Tutorial 9

Problem 9.1

A rectangular warehouse will have 5000 square feet of floor space and will be separated into two rectangular rooms by an interior wall. The cost of the exterior walls is $\$ 150$ per linear foot and the cost of the interior wall is $\$ 100$ per linear foot. Find the dimension that will minimize the cost of building the warehouse.

Solution:

- $\quad x$ is the length, y is the width.
- $S=x \cdot y=5000, f(x, y)=150(2 x+2 y)+100 y=300 x+400 y$
- $f\left(x, \frac{5000}{x}\right)=300 x+400 \cdot \frac{5000}{x}$
- $\left(300 x+400 \cdot \frac{5000}{x}\right)^{\prime}=300-\frac{200000}{x^{2}}=0 \Rightarrow x=\sqrt{\frac{2000}{3}}$
- $\left(300 x+400 \cdot \frac{5000}{x}\right)^{\prime \prime}=300+\frac{400000}{x^{3}}>0$ - local minimum.
- For $x=0 ;+\infty$ we get an infinite price.
- So, $x=\sqrt{\frac{2000}{3}}, y=\frac{5000}{\sqrt{\frac{2000}{3}}}$ is the optimal size.

Problem 9.2

Fix a positive number P. Let R denote the set of all rectangles with perimeter P. Prove that there is a member of R that has a maximum area. What are the dimensions of the rectangle of maximum area?

Solution:

- $2 x+2 y=P$
- $S=x y=x\left(\frac{P}{2}-x\right)$
- $S^{\prime}=\frac{P}{2}-2 x=0 \Rightarrow x=y=\frac{P}{4}$

Problem 9.3

Two functions are everywhere defined. Can they both be everywhere continuous:
a. if they differ only at a finite number points?
b. if they differ only on a bounded closed interval $[a ; b]$?
c. if they differ only on a bounded open interval $(a ; b)$?

Solution:

- Denote the functions to be f and g.
a.
- No.
- Assume $f(a) \neq g(a)$. Denote $\varepsilon=|f(a)-g(a)|$
- Then exists $\delta>0$ such that for $x \in(a-\delta ; a+\delta)|f(x)-f(a)|<\frac{\varepsilon}{2},|g(x)-g(a)|<\frac{\varepsilon}{2}$
- $f(a)-\frac{\varepsilon}{2}<f(x)<f(a)+\frac{\varepsilon}{2}, g(a)-\frac{\varepsilon}{2}<g(x)<g(a)+\frac{\varepsilon}{2}$
- So, $f(a)-\frac{\varepsilon}{2}-\left(g(a)+\frac{\varepsilon}{2}\right)<f(x)-g(x)<f(a)+\frac{\varepsilon}{2}-\left(g(a)-\frac{\varepsilon}{2}\right)$
- $(f(a)-g(a))-\varepsilon<f(x)-g(x)<(f(a)-g(a))+\varepsilon$
- $|(f(x)-g(x))-(f(a)-g(a))|<\varepsilon \Leftrightarrow|f(x)-g(x)|>0$ for all $x \in(a-\delta ; a+\delta)$.
- The functions differ on an infinite number points. Contradiction.
b.
- $\quad f-g$ is also continuous.
- So, $f(x)-g(x)=0$ on the interval $(a ;+\infty)$ then $f(a)-g(a)=0$.
- Contradiction.
c.
- Yes.
- $f(x)=\left\{\begin{array}{lc}5-x^{2}, & -\sqrt{5} \leq x \leq \sqrt{5} \\ 0, & \text { else }\end{array}\right.$ and $g(x)=0$

Problem 9.4

Find an equation for all tangents to the curve $y=x^{3}$ that pass through the point $(0 ;-1)$.

Solution:

- $y^{\prime}=2 x$. The tangent at the point $\left(x_{0} ; x_{0}^{3}\right)$ is $y-x_{0}^{3}=2 x_{0}\left(x-x_{0}\right)$
- If it passes through $(0 ;-1)$ then $-1-x_{0}^{3}=2 x_{0}\left(0-x_{0}\right) \Leftrightarrow-1-x_{0}^{3}=-2 x_{0}^{2} \Leftrightarrow x_{0}^{3}-2 x_{0}^{2}+1=0 \Leftrightarrow$

$$
x_{0}=1 \text { or } x_{0}^{2}-x_{0}-1=0 \Leftrightarrow x_{0}=\frac{1 \pm \sqrt{5}}{2}
$$

- So, we got 3 tangents, passing through the point $(0 ;-1)$.

Problem 9.5

Show that $\frac{d}{d x}\left(x^{-n}\right)=-\frac{n}{x^{n+1}}$ for all possible integers n by showing that $\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{(x+h)^{n}}-\frac{1}{x^{n}}\right]=-\frac{n}{x^{n+1}}$

Solution:

$\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{(x+h)^{n}}-\frac{1}{x^{n}}\right]=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{x^{n}-(x+h)^{n}}{(x+h)^{n} x^{n}}\right]=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-\sum_{i=1}^{n}\binom{n}{i} x^{n-i} h^{i}}{(x+h)^{n} x^{n}}\right]=\lim _{h \rightarrow 0} \frac{-\sum_{i=1}^{n}\binom{n}{i} x^{n-i} h^{i-1}}{(x+h)^{n} x^{n}}=-n x^{-n-1}$

Problem 9.6

Find the vertical and horizontal asymptotes:
a. $f(x)=\frac{x^{3}}{x+2}$
b. $f(x)=\frac{2 x}{\sqrt{x^{2}-1}}$

Solution:

a.

- $\lim _{x \rightarrow \infty} \frac{x^{3}}{x+2}=\infty \Rightarrow$ there is no horizontal asymptote.
- $\lim _{x \rightarrow-2} \frac{x^{3}}{x+2}=\infty \Rightarrow x=-2$ is a vertical asymptote.
b.
- $\lim _{x \rightarrow \infty} \frac{2 x}{\sqrt{x^{2}-1}}=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{1-\frac{1}{x^{2}}}}=2 \Rightarrow y=2$ is a vertical asymptote.
- $\lim _{x \rightarrow 1} \frac{2 x}{\sqrt{x^{2}-1}}=\infty \Rightarrow x=1$ is a vertical asymptote.
- $\lim _{x \rightarrow-1} \frac{2 x}{\sqrt{x^{2}-1}}=\infty \Rightarrow x=-1$ is a vertical asymptote.

