Tutorial 3

Problem 3.1

Prove that for any positive integer number n, $n^3 + 2n$ is divisible by 3.

Solution:

Basis: n = 1: $n^3 + 2n = 1 + 2 = 3$ is divisible by 3.

Assumption: $n = k : k^3 + 2k$ is divisible by 3.

We have to prove: n = k+1: $(k+1)^3 + 2(k+1)$ is divisible by 3.

 $(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2 = (k^3 + 2k) + 3(k^2 + k + 1)$ and is divisible by 3, because

 $(k^3 + 2k)$ is divisible by 3 by the assumption and $3(k^2 + k + 1)$ is divisible by 3.

Problem 3.2

Prove that $3^n > n^2$ for n = 1, n = 2 and use the mathematical induction to prove that $3^n > n^2$ for n a positive integer greater than 2.

Solution:

Basis: $n = 1, 2: 3^{1} > 1^{2}, 3^{2} > 2^{2}$ Assumption: $n = k: 3^{k} > k^{2}$ We have to prove: $n = k + 1: 3^{k+1} > (k+1)^{2}$ $3^{k+1} = 3 \cdot 3^{k} > 3 \cdot k^{2} = k^{2} + k^{2} + k^{2} > k^{2} + 2k + 1 = (k+1)^{2}$

Problem 3.3

Prove that $n! > 2^n$ for n a positive integer greater than or equal to 4.

Solution:

- Basis: $n = 4: 4! > 2^4$
- Assumption: $k! > 2^k$
- We have to prove: $(k+1)! > 2^{k+1}$

$$(k+1)! = (k+1) \cdot k! > (k+1) \cdot 2^k > 2^{k+1}$$

Problem 3.4

Find algebraically: $\lim_{x \to -1} \frac{x^3 + 2x^2 + 3x + 2}{x^3 - x^2 - x + 1}$

Solution:

http://individual.utoronto.ca/alex_kryvoshaev/

MAT137 calculus, TA: Alexander Kryvoshaev, Email: alex.kryvoshaev@utoronto.ca

$$\lim_{x \to -1} \frac{x^3 + 2x^2 + 3x + 2}{x^3 - x^2 - x + 1} = \lim_{x \to -1} \frac{(x+1)(x^2 + x + 2)}{x^2(x-1) - (x-1)} = \lim_{x \to -1} \frac{(x+1)(x^2 + x + 2)}{(x-1)(x^2-1)} = \lim_{x \to -1} \frac{(x+1)(x^2 + x + 2)}{(x-1)^2(x+1)} = \lim_{x \to -1} \frac{(x^2 + x + 2)}{(x-1)^2} = \frac{1}{2}$$

Problem 3.5

Find algebraically: $\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{3x + 4} - 4}$

Solution:

$$\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{3x + 4} - 4} = \lim_{x \to 4} \frac{\left(x^2 - 16\right)\left(\sqrt{3x + 4} + 4\right)}{\left(3x + 4\right) - 16} = \lim_{x \to 4} \frac{\left(x - 4\right)\left(x + 4\right)\left(\sqrt{3x + 4} + 4\right)}{3\left(x - 4\right)} = \lim_{x \to 4} \frac{\left(x + 4\right)\left(\sqrt{3x + 4} + 4\right)}{3} = \frac{64}{3}$$

Problem 3.6

How close to 5 we have to take x+3 so that so that 5x+8 is within a distance of 0.1 from 18?

Solution:

The distance from x+3 to 5 is equivalent to the distance from x to 2.

$$|(5x+8)-18| = |5x-10| = 5|x-2| < 0.1 \implies |x-2| < 0.02$$

Problem 3.7

Prove directly using the formal definition: $\lim_{x\to 4} ax + b$, when $a, b \in R$.

Solution:

Precise definition:

For each real $\varepsilon > 0$ there exists a real $\delta > 0$ such that for all x with $|x - c| < \delta$, we have $|f(x) - L| < \varepsilon$. If we choose L = 4a + b then we get:

for each $\varepsilon > 0$ we have to find a real $\delta > 0$ such that for all x with $|x-4| < \delta$, we have

$$|ax+b-(4a+b)| = |a(x-4)| < a\delta$$
. So, it is enough to choose $\delta = \frac{\varepsilon}{a}$.

<u>Problem 3.8</u>

Prove directly using the formal definition: $\lim_{x \to 1} \frac{5x+1}{x^2 + x + 1} = 2$

Solution:

For each $\varepsilon > 0$ we have to find a real $\delta > 0$ such that for all x with $|x-1| < \delta$, we would have

$$\left|\frac{5x+1}{x^2+x+1}-2\right| < \varepsilon \text{ . We assume } \delta < 0.1 \text{ .}$$

$$\left|\frac{5x+1}{x^2+x+1}-2\right| = \left|\frac{5x+1-2(x^2+x+1)}{x^2+x+1}\right| = \left|\frac{2x^2-3x+1}{x^2+x+1}\right| = \left|\frac{2(x-0.5)}{x^2+x+1}\right| |x-1| < \left|\frac{2}{0^2+0+1}\right| |x-1| < 2\delta$$

So, it is enough to choose $\delta = \min\left\{\frac{\varepsilon}{2}; 0.1\right\}$.

Problem 3.9

Prove directly using the formal definition: $\lim_{x\to 1} \sqrt[3]{x+7} = 2$

Solution:

For each $\varepsilon > 0$ we have to find a real $\delta > 0$ such that for all x with $|x-1| < \delta$, we would have

$$\begin{vmatrix} \sqrt[3]{x+7} - 2 \end{vmatrix} < \varepsilon \text{ . We assume } \delta < 0.1 \text{ .} \\ \begin{vmatrix} \sqrt[3]{x+7} - 2 \end{vmatrix} = \left| \frac{x+7-8}{\sqrt[3]{(x+7)^2} + \sqrt[3]{(x+7)} + 4}} \right| = \left| \frac{1}{\sqrt[3]{(x+7)^2} + \sqrt[3]{(x+7)} + 4}} \right| |x-1| \le \left| \frac{1}{\sqrt[3]{(-6+7)^2} + \sqrt[3]{(-6+7)} + 4}} \right| |x-1| = \frac{1}{6} |x-1| < \frac{1}{6} \delta$$

So, it is enough to choose $\delta = \min \{6\varepsilon; 0.1\}$.

Problem 3.10

Prove directly using the formal definition: $\lim_{x\to 2} \frac{x-1}{x+1} = \frac{1}{3}$

Solution:

For each $\varepsilon > 0$ we have to find a real $\delta > 0$ such that for all x with $|x-1| < \delta$, we would have

$$\left|\frac{x-1}{x+1} - \frac{1}{3}\right| < \varepsilon \text{ . We assume } \delta < 0.1.$$
$$\left|\frac{x-1}{x+1} - \frac{1}{3}\right| = \left|\frac{3x-3-x-1}{3(x+1)}\right| = \left|\frac{2}{3(x+1)}\right| |x-1| \le \left|\frac{2}{3(1+1)}\right| |x-1| = \frac{1}{3}|x-1| < \frac{1}{3}\delta$$

So, it is enough to take $\delta = \min\{3\varepsilon; 0.1\}$.