gabrielegan.com/
publications/Egan2005a.htm.

ALAN GALEY 99

Erasmus, Desiderius. 1964. The "Adages" of Erasmus. A Study with Translations.
Trans. Margaret Mann. Cambridge: Cambridge University Press.

ETCL. 2008. Postdoctoral Fellowship in Early Modern Textual Studies and
Digital Humanities (2009–11) at the Electronic Textual Cultures
Laboratory (ETCL) at the University of Victoria. Humanist. September
11.

Frye, Northrop. 1989. Literary and Mechanical Models. In Research in
Humanities Computing, ed. Ian Lancashire (Selected Papers from the
1989 Association for Computers and the Humanities-Association for
Literary and Linguistic Computing (ACH-ALLC) Conference): 3–12. Vol.
1. Oxford: Clarendon Press.

Garrett, Jesse James. Adaptive Path: Ajax, A New Approach to Web Applications.
http://www.adaptivepath.com/ideas/essays/archives/000385.php.

Greetham, D. C. 1994. Textual Scholarship: An Introduction. New York: Garland.

__________ 2007. Review of Electronic Textual Editing, ed. Lou Burnard,
Katherine O’Brien O’Keeffe, and John Unsworth. Textual Cultures 2, no.
2: 133–36.

Haigh, Thomas. 2008. Protocols for Profit: Web and E-mail Technologies
as Product and Infrastructure. In The Internet and American Business,
ed. William Aspray and Paul Ceruzzi, 105–58. Cambridge, MA:
Massachusetts Institute of Technology Press.

Hockey, Susan. 1986. Workshop on Teaching Computers and the Humanities
Courses. Literary and Linguistic Computing 1, no. 4: 228–29.

Jardine, Lisa. 1993. Erasmus, Man of Letters: The Construction of Charisma in Print.
Princeton, NJ: Princeton University Press.

Kenny, Anthony. 1992. Computers and the Humanities. London: British Library.

Kirschenbaum, Matthew G. 2004. "So the Colors Cover the Wires": Interface,
Aesthetics, and Usability. In A Companion to Digital Humanities, ed. Susan
Schreibman, Ray Siemens, and John Unsworth, 523–42. Blackwell
Companions to Literature and Culture. Oxford: Blackwell.

__________ 2009. Hello Worlds: Why Humanities Students Should Learn to
Program. Chronicle of Higher Education 55, no. 20 (January 23): B10–B12.

Mechanick Exercises100

Liu, Alan. 2004. The Laws of Cool: Knowledge Work and the Culture of Information.
Chicago: University of Chicago Press.

McCarty, Willard. 2004. Modeling: A Study in Words and Meanings. In A
Companion to Digital Humanities, ed. Susan Schreibman, Ray Siemens,
and John Unsworth, 254–70. Blackwell Companions to Literature and
Culture. Oxford: Blackwell.

McGann, Jerome J. 2004. Marking Texts of Many Dimensions. In A Companion
to Digital Humanities, ed. Susan Schriebmann, Ray Siemens, and John
Unsworth, 198–217. Blackwell Companions to Literature and Culture.
Oxford: Blackwell.

__________ 2005. Information Technology and the Troubled Humanities.
TEXT Technology 14, no. 2: 105–21.

McKitterick, David. Oxford Dictionary of National Biography article:
McKenzie, Donald Francis (1931–99). http://www.oxforddnb.com/
view/article/72097.

Moxon, Joseph. 1683. Mechanick Exercises, or, The Doctrine of Handy Works. Vol.
2. London: Joseph Moxon.

Nowviskie, Bethany. 2000. ‘Interfacing the Rossetti Archive’. Conference
paper presented at the October 2000 conference of the Humanities and
Technology Association. http://www2.iath.virginia.edu/bpn2f/1866/
dgrinterface.html.

Parkes, M. B. 1992. Pause and Effect: An Introduction to the History of Punctuation
in the West. Aldershot: Scolar.

Prest, Wilfrid. 1987. Introduction: The Professions and Society in Early
Modern England. In The Professions in Early Modern England, ed. Wilfrid
Prest, 1-24. New York: Croom Helm.

Readings, Bill. 1996. The University in Ruins. Cambridge MA: Harvard University
Press.

Rockwell, Geoffrey. 2003. Graduate Education in Humanities Computing.
Computers and the Humanities 37, no. 3: 243–44.

Sawday, Jonathan. 2007. Engines of the Imagination: Renaissance Culture and the
Rise of the Machine. London: Routledge.

ALAN GALEY 101

Shillingsburg, Peter L. 1996. Scholarly Editing in the Computer Age. 3rd ed. Ann
Arbor: University of Michigan Press.

__________ 2006. From Gutenberg to Google. Cambridge: Cambridge University
Press.

Turkel, William J, and Alan MacEachern. 2007. The Programming Historian.
NiCHE: Network in Canadian History and Environment.

Wilson, F P. 1970. Shakespeare and the New Bibliography. Ed. Helen Gardner.
Oxford: Clarendon Press.

Wittern, Christian. 2007. Character Encoding. In A Companion to Digital Literary
Studies, ed. Susan Schreibman and Ray Siemens, 564-576. Malden MA:
Blackwell.

Žižek, Slavoj. 2008. In Defense of Lost Causes. London: Verso.

