Tutorial 8

Problem 8.1

Suppose that f and g are differentiable functions and $f(x) g^{\prime}(x)-g(x) f^{\prime}(x)$ has no zeros on some interval I. Assume that there are numbers a, b in I with $a<b$ for which $f(a)=f(b)=0$, and that f has no zeros in (a, b). Prove that if $g(a) \neq 0$ and $g(b) \neq 0$, then g has exactly one zero in (a, b).

Solution:

- Assume g has no zeros in $(a ; b)$.
- Consider $h(x)=\frac{f(x)}{g(x)} . h(a)=h(b)=0$. So, by mean value theorem exists $c \in(a ; b)$ such that $h^{\prime}(c)=0$.
- Then $h^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g^{2}(x)} \neq 0$. Contradiction.
- So, g has zeros in $(a ; b)$.
- Assume g has two zeros or more in $(a ; b)$.
- Consider $h(x)=\frac{g(x)}{f(x)}$. It has two zeros or mote.
- By mean value theorem $h^{\prime}(x)$ has at least one zero in $(a ; b)$.
- But $h^{\prime}(x)=\frac{g^{\prime}(x) f(x)-g(x) f^{\prime}(x)}{f^{2}(x)} \neq 0$. Contradiction.
- So, g has exactly one zero in $(a ; b)$.

Problem 8.2

Assume that f and g are differentiable on the interval $(-c ; c)$ and $f(0)=g(0)$.
a. Show that if $f^{\prime}(x)>g^{\prime}(x)$ for all $x \in(0 ; c)$ then $f(x)>g(x)$ for all $x \in(0 ; c)$.
b. Show that if $f^{\prime}(x)>g^{\prime}(x)$ for all $x \in(-c ; 0)$ then $f(x)<g(x)$ for all $x \in(-c ; 0)$.

Solution:

a.

- Assume exists $a \in(0 ; c)$ such that $f(a) \leq g(a)$.
- Define $h(x)=f(x)-g(x)$. Then $h(0)=0, h(a) \leq 0, h^{\prime}(x)>0$ for all $x \in(0 ; c)$.
- Using the mean value theorem we obtain h^{\prime} should be negative at some point on the interval $(0 ; a)$.
- Contradiction.
b.
- Assume exists $a \in(-c ; 0)$ such that $f(a) \geq g(a)$.
- Define $h(x)=f(x)-g(x)$. Then $h(0)=0, h(a) \geq 0, h^{\prime}(x)>0$ for all $x \in(-c ; 0)$.
- Using the mean value theorem we obtain h^{\prime} should be negative at some point on the interval $(0 ; a)$.
- Contradiction.

Problem 8.3

The sum of two numbers is 16 . Find the numbers given that the sum of their cubes is an absolute minimum.

Solution:

- $x+y=16$. Denote $f(x, y)=x^{3}+y^{3}$
- $g(x)=f(x, 16-x)=x^{3}+(16-x)^{3}$
- $g^{\prime}(x)=3 x^{2}-3(16-x)^{2}=3 x^{2}-3\left(256-32 x+x^{2}\right)=-753+96 x$, critical point is $x=8$
- $g "(x)=96>0$
- So, the local minimum is an absolute minimum.

Problem 8.4

What is the maximum volume for a rectangular box (square base, no top), made from 12 square feet of cardboard?

Solution:

- Denote the base side a and the height h. So, $a^{2}+4 h a=12 \Rightarrow h=\frac{12-a^{2}}{4 a}$
- $V=a^{2} h=a^{2} \frac{12-a^{2}}{4 a}=3 a-\frac{1}{4} a^{3}$
- $\left(3 a-\frac{1}{4} a^{3}\right)=3-\frac{3}{4} a^{2}=0 \Rightarrow a= \pm 2 \Rightarrow a=2, h=1 \Rightarrow V=a^{2} h=4$.

Problem 8.5

Prove that a polynomial of degree n can have at most $n-2$ point of inflection.

Solution:

- Denote: $p(x)=\sum_{i=0}^{n} a_{i} x^{i}$
- Polynomial function has a second derivative at each point.
- That is why $p^{\prime \prime}(x)=\sum_{i=0}^{n-2}(i+2)(i+1) a_{i+2} x^{i}=0$ for each inflection point.
- $p^{\prime \prime}(x)=\sum_{i=0}^{n-2}(i+2)(i+1) a_{i} x^{i}=0$ - polynomial of order $n-2$ has at most $n-2$ roots.
- $\quad p(x)=\sum_{i=0}^{n} a_{i} x^{i}$ has at most $n-2$ point of inflection.

Problem 8.6

Sketch the following graph $f(x)=\sqrt[3]{\left(x^{2}+1\right)^{2}}$

Solution:

Domain: any value of x.
Vertical and horizontal asymptotes: not found.
Intercepts:
x axis: $\sqrt[3]{\left(x^{2}+1\right)^{2}}=0-$ no solutions.
y axis: $f(0)=\sqrt[3]{\left(0^{2}+1\right)^{2}}=1$
Symmetry: $f(-x)=f(x)$
First derivative: $f^{\prime}(x)=\frac{2 x}{\left(x^{2}+1\right)^{\frac{1}{3}}}$
Critical points: $f^{\prime}(x)=\frac{2 x}{\left(x^{2}+1\right)^{\frac{1}{3}}}=0 \Leftrightarrow x=0$
Intervals of increase/decrease:
$f^{\prime}(x)=\frac{2 x}{\left(x^{2}+1\right)^{\frac{1}{3}}}>0 \Leftrightarrow x>0, \quad f^{\prime}(x)=\frac{2 x}{\left(x^{2}+1\right)^{\frac{1}{3}}}<0 \Leftrightarrow x<0$

Second derivative:
$f^{\prime}(x)=\left(\frac{2 x}{\left(x^{2}+1\right)^{\frac{1}{3}}}\right)^{\prime}=\frac{2\left(x^{2}+1\right)^{\frac{1}{3}}-2 x \frac{1}{3} 2 x\left(x^{2}+1\right)^{-\frac{2}{3}}}{\left(x^{2}+1\right)^{\frac{2}{3}}}=\frac{2\left(x^{2}+1\right)^{\frac{1}{3}}-\frac{4}{3} x^{2}\left(x^{2}+1\right)^{-\frac{2}{3}}}{\left(x^{2}+1\right)^{\frac{2}{3}}} \Leftrightarrow f^{\prime \prime}(0)=2$

Intervals of concavity:

$$
\frac{2\left(x^{2}+1\right)^{\frac{1}{3}}-\frac{4}{3} x^{2}\left(x^{2}+1\right)^{-\frac{2}{3}}}{\left(x^{2}+1\right)^{\frac{2}{3}}}>0 \Leftrightarrow\left(x^{2}+1\right)-\frac{2}{3} x^{2}>0 \text { - always true! }
$$

The function is always concave up.
Points of inflection:

$$
\frac{2\left(x^{2}+1\right)^{\frac{1}{3}}-\frac{4}{3} x^{2}\left(x^{2}+1\right)^{-\frac{2}{3}}}{\left(x^{2}+1\right)^{\frac{2}{3}}}=0 \Leftrightarrow\left(x^{2}+1\right)-\frac{2}{3} x^{2}=0-\text { no points of inflection! }
$$

Problem 8.7

Sketch the following graph $f(x)=\frac{x^{2}-2 x}{3 x^{2}+x}$

Solution:

- $f(x)=\frac{x^{2}-2 x}{3 x^{2}+x}=\frac{x-2}{3 x+1}=\frac{x+\frac{1}{3}-2 \frac{1}{3}}{3 x+1}=\frac{1}{3}-\frac{2 \frac{1}{3}}{3 x+1}, x \neq 0$
- We can sketch the graph using the following stages:

1. $f(x)=\frac{1}{x}$ - hyperbolic function
2. $f(x)=\frac{1}{x+1}$ - move one unit left
3. $f(x)=\frac{1}{3 x+1}-$ shrink in 3 times on y axis
$f(x)=\frac{2 \frac{1}{3}}{3 x+1}$ - stretch $2 \frac{1}{3}$ times on x axis
4. $f(x)=-\frac{2 \frac{1}{3}}{3 x+1}$ - flip on x axis
5. $f(x)=\frac{1}{3}-\frac{2 \frac{1}{3}}{3 x+1}-$ move $\frac{1}{3}$ units up
