Tutorial 3

Problem 3.1

Prove that for any positive integer number $n, n^{3}+2 n$ is divisible by 3 .

Solution:

Basis: $n=1: n^{3}+2 n=1+2=3$ is divisible by 3 .
Assumption: $n=k: k^{3}+2 k$ is divisible by 3 .
We have to prove: $n=k+1:(k+1)^{3}+2(k+1)$ is divisible by 3 . $(k+1)^{3}+2(k+1)=k^{3}+3 k^{2}+3 k+1+2 k+2=\left(k^{3}+2 k\right)+3\left(k^{2}+k+1\right)$ and is divisible by 3 , because $\left(k^{3}+2 k\right)$ is divisible by 3 by the assumption and $3\left(k^{2}+k+1\right)$ is divisible by 3 .

Problem 3.2

Prove that $3^{n}>n^{2}$ for $n=1, n=2$ and use the mathematical induction to prove that $3^{n}>n^{2}$ for n a positive integer greater than 2.

Solution:

Basis: $n=1,2: 3^{1}>1^{2}, 3^{2}>2^{2}$
Assumption: $n=k: 3^{k}>k^{2}$
We have to prove: $n=k+1: 3^{k+1}>(k+1)^{2}$

$$
3^{k+1}=3 \cdot 3^{k}>3 \cdot k^{2}=k^{2}+k^{2}+k^{2}>k^{2}+2 k+1=(k+1)^{2}
$$

Problem 3.3

Prove that $n!>2^{n}$ for n a positive integer greater than or equal to 4 .

Solution:

Basis: $n=4: 4!>2^{4}$
Assumption: $k!>2^{k}$
We have to prove: $(k+1)!>2^{k+1}$

$$
(k+1)!=(k+1) \cdot k!>(k+1) \cdot 2^{k}>2^{k+1}
$$

Problem 3.4

Find algebraically: $\lim _{x \rightarrow-1} \frac{x^{3}+2 x^{2}+3 x+2}{x^{3}-x^{2}-x+1}$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow-1} \frac{x^{3}+2 x^{2}+3 x+2}{x^{3}-x^{2}-x+1}=\lim _{x \rightarrow-1} \frac{(x+1)\left(x^{2}+x+2\right)}{x^{2}(x-1)-(x-1)}=\lim _{x \rightarrow-1} \frac{(x+1)\left(x^{2}+x+2\right)}{(x-1)\left(x^{2}-1\right)}= \\
& =\lim _{x \rightarrow-1} \frac{(x+1)\left(x^{2}+x+2\right)}{(x-1)^{2}(x+1)}=\lim _{x \rightarrow-1} \frac{\left(x^{2}+x+2\right)}{(x-1)^{2}}=\frac{1}{2}
\end{aligned}
$$

Problem 3.5

Find algebraically: $\lim _{x \rightarrow 4} \frac{x^{2}-16}{\sqrt{3 x+4}-4}$

Solution:

$\lim _{x \rightarrow 4} \frac{x^{2}-16}{\sqrt{3 x+4}-4}=\lim _{x \rightarrow 4} \frac{\left(x^{2}-16\right)(\sqrt{3 x+4}+4)}{(3 x+4)-16}=\lim _{x \rightarrow 4} \frac{(x-4)(x+4)(\sqrt{3 x+4}+4)}{3(x-4)}=\lim _{x \rightarrow 4} \frac{(x+4)(\sqrt{3 x+4}+4)}{3}=\frac{64}{3}$

Problem 3.6

How close to 5 we have to take $x+3$ so that so that $5 x+8$ is within a distance of 0.1 from $18 ?$

Solution:

The distance from $x+3$ to 5 is equivalent to the distance from x to 2 .

$$
|(5 x+8)-18|=|5 x-10|=5|x-2|<0.1 \Rightarrow|x-2|<0.02
$$

Problem 3.7

Prove directly using the formal definition: $\lim _{x \rightarrow 4} a x+b$, when $a, b \in R$.

Solution:

Precise definition:
For each real $\varepsilon>0$ there exists a real $\delta>0$ such that for all x with $|x-c|<\delta$, we have $|f(x)-L|<\varepsilon$,
If we choose $L=4 a+b$ then we get:
for each $\varepsilon>0$ we have to find a real $\delta>0$ such that for all x with $|x-4|<\delta$, we have
$|a x+b-(4 a+b)|=|a(x-4)|<a \delta$. So, it is enough to choose $\delta=\frac{\varepsilon}{a}$.

Problem 3.8

Prove directly using the formal definition: $\lim _{x \rightarrow 1} \frac{5 x+1}{x^{2}+x+1}=2$

Solution:

For each $\varepsilon>0$ we have to find a real $\delta>0$ such that for all x with $|x-1|<\delta$, we would have $\left|\frac{5 x+1}{x^{2}+x+1}-2\right|<\varepsilon$. We assume $\delta<0.1$.
$\left|\frac{5 x+1}{x^{2}+x+1}-2\right|=\left|\frac{5 x+1-2\left(x^{2}+x+1\right)}{x^{2}+x+1}\right|=\left|\frac{2 x^{2}-3 x+1}{x^{2}+x+1}\right|=\left|\frac{2(x-0.5)}{x^{2}+x+1}\right||x-1|<\left|\frac{2}{0^{2}+0+1}\right||x-1|<2 \delta$.
So, it is enough to choose $\delta=\min \left\{\frac{\varepsilon}{2} ; 0.1\right\}$.

Problem 3.9

Prove directly using the formal definition: $\lim _{x \rightarrow 1} \sqrt[3]{x+7}=2$

Solution:

For each $\varepsilon>0$ we have to find a real $\delta>0$ such that for all x with $|x-1|<\delta$, we would have $|\sqrt[3]{x+7}-2|<\varepsilon$. We assume $\delta<0.1$.
$|\sqrt[3]{x+7}-2|=\left|\frac{x+7-8}{\sqrt[3]{(x+7)^{2}}+\sqrt[3]{(x+7)}+4}\right|=\left|\frac{1}{\sqrt[3]{(x+7)^{2}}+\sqrt[3]{(x+7)}+4}\right||x-1| \leq\left|\frac{1}{\sqrt[3]{(-6+7)^{2}}+\sqrt[3]{(-6+7)}+4}\right||x-1|=$
$=\frac{1}{6}|x-1|<\frac{1}{6} \delta$
So, it is enough to choose $\delta=\min \{6 \varepsilon ; 0.1\}$.

Problem 3.10

Prove directly using the formal definition: $\lim _{x \rightarrow 2} \frac{x-1}{x+1}=\frac{1}{3}$

Solution:

For each $\varepsilon>0$ we have to find a real $\delta>0$ such that for all x with $|x-1|<\delta$, we would have $\left|\frac{x-1}{x+1}-\frac{1}{3}\right|<\varepsilon$. We assume $\delta<0.1$.
$\left|\frac{x-1}{x+1}-\frac{1}{3}\right|=\left|\frac{3 x-3-x-1}{3(x+1)}\right|=\left|\frac{2}{3(x+1)}\right||x-1| \leq\left|\frac{2}{3(1+1)}\right||x-1|=\frac{1}{3}|x-1|<\frac{1}{3} \delta$
So, it is enough to take $\delta=\min \{3 \varepsilon ; 0.1\}$.

