Tutorial 4

Problem 4.1

Show that the following limit doesn't exist, using a definition $\lim _{x \rightarrow 0} \frac{1}{|x|}$.

Solution:

For each $L \in R$, we must show that exists $\varepsilon>0$ such that for any $\delta>0,0<|x|<\delta$ does not imply that $\left|\frac{1}{x}-L\right|<\varepsilon$.

It is obvious that $L \geq 0$.
For any $\delta>0$, any $x<\frac{1}{L+2 \varepsilon}$ exists $\left|\frac{1}{x}-L\right|=\left|\frac{1}{\frac{1}{L+2 \varepsilon}}-L\right|=|2 \varepsilon|=2 \varepsilon>\varepsilon$.

Problem 4.2

Show that the following limit doesn't exist: $\lim _{x \rightarrow 2} f(x)$, when $f(x)=\left\{\begin{array}{l}3+x^{2}, \text { if } x \geq 2 \\ 4-x-x^{3}, \text { if } x<2\end{array}\right.$

Solution A:

$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} 3+x^{2}=7, \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} 4-x-x^{3}=-6$
$\lim _{x \rightarrow 2^{+}} f(x) \neq \lim _{x \rightarrow 2^{-}} f(x)$, that is why the limit doesn't exist.

Solution B:

Case 1: $L=7$
We must show that exists $\varepsilon>0$ such that for any $\delta>0,0<|x|<\delta$ does not imply that $|f(x)-7|<\varepsilon$.
We have to show that for any $\delta>0$ exist $0<|x|<\delta$ such that $|f(x)-7|>\varepsilon$.
For $x<2$ we get: $|f(x)-7|=\left|4-x-x^{3}-7\right|=\left|x^{3}+x+3\right|$. For $\varepsilon=1$ we get that for any $x>0\left|x^{3}+x+3\right|>\varepsilon$.
Case 2: $L \neq 7$
We can sign $L=7+A$, when $A>0$.
We must show that exists $\varepsilon>0$ such that for any $\delta>0,0<|x|<\delta$ does not imply that $|f(x)-7|<\varepsilon$.
We have to show that for any $\delta>0$ exist $0<|x|<\delta$ such that $|f(x)-7|>\varepsilon$.
For $x \geq 2$ we get: $|f(x)-(7+A)|=\left|3+x^{2}-(7+A)\right|=\left|x^{2}-4-A\right|>|A|-\left|x^{2}-4\right|$.

For $\varepsilon=\frac{|A|}{2}$ we get that for any $\sqrt{4-\frac{|A|}{2}}<x<\sqrt{4+\frac{|A|}{2}}$ exists $|A|-\left|x^{2}-4\right|>|A|-\frac{|A|}{2}=\frac{|A|}{2}$. So, $|f(x)-(7+A)|>\varepsilon$.

Problem 4.3

Does the following limit exist $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)$

Solution:

We will prove that $\lim _{x \rightarrow 0}\left|x \sin \left(\frac{1}{x}\right)\right|=0$. Then $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$.
Using the pinching theorem (theorem 2.5.1) we obtain: $0 \leq \lim _{x \rightarrow 0}\left|x \sin \left(\frac{1}{x}\right)\right| \leq \lim _{x \rightarrow 0}|x|\left|\sin \left(\frac{1}{x}\right)\right| \leq \lim _{x \rightarrow 0}|x|=0$

Problem 4.4

Prove that there is some number $x \in R$ such that $x^{5}+(\sin x)^{\cos x}=1-5 \cos x$

Solution:

$x^{5}+(\sin x)^{\cos x}=1-5 \cos x \Leftrightarrow x^{5}+(\sin x)^{\cos x}+5 \cos x-1=0$
We are going to use the intermediate value theorem.
$(\sin x)^{\cos x}+5 \cos x-1$ is bounded, because $(\sin x)^{\cos x}$ and $5 \cos x-1$ are bounded.
$\lim _{x \rightarrow+\infty} x^{5}=+\infty, \lim _{x \rightarrow-\infty} x^{5}=-\infty$. So, using the intermediate value theorem, we obtain that there is some number $x \in R$ such that $x^{5}+(\sin x)^{\cos x}+5 \cos x-1=0$

Problem 4.5

Prove that there is some number $x \in R$ such that $x^{9}+e^{x}=8$

Solution:

We are going to use the intermediate value theorem.
It is obvious that $\lim _{x \rightarrow+\infty}\left(x^{9}+e^{x}\right)=+\infty$.

$$
\lim _{x \rightarrow-\infty} x^{9}=-\infty, \lim _{x \rightarrow-\infty} e^{x}=0 \Rightarrow \lim _{x \rightarrow-\infty}\left(x^{9}+e^{x}\right)=-\infty
$$

So, using the intermediate value theorem, we obtain that there is some number $x \in R$ such that $x^{9}+e^{x}=8$.

Problem 4.6

Prove or give a counterexample: "If $f^{2}(x)$ is continuous then $f(x)$ is continuous".

Solution:

The counterexample is $f(x)= \begin{cases}1, & x \in Q \\ -1, & x \notin Q\end{cases}$
It is easy to see that $f^{2}(x)=1$ is continuous, but $f(x)$ is not.

Problem 4.7

Prove or give a counterexample: "If $\sin (f(x))$ is continuous then $f(x)$ is continuous".

Solution:

The counterexample is $f(x)=2 \pi\lfloor x\rfloor$.
It is easy to see that $\sin [f(x)]=0$, but $f(x)$ is not continuous.

Problem 4.8

Evaluate or show the limit doesn't exist: $\lim _{x \rightarrow 0} \frac{\sin x}{\tan 5 x}$

Solution:

$\lim _{x \rightarrow 0} \frac{\sin x}{\tan 5 x}=\lim _{x \rightarrow 0} \frac{\sin x}{\frac{\sin 5 x}{\cos 5 x}}=\lim _{x \rightarrow 0} \frac{\sin x}{\frac{\sin 5 x}{1}}=\lim _{x \rightarrow 0} \frac{\sin x}{\sin 5 x}=\frac{1}{5} \lim _{x \rightarrow 0} \frac{\sin x}{x} \frac{5 x}{\sin 5 x}=\frac{1}{5}$

Problem 4.9

Evaluate or show the limit doesn't exist: $\lim _{x \rightarrow 0} \frac{\sin x}{|\sin x|}$

Solution:

$\lim _{x \rightarrow 0^{-}} \frac{\sin x}{|\sin x|}=\lim _{x \rightarrow 0^{-}} \frac{\sin x}{-\sin x}=-1, \lim _{x \rightarrow 0^{+}} \frac{\sin x}{|\sin x|}=\lim _{x \rightarrow 0^{-}} \frac{\sin x}{\sin x}=1$
$\lim _{x \rightarrow 0^{+}} \frac{\sin x}{|\sin x|} \neq \lim _{x \rightarrow 0^{-}} \frac{\sin x}{|\sin x|}$, so $\lim _{x \rightarrow 0} \frac{\sin x}{|\sin x|}$ doesn't exist.

