Tutorial 6

Problem 6.1

Carry out the differentiation $\frac{d}{dx} \left(\sqrt{\frac{2x+1}{x-5}} \right)$

Solution:

$$\frac{d}{dx}\left(\sqrt{\frac{2x+1}{x-5}}\right) = \frac{1}{2\sqrt{\frac{2x+1}{x-5}}} \left(\frac{2x+1}{x-5}\right) = \frac{\frac{2(x-5)-(2x+1)\cdot 1}{(x-5)^2}}{2\sqrt{\frac{2x+1}{x-5}}} = -\frac{11}{2(x-5)^2\sqrt{\frac{2x+1}{x-5}}}$$

Problem 6.2

Evaluate $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the point (1;2) $x^3 + 4x^2y + y^2 + 5y - 23 = 0$

Solution:

The first derivative:

$$3x^{2} + 4(2xy + x^{2}y') + 2yy' + 5y' = 0 \iff 3x^{2} + 8xy + 4x^{2}y' + 2yy' + 5y' = 0 \implies y' = -\frac{3x^{2} + 8xy}{4x^{2} + 2y + 5} \implies y' = -\frac{19}{13}$$

The second derivative:

$$6x + 4(2y + 2xy' + 2xy' + x^2y'') + 2y'y' + 2yy'' + 5y'' = 0 \Rightarrow y'' = -\frac{6x + 8y + 8xy' + 8xy' + 2y'y'}{4x^2 + 2y + 5} = \dots$$

Problem 6.3

Evaluate $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the point $\left(\pi; -\frac{\pi}{3}\right)$ $\sin\left(x+3y\right)=0$.

Solution:

The first derivative:

$$(1+3y')\cos(x+3y) = 0 (\cos(\pi-3\frac{\pi}{3}) \neq 0) \Rightarrow y' = -\frac{1}{3}$$

The second derivative: y'' = 0

Problem 6.4

Find all points of the curve $x^3y^2 + x + xy = 2$, where the slope of the tangent line is -1.

Solution:

The first derivative: $3x^2y^2 + 2x^3yy' + 1 + y + xy' = 0 \implies y'(2x^3y + x) = -(1+y) - 3x^2y^2 \implies$

$$y' = -\frac{(1+y)+3x^2y^2}{2x^3y+x}$$
.

The slope of the tangent line is -1 at $-\frac{(1+y)+3x^2y^2}{2x^3y+x} = -1$

All the points of the curve are:
$$\begin{cases} \frac{(1+y)+3x^2y^2}{2x^3y+x} = 1\\ x^3y^2+x+xy=2 \end{cases}$$

If you could solve the system of equations you should solve it.

Problem 6.5

Using y as the independent variable and x as the dependent variable, find $\frac{dx}{dy}$ for the equation

$$(x^3 + y^4)^2 = 4x^2y$$
, when $x = 1$ and $y = 1$.

Solution:

The first derivative:

$$2(x^{3} + y^{4})(3x^{2}x' + 4y^{3}) = 4(2xx'y + x^{2})$$

$$2(x^{3} + y^{4})3x^{2}x' + 8(x^{3} + y^{4})y^{3} = 8xx'y + 4x^{2}$$

$$x'(2(x^{3} + y^{4})3x^{2} - 8xy) = 4x^{2} - 8(x^{3} + y^{4})y^{3}$$

$$x' = \frac{4x^{2} - 8(x^{3} + y^{4})y^{3}}{2(x^{3} + y^{4})3x^{2} - 8xy}$$

For the point (1;1) we have
$$x'(1) = \frac{4-16}{12-8} = -1.5$$

Problem 6.6

Two cars begin their movement, when they begin from (0;0). The first car is traveling east along the x axis at $70 \, km/h$. The second one is traveling east along the line y = x at $90\sqrt{2} \, km/h$. At what rate the distance between the cars increasing after one hour?

Solution:

The position of the first car is (70t;0) and for the second car is (90t;90t).

So, the distance is
$$\sqrt{(90t-70t)^2+(90t-0)^2} = \sqrt{400t^2+8100t^2} = 10\sqrt{85}t$$

So, the rate is $10\sqrt{85}$.

Problem 6.7

At what angle the parabolas $y = -x^2 + 8$ and $y = x^2$ intersect at the point (2,4)?

Solution:

The angle of $y = x^2$ is $y' = 2x \implies y'(2) = 4$, the angle with the x axis is α_1

The angle of $y = -x^2 + 8$ is $y' = -2x \implies y'(2) = -4$, the angle with the x axis is α_2

 α is an angle between the curves. Then $\tan \alpha = \tan (\alpha_1 - \alpha_2) = \frac{\tan \alpha_1 - \tan \alpha_2}{1 + \tan \alpha_1 \tan \alpha_2} = \frac{4 - (-4)}{1 + 4(-4)} = -\frac{8}{7}$

Problem 6.8

Determine the numbers x between 0 and 2π where the line tangent to the curve is horizontal: $y = \sin x + \cos^2 x$.

Solution:

We are looking for the values of x, when the y'(x) = 0.

$$y' = \cos x - 2\cos x \sin x = 0 \iff \cos x = 2\cos x \sin x \iff \sin x = \frac{1}{2} \text{ or } \cos x = 0, \quad x = \frac{\pi}{6}; \frac{5\pi}{6}; \frac{\pi}{2}; \frac{3\pi}{2}$$