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Wireless sensor networks (WSNs) are composed of tiny devices with limited computation and
battery capacities. For such resource-constrained devices, data transmission is a very energy-
consuming operation. To maximize WSN lifetime, it is essential to minimize the number of bits sent
and received by each device. One natural approach is to aggregate sensor data along the path from
sensors to the sink. Aggregation is especially challenging if end-to-end privacy between sensors
and the sink (or aggregate integrity) is required. In this article, we propose a simple and provably
secure encryption scheme that allows efficient additive aggregation of encrypted data. Only one
modular addition is necessary for ciphertext aggregation. The security of the scheme is based on the
indistinguishability property of a pseudorandom function (PRF), a standard cryptographic primi-
tive. We show that aggregation based on this scheme can be used to efficiently compute statistical
values, such as mean, variance, and standard deviation of sensed data, while achieving significant
bandwidth savings. To protect the integrity of the aggregated data, we construct an end-to-end
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aggregate authentication scheme that is secure against outsider-only attacks, also based on the
indistinguishability property of PRFs.
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1. INTRODUCTION

Wireless sensor networks (WSNs) are becoming increasingly popular in many
spheres of life. Application domains include monitoring of the environment
(e.g. temperature, humidity, and seismic activity) as well as numerous other
ecological, law enforcement, and military settings.

Regardless of the application, most WSNs have two notable properties in
common: (1) the network’s overall goal is typically to reach a collective con-
clusion regarding the outside environment, which requires detection and co-
ordination at the sensor level, and (2) WSNs act under severe technological
constraints: individual sensors have severely limited computation, communi-
cation and power (battery) resources while operating in settings with great
spatial and temporal variability.

At the same time, WSNs are often deployed in public or otherwise untrusted
and even hostile environments, which prompts a number of security issues.
These include the usual topics, for example, key management, privacy, access
control, authentication, and denial of service (DoS)-resistance. What exacer-
bates and distinguishes security issues in WSNs is the need to miniaturize
all security services in order to minimize security-induced overhead. In other
words, if security is a necessary hindrance in other (e.g., wired or MANET) types
of networks, it is much more so in WSNs. For example, public key cryptogra-
phy is typically avoided1 as are relatively heavyweight conventional encryption
methods.

WSN security is a popular research topic and many advances have been made
and reported on in recent years. Most prior work focused on ultra-efficient key
management, authentication, routing, and DoS resistance [Eschenauer and
Gligor 2000; Zhu et al. 2004; Karlof and Wagner 2003; Wood and Stankovic
2002]. An overview of security-related issues and services in the WSN context
can be found in Perrig et al. [2004].

Also, much attention has been devoted to sensor communication efficiency.
Since data transmission is very energy-consuming, in order to maximize sensor

1While some sensor devices have sufficient computation power to perform public key operations,
transmitting the resulting large ciphertexts is expensive; the smallest public key ciphertext is
around 160 bits.
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lifetime, it is essential to minimize the sheer number of bits sent by each sensor
device. One natural approach involves aggregating sensor data as it propagates
along the path from the sensors to the so-called sink—a special node that col-
lects sensed data. Of course, aggregating data is not quite equivalent to collect-
ing individual sensor readings. In some applications, for example, perimeter
control, aggregation is not applicable, since only individual sensor readings
are of interest. However, many WSN scenarios that monitor an entire micro-
environment (e.g., temperature or seismic activity) do not require information
from individual sensors; instead, they put more emphasis on statistical quan-
tities, such as mean, median and variance.

End-to-end privacy and aggregate integrity/authenticity are the two major
security goals in a secure WSN. Regardless of information leakage due to the
correlation among sensor measurements, end-to-end privacy ensures that no-
body other than the sink can learn the final aggregate, even if it controls a
subset of sensor nodes. Informally speaking, aggregate authentication assures
the sink that the aggregate value is a function of authentic components (indi-
vidual sensor inputs) and the data has not been tampered with en route.

Although simple and well-understood, aggregation becomes problematic if
end-to-end privacy between sensors and the sink is required. If we assume
that all sensors are trusted, they could encrypt data on a hop-by-hop basis. For
an intermediate sensor (one that receives and forwards data), this would en-
tail: (1) sharing a key with each neighboring sensor, (2) decrypting encrypted
messages received from each child, (3) aggregating all received values, and
(4) encrypting the result for transmission to its parent. Though viable, this
approach is fairly expensive since each value has to be decrypted before aggre-
gation. It also complicates key management since each node must share a key
with each of its neighbors. Furthermore, hop-by-hop encryption assumes that
all sensors are trusted with the authenticity and privacy of other sensors’ data.
This assumption may be altogether unrealistic in some settings, whereas, in
others, trust can be partial, for example, intermediate nodes are trusted with
only authenticity or only privacy.

Alternatively, if a single global key was used by all sensors, by subverting
a single sensor node, the adversary could learn measured values of any and
all nodes in the network. Since only the sink should gain an overview of WSN
measurements, this approach is not attractive. Nevertheless, we do not rule out
using a single global key for message authentication of the aggregate, which is
another challenging security goal in WSNs. In fact, aggregate authentication
against outsider-only attacks might be the best one can achieve for end-to-end
integrity in the WSN scenario. In other words, additive aggregate authentica-
tion secure against malicious insiders might not be achievable without using
heuristic tools, such as outlier detection or range checking [Buttyán et al. 2006;
Yang et al. 2006]. These techniques have to be based on the stronger assump-
tion that the statistical distribution of measurements is known (partially or
completely) beforehand; such techniques are essentially data/aggregate plau-
sibility checks [Wagner 2004]. If an attacker can inject a contribution (an ar-
bitrary value) into an additive aggregate through compromised insiders, it can
actually offset—without detection—the final aggregate by any desired amount.
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1.1 Contributions

In this article, we focus on efficient, bandwidth-conserving privacy in WSNs. We
blend inexpensive encryption techniques with simple aggregation methods to
achieve very efficient aggregation of encrypted data. To assess the practicality
of the proposed techniques, we evaluate them and present encouraging results
which clearly demonstrate appreciable bandwidth conservation and small over-
head stemming from both encryption and aggregation operations. We also pro-
vide a security argument for the proposed encryption scheme. We prove that the
proposed scheme achieves semantic security if encryption keys are generated
by a good pseudorandom function family. We also extend the proposed scheme to
provide end-to-end aggregate authentication, which is provably secure against
outsider-only attacks.

1.2 Organization

In the next section we discuss some background and the assumptions about
our system model. Section 3 describes the problem statement along with the
security model, Section 4 describes our homomorphic encryption scheme, and
Section 5 describes how to utilize this encryption scheme in a WSN. We give
a security proof of the proposed scheme in Section 6. Performance is analyzed
and results are discussed in Section 7. The aggregate authentication scheme
and its security analysis are given in Section 8. Related work is summarized in
Section 9, and Section 10 concludes this article.

2. BACKGROUND

In this section we describe the key features of, and assumptions about, the
network and provide an overview of aggregation techniques.

2.1 Wireless Sensor Networks (WSNs)

A WSN is a multi-hop network composed of a multitude of tiny autonomous
devices with limited computation, communication, and battery facilities. One
commonly cited WSN application is monitoring the environment. This may
include sensing motion, measuring temperature, humidity, and so on. Data
monitored by the sensors is sent to a sink (usually a more powerful device),
that is responsible for collecting the information.

The multi-hop nature of a WSN implies that sensors are also used in the
network infrastructure; not just sending their own data and receiving direct
instructions, but also forwarding data for other sensors. When sensors are de-
ployed, a delivery tree is often built from the sink to all sensors. Packets sent
by a sensor are forwarded to the sink by the sensors along the delivery tree.

Although sensor nodes come in various shapes and forms, they are generally
assumed to be resource-limited with respect to computation power, storage,
memory and, especially, battery life. A popular example is the Berkeley mote
[Madden et al. 2002]. One common sensor feature is the disproportionately high
cost of transmitting information, as compared to performing local computation.
For example, a Berkeley mote spends approximately the same amount of energy
to compute 800 instructions as it does in sending a single bit of data [Madden
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et al. 2002]. It thus becomes essential to reduce the number of bits forwarded by
intermediate nodes, in order to extend the entire network’s lifetime. The sink
node acts as a bridge between the WSN and the outside world. It is typically a
relatively powerful device, such as a laptop computer.

2.2 Aggregation in WSN

Aggregation techniques are used to reduce the amount of data communicated
within a WSN, thus conserving battery power. Periodically, as measurements
are recorded by individual sensors, they need to be collected and processed to
produce data representative of the entire WSN, such as average and/or variance
of the temperature or humidity within an area. One natural approach is for
sensors to send their values to certain special nodes: aggregating nodes. Each
aggregating node then condenses the data prior to sending it on. In terms of
bandwidth and energy consumption, aggregation is beneficial as long as the
aggregation process is not too CPU-intensive.

The aggregating nodes can either be special, more powerful nodes, or regular
sensor nodes. In this article, we assume that all nodes are potential aggregating
nodes and that data gets aggregated as they propagate towards the sink. In this
setting, since sensors have very limited capabilities, aggregation must be simple
and should not involve any expensive and/or complex computations. Ideally, it
should require only a few simple arithmetic operations, such as addition or
multiplication.2

We note that aggregation requires all sensors to send their data to the sink
within the same sampling period. This either requires the sensors to have—at
least loosely—synchronized clocks or the ability to respond to explicit queries
issued by the sink.

One natural and common way to aggregate data is to simply add up val-
ues as they are forwarded towards the sink. This type of aggregation is use-
ful when the sink is only interested in certain statistical measurements, for
example, the mean or variance of all measured data. As noted in Section 1,
some WSN applications require all sensor data and, therefore cannot benefit
from aggregation techniques. Similarly, applications requiring boundary val-
ues, for example, min and/or max, are obviously not a good match for additive
aggregation.

With additive aggregation, each sensor sums all values, xi, it receives from
its k children (in the sink-rooted spanning tree) and forwards the sum to its
parent. Eventually, the sink obtains the sum of all values sent by all n sensors.
By dividing the sum by n, the total number of sensors, it computes the average
of all measured data.

This simple aggregation is very efficient since each aggregating node only
performs k arithmetic additions.3 It is also robust, since there is no requirement
for all sensors to participate, as long as the sink gets the total number of sensors
that actually provided a measurement.

2This is indeed what we achieve in this work.
3We assume that an aggregating node has its own measurement to contribute; thus k additions
are needed.
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Additive aggregation can be also used to compute the variance, standard
deviation and any other moments on the measured data. For example, in case
of variance, each aggregating node not only computes the sum, S = ∑k

i=1 xi, of
the individual values sent by its k children, but also the sum of their squares:
V = ∑k

i=1 x2
i . Eventually, the sink obtains two values: the sum of the actual

samples, which it can use to compute the mean and the sum of the squares,
which it can use to compute the variance:

V ar = E(x2) − E(x)2; where

E(x2) =
(

n∑
i=1

x2
i

)
/n and E(x) =

(
n∑

i=1

xi

)
/n.

3. GOALS AND SECURITY MODEL

To provide data privacy, our goal is to prevent an attacker from gaining any
information about sensor data, aside from what it can infer by direct measure-
ments. We define our privacy goal by the standard notion of semantic security
[Goldwasser and Micali 1984].

The attacker is assumed to be global, that is, able to monitor any area (even
the entire coverage) of the WSN. Furthermore, we assume the attacker is able
to read the internal state of some sensors. The attacker is also assumed capable
of corrupting a subset of sensors. However, we assume that it can only perform
chosen-plaintext attacks. That is, the attacker can obtain the ciphertext of any
plaintext it chooses. In a real-world situation, this means that the attacker
can manipulate the sensing environment and obtain the desired ciphertext by
eavesdropping.

In light of our requirement for end-to-end privacy between sensors and the
sink, additive aggregation, although otherwise simple, becomes problematic.
This is because popular block and stream ciphers, such as AES [NIST 2001] or
RC5 [Rivest 1995], are not additively homomorphic. In other words, operating
on encrypted values does not allow for the retrieval of the sum of the plaintext
values.

To minimize trust assumptions, we assume that each of the n sensors shares a
distinct long-term encryption key with the sink. This key is originally derived,
using a pseudo-random function (PRF), from the master secret known only
to the sink. We denote this master secret as K and the long-term sensor-sink
shared key as eki, where the subscript 0 < i ≤ n uniquely identifies a particular
sensor. This way, the sink only needs to store a single master secret and all long-
term keys can be recomputed as needed.

As opposed to encryption, authentication schemes that allow for aggrega-
tion seem to be very difficult, and perhaps impossible, to design. It should be
noted that the problem of aggregate authentication considered in this article
is different from the problem considered in aggregate signatures [Boneh et al.
2003].4 In aggregate authentication, the messages themselves are aggregated
and hence, the original individual messages are not available for verification.

4More precisely, the latter should be called aggregatable signatures.
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Whereas, in aggregate signatures, the signatures on different messages are
aggregated and all individual signed messages must be available to the verifi-
cation algorithm in order to validate the aggregate signature. Consequently, we
observe that there does not exist a secure end-to-end aggregate authentication
scheme (which provides existential unforgeability against chosen-message at-
tacks). As described in Wagner [2004], other external techniques are needed to
verify the plausibility of the resulting aggregate and to increase the aggregation
resiliency.

Generally, providing end-to-end aggregate authentication in a WSN is diffi-
cult since messages lose entropy through aggregation, making it hard to verify
an aggregate. However, it is still possible to prevent unauthorized (external)
nodes from injecting fake data into the aggregate. That is, group-wise aggre-
gate authentication can be achieved, wherein only nodes that possess a com-
mon group key can contribute to an aggregate and produce valid authentication
tags that would subsequently be verified by the sink. Of course, such a scheme
would be vulnerable to compromised or malicious insiders. Later in the arti-
cle, we construct an example of an end-to-end aggregate authentication scheme
secure against outsider-only attacks.

4. ADDITIVELY AGGREGATE ENCRYPTION

Encrypted data aggregation or aggregate encryption is sometimes called
concealed data aggregation (CDA), a term coined by Westhoff et al. [2006].
(Appendix A gives an abstract description of CDA showing the desired
functionalities.)

In this section we describe the notion of homomorphic encryption and provide
an example. Our notion is a generalized version of the one widely used for
homomorphic encryption—we allow the homomorphism to be under different
keys, while the homomorphism in common notions is usually under the same
key. We then proceed to present our additively homomorphic encryption scheme,
whose security analysis is given in Section 6 and Appendix B. The encryption
technique is very well-suited for privacy-preserving additive aggregation.

For the sake of clarity, in Section 4.2, we will first describe a basic scheme
assuming the encryption keys are randomly picked in each session (which is
the same scheme as given in our earlier work [Castelluccia et al. 2005]); the
header part is also excluded in the discussion. Then we will give a concrete con-
struction in which the session keys and the encryption keys are derived using
a pseudorandom function family. The concrete construction can be proved to be
semantically secure in the CDA model [Chan and Castelluccia 2007], the details
of which are given in Appendix A. Compared to our earlier work [Castelluccia
et al. 2005], this article provides the details of a concrete construction using a
pseudorandom function in Section 4.3, with the security requirements on the
used components specified.

Our scheme can be considered as a practical, tailored modification of the
Vernam cipher [Vernam 1926], the well-known one-time pad, to allow plaintext
addition to be done in the ciphertext domain. Basically, there are two modifica-
tions. First, the exclusive-OR operation is replaced by an addition operation. By
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choosing a proper modulus, multiplicative aggregation is also possible.5 Second,
instead of uniformly picking a key at random from the key space, the key is gen-
erated by a certain deterministic algorithm (with an unknown seed) such as a
pseudorandom function [Goldreich et al. 1986]; this modification is actually the
same as that in a stream cipher. As a result, the information-theoretic security
(which requires the key be at least as long as the plaintext) in the Vernam
cipher is replaced with a security guarantee in the computational-complexity
theoretic setting in our construction.

4.1 Homomorphic Encryption

A homomorphic encryption scheme allows arithmetic operations on ciphertexts.
One example is a multiplicatively homomorphic scheme, where the decryption
of the efficient manipulation of two ciphertexts yields the multiplication of the
two corresponding plaintexts. Homomorphic encryption schemes are especially
useful whenever some party not having the decryption key(s) needs to perform
arithmetic operations on a set of ciphertexts. A more formal description of ho-
momorphic encryptions schemes is as follows.

Let Enc() denote a probabilistic encryption scheme and let M and C be its
plaintext and ciphertext spaces, respectively. If M is a group under operation ⊕,
we say that Enc() is a ⊕-homomorphic encryption scheme, if, for any instance
Enc() of the encryption scheme, given c1 = Enck1 (m1) and c2 = Enck2 (m2) for
some m1, m2 ∈ M , there exists an efficient algorithm that can generate—from
c1 and c2—a valid ciphertext c3 ∈ C for some key k3 such that:

c3 = Enck3 (m1 ⊕ m2).

In other words, decrypting c3 with k3 yields m1 ⊕ m2. In this article, we mainly
consider additive homomorphisms: ⊕ is the + operation. We do not require
k1, k2, k3, to be the same, although they need to be equal in most homomorphic
encryption schemes. Since k3 can be distinct from k1 and k2, some identifying
information, (denoted as hdr) needs to be attached to the aggregated ciphertext
to identify the keys required for decryption.

One good example is the RSA cryptosystem [Rivest et al. 1978], which is
multiplicatively homomorphic under a single key. The RSA encryption function
is Enc(m) = me = c (mod n) and the corresponding decryption function is
Dec(c) = cd = m (mod n), where n is a product of two suitably large primes
(p and q), e and d are encryption and decryption exponents, respectively, such
that e ∗ d = 1 (mod (p − 1)(q − 1)). Given two RSA ciphertexts, c1 and c2,
corresponding to respective plaintexts, m1 and m2, it is easy to see that c3 =
c1c2 ≡ me

1me
2 ≡ (m1m2)e (mod n). Hence, it is easy to obtain a ciphertext, c3,

corresponding to m3 = m1m2 (mod n). Note that, since c1, c2, and c3 are all
encrypted using the same encryption key (e, n), no hdr is needed.

5Our construction can achieve either additive or multiplicative aggregation but not both at the same
time. Besides, multiplication aggregation seems to have no advantage as the size of a multiplicative
aggregate is the same as the sum of the size of its inputs.
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4.2 Basic Encryption Scheme using Random Keys

We now introduce a simple additively homomorphic encryption technique. The
main idea is to replace the xor (exclusive-OR) operation typically found in
stream ciphers with modular addition.6 The basic scheme is as follows.

Basic Additively Homomorphic Encryption Scheme

Encryption:

(1) Represent message m an integer m ∈ [0, M −1] where M is the modulus.
(2) Let k be randomly generated keystream, where k ∈ [0, M − 1].
(3) Compute c = Enck(m) = m + k mod M .

Decryption:

(1) Deck(c) = c − k mod M .

Addition of Ciphertexts:

(1) Let c1 = Enck1 (m1) and c2 = Enck2 (m2).
(2) Aggregated ciphertext: cl = c1 + c2 mod M = Enck(m1 + m2) where k =

k1 + k2 mod M .

The correctness of aggregation is assured if M is sufficiently large. The
reason is as follows: c1 = m1 + k1 mod M and c2 = m2 + k2 mod M , then
cl = c1 + c2 mod M = (m1 + m2) + (k1 + k2) mod M = Enck1+k2 (m1 + m2). For
k = k1 +k2, Deck(cl ) = cl −k mod M = (m1 +m2)+(k1 +k2)−(k1 +k2) mod M =
m1 + m2 mod M .

We assume that 0 ≤ m < M . Note that, if n different ciphers ci are added,
M must be larger than

∑n
i=1 mi. Otherwise, correctness does not hold. In fact,

if
∑n

i=1 mi > M , decryption produces m′ < M . In practice, if t = maxi{mi}, M
must be chosen as M = 2	log2(t∗n)
.

Note that this basic scheme is provided for illustration purposes only and
does not represent the actual construction. Since the encryption key, k, is as-
sumed to be randomly chosen by each sensor node in every reporting session,
a secure channel has to be maintained at all times between each sensor node
and the sink. In the actual construction (in Section 4.3), such a secure channel
is not required.

4.3 A Scheme with PRF-Generated Keys

The main difference between the actual construction and the basic encryption
scheme is that encryption keys in each session are now generated by a pseu-
dorandom function (PRF) instead of being truly random. Two components are
used in the construction: a PRF f and a length-matching hash function h. Their
details are as follows.

4.3.1 Pseudorandom Functions (PRFs). For an in-depth treatment of PRFs
[Goldreich et al. 1986], we refer to Goldreich [2001]. In our context, a PRF is

6For clarity’s sake, the discussion of hdr and pseudorandom functions is deferred to Section 4.3.
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needed to derive encryption keys. Let F = {Fλ}λ∈N be a PRF family where
Fλ = { fs : {0, 1}λ → {0, 1}λ}s∈{0,1}λ is a collection of functions indexed by key
s ∈ {0, 1}λ. Informally, given a function fs, from a PRF family with an unknown
key s, any PPT distinguishing procedure allowed to get the values of fs(·) at
(polynomially many) arguments of its choice should be unable to distinguish
(with non-negligible advantage in λ) whether the answer of a new query is
supplied by fs or randomly chosen from {0, 1}λ.

Most provably secure PRFs such as Naor et al. [2002] are based on the hard-
ness of certain number-theoretic problems. However, such constructions are
usually computationally expensive, especially, for sensors. Instead, key deriva-
tion in practice is often based on functions with conjectured or assumed pseudo-
randomness: it is inherently assumed in the construction rather than proven to
follow from the hardness of a computational problem. One common example is
the use of cryptographic hash functions for key derivation such as Perrig et al.
[2001]. Some well-known primitives, such as HMAC [Bellare et al. 1996] and
OMAC [Iwata and Kurosawa 2003] (conjectured PRFs), are based on assumed
pseudorandomness. (HMAC assumes that the underlying compression function
of the hash function in use is a PRF, while OMAC assumes the underlying block
cipher is a pseudorandom permutation.)

The additive aggregate encryption scheme in this article does not impose a
restriction on the type of underlying PRFs. The security guarantee provided by
the proposed construction holds as long as the underlying PRF has the property
of pseudorandomness or indistinguishability. We note that the aforementioned
pseudorandomness property is also a basic requirement for the hash function
used for key derivation purposes [Perrig et al. 2001; Bellare et al. 1996], for
example, in the well-known IPSec standard.

4.3.2 Length-Matching Hash Function. The length-matching hash func-
tion h : {0, 1}λ → {0, 1}l , matches the length of the output of the PRF f , to the
modulus size of M , where |M | = l bits. The purpose of h is to shorten a long
bit-string, rather than to produce a fingerprint of a message. Hence, unlike
cryptographic hash functions, h is not required to be collision-resistant. The
only requirement on h is that: {t ← {0, 1}λ : h(t)} must be uniformly distributed
over {0, 1}l . By uniformly picking an input from the domain of h, the output is
uniformly distributed over the range of h.

This requirement is pretty loose and many compression maps from {0, 1}λ to
{0, 1}l satisfy it. For instance, h can be implemented by truncating the output
of a PRF and taking l least significant bits as output. The sufficiency of this
requirement is based on the assumption that an ideal PRF is used. For such
a function, without knowledge of the seed key, it is unpredictable whether an
output bit is 0 or 1, for all inputs. In practice, key derivation is usually based on
conjectured PRFs with unproven pseudorandomness. For example, a collision-
resistant hash function is commonly used for deriving secret keys from a seed
[Perrig et al. 2001; Bellare et al. 1996]. Hence, it might be that, for some inputs
to these conjectured PRFs, there is a higher chance (greater than 1

2 ) of correctly
predicting some output bits. To tolerate the imperfect nature of conjectured
PRFs, if l < λ, a better construction could be as follows: truncate the output of
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the PRF into smaller strings of length l , and then take exclusive-OR on all these
strings and use it as the output of h. The output of h should look random to any
computationally bounded procedures if at least one of the l -bit strings looks
sufficiently random. This can be explained by a hybrid argument as follows.

Without loss of generality, assume λ = 2l . Consider the worst-case scenario
wherein the first l output bits of the PRF are fixed for all inputs (even if the
key is kept secret); that is, there is zero entropy for the first l bits of the PRF
output. Denote the output of the PRF by x0||x1, where both x0 and x1 are l
bits long. Suppose x0 is the bad l bits but x1 remains indistinguishable from
an l -bit random string, y . That is, the distribution of x1 (denoted by {x1}) is
indistinguishable from a uniform distribution Ul over {0, 1}l ; denote this indis-
tinguishability relation by {x1} c≡ Ul . The output of h would be x0 ⊕ x1 (denoted
by z). The fact {x1} c≡ Ul implies the following two distributions are indistin-
guishable: {x0 ⊕ x1}, {x0 ⊕ y}, where y ← Ul . The former distribution is {z} (the
output distribution of h). Note that (since x0 is fixed) the latter distribution
{x0 ⊕ y} is actually the uniform distribution Ul itself. Hence, {z} c≡ Ul . In other
words, even though the first half of the PRF output is completely predictable
(with zero entropy), the output of h would still look random provided the second
half of the PRF output looks random.

Assume there is a sink and n nodes in the system. In the following descrip-
tion, f is a PRF for key stream generation and h is a length-matching hash func-
tion. The details of the proposed aggregate encryption scheme are as follows.

Additively Homomorphic Encryption Scheme using a PRF Family
Assume the modulus is M .

Key Generation:

(1) Randomly pick K ∈ {0, 1}λ and set it as the decryption key for the sink.
(2) For each i ∈ [1, n], set encryption key for node i as eki = f K (i).

Encryption:

(1) Given encryption key eki , plaintext data mi and nonce r, output ci =
Enceki (mi) = mi + h( feki (r)) mod M .

(2) Set header hdri = {i}.
(3) Output (hdri , ci) as ciphertext.

Decryption:

(1) Given ciphertext (hdr, c) and nonce r used in encryption, generate eki =
f K (i), ∀i ∈ hdr.

(2) Compute x = DecK (c) = (c − ∑
i∈hdr h( feki (r))) mod M (where K =∑

i∈hdr h( feki (r))), and output plaintext aggregate x.

Addition of Ciphertexts:

(1) Given two CDA ciphertexts (hdri , ci) and (hdr j , c j ), compute cl = (ci +
c j ) mod M

(2) Set hdrl = hdri ∪ hdr j .
(3) Output (hdrl , cl ).
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The keystream for a node is now generated from its secret key eki, and a
unique message ID, or nonce r. No randomness in the nonce is needed. This
secret key is precomputed and shared between each node and the sink, while
the nonce can be either included in the query from the sink or derived from the
current (and unique) time period identifier.

In the proposed scheme, a PRF is used: (1) by the sink to generate the en-
cryption keys eki ’s from the root key K , and (2) by sensor node i to generate the
key stream feki (r) from eki and the nonce r. It is not necessary to use two dif-
ferent PRF schemes for the instantiations. The same PRF scheme can be used
for these purposes, and security analysis in Section 6 and Appendix B shows
that the proposed scheme is semantically secure (Appendix A) as long as the
used PRF is secure.

For the sake of clarity, hdr is used to represent the set of IDs of all reporting
nodes in our discussion. Nevertheless, there is no restriction on how the actual
headers (which could be different from hdr) should be constructed in imple-
mentation. The only criteria is that the sink can determine the set of reporting
nodes (hdr) unambiguously from the received header. For instance, the actual
header may contain the set of nonreporting nodes (with each node reporting the
IDs of its children that are not responding), the sink (assumed to have knowl-
edge of all the node IDs) can determine hdr simply from the actual header by
taking complement. When the nonreporting nodes only form a small percentage
of all the nodes in the network, this header scheme could considerably reduce
the overhead. In fact, this scheme is used in the calculations in Section 7.

5. AGGREGATION OF ENCRYPTED DATA

As previously noted, efficient aggregation in WSNs becomes challenging when
end-to-end privacy of data is required. One solution is to disregard aggregation
altogether in favor of privacy, for each sensor to encrypt and forward upstream
its individual measurement. The sink, upon receiving as many packets as there
are responding sensors, proceeds to decrypt all ciphertexts and sum them in or-
der to compute the desired statistical measurements. We denote this approach
as No-Agg. A variant of this scheme consists of having the intermediate nodes
concatenate the packets they receive from their children into a smaller number
of packets in order to avoid the overhead due to the headers. We denote this
variant as CON. These two approaches have two obvious disadvantages. First,
because all packets are forwarded towards the sink, much bandwidth (and,
hence, power) is consumed. Second, as illustrated in Section 7.2, there is an ex-
treme imbalance among sensors in terms of the amount of data communicated.
Sensors closer to the sink send and receive up to several orders of magnitude
more bits than those on the periphery of the spanning tree. The CON scheme
performs better than the No-Agg scheme but it remains quite costly.

A second approach, that does not achieve end-to-end privacy but does ag-
gregate data, is the hop-by-hop (HBH) encryption method, which is also used
for comparison between aggregation methods in Girao et al. [2004]. In HBH
all nodes create pair-wise keys with their parents and children at bootstrap-
ping phase. When answering a query, a node decrypts any packets received
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from downstream, aggregates the plaintext data with its own, encrypts the ag-
gregated result and forwards to its parent. This approach is obviously more
bandwidth-efficient than No-Agg since no packet is sent twice. However, there
is certain cost involved with the decryption and encryption performed at ev-
ery non-leaf node. This increases energy consumption; see [Girao et al. 2004].
More importantly, from a privacy perspective, HBH leaves nodes vulnerable to
attacks since aggregated data appears in plaintext in each non-leaf node. In
particular, nodes close to the sink become attractive attack targets since the
aggregated values they handle represent large portions of the overall data in
the WSN.

We propose an end-to-end privacy preserving aggregation approach (denoted
as AGG) where each sensor encrypts its data using the encryption scheme pre-
sented in Section 4.3. Since this scheme is additively homomorphic, values can
be added (aggregated) as they are forwarded towards the sink. The sink can
easily retrieve—from the aggregates it receives—the sum of the samples, and
derive statistical information. AGG retains the attractive properties of both the
No-Agg (end-to-end privacy) and HBH (energy efficient) schemes.

5.1 Robustness

An important feature of the proposed scheme is the requirement for the sink to
know the encrypting sensors’ IDs so that it can regenerate the correct keystream
for decryption purposes.

Since communication in WSNs is not always reliable and node failures are
possible, we do not assume that all sensors reply to all requests. Therefore, a
mechanism is needed for communicating to the sink the IDs of non-responding
sensors (or their complements). The simplest approach, and the one used in our
evaluation, is for each sensor to append the IDs of its non-responding children
to each message.7

5.2 Computing Statistical Data

In this section, we show how the proposed additively homomorphic encryption
scheme aggregates encrypted data, while allowing the sink to compute the av-
erage and moments. Since multiple moduli can be used in different instances of
the aggregate encryption scheme, in the following discussion, the modulus is ex-
plicitly reflected in the notation, for example, Enck(x; M ) stands for: encryption
of plaintext x under key k with (public) modulus M .

5.2.1 Average. Each sensor encrypts its plaintext data, xi, to obtain cxi =
Encki (xi; M ). Recall that M is large enough to prevent any overflow; it is thus
set to: M = n ∗ t, where t is the range of possible measurement values and n
is the number sensors. The size of each ciphertext cxi is therefore log (M ) =
log (t) + log (n) bits.

The sensor forwards cxi along with key identifying information hdrxi to its
parent, who aggregates all cx j ’s of its k children by simply adding them up

7Depending on the number of nodes responding to a query, it could be more efficient to communicate
the IDs of nodes that successfully reported values.
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(modulo M). The resulting value is then forwarded upstream. Assuming, for
simplicity, that it is directly connected to only one sensor, the sink ends up
with Cx = ∑n

i=1 cxi modM and the associated hdr, which identifies the key-set
{k1, ..., ki, ..., kn}. It then computes Sx = DecK (Cx ; M ) = Cx − K mod M , where
K = ∑n

i=1 ki, and derives the average as: Avg = Sx
n .

5.2.2 Variance. Our scheme can be also used to derive the variance of mea-
sured data. For this, two moduli are necessary: M for the sum and M ′ for the
sum of squares. Each sensor, i, computes yi = x2

i and encrypts it as: cyi =
Enck′

i
( yi; M ′). It then also encrypts xi as in the previous section. As expected,

M ′ needs to be large enough to prevent any overflow; it is set to: M ′ = n∗t2. The
size of each ciphertext cyi is therefore log (M ′) = 2 ∗ log (t) + log (n) bits. The
sensor forwards cyi and cxi to its parent. The combined size of the resulting data
is 3 ∗ log (t) + 2 ∗ log (n). The parent aggregates all of its children’s cy j values
via addition. It also separately aggregates cx j values, as previously described.
The two results are then forwarded upstream. The sink ends up with: Cx and
Cy = ∑n

i=1 cyi mod M ′. It computes Vx = DecK ′ (Cy ; M ′) = Cy − K ′mod M ′,
where K ′ = ∑n

i=1 k′
i. The variance is then obtained as: Vx/n − Av2.

6. SECURITY ANALYSIS

We use the CDA security model [Chan and Castelluccia 2007] to analyze the
security of the construction presented in Section 4. For completeness, the se-
curity model is included in Appendix A. As usual, the adversary is assumed
to be a probabilistic polynomial time (PPT) Turing machine. In the model, the
adversary can choose to compromise a subset of nodes and obtain all secrets
of these nodes. With oracle access, it can also obtain—from any of the uncom-
promised nodes—the ciphertext for any chosen plaintext. The security goal is
the adversary’s inability to extract, in polynomial time, any information about
the plaintext from a given ciphertext. This is the well-known notion of seman-
tic security [Goldwasser and Micali 1984]. (This is described more formally in
Appendix A.)

The concrete construction in Section 4.3 can be shown to achieve semantic
security or indistinguishability against chosen-plaintext attacks ( IND-CPA),
an equivalent notion to semantic security [Goldwasser and Micali 1984], if the
underlying key generation function is selected from a PRF family. The security
can be summarized by the following theorem.

THEOREM 1. For a network with n nodes, the concrete construction is seman-
tically secure against any collusion with at most (n − 1) compromised nodes,
assuming Fλ = { fs : {0, 1}λ → {0, 1}λ}s∈{0,1}λ is a PRF and h : {0, 1}λ → {0, 1}l

satisfies the requirement that {t ← {0, 1}λ : h(t)} is uniformly distributed over
{0, 1}l .

PROOF SKETCH. The detailed proof is in Appendix B. The basic idea is that we
assume the existence of a PPT adversary that can break the semantic security
of the proposed encryption scheme. We then show how this adversary can be
used to break the indistinguishability property of the underlying PRF. By a
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contrapositive argument, we say that, if the PRF possesses the indistinguisha-
bility property described in Section 4.3, then the proposed encryption scheme
is semantically secure.8

Note the standard security goal for encryption is indistinguishability against
chosen-ciphertext [Naor and Yung 1990; Katz and Yung 2006]. If a state-
ful decryption mechanism is assumed: the decryption algorithm keeps track
of all nonces previously used, our scheme can also be proven to be secure
against chosen-ciphertext attacks. However, the resulting scheme would be in-
efficient. Nevertheless, it could still be of interest, since in our setting, only
the sink decrypts. Because the aggregation allows ciphertexts to be modified
in some way without invalidating them, achieving chosen-ciphertext security
(more specifically, indistinguishability against adaptive chosen-ciphertext at-
tacks ( IND-CCA2)) with a stateless decryption mechanism is likely impossible
in our scenario.

7. OVERHEAD ANALYSIS

We now compare the bandwidth consumption of the proposed AGG protocol
with the No-Agg (forwarding individual data packets), CON (concatenating and
forwarding data packet), and HBH (hop-by-hop encryption and aggregation) ap-
proaches, as described in Section 5. The overall bandwidth in the WSN and the
number of bits sent by individual nodes are considered for different WSN tree-
like topologies. We next describe the network model used in the measurements.
The comparison is for two cases: (1) average value only, and (2) both average
and variance values.

7.1 Network Model

We assume a multilevel network tree with a multitude of sensors and one
sink. To simplify our discussion, we assume a balanced k-ary tree, as shown
in Figure 1. Let t denote the range of possible measurement values (e.g., if a
sensor measures temperatures between 0 and 120 Fahrenheit, then t = 121).
We also assume, for simplicity, that only the leaves of the tree are sensors and
that the intermediate nodes are just forwarding nodes.

We analyze bandwidth in this WSN model from two perspectives: (1) number
of bits sent per node at different levels in a 3-ary tree, and (2) total number of bits
transmitted in the WSN for 3-ary trees of various heights. These measurements
are performed for the four models: No-Agg, CON, HBH, and AGG.

Next, we show how to compute the number of bits (header and payload) sent
per node. We choose the packet format used in TinyOS [Karlof et al. 2004],
which is the OS of choice for popular Berkeley motes. The packet header is
56 and maximum supported data payload is 232 bits, respectively. If a data
payload is larger than 232 bits, it is sent over several packets. For example,
the transmission of a data payload of 300 bits results in the transmission of 2
packets: one of size 288 bits (232 + 56) and another of size 124 bits (68 + 56).
The total cost is then equal to 312 bits.

8See Appendix B.
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Fig. 1. Multi-level WSN model with nodes of degree k.

For No-Agg, a node only needs log(t) bits to encode its data. Also, all internal
nodes forward packets sent to them by their children, and the number of packets
received grows exponentially in k as we move higher in the tree—closer to
the sink. The CON scheme reduces the required bandwidth by reducing the
overhead due the headers, but still has an exponential growth. Note that with
the CON scheme, each intermediate node needs to append—to the concatenate
packet—the IDs of its children that did not reply to the query. These IDs must
be propagated to the sink along with the aggregate.

In HBH, the number of sent bits depends on the node’s level in the WSN
tree. Leaf nodes only send log(t) bits (as in No-Agg), while higher-up nodes
receive aggregated data and therefore send more bits. Additionally, when the
variance is also requested, the aggregating nodes need to keep track of this
value separately, and use approximately log(n′t) bits to encode it (where n′ is
the number of node-values aggregated so far).

Finally, in AGG, the number of bits sent by a node depends on the size of
the modulus M . Its size corresponds to the maximum possible aggregate value,
which is M = n ∗ t, that is, all sensors report the largest possible reading.
Therefore, in encoding the average, each node uses log(M ) = log(t) + log(n)
bits. If variance is desired, a node sends an additional ciphertext corresponding
to x2. This requires extra log(n ∗ t2) = 2∗log(t)+log(n) bits. Also, each aggrega-
tor needs to append to the aggregate, the IDs of its children that did not reply to
the query. These IDs must be propagated to the sink along with the aggregate.

7.2 Numerical Results

We now compare the performance of the four schemes.

Forwarding Cost per node (fairness). Tables I, II, and III show the number
of bits sent per node at each level in a 3-degree tree of height9 7 when t = 128
for the different schemes.

9The sink is at level 0.
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Table I. Number of Bits Sent per Node for Each Level with the No-Agg and CON Schemes

Levels Num Nodes No-A (0%) No-A (10%) No-A (30%) CON (0%) CON (10%) CON (30%)

1 3 45927 41334 32149 6335 6811 7708
2 9 15309 13778 10716 2149 2270 2564
3 27 5103 4593 3572 735 775 856
4 81 1701 1531 1191 245 258 285
5 243 567 510 397 119 123 132
6 729 189 170 132 77 78 81
7 2187 63 57 44 63 63 64

Table II. Number of Bits Sent per Node for Each Level with the HBH Scheme

HBH-A HBH-A HBH-A HBH-AV HBH-AV HBH-AV
Levels Nodes (0%) (10%) (30%) (0%) (10%) (30%)

1 3 73 72 72 96 96 95
2 9 71 71 70 93 92 92
3 27 69 69 69 90 89 89
4 81 68 68 67 86 86 85
5 243 66 66 66 83 83 82
6 729 64 64 64 80 80 79
7 2187 63 62 61 63 62 61

Table III. Number of Bits Sent per Node for Each Level with the AGG Scheme

Agg-A Agg-A Agg-A Agg-AV Agg-AV Agg-AV
Levels Num Nodes (0%) (10%) (30%) (0%) (10%) (30%)

1 3 75 1117 3315 100 1142 3340
2 9 75 422 1117 100 447 1142
3 27 75 172 422 100 197 448
4 81 75 107 172 100 132 197
5 243 75 85 108 100 111 132
6 729 75 78 85 100 103 110
7 2187 75 67 52 100 91 71

We considered three scenarios: (1) all nodes reply,10 (2) 90% of the nodes
reply,11 and (3) 70% of the nodes reply.12 We assumed for simplicity that the
distribution of non responding nodes is uniform among all nodes. We believe
that this assumption is reasonable since only leave nodes are sensors in our
simulation setup. Therefore, the number of nonresponsive nodes is the param-
eter that primarily affects the results.

For No-Agg, it is obvious from the data that the communication load fluctu-
ates widely among sensors at different levels, for example, nodes at level 7 send
3 orders of magnitude less data than those at level 1. Because nodes closer to
the sink send significantly larger amounts of data than their descendants, they

10Referred to in the tables as Scheme− A(0%) when only the average is computed and as Scheme−
AV (0%) when the average and variance are computed.
11Referred in the table as Scheme − A(10%) when only the average is computed and as Scheme −
AV (10%) when the average and variance are computed.
12Referred in the table as Scheme − A(30%) when only the average is computed and as Scheme −
AV (30%) when the average and variance are computed.
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deplete their batteries and die sooner. As soon as one level of nodes in the tree
stops functioning, the entire WSN stops functioning as well. To achieve com-
munication load balancing, either sensors must be moved around periodically,
or the sink has to move (thus changing the root and the topology of the tree).
We consider both approaches to be quite impractical. The CON scheme reduces
the required bandwidth by a factor of 4, but it is still unfair. The nodes that
are close to the sink need to forward many more bits that the other nodes. Note
that with the No-Agg scheme, the required bandwidth decreases as the number
of nonresponding sensors increases. This is the result of the network having
fewer messages to forward. In contrast, with the CON scheme, the bandwidth
increases because the IDs of the nonresponding nodes must be appended to the
concatenated messages.

Table II shows a steady increase in bits-per-node for HBH, for both the av-
erage only (HBH-A), and average-plus-variance (HBH-AV) cases. Note a rela-
tively dramatic increase in bits transmitted between nodes at level 7 and 6 for
HBH-AV. This is because leaf nodes only send a ciphertext of x. The ciphertext
representing x2 (needed for the computation of the variance) can be computed
by their parents from x and therefore does not need to be transmitted. Since
in HBH, packets are not forwarded (as in No-Agg), we observe a significant
reduction in bits per node at all non-leaf levels.

With AGG, when all the sensors are replying, a constant number of bits is
sent by each node at every level in the tree. However, this number is larger
than the maximum in any HBH approach, due to the size of the modulus
M . As previously discussed, the number of bits sent by leaves is larger with
the aggregation methods (AGG-A: 56 + log(t) + log(n) = 75 bits, AGG-AV:
56 + 3 ∗ log(t) + 2 ∗ log(n) = 100 bits) than when no aggregation is used
(56 + log(t) = 63 bits). However, aggregation distributes the load evenly over
all nodes, regardless of their distance to the sink. We believe this to be a major
advantage in WSNs. In the second and third scenarios (90% and 70% of sensors,
respectively, reply), the number of bits processed by each node gets larger the
closer it gets is to the sink. This is the result of appending IDs of nonresponding
children to the aggregate. As we move up the tree, the list of nonresponding
nodes increases. If we assume that Z % of the nodes do not reply, an intermedi-
ate node must append to the aggregated message, IDs of Z % of its k children.
For example, for Z = 30%, a node at level 3 has 34 = 81 children and has to
append 81 ∗ 0.3 = 25 IDs. The total size of the aggregated message payload is
thus 9 + 25 ∗ 12 = 310 bits. This results in the transmission of 2 packets, at a
total cost of 422 bits (2 ∗ 56 + 310), as shown in Table III.

Bandwidth Gain. Tables IVand V show the bandwidth transmission gains
of HBH, CON, and AGG over No-Agg, assuming 3-degree WSNs of various
heights. We consider gains for two cases: (1) only the average, and (2) both
the average and variance.13 These gains are obtained from the respective to-
tal bandwidth costs: CH BH , CAGG , CNo−Ag g and CCO N , by adding, for each
scheme, the total number of bits forwarded by each node. The bandwidth gain

13Recall that, in No-Agg and CON, no extra values need to be sent if the variance is needed.
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Table IV. WSN Bandwidth Performance Gain of the AGG and HBH Schemes when Aggregating
the Average for a 3-Tree and t = 128

Levels Num Nodes Agg (0%) Agg (30%) HBH (0%) HBH (30%) CON (0%) CON (30%)

3 40 1.75 1.48 2.05 1.48 1.85 1.31
4 121 2.27 1.86 2.7 1.92 2.27 1.59
5 364 2.8 2.18 3.31 2.37 3.62 1.8
7 3280 3.92 2.71 4.61 3.3 3.2 2.08
8 9841 4.48 2.86 5.27 3.78 3.45 2.10

Table V. WSN Bandwidth Performance Gain of the AGG and HBH Schemes when Aggregating
the Average-and-Variance for a 3-Tree and t = 128

Levels Num Nodes Agg (0%) Agg (30%) HBH (0%) HBH (30%) CON (0%) CON (30%)

3 40 1.30 1.11 1.91 1.37 1.85 1.31
4 121 1.69 1.4 2.47 1.77 2.27 1.59
5 364 2.1 1.67 3.05 2.19 3.62 1.8
7 3280 2.92 2.14 4.25 3.1 3.2 2.08
8 9841 3.34 2.3 4.85 3.49 3.45 2.10

of HBH, AGG, and CON are defined as CNo−Ag g/CH BH , CNo−Ag g/CAGG , and
CNo−Ag g/CCO N , respectively.

For example, in a 3-tree of height 5, there are 364 nodes, and computing the
average only, AGG-A achieves a factor of 2.8 speedup over No-Agg. As expected,
HBH-A and HBH-AV offer better performance than both AGG-A and AGG-
AV, respectively, although both outperform No-Agg. The main reason for using
AGG over HBH is end-to-end privacy. With HBH, it is enough for an attacker
to compromise one node close to the sink to gain a lot of knowledge about
aggregated data in the WSN. This is because each node in HBH stores the
secret key needed for decryption and encryption. In contrast, in AGG, nodes
do not store sensitive key material and the only data an attacker can learn is
a single sensor’s individual reading. The gains achieved by the CON scheme
are quite comparable to the gains obtained with AGG. However, as seen in the
previous section, AGG provides a better balance of the load among the nodes
and therefore extends the overall lifetime of the network.

7.3 Computation Costs

We now discuss computation costs for the proposed scheme and issues related
to implementation. Let tadd and tmulti denote the respective costs of addition
and multiplication operation mod M . Let tpr f and th denote the costs of a PRF
and a length-matching hash function, respectively. Let tce and tcd denote the
costs of one encryption and one decryption with a cipher used in the HBH
scheme. Overall computation costs for proposed protocols are shown in Table
VI, assuming L reporting nodes (|hdr| = L). For the aggregation operation, our
calculations assume that each aggregation involves only two inputs.

AGG places all decryption tasks at the sink, while HBH distributes the de-
cryption cost over all non-leaf nodes in the network. Thus in HBH, a sensor
may need to perform more computation than the sink. Since the sink is usually
a more powerful device, AGG is clearly preferable.
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Table VI. Computation Cost Comparison

Hop-by-hop Encryption (HBH) Aggregate Encryption (AGG)

Encryption tce tpr f + th + tadd
Decryption tcd 2L · tpr f + L · th + L · tadd
Aggregation (per 2 inputs) 2 · tcd + tce + tadd tadd

In AGG, to encrypt its value, a node performs one PRF invocation, one length-
matching hash, and one mod M addition. It also performs one extra addition for
aggregation. If the hash is implemented by bit truncation, its computation cost
is negligible compared to that of addition. Else, if the hash is implemented by
truncation combined with exclusive-OR, the computation cost is roughly equal
to the cost of addition. We thus consider the cost of evaluating h to be negligible
in the calculation of overall computation cost for encryption. As a result, the
cost of encryption is dominated by a single PRF invocation.

As mentioned in Section 4.3, a collision-resistant hash can be used in key
derivation if its assumed pseudorandomness is acceptable. For example, Perrig
et al. [2001] illustrate such usage in the WSN context and demonstrate feasi-
bility in terms of computation complexity. Hence, the computation cost of the
proposed scheme is reasonable for most WSN applications.

8. AGGREGATE AUTHENTICATION AGAINST OUTSIDER-ONLY ATTACKS

Although the proposed aggregate encryption scheme provides end-to-end pri-
vacy, (like others, e.g., Madden et al. [2002]) it is vulnerable to false data injec-
tion attacks. In its current form, even an external attacker can add an arbitrary
value to an aggregate ciphertext.

The AGG scheme is complementary to most authentication techniques in
the literature, including Chan et al. [2006]; Yang et al. [2006]; Przydatek et al.
[2003]; and Hu and Evans [2003]. Any of these techniques can be used in con-
junction with the proposed scheme. It should be noted that these techniques are
not end-to-end; in particular, some form of call-backs to the aggregating nodes
(after the sink receives the aggregate) are necessary. This section provides an
end-to-end alternative to aggregate authentication. However, it is only secure
against external attackers who do not know the secret group key. The existence
of any malicious or compromised nodes would imply a total breach of security.

In Chan and Castelluccia [2008], the notion of aggregate message authenti-
cation codes (AMAC) is proposed as a natural extension of one-to-one message
authentication codes (MAC) and it is shown that no scheme may be designed
to achieve such a notion. Since the proposed notion is not a contrived one, we
could conclude that no scheme can be constructed to provide end-to-end aggre-
gate integrity against chosen-message attacks in the presence of compromised
nodes without a relaxation to the unforgeability notion against chosen message
attacks.

Even with call-backs, as in Chan et al. [2006], the only guarantee is that
an adversary cannot manipulate an aggregation result by an amount beyond
what can be achieved through data injection at the compromised nodes, unless
prior knowledge of the statistical distribution of the data is utilized for outlier
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detection at the sink. In the context of additive aggregation, without asking
each sensor to provide a range proof for its contribution, the impact of a com-
promised node in Chan et al. [2006] (regarding manipulation of an aggregation
result) is essentially the same as its counterpart in our proposed aggregate
authentication scheme. Indeed, a range proof requires prior knowledge of the
statistical distribution of data.

If there are no compromised nodes, our scheme assures that no data can be
injected into an aggregate without being detected. The basic idea of our scheme
is to add—to each node’s data—a keyed, aggregatable checksum/authenticator
computed with the aid of a shared group key. Without knowledge of this group
key, it is infeasible for an external attacker to compute a valid checksum for
any modified data. We re-emphasize that, compromise of any node (and hence
the group key) would cause a complete security breach of the authentication
scheme. Nevertheless, this is the best we can achieve for end-to-end aggregate
authentication.

8.1 Details of the Protocol

The aggregate authentication scheme is as follows.

Combined Encryption and Aggregate Authentication Scheme

Key Distribution:
Each sensor i has 3 secret keys (ki , k′

i , k). They can be generated from three inde-
pendent master keys using a PRF, as in the basic scheme. The sink keeps all three
master keys. ki and k′

i correspond to the encryption key eki in the basic scheme. Each
node receives a distinct pair, (ki , k′

i) and also gets a common group key, k.

Encryption + Checksum Computation:
Let M be the modulus. For a reporting epoch r.

(1) Each node i generates session keys (k(r)
i , k(r)′

i , k(r)) from its secret keys (ki , k′
i , k)

using a PRF and the length-matching hash function, as in the basic scheme.
(k(r)

i = h( fki (Nr )), k(r)′
i = h( fk′

i
(Nr )), and k(r) = h( fk(Nr )) where f (·) is the PRF,

h(·) is the length-matching hash and Nr is the nonce used for epoch r.)
(2) For plaintext message mi ∈ [0, M − 1], encrypt mi using k(r)

i and obtain cipher-
text xi = mi + k(r)

i mod M .
(3) Compute checksum: yi = mi · k(r) + k(r)′

i mod M .
(4) Ciphertext and checksum are: (hdr, xi , yi), where hdr = {i}.

Decryption + Verification:

(1) Given ciphertext (hdr, x, y), generate session keys (k(r)
i , k(r)′

i , k(r)) for each i ∈
hdr.

(2) Compute m = x − ∑
i∈hdr k(r)

i mod M . m is resulting plaintext.

(3) Check y ?= ∑
i∈hdr k(r)′

i + k(r) · m mod M . If yes, set b = 1, otherwise, set b = 0.
(4) Return (m, b). Note that b = 0 indicates verification failure.
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Addition of Ciphertexts: Given two ciphertexts (hdri , xi , yi) and (hdr j , x j , y j ),

(1) Compute hdrl = hdri ∪ hdr j .
(2) Compute xl = xi + x j mod M .
(3) Compute yl = yi + y j mod M .
(4) Aggregated ciphertext is: (hdrl , xl , yl ).

The final aggregated ciphertext (hdr, x, y) received at the sink can be ex-
pressed as two equations: {

x = K (r)
1 + m

y = K (r)
2 + K (r) · m

, (1)

where m is the final aggregate of the plaintext data and K (r)
1 , K (r)

2 , K (r) are
two sums of node keys and the common group key (for epoch r) given by the
following expressions:

K (r)
1 =

∑
i∈hdr

k(r)
i , K (r)

2 =
∑

i∈hdr

k(r)′
i , and K (r) = k(r).

Equation (1) can be viewed as a set of constraint equations for a particular
hdr that a correct pair (x, y) should satisfy. For each epoch, hdr is part of the
input to the verification process to define the coefficients K (r)

1 , K (r)
2 , K (r) of the

constraint equations in (1); hdr uniquely specifies a subset of nodes whose data
are supposed to have been incorporated in (x, y).

If (x, y) has not been tampered with, the plaintext aggregate, m, extracted
from the first constraint equation in (1) should satisfy the second constraint
equation in (1); m is a correct aggregate of the data contributed by the nodes
in hdr when they all act honestly. The goal of an external adversary is thus to
find a different valid pair (x ′, y ′) for the same hdr such that{

x ′ = K (r)
1 + m′

y ′ = K (r)
2 + K (r) · m′

for some m′ �= m and m′ is not necessarily known by the adversary. Note that
the coefficients K (r)

1 , K (r)
2 , K (r) have to be the same as that in the equations for

(x, y) for a successful forgery. Without knowledge of K (r), the probability for
any PPT adversary to find such a valid pair (x ′, y ′) for the given hdr should be
negligibly small. The proposed protocol guarantees with high probability that,
for an epoch r, any pair (x, y) that passes the verification test for a given hdr
has to allow the recovery of a correct aggregate whose contributions can only
come from nodes in hdr with knowledge of K (r) (with exactly one contribution
from each node in hdr).

In any epoch, by passively observing transmissions from honest nodes in a
network, an adversary without knowledge of K (r) can still create multiple tu-
ples of the form (hdr, x, y), each with a distinct hdr, to pass the verification test
of Equation (1). This can be achieved by simply aggregating valid ciphertext-
checksum pairs eavesdropped in the transmissions of the honest nodes. How-
ever, it should be noted that, for each hdr, there is at most one such tuple and
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the corresponding pair of (x, y) is indeed a correct ciphertext-checksum pair
for hdr in the sense that this pair of (x, y), upon verification, can recover an
aggregate m, the contributions of which only originate from the honest nodes
specified in hdr, that is, m = ∑

i∈hdr mi, where mi is the measurement of node i.
In other words, in the set C of ciphertext-checksum pairs obtained by combining
eavesdropped pairs through the aggregation functionality, if a pair (x, y) ∈ C
passes the verification equations in (1) for hdr, any pair (x ′, y ′) ∈ C that can
satisfy the same set of equations (with the same set of coefficients) has to be
equal to (x, y). Hence, any external attacker without knowledge of K (r) still
cannot inject its data into an aggregate ciphertext pair (x, y) that satisfies the
constraint equations in (1) even though he may be able to create such a pair
from the ciphertext-checksum pairs obtained from eavesdropping the transmis-
sions of honest nodes; neither can the attacker modify an existing valid pair
of (x, y) to pass the verification test for the same hdr, but produce a different
aggregate output except with a negligibly small probability.14

It is thus fair to say the best that an external adversary without knowledge
of K (r) can achieve in breaking the proposed scheme, is essentially limited to ex-
cluding the contributions of some honest nodes from being incorporated into an
aggregate. Such exclusion would usually have slight impact in the calculation
of mean and variance unless the exclusion makes up a pretty large fraction of
nodes, in which case it would make the sink suspect the occurrence of a possible
attack. It should be emphasized that to achieve so with impact, the adversary
must be able to intercept and modify a considerable portion of the transmis-
sions in the entire network, which is normally hard for an attacker to achieve.
To defend against this node exclusion attack, we present, in Section 8.4, an
add-on mechanism to protect the integrity of hdr.

8.2 Security Analysis

Recall that the goal of the proposed extension of aggregate authentication is
to guard against any external attackers (without knowledge of the keys) from
injecting data into an aggregate. The security of the proposed scheme is sum-
marized by the following theorem.

THEOREM 2. Given a genuine ciphertext-checksum pair (x, y), corresponding
to an aggregate m, which incorporates data from a group of nodes specified by
hdr and all other communication transcripts between nodes, the probability
of successfully forging a valid pair (x ′, y ′) �= (x, y) for some m′ �= m to pass
the verification test of the aggregate authentication scheme for the same hdr
is negligible for any external PPT (Probabilistic Poly-Time) adversary without
knowing K , assuming the encryption keys and the group key are generated by a
PRF based on different seed keys.

PROOF. Assume the PRF has some indistinguishability property as usual.
We prove by contradiction, showing that a PPT adversary that can forge a valid
pair (x ′, y ′) can also break the indistinguishability property of the underlying

14An adversary may be able to obtain another valid (x, y) pair but it is valid only for a different
hdr.
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PRF. We show the reduction15 in two steps: first, we show that a forging algo-
rithm to find (x ′, y ′) can be used as a subroutine to solve a newly defined prob-
lem called “Under-determined Equation Set with Pseudorandom Unknowns
(UESPU)”; then we show that the UESPU problem is computationally hard if
the underlying PRF has the usual indistinguishability property. The UESPU
problem is defined as follows:

Under-determined Equation Set with Pseudorandom Unknowns (UESPU)
Problem—Suppose K1, K2, K are independent random seeds. Let K (r)

1 , K (r)
2

and K (r) denote the hashed outputs of a PRF f , at input r, corresponding to
seed keys K1, K2 and K.16 Given a 3-tuple (m, x, y), where x = K (r)

1 + m and
y = K (r)

2 + K (r) · m, find (K (r)
1 , K (r)

2 , K (r)) while allowed to evaluate the PRF at
any input r ′ �= r.17

Without loss of generality, in the UESPU problem, each of K (r)
1 , K (r)

2 and K (r)

is treated as a single hashed output of f . In the proposed aggregate authenti-
cation, they are the sums of hashed outputs of f . If they are represented as the
sums of hashed output of f instead, the modified problem would remain hard
if f is a PRF.

Solving the UESPU problem using a forger of (x ′, y ′). Suppose there exists
a PPT adversary A that can forge a valid pair (x ′, y ′) at an epoch with nonce r
with non-negligible probability pf . Using A as a subroutine, we can construct
another algorithm, A′, to find (K (r)

1 , K (r)
2 , K (r)) from (m, x, y) with probability

pf , in any instance of the UESPU problem. Note that A′ should be able to
answer queries from A for any r ′ �= r by passing the queries to its challenger.

The construction of A′ is as follows: Give A the pair (x, y). When A returns
a pair (x ′, y ′) �= (x, y), we can determine K (r)

1 , K (r)
2 , K (r) from the resulting set

of equations. The explanation is as follows:
Note that

x = K (r)
1 + m

y = K (r)
2 + K (r) · m.

So we have two equations and three unknowns. If (x ′, y ′) is a valid forgery,
then it must satisfy the following two equations (with the same K (r)

1 , K (r)
2 and

15The reduction of the problem of breaking the indistinguishability of the PRF to the problem of
forging a valid (x ′, y ′) pair.
16That is, K (r)

1 = h( f K1 (r)), K (r)
2 = h( f K2 (r)), and K (r) = h( f K (r)) where h is the length-matching

hash function.
17The UESPU problem is typically hard if f is a PRF. More formally defined, given that l is the
key length of the PRF f , and h is a length-matching hash function, the following probability is
negligible in l for any PPT algorithm, A.

Pr

⎡
⎢⎣ K1 ← {0, 1}l ; K2 ← {0, 1}l ; K ← {0, 1}l ; r ← {0, 1}l ;

K (r)
1 = h( f K1 (r)); K (r)

2 = h( f K2 (r)); K (r) = h( f K (r));
m ← ZM ; x = K (r)

1 + m; y = K (r)
2 + K (r) · m

: A f (m, x, y) = (K (r)
1 , K (r)

2 , K (r))

⎤
⎥⎦
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K (r)) in order to pass the verification test:

x ′ = K (r)
1 + m′

y ′ = K (r)
2 + K (r) · m′

for some unknown value m′ �= m.
The pair (x ′, y ′) adds in two new equations and one unknown, m′. Since

(x ′, y ′) �= (x, y) and m′ �= m, it can be assured that the four equations are
independent. Hence, there are four independent equations and four unknowns
in total and it should be easy to solve for K (r)

1 , K (r)
2 , K (r) (a contradiction to

the UESPU assumption). The probability of solving the problem in the UESPU
assumption is hence pf .

Suppose there are n reporting nodes. The communication transcripts can
be easily simulated by randomly picking (n − 1) random pairs of ciphertext-
checksum (xi, yi) and subtracting them from (x, y) to obtain the n-th pair. Since
A does not have any knowledge about the node keys, real pairs of (xi, yi) should
look random to A. Hence, A could not distinguish its view in the simulation and
that in the real attack. On the other hand, it could be concluded that knowing
(xi, yi) without knowing the node keys would not help in creating a valid forgery.
In the preceding discussion, we treat K (r)

1 , K (r)
2 , K (r) as a single output of a PRF

for the sake of clarity and easy comprehension; more precisely, in the aggregate
authentication scheme, each one of them is the sum of outputs of a PRF seeded
with distinct keys (one from each sensor node). Nonetheless, the arguments
and conclusion apply to both cases.

A distinguisher for the PRF using an algorithm that solves the UESPU prob-
lem. The UESPU problem is hard if K (r)

1 , K (r)
2 , K (r) are generated by a PRF. Ob-

viously, m and x can uniquely determine K (r)
1 . But the equation y = K (r)

2 +K (r)·m
has two unknowns, which cannot be uniquely determined. It could be shown
that if there exists an algorithm A′ solving in poly-time K (r)

2 and K (r) from m
and y , then the indistinguishability property of the underlying PRF is broken.

The idea is as follows: assume the seed key for generating K (r) is unknown,
but the seed key for generating K (r)

2 is known. That is, we can generate K (r ′)
2 for

any r ′. When a challenge, K (r), is received, we have to determine whether it is
randomly picked from a uniform distribution or generated by the PRF with an
unknown seed key. We generate K (r)

2 from the known seed key. Then we pass
y = K (r)

2 + K (r) · m to A′. If the solution from A′ does not match the generated
K (r)

2 , we reply that K (r) is randomly picked, otherwise it is generated from the
PRF. If A′ has non-negligible probability of breaking the UESPU assumption,
the preceding construction would also have the non-negligible advantage of
breaking the indistinguishability property of the underlying PRF. Note that all
queries from A′ could be answered by sending queries to the challenger and
running the PRF with the known key.

8.3 Additional Overheads

The aggregate authentication extension leads to additional costs in both com-
munication and computation. For the communication cost, the length of each
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Table VII. Additional Computation Costs of the Extension of Aggregate
Authentication (Assuming L is the Number of Nodes Contributing to an

Aggregate)

Additional Computation Costs
Checksum Generation 2 · tpr f + 2 · th + tadd + tmulti
Checksum Verification (2L + 1) · tpr f + (L + 1) · th + (L + 1) · tadd + tmulti

ciphertext is now increased by |M | (where M is the modulus of the arithmetics
in use). This is the size of the added checksum. For the computation cost, the
notations of Section 7.3 are used. The additional computation costs needed for
checksum generation and verification are summarized as follows. In the cal-
culation of verification cost, the cost of a comparison operation in mod M is
assumed similar to the cost of an addition operation in mod M .

8.4 Defense Against the Node Exclusion Attack

The proposed aggregate authentication scheme is vulnerable to a node exclu-
sion attack wherein an adversary can eliminate the contributions of selected
nodes from being incorporated into the final aggregate. To defeat this node
exclusion attack, we need to protect the integrity of hdr. We briefly describe
a modification on hdr generation to assure hdr integrity. The modification is
only on the hdr part and makes use of a standard one-to-one message authen-
tication code (MAC). Each sensor node now needs to store an extra key, qi,
shared with the sink. As in the original scheme, qi is used to generate a session
key, q(r)

i , for epoch r. q(r)
i is used as an input key to the MAC algorithm for tag

generation.
In the original scheme, hdr is merely a list of reporting nodes’ IDs. In the new

scheme, the header generation for a leaf node remains the same (that is, node i
generates hdri = {i}) and the difference is at the interior nodes. For an interior
node, j , with child nodes i1, i2, i3, the new header format is: hdr j = { j ||i1||i2||i3}
(where || denotes concatenation), that is, each interior node appends a list of its
child nodes in its header. For a binary aggregation tree with node IDs numbered
in a top-down and left-to-right manner (that is, the root is 1, the next level
nodes are 2 and 3, and so on), the sink would receive a header of this form:
hdr = {1||2||3, 2||4||5, 3||6||7, . . . , (n − 1), n}. Note that the information in hdr
would allow the sink to reconstruct the aggregation tree topology.

Another modification is each node now generates a MAC tag for its header.
For example, node i would use its session key q(r)

i to generate the tag ti =
M ACq(r)

i
(hdri). For aggregation, the part on hdr remains the same and MAC

tags are aggregated by taking exclusive-OR on the tags. In details, given two
headers and the corresponding MAC tags (hdri, ti) and (hdr j , t j ), the aggrega-
tion result is (hdrl , tl ), where hdrl = hdri∪hdr j and tl = ti⊕t j . For verification,
upon receipt of (hdr, t), the sink regenerates the tag ti for each hdri ∈ hdr using
the session key q(r)

i and takes exclusive-OR on the regenerated tags and checks
whether the result matches t. The sink accepts hdr if and only if the result
matches t.
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If hdr is the original aggregate header generated by honest nodes, this
scheme would reject all other hdr ′ �= hdr created by a malicious outsider. If
the MAC scheme is unforgeable against chosen message attacks [Bellare et al.
1996], it would be impossible for an external adversary to remove any node
from the original aggregation tree while still able to pass the verification test
at the sink. Like the proposed aggregate authentication scheme, this header
protection scheme is vulnerable to insider attacks but is good enough as an
add-on to the proposed aggregate authentication scheme.

8.4.1 Security Analysis. Denote the correct header and its tag received at
the sink by (hdr, t). To exclude a particular node, say node i, from contributing
to the final aggregate, an adversary needs to remove a sub-tree rooted at node
i and add back other nodes in this sub-tree. Suppose we consider removing
a sub-tree rooted at node v whose parent and sibling are node u and node w
respectively. Using the M AC tags eavesdropped, an adversary can remove from
t all the tags generated by nodes in the concerned sub-tree; taking exclusive
OR of the eavesdropped tags, and t would work. In order to pass the verification
test, an adversary needs to replace tag tu (contributed by node u) in the final tag
t. Originally, tu = M ACq(r)

u
(u||v||w). Now, the adversary needs to replace it with

a new tag t ′
u = M ACq(r)

u
(u||w) in order to pass the verification at the sink. If the

adversary can do so without knowing q(r)
u , t ′

u is a valid forgery, thus breaking
the security of the underlying M AC scheme.

Note that forging t is not any easier than forging tu alone. The reason is if
we have an adversary A that can forge t without knowing all the node keys,
this adversary can be used by an algorithm A′ (knowing all keys except q(r)

u ) to
forge tu. Since A′ has the knowledge of all the node keys except that of node
u, it can answer all tag generation queries from A for any node except u. For
queries on node u, it can pass the queries to its challenger. When A outputs a
forger t, A′ can generate a forged tu by taking exclusive-OR of t with ti, ∀i �= u.
Generating all these ti ’s is possible for A′ since it knows all these keys. If t is a
valid forgery, so is tu.

8.4.2 Additional Overheads. The communication overhead would include
a M AC tag plus a longer header that is bounded by a constant factor of two.
The header overhead would be at most doubled. The worst case would be hdr
and its size is (2n − 1) for an aggregation tree with n nodes.

9. RELATED WORK

The problem of aggregating encrypted data in WSNs was partially explored in
Girao et al. [2004]. In this paper, the authors propose using an additive and mul-
tiplicative homomorphic encryption scheme to allow aggregation of encrypted
data. While this work is very interesting, it has several important limitations.
First, it is not clear how secure the encryption scheme really is. Second, as
acknowledged by the authors, the encryption and aggregation operations are
very expensive and therefore require quite powerful sensors. Finally, in the
proposed scheme, the encryption expands the packet size significantly. Given
all these drawbacks, it is questionable whether aggregation is still beneficial.
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In contrast, our encryption scheme is proven to be secure and is very efficient.
Encryption and aggregation only require a small number of single-precision
additions. Furthermore, our encryption scheme only expands packet sizes by a
small number of bits. As a result, it is well adapted to WSNs consisting of very
resource constrained sensors.

Hu and Evans [2003] propose a protocol to securely aggregate data. The
article presents a way to aggregate MACs (message authentication code) of
individual packets such that the sink can eventually detect nonauthorized in-
puts. This problem is actually complementary to the problem of aggregating
encrypted data, we are considering in this article. The proposed solution intro-
duces significant bandwidth overhead per packet. Furthermore, it requires the
sink to broadcast n keys, where n is the number of nodes in the network, at
each sampling period. This makes the proposed scheme nonpractical.

Although not related to data privacy, Przydatek et al. [2003] present an
efficient mechanism for detecting forged aggregation values (min, max, median,
average and count). In their setting, a trusted outside user can query the WSN.
The authors then look into how to reduce the trust placed in the sink node
(base station) while ensuring correctness of the query response. A work by
Wagner [2004] examines security of aggregation in WSNs, describing attacks
against existing aggregation schemes before providing a framework in which
to evaluate such a scheme’s security.

10. CONCLUSION

This article proposes a new homomorphic encryption scheme that allows inter-
mediate sensors to aggregate encrypted data of their children without having
to decrypt. As a result, even if an aggregator is compromised, it cannot learn
the data of its children, resulting in much stronger privacy than a simple ag-
gregation scheme using hop-by-hop encryption.

We show that, if key streams are derived from a good PRF, our scheme can
achieve semantic security against any node collusion of size less than the total
number of nodes.

We evaluate the performance of our scheme and show, as expected, that it
is slightly less bandwidth-efficient than the naíve hop-by-hop scheme. How-
ever it provides a much stronger level of privacy—comparable to that provided
by end-to-end encryption with no aggregation. We also show that our scheme
distributes the communication load quite evenly among all nodes, resulting in
better network longevity.

Finally, we augmented our scheme to provide end-to-end aggregate authen-
tication. Without knowledge of a group key, an external attacker cannot tamper
with any aggregate, without being detected.

In conclusion, we offer efficient and provably secure techniques for end-to-end
privacy and authenticity, with reasonably good security assurances, in WSNs.
The proposed scheme only supports mean and variance computation. However,
as shown in Castelluccia and Soriente [2008], the same construction could be
used as a building block for other aggregation schemes that support more ad-
vanced functions, such as median, mode, and range.
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APPENDIXES

APPENDIX A: SEMANTIC SECURITY OF CONCEALED DATA AGGREGATION
(CDA) [CHAN AND CASTELLUCCIA 2007]

Notation. We follow the notations for algorithms and probabilistic experi-
ments that originate in Goldwasser et al. [1988]. A detailed exposition can be
found there. We denote by z ← A(x, y , . . .), the experiment of running prob-
abilistic algorithm A on inputs x, y . . . , generating output z. We denote by
{A(x, y , . . .)}, the probability distribution induced by the output of A. The nota-
tions x ← D and x ∈R D are equivalent and mean randomly picking a sample x
from the probability distribution D; if no probability function is specified for D,
we assume x is uniformly picked from the sample space. We denote by N the set
of non-negative integers. As usual, PPT denotes probabilistic polynomial time.
An empty set is always denoted by φ.

CDA Syntax. A typical CDA scheme includes a sink R and a set U , of n
source nodes, (which are usually sensor nodes), where U = {si : 1 ≤ i ≤ n}.
Denote the set of source identities by I D; in the simplest case, I D = [1, n].
In the following discussion, hdr ⊆ I D is a header indicating the source nodes
contributing to an encrypted aggregate. A source node, i, has the encryption
key eki, while the sink keeps the decryption key dk from which all eki ’s can be
computed. Given a security parameter λ, a CDA scheme consists of the following
polynomial time algorithms.

Key Generation (KG). Let KG(1λ, n) → (dk, ek1, ek2, . . . , ekn) be a proba-
bilistic algorithm. Then, eki (with 1 ≤ i ≤ n) is the encryption key assigned to
source node si and dk is the corresponding decryption key given to the sink R.

Encryption (E). Eeki (mi) → (hdri, ci) is a probabilistic encryption algorithm
taking a plaintext mi and an encryption key eki as input to generate a ciphertext
ci and a header hdri ⊂ I D. Here hdri indicates the identity of the source node
performing the encryption; if the identity is i, then hdri = {i}. Sometimes the
encryption function is denoted by Eeki (mi; r) to explicitly show by a string r, the
random coins used in the encryption process.

Decryption (D). Given an encrypted aggregate c and its header, hdr ⊆ I D
(which indicates the source nodes included in the aggregation), Ddk(hdr, c) →
m/ ⊥ is a deterministic algorithm that takes the decryption key dk, hdr, and c
as inputs and returns the plaintext aggregate m or possibly ⊥ if c is an invalid
ciphertext.

Aggregation (Agg). With a specified aggregation function f such as addi-
tive aggregation considered in this article, Agg f (hdri, hdr j , ci, c j ) → (hdrl , cl )
aggregates two encrypted aggregates, ci and c j , with headers hdri and hdr j
respectively (where hdri ∩ hdr j = φ), to create a combined aggregate cl , and
a new header hdrl = hdri ∪ hdr j . Suppose ci and c j are the ciphertexts for
plaintext aggregates mi and m j respectively. The output cl is the ciphertext
for the aggregate f (mi, m j ), namely, Ddk(hdrl , cl ) → f (mi, m j ). This article
considers f (mi + m j ) = mi + m j mod M . Note that the aggregation algorithm
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does not need the decryption key dk or any of the encryption keys eki as input;
it is a public algorithm.

It is intentional to include the description of the header hdr in the security
model to make it as general as possible (to cover schemes requiring headers
in their operations). hdr is needed in some schemes to identify the set of de-
cryption keys required to decrypt a certain ciphertext. Nonetheless, generating
headers or including headers as input to algorithms should not be treated as a
requirement in the actual construction or implementation of CDA algorithms.
For constructions that do not need headers, all hdr ’s can simply be treated as
the empty set φ in the security model.

The Notion of Semantic Security. Only one type of oracle query (adversary
interaction with the system) is allowed in the security model, namely the en-
cryption oracle OE . The details are as follows:

Encryption Oracle OE (i, m, r). For fixed encryption and decryption keys,
on input of an encryption query 〈i, m, r〉, the encryption oracle retrieves si ’s
encryption key eki, runs the encryption algorithm on m, and replies with the
ciphertext Eeki (m) and its header, hdr. The random coins, or nonce r, are part
of the query input to OE .

The encryption oracle is needed in the security model since the encryption
algorithm uses private keys.

To define security (more specifically, indistinguishability) against chosen
plaintext attacks (IND-CPA), we use the following game played between a chal-
lenger and an adversary, assuming there is a set U of n source nodes. If no PPT
adversary, even in collusion with at most t compromised nodes, can win the
game with non-negligible advantage (as defined in the following), we say the
CDA scheme is t-secure. The adversary is allowed to freely choose parameters
n and t.

Definition 3. A CDA scheme is t-secure (indistinguishable) against adap-
tive chosen plaintext attacks if the advantage of winning the following game is
negligible in the security parameter λ for all PPT adversaries.

Collusion Choice. The adversary chooses to corrupt t source nodes. Denote
the set of these t corrupted nodes and the set of their identities by S′ and I ′

respectively.

Setup. The challenger runs the key generation algorithm KG to generate a
decryption key dk and n encryption keys {eki : 1 ≤ i ≤ n}, and gives the subset
of t encryption keys {ek j : sj ∈ S′} to the adversary but keeps the decryption
key dk and the other (n − t) encryption keys {ek j : sj ∈ U\S′}.

Query 1. The adversary can issue to the challenger one type of query:
Encryption Query 〈i j , m j , r j 〉. The challenger responds with Eei j

(m j ) using
random coins r j . The adversary is allowed to choose and submit his choices of
random coins for encryption queries.
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Challenge. Once the adversary decides that the first query phase is over,
it selects a subset S, of d source nodes (whose identities are in the set I ),
such that |S\S′| > 0, and outputs two different sets of plaintexts M0 = {m0k :
k ∈ I} and M1 = {m1k : k ∈ I} to be challenged. The only constraint is that
the two resulting plaintext aggregates, x0 and x1, are not equal, where x0 =
f (. . . , m0k , . . .) and x1 = f (. . . , m1k , . . .).

The challenger flips a coin b ∈ {0, 1}, to select between x0 and x1. The chal-
lenger then encrypts each mbk ∈ Mb with ekk , and aggregates the resulting
ciphertexts in the set {Eekk (mbk) : k ∈ I} to form the ciphertext C, of the ag-
gregate, that is, C = E{ekk :k∈I}(xb), and gives C to the adversary. The challenger
chooses and passes the nonce to the adversary. The global random coins should
be chosen to be different from those used in the Query 1 phase, and no query
on them should be allowed in the Query 2 phase.

Query 2. The adversary is allowed to make more queries as previously done
in the Query 1 phase.

Guess. Finally, the adversary outputs a guess, b′ ∈ {0, 1}, for b.
Result. The adversary wins the game if b′ = b. The advantage of the adver-

sary is defined as: AdvA = |Pr[b′ = b] − 1
2 |.

Note that in CDA, what the adversary is interested in is the information
about the final aggregate. Consequently, in the preceding game, the adversary
is asked to distinguish between the ciphertexts of two different aggregates, x0
and x1, as the challenge, rather than to distinguish the two sets of plaintexts,
M0 and M1. Allowing the adversary to choose the two sets, M0, M1, is to give
him more flexibility in launching attacks.

APPENDIX B: PROOF OF THEOREM 1

PROOF. For the sake of clarity, we first prove the security of a version without
using the hash function, h. Then we show why the proof also works for the
hashed version. The reduction is based on the indistinguishability property of
a PRF which is stated as follows:

Indistinguishability Property of a PRF. Assume f is taken from a PRF.
Then for a fixed input argument, x, and an unknown, randomly picked key, K ,
the following two distributions are computationally indistinguishable provided
that polynomially many evaluations of f K (·) have been queried:

{ y = f K (x) : y}, { y ← {0, 1}λ : y}.
That is, the output f K (x) is computationally indistinguishable from a randomly
picked number from {0, 1}λ to any PPT distinguisher who has knowledge of the
input argument x and a set of polynomially many 2-tuples (xi, f K (xi)) where
xi �= x. More formally, for any PPT distinguisher D,

|Pr[ y = f K (x) : D(x, y) = 1] − Pr[ y ← {0, 1}λ : D(x, y) = 1]| < ε(λ),

where ε(λ) is a negligible function in λ.
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PROOF FOR THE NON-HASHED SCHEME. Without loss of generality, we prove the
security of a modified version of the construction in which each encryption key
is uniformly picked from {0, 1}λ, compared with keys generated by a PRF in the
actual scheme. We then provide a justification for why the inference applies to
the actual implementation.

Suppose there exists a PPT adversary, D, which can break the semantic
security of the scheme with non-negligible advantage, AdvCM T

D . We show in
the following how D can be used to construct an algorithm, D′, which can
distinguish the above distributions with non-negligible advantage. Assume the
key K in question is unknown to D′.

Algorithm D′

Setup. Allow the adversary D to choose any n−1 sources to corrupt. Randomly
pick n−1 encryption keys eki ∈R {0, 1}λ and pass them to the adversary. Assume
node n is uncorrupted. The encryption key for node n is taken to be K , the key
of the PRF with which D′ is being challenged.

Query. Upon receiving an encryption query 〈i j , m j , r j 〉 with nonce r j , return
c j = ( feki j

(r j ) + m j ) mod M if i j �= n. Otherwise, pass r j to query the PRF to
get back f K (r j ) and reply with c j = ( f K (r j ) + m j ) mod M .

Challenge. In the challenge phase, receive from D, two sets of plaintext mes-
sages M0 = {m01, m02, . . . , m0n} and M1 = {m11, m12, . . . , m1n}.

Randomly pick a number w and output it to the PRF challenger to ask for a
challenge. Note w is the nonce used for CDA encryption in the challenge for D.
The PRF challenger flips a coin b ∈ {0, 1} and returns tb, which is f K (w) when
b = 0 and randomly picked from {0, 1}λ when b = 1. These two cases correspond
to the two distributions previously discussed.

Randomly flip a coin, d ∈ {0, 1}, and return the challenge ciphertext cd to D,
where cd = ∑n

i=1 mdi + ∑n−1
i=1 feki (w) + tb.

Guess. D returns its guess, b′. Return b′′, which is 0 when b′ = d and 1
otherwise.

Obviously, if D is PPT, then D′ is also PPT. Denoting the expression∑n
i=1 mdi + ∑n−1

i=1 feki (w) by X d , the challenge passed to D can be expressed
as cd = X d + tb. When b = 0, tb = f K (w); when b = 1, tb is a randomly picked
number from {0, 1}λ. In the following discussion, we denote the output of D
on input cd by D(cd ). The probability of success for D′ to distinguish between
f K (w) and a random number is:

Pr P RF
D′ [Success] = Pr[b′′ = b]

= 1
2

{Pr[b′′ = 0|b = 0] + Pr[b′′ = 1|b = 1]}

= 1
4

{Pr[b′′ = 0|b = 0, d = 0] + Pr[b′′ = 0|b = 0, d = 1]

+Pr[b′′ = 1|b = 1, d = 0] + Pr[b′′ = 1|b = 1, d = 1]}
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= 1
4

{Pr[D(t0 + X 0) = 0] + Pr[D(t0 + X 1) = 1]

+Pr[D(t1 + X 0) = 0] + Pr[D(t1 + X 1) = 1]}
= 1

4
{Pr[D(t0 + X 0) = 0] + Pr[D(t0 + X 1) = 1]

+1 − Pr[D(t1 + X 0) = 1] + Pr[D(t1 + X 1) = 1]}
= 1

4
{2PrCM T

D [Success] + 1 − (Pr[D(t1 + X 0) = 1]

−Pr[D(t1 + X 1) = 1])}.
Note that t0 + X 0 and t0 + X 1 are valid ciphertexts for the two challenge
plaintext sets M0 and M1 respectively. In the last step, we make use of the
fact that the probability of success for D to break the semantic security of the
scheme is given by:

PrCM T
D [Success] = 1

2
Pr[D(t0 + X 0) = 0] + 1

2
Pr[D(t0 + X 1) = 1].

Rearranging terms, we have

4Pr P RF
D′ [Success] + Pr[D(t1 + X 0) = 1] − Pr[D(t1 + X 1) = 1]

= 2PrCM T
D [Success] + 1

4
(

Pr P RF
D′ [Success] − 1

2

)
+ Pr[D(t1 + X 0) = 1] − Pr[D(t1 + X 1) = 1]

= 2
(

PrCM T
D [Success] − 1

2

)
.

Taking the absolute value on both sides and substituting AdvP RF
D′ =

|Pr P RF
D′ [Success] − 1

2 | and AdvCM T
D = |PrCM T

D [Success] − 1
2 |, we have

2AdvP RF
D′ + 1

2

∣∣Pr[D(t1 + X 0) = 1] − Pr[D(t1 + X 1) = 1]
∣∣ ≥ AdvCM T

D .

Since t1 is a randomly picked number, {t1 + X 0} and {t1 + X 1} are identically
distributed. That is, for any PPT algorithm D, Pr[D(t1 + X 0) = 1] = Pr[D(t1 +
X 1) = 1]. Hence,

2AdvP RF
D′ (λ) ≥ AdvCM T

D (λ).

Note also that:

|Pr[x ← {0, 1}λ; y = f K (x) : D′( y) = 1] − Pr[ y ← {0, 1}λ : D′( y) = 1]|
> 2AdvP RF

D′ (λ).

If AdvCM T
D is non-negligible in λ, then so is AdvP RF

D′ . As a result, if D can break
the semantic security of the scheme with non-negligible advantage, D′ could
distinguish between the output of PRF f and a random number. Equivalently,
|Pr[x ← {0, 1}λ; y = f K (x) : D′( y) = 1] − Pr[ y ← {0, 1}λ : D′( y) = 1]| is
non-negligible (a contradiction to the indistinguishability property of a PRF).

This security argument applies to the actual implementation since the view
of the adversary, D, in the simulation is in essence the same as that in the
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actual scheme. For each one of the n − 1 corrupted nodes, the encryption key is
f K ′ (i)(1 ≤ i ≤ n−1) for some randomly picked master key K ′. By the property of
the PRF, f K ′ (i) is indistinguishable from a randomly picked key (as used in this
simulation game) for all PPT distinguisher algorithms. For the uncorrupted
node, its output for encryption is now f f K ′ (n)(x) instead of f K (x) (with randomly
picked K ) as used in the above simulation game. It can be shown by a contra-
positive argument that, for fixed n, the two distributions are computationally
indistinguishable, that is,{

K ′ ← {0, 1}λ; x ← {0, 1}λ : f f K ′ (n)(x)
} c≡ {

K ← {0, 1}λ; x ← {0, 1}λ : f K (x)
}
.

The argument is as follows: Assume f is a PRF. That is, A = {K ′ ← {0, 1}λ :
f K ′ (n)} is indistinguishable from B = {K ← {0, 1}λ : K } for all PPT distin-
guishers. If there exists a PPT distinguisher, D, which can distinguish between
X = {K ′ ← {0, 1}λ; x ← {0, 1}λ : f f K ′ (n)(x)} and Y = {K ← {0, 1}λ; x ← {0, 1}λ :
f K (x)}, we can use D to distinguish between A and B. The idea is that when we
receive a challenge, s, which could be from A or B, we send fs(x) as a challenge
for D. If s belongs to A, fs(x) belongs to X , and if s belongs to B, fs(x) belongs
to Y . We could thus distinguish X from Y (a contradiction).

Security of the Hashed Version. Only a few modifications to this security
proof are needed in order to prove the security of the hashed variant.

First, in the algorithm D′, all ciphertexts are now generated using the hashed
values of the PRF outputs or replies from the challenger of D′. With such
changes, we now denote the expression

∑n
i=1 mdi + ∑n−1

i=1 h( feki (w)) by X d . Of
course, the modulus size would be l instead of λ.

Second, the challenge passed to D would be: cd = X d + h(tb). Then the
derivation for the advantage expressions is essentially the same as that for the
non-hashed scheme.

Third, the security proof of the non-hashed scheme relies on the fact that
{t1 ← {0, 1}λ : t1 + X 0} and {t1 ← {0, 1}λ : t1 + X 1} are identical distribution. On
the contrary, to prove the security of the hashed scheme, we need the following
distributions to be identical:

{t1 ← {0, 1}λ : h(t1) + X 0}, {t1 ← {0, 1}λ : h(t1) + X 1}.
If h fulfills the requirement, then {t1 ← {0, 1}λ : h(t1)} is the uniform distribu-
tion over {0, 1}l . Consequently, the two distributions are identical. This thus
concludes the proof that the hashed scheme is semantically secure.
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