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This thesis presents an approach to the design and management of core networks

where the packet transport is the main service and the backbone should be able to

respond to unforeseen changes in network parameters in order to provide smooth and

reliable service for the customers. Inspired by Darwin’s seminal work describing the

long-term processes in life, and with the help of graph theoretic metrics, in particular

the ”random-walk betweenness”, we assign a survival value, the network criticality,

to a communication network to quantify its robustness.

We show that the random-walk betweenness of a node (link) consists of the product

of two terms, a global measure which is fixed for all the nodes (links) and a local

graph measure which is in fact the weight of the node (link). The network criticality

is defined as the global part of the betweenness of a node (link). We show that the

network criticality is a monotone decreasing, and strictly convex function of the weight

matrix of the network graph.

We argue that any communication network can be modeled as a topology that

evolves based on survivability and performance requirements. The evolution should

be in the direction of decreasing the network criticality, which in turn increases the

network robustness. We use network criticality as the main control parameter and

we propose a network management system, AutoNet, to guide the network evolution

in real time. AutoNet consists of two autonomic loops, the slow loop to control the
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long-term evolution of robustness throughout the whole network, and the fast loop

to account for short-term performance and robustness issues. We investigate the

dynamics of network criticality and we develop a convex optimization problem to

minimize the network criticality. We propose a network design procedure based on

the optimization problem which can be used to develop the long-term autonomic loop

for AutoNet. Furthermore, we use the properties of the duality gap of the optimization

problem to develop traffic engineering methods to manage the transport of packets in

a network. This provides for the short-term autonomic loop of AutoNet architecture.

Network criticality can also be used to rank alternative networks based on their

robustness to the unpredicted changes in network conditions. This can help find the

best network structure under some pre-specified constraint to deal with robustness

issues.
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Chapter 1

Motivation

Since the inception of networked communication systems, network and system man-

agement has been crucial in ensuring their proper functioning in aspects of configura-

tion, performance, fault, security, and accounting. Today, expert human resources and

complex systems are required to control and manage a plethora of networked devices

and applications, ranging from small sensors to terabit routers. The explosion of the In-

ternet and the proliferation of networked devices (peer-to-peer communications, grids,

service overlay networks, sensor networks, mobile and wireless systems, etc.) creates

unique challenges for the study and research in network and system management.

The key community in this field has come to a consensus that future communication

systems need to be autonomous, managing their own evolution, performance, fault,

and security concerns without explicit user or administrator actions.

The main objective of this thesis is to develop a conceptual architecture for self-

managing systems that can self-configure, self-protect, self-heal, and self-optimize.

In recent years, there are many promising explorations in autonomous and adaptive

system designs, bio-inspired techniques, intelligent management, and self-managing

aspects for various networks and applications (e.g., wireless networks, Web services,

service overlay networks, etc.). Motivated by ideas from these research works, we

1
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establish a framework for self-optimized delivery of transport service in core networks.

1.1 Challenges in Management of Future Networks

For decades, the public communication infrastructure consisted of telephone and data

networks. However, carriers are currently migrating to a consolidated single network

based on IP technology called the Next-Generation Network (NGN) or Broadband

Internet infrastructure. All IP packet based networking has emerged as the widely

accepted vision for the future of telecom networks, covering the use of packetized

IP communication for all types of fixed and mobile networks and services, including

voice.

-New Applications, New Requirements The transformation of Internet into a gen-

eral information network also caused the introduction of different Internet en-

abled applications. Some of the applications such as file-transfer and e-mail still

expected reliability in communication. However, an increasing number of appli-

cations demanded timeliness in delivery of data. For example, while an e-mail

application can wait for a random amount of time for delivery of messages, a

telemedicine application transaction must be finished within a bounded time

period. The TCP/IP suite was not ready for such time-sensitive services as it

had been developed with the target of assured delivery of data. While the rapid

growth of the Internet reflects the success of its best-effort service philosophy, the

need for a more intelligent service delivery platform to offer guaranteed services

is evident.

-Network Complexity Future networks and applications involving mobile agents,

multitude of interconnected networking technologies, and sophisticated dis-

tributed applications drastically increase management complexity and demand
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much higher degree of management efficiency. These new networks will pro-

vide a high-reliability, high quality Internet backbone for providing information

technology services. One of the main challenges for migration to the new infras-

tructure is the maintenance and management of the whole network. Integration

of IP and computing resources makes the problem of resource management more

challenging.

-Cost of Management Current networks are operated using ad-hoc procedures im-

plemented by expert human administrators. Change management in such an

environment is human intensive, slow, and can result in unpredictable failures

and inefficiencies requiring costly recovery. The overall cost of current man-

agement practices is estimated to occupy over 70% of corporate Information

Technology (IT) budgets [1]. Current networks cannot be enlarged without a

corresponding quadruple increase in management costs. As a result manage-

ment has become the most significant barrier to scaling technology investment.

The major components of management overheads are human resources costs,

down-time costs, opportunity costs due to slow service deployment, and user

training costs.

Management automation can significantly impact each of these components. Au-

tomated networks may be expanded without equivalent growth in payroll costs.

Down-time can be reduced through automated policy enforcement, and system-

atic recovery. Service deployment and element configuration can be performed

faster outside direct human control. Finally, user training can be strongly reduced

since a large part of it involves systems management, and failure handling.

-Network Demand Fluctuations Many emerging applications for the Internet are

characterized by highly variable traffic behavior over time that is difficult to

predict. Classical approaches to network design rely on a model in which a
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single traffic matrix is estimated. When actual traffic does not conform to such

assumptions, desired bandwidth guarantees cannot be provided to the carried

traffic.

Currently, Internet Service Providers (ISPs) use gross capacity over-provisioning

and manual routing adaptation to avoid network congestion caused by unpre-

dictable traffic. These lead to increased network equipment and operational

costs. Development of routing infrastructures that optimize network resources

while accommodating extreme traffic unpredictability in a robust and efficient

manner will be one of the defining themes in the next phase of expansion of the

Internet.

-Challenges in Automation of Management Process Attempts at automating network

operations have so far met with limited success due to the design of existing man-

agement architectures. Current architectures assume a traditional client-server

model in which element performance and status information is presented to hu-

man managers. Managers must collect and interpret this information in relation

to network policy. Policy enforcement requires manual change management

over distributed, heterogeneous element configuration repositories. Managers

are further required to manually log and coordinate configuration updates across

multiple elements due to lack of transactional configuration access mechanisms.

These architectural limitations create significant safety, scalability, and reliability

challenges to automation. Several factors make the design of self-configuring

networks under the current management structure challenging. Among them

these are more important:

• The change propagation problem.

• The configuration policy problem.

• Resource allocation problem.



C 1. M 5

1.2 Possible Solution: Autonomic Networking

Next generation network providers will have an application-oriented architecture,

where in the majority of cases connectivity will be provided by IP. While traditional

network providers may become primarily providers of applications, we envision that

core (backbone) IP transport networks will still play a central role. The main service in

a core network is data transport. Core networks should continue delivering best effort

service and at the same time they have to be able to meet different transport service

requirements initiated by multiplicity of heterogeneous users.

Currently, network and service management techniques are mostly manual, and

need human intervention, which leads to slow response times, high costs, and cus-

tomer dissatisfaction. Management is a fundamental aspect of the promise of next

generation networks and services. Managing network services is challenging, yet es-

sential. The main requirements from a powerful network management system (NMS)

are:

• Low cost of operation: The NMS must reduce the cost incurred by service

providers in managing service delivery.

• Flexibility / Adaptability: The NMS must provide flexible management, easy

extensibility in case new services are to be delivered, and must allow the provi-

sioning / re-provisioning of resources to optimize service delivery.

• Responsiveness: The NMS must provide rapid response to each problem that

occurs during the transport service delivery by network providers.

• Scalability: The NMS must ensure service delivery as the number of customers

subscribing to the services offered increases.

• Homogeneity: The NMS must abstract heterogeneity and allow more homoge-

neous and integrated views of resources available.
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• Fault-tolerance: The NMS must ensure service delivery regardless of problems

that occur in the service provider network.

• Efficient use of resources: The NMS must allow the resources at the disposal of

a service provider to be used in an optimal way for service delivery.

• Capability to handle variable demand: The NMS must ensure that the service

delivery continues regardless of the demands put by customers on the service

provider network.

• Service quality assurance: The NMS must maintain the service quality metrics

agreed upon between customers and service providers. If the performance de-

grades below an acceptable threshold level, appropriate remedy actions need to

be taken to ensure service delivery according to the pre-agreed service levels.

• Problem determination: The NMS must integrate data from the resources in the

network, map between anomalies observed and their potential impact on service

delivery, identify the cause of the problem, and execute some actions to remedy

to the situation at hand.

• Policy-based management: The NMS must manage the network using high-level

policies as guidelines for the management actions to be taken in order to ensure

service delivery.

The requirements for a powerful network management system motivate the need to

automate management of next generation networks by evolving to self-managing in-

frastructures, in order to ensure automated service delivery over such infrastructures.

A self-managing system is characterized by four main properties:

• Self-configuring: Autonomic systems will configure themselves automatically

in accordance with high-level policies and customer contracts. Self-configuring
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properties mainly consist of the initial discovery and allocation of resources au-

tomatically. The system should know about the resources available, and should

allocate these resources to the service instances according to an optimization

criteria aiming to ensure the appropriate configuration decisions are made.

• Self-healing: Autonomic systems will detect, diagnose, and repair problems

resulting from bugs or failures in the underlying resources. These problems can

result from faults, congestions, or overloads. An intelligent mechanism is needed

in order to remedy to the problem without human intervention.

• Self-optimizing: Autonomic systems will continuously (periodically or as needed)

tune the available resources in order to optimize their use, both in terms of perfor-

mance and / or cost. This optimization has to be done according to well-defined

goals and objectives. The monitoring of resources is essential for this decision-

making process, hence the need for a controllable and flexible measurement

infrastructure.

• Self-protecting: Autonomic systems will anticipate, detect, identify, and protect

against peaks in demand, malicious attacks, or cascading failures that remain

uncorrected

1.3 Contribution

This thesis makes the following contributions.

1. We present AutoNet, an autonomic management and control system for transport

networks. AutoNet is an architecture to automate data transport delivery in

backbone networks. The thesis presents building blocks of the AutoNet with a

stress on the algorithmic aspects of the blocks.
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AutoNet tries to address the problems listed in section 1.1. AutoNet decreases

the operation cost of the network by reducing human intervention. This in turn

reduces the cost of maintenance and control of the whole network. The demand

fluctuation problem is addressed by proposing appropriate traffic engineering

and network planning methods. Some parts of the AutoNet architecture are

proposed in [2, 3, 4].

2. We design and implement traffic engineering algorithms for AutoNet. A cen-

tral block in AutoNet is the ”general topology manager” which engineers the

traffic of a customer and assigns appropriate virtual networks to the customers.

Algorithms are designed to capture the effect of changes in the network. Link

Criticality Index (LCI) and Path Criticality Index (PCI) are proposed to measure

the sensitivity of a link or a path to changes in network demands and topology.

We present Path Criticality Routing (PCR), an online algorithm to dynamically

assign flows to least critical paths. The PCR algorithm is a heuristic based on LCI

and PCI metrics.

We validate and improve PCR by introducing a probabilistic interpretation of

link and node criticality. A thorough analytical study of the properties of prob-

abilistic link and node criticality is provided and improved versions of PCR are

presented to further strengthen the effectiveness of our proposed traffic engi-

neering method.

PCR algorithm addresses traffic fluctuation problem by running flows in most re-

liable path(s). While PCR algorithm is mainly focused on intra-domain routing,

it also helps alleviate the effect of inter-domain routing policies. Inter-domain

routing may change the source of traffic from a border router to another one caus-

ing a change in active source-destination pairs of the network. PCR algorithm

can sense this traffic shift and find new paths for flow assignment. Different
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aspects of the PCR algorithm are presented in [5, 6].

3. Motivated by ideas from evolutionary science, we develop a framework to model

the behavior of a network in response to traffic shifts and topology changes.

Observations on LCI and PCI and promising results for PCR algorithm motivates

an in depth analysis of the concept of criticality, which is the most important con-

tribution of this thesis. A robustness theory of networks is introduced with the

help of random-walk betweenness, a graph-theoretical metric to quantify topo-

logical load on a node or link. One major result in this part of the research is the

observation that node/link criticality is independent of node/link position. This

leads to the definition of a global metric, network criticality, which can charac-

terize robustness level of a network as well as the criticality of its nodes/links.

Network criticality is studied in detail. It is shown that network criticality is

a strictly convex function of network weight matrix. The resulting convex op-

timization is investigated and the solution is used to derive autonomic traffic

management algorithms as well as network planning procedures.

The concept of network criticality permits us to address the robustness problem

in a more general sense. Network criticality theory provides tools to capture the

effect of changes in network conditions and proposes directions to address them

appropriately by planning a robust network. A probabilistic version of PCR

algorithm is derived as an application of network criticality theory to design

robust routing algorithms. Some parts of our contribution in network criticality

are presented in [7, 8, 9, 10, 11].

4. We develop a software package for traffic engineering algorithms proposed for

AutoNet. PCR algorithm is implemented in C++ and tested for different net-

works. TOTEM [12], an open source software for traffic engineering, provides a

platform for the management of network resources using PCR.



Chapter 2

Background

In this section we review three categories of relevant prior work: 1. Traffic Engineering

(TE) proposals, mostly in the context of MPLS (Multi Protocol Label Switching); 2.

literature on robustness including robust routing and robust network design; and 3.

autonomic computing.

2.1 Traffic Engineering Algorithms

Traffic management consists of techniques to directly or indirectly adapt traffic to

achieve certain objectives. Traffic engineering has received considerable attention

during the last few years [13, 14, 15, 16]. Initially, traffic engineering was focused on

developing solutions to allow large tier-1 service providers to optimize the utilization

of their network. In these large networks, there are several possible paths to reach a

given destination or border router. To achieve a good network utilization, the traffic

should be spread evenly among all the available links. Unfortunately, this does not

correspond to the way traditional IP routing protocols behave.

At the opposite extreme of large tier-1 providers, small providers and multi-homed

corporate networks have different traffic engineering requirements. Their networks

10
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have a simple topology and are frequently over-provisioned. The Tier 1 traffic engi-

neering solutions are not really useful in such networks. For these smaller networks,

the costly resource that needs to be optimized with traffic engineering is their inter-

domain connectivity, i.e. the links that connect them to the rest of the Internet. These

two problem extremes refer, respectively, to intra-domain [17, 18] and inter-domain

[19] traffic engineering.

Intra-domain TE can be further split into IP-based TE (mainly IGP-weight opti-

mization) and MPLS-based TE. IGP (Interior Gateway Protocol) weight optimization

is defined for networks employing Shortest Path First (SPF) protocols, mainly OSPF

(Open Shortest Path First) and ISIS (Intermediate System Intermediate System) [20].

IGP-weight adjustment aims at avoiding congestion by modifying link weights and

hence adapting the routing scheme in the network [21].

Current SPF applications are based on default static link weights. Cisco suggests

these weights to be inversely proportional to the link capacities for OSPF networks

[22]. However, the performance of routing can be enhanced with an intelligent weight

setting that takes the traffic demand matrix into consideration. It is also possible to

extend the basic model with more complex characteristics of the problem, such as

consideration of the link failures, multiple demand matrices, etc. [23]. The biggest

challenge lying in the application of these extensions is the requirement for periodic

weight changes under varying network conditions. Weight changes should be avoided

as much as possible, since they bring instability to the network. Thus, obtaining a

different weight vector for each possible scenario within the network (e.g. different

demand matrices, unavailable links) is not a favorable solution. Robust optimization

techniques should be developed to obtain a single weight setting that performs well

for possible scenarios.

Traffic engineering based on MPLS is more promising than IP-based traffic en-

gineering whose routing is only based on the destination prefix. The fundamental
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problem with MPLS is to compute routes for the Label Switched Paths (LSPs) which

will carry the traffic aggregates associated with the given Forward Equivalent Classes

(FECs). Three well-known solutions are MIRA (Minimum Interference Routing) [24],

PBR (Profile-based Routing) [25], and MATE (MPLS Adaptive Traffic Engineering)

[26].

2.1.1 Minimum Interference Routing Algorithm (MIRA)

Minimum Interference Routing Algorithm (MIRA) [24] is one of the prestigious works

in LSP routing. Unlike prior methods, MIRA considers the effect of source-destination

pairs on a routing plan. A number (max-flow) is assigned to every source-destination

pair , quantifying the maximum amount of traffic that can be sent through the network.

MIRA is based on the idea that running traffic on some of the links may decrease the

max-flow of source-destination pairs. This process is called ”interference”. MIRA

tries to find the links that cause interference on a specific source-destination pair and

avoids using them in the LSP construction phase. Indeed MIRA tries to build the paths

in a way to minimize the interference. While the idea of ”interference” is a nice one,

there are some problems with the algorithm introduced in [24]. MIRA concentrates on

the effect of interference on just one source-destination pair while there are situations

that some links can cause bottleneck on a cluster of node pairs. [25] investigates three

benchmark networks: parking-lot (Fig. 3.6), concentrator (Fig. 3.7) and distributor

(Fig. 3.8) and shows that MIRA is unable to respond to the network flow requests

correctly and causes blocking for a huge number of incoming flows in these networks.

Another issue with MIRA is its computational complexity compared with shortest path

and widest shortest path. Finally MIRA is designed to provide bandwidth guaranteed

paths for MPLS networks. It does not address any other QoS constraint in the network.
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2.1.2 Profile-Based Routing (PBR)

Profile-based routing (PBR) is another proposal for routing of bandwidth guaranteed

flows in MPLS networks [25]. PBR assumes that the source-destination pair and the

traffic-profile between them are known. According to the PBR, a traffic profile is the

aggregate bandwidth demand for a specific traffic class between a source-destination

pair. The PBR has two phases. In the offline phase a multicommodity flow assignment

problem (an optimization problem) is solved with the goal of routing as much com-

modity as possible. Each profile is considered as a separate commodity. The result

of this phase is used to assign capacity from the links to each commodity. The online

part will use these pre-allocated capacities to route the flows per class. In this phase

PBR simply uses the shortest path algorithm and because of this the computational

complexity of the online phase in PBR is less than MIRA and comparable with SP

and WSP. However PBR has also some problems. Like MIRA, PBR only considers

bandwidth and does not consider multi constraint QoS problem. Furthermore, in [27]

the authors introduce a network called ”Rainbow Topology” (Fig. 3.9) and show that

the performance of PBR in this network is much worse than MIRA and WSP. The

main reason is that PBR relies on whatever the offline part based on the traffic profile

suggests which is not always appropriate.

2.1.3 MPLS Adaptive Traffic Engineering (MATE)

MPLS Adaptive Traffic Engineering (MATE) is a state-dependent traffic engineering

mechanism to distribute network load adaptively [26] based on a quasi-static routing

proposal by R. Gallager [28]. MATE assumes that several explicit LSPs have been

established between an ingress and egress node in an MPLS domain using a standard

protocol like RSVP-TE (Resource Reservation Protocol-Traffic Engineering extension)

[29]. The goal of the ingress node is to distribute the traffic across the LSPs. MATE
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is intended for traffic that does not require bandwidth reservation, for example best-

effort traffic. The efficacy of any state-dependent traffic engineering scheme depends

crucially on the traffic measurement process. MATE requires only the ingress and the

egress nodes to participate in the measurement process of packet delay and loss and

where the network does not provide bandwidth guaranteed services.

MIRA, PBR, and MATE are more efficient than the classical WSP (Widest Shortest

Path) [30] and SWP (Shortest Widest Path) [31]. MPLS also allows to reroute LSPs,

or change their bandwidth reservations, to make room for other more important ones

[32], and provides protection/restoration methods in case of failures [33, 34, 35, 36] by

setting up backup LSPs. Inter-domain TE is important economically given the high

cost of inter-domain links. This problem is usually solved by configuring the BGP

routers manually in a trial-and-error manner [37, 38].

2.2 Traffic Management Systems

There are some integrated network management systems proposed in literature to

address traffic engineering issues faced in Internet. Further, some commercial products

are developed to optimize the network performance. In the following some of these

management systems are introduced.

2.2.1 RATES

Routing And Traffic Engineering Server (RATES) [39] is a software system developed at

Bell Laboratories for MPLS traffic engineering and is built using centralized paradigm.

RATES communicates only with the source of the route and spawns off signaling from

the source to the destination for route setup. RATES views this communication as

a policy decision and therefore uses Common Open Policy Service (COPS) protocol
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[40]. RATES uses a relational database as its information store. RATES implements

Minimum Interference Routing Algorithm (MIRA) [24] to route LSPs. It consists of the

following major modules: explicit route computation, COPS server, network topology

and state discovery, dispatcher, Graphical User Interface (GUI), an open Application

Programming Interface (API), data repository, and a message bus connecting these

modules. In summary, RATES is a well designed Traffic Engineering (TE) tool, but TE

is only performed for the routing of bandwidth guaranteed LSPs in MPLS networks.

2.2.2 TEQUILA

Traffic Engineering for QUality of service in the Internet at LArge scale (TEQUILA)

[41] proposes an integrated architecture and associated techniques for providing end-

to-end QoS in a DiffServ-based Internet. In TEQUILA, a framework for Service Level

Specification (SLS) has been produced, an integrated management and control archi-

tecture has been designed and MPLS and IP-based techniques are deployed. The

TEQUILA architecture includes control, data and management planes. The manage-

ment plane aspects are related to the concept of Bandwidth Broker (BB) and each

Autonomous System (AS) should deploy its own BB. The BB includes components

for monitoring, traffic engineering, SLA (Service Level Agreement) management and

policy management. The TE subsystem is further decomposed into modules of traffic

forecast, network dimensioning (planning), dynamic route management, and dynamic

resource management.

The MPLS network dimensioning in TEQUILA is based on the ”hose model” [42]

which is associated with one ingress and more than one egress nodes. The dynamic

route management module considers: a) setting up the forwarding parameters at the

ingress node so that the incoming traffic is routed to LSPs according to the bandwidth

determined by network dimensioning, b) modifying the routing according to feedback

received from network monitoring and c) issuing alarm to network dimensioning in
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case available capacity cannot be found to accommodate new connection requests.

The dynamic resource module aims at ensuring that link capacity is appropriately dis-

tributed among the PHBs (Per Hop Behavior) sharing a link, by appropriately setting

buffer and scheduling parameters. TEQUILA provides a comprehensive architecture,

but the algorithms and techniques to be implemented in TEQUILA have not been

defined in detail, and their quantitative evaluation has not been carried out.

2.2.3 TEAM

Traffic Engineering Automated Manager (TEAM) [34] is an automated manager for

management of DiffServ-based MPLS networks. This manager is a centralized au-

thority for adaptively managing a DiffServ/MPLS domain and it is responsible for

dynamic bandwidth and route management. TEAM is designed to provide an ar-

chitecture that can manage large scale MPLS/DiffServ domains without any human

intervention. TEAM constantly monitors the network state and reconfigures the net-

work for efficient handling of network events. Under the umbrella of TEAM, new

schemes for Label Switched Path (LSP) setup/tear-down, traffic routing, and network

measurement are proposed and evaluated through simulations. Also, extensions to

include Generalized MPLS (GMPLS) networks and inter-domain management are

proposed. The main drawback of TEAM is that there is no guarantee to reach at the

global optimum point. Further, TEAM is only applicable to (DiffServ-based) MPLS

networks.

2.2.4 Commercial Products

Some tools also exist to allow content providers to optimize their outgoing traffic [43].

Earlier works on inter-domain TE include methods to select the best peering in a large

network [43, 44]. Large network operators have also studied their traffic repartition and
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their impact on inter-domain TE [45, 46, 47]. Several commercial network optimization

toolboxes already exist, e.g. MATE (Cariden) [48], Netscope [49], TSOM (Alcatel) [50]

and SP Guru (Opnet) [51].

All these traffic engineering tools are centralized and propose exact or heuristic

methods. Most tools are suitable to solve what-if scenarios that allow a network op-

erator to evaluate the impact of a change such as an IGP weight change. Beside this

simulation mode, MATE also provides an IGP weight optimizer. All these tools ex-

cept Netscope also support traffic engineering methods for MPLS networks, including

he computation of backup paths for protection and restoration. Most tools rely on

the knowledge of link loads and the existing MPLS LSPs, but MATE also provides a

method to derive the traffic matrix from the link loads. The main drawbacks of the

commercial tools are their lack of detailed technical public information about their

algorithms and the difficulty to upgrade them by new research proposals.

This thesis present a method to engineer the traffic of a network based on the

importance of its links and nodes. We assign a survival value to each link/node and

quantify the criticality of a specific path based on the survival value of its links. The

paths with low criticality are good candidates to run the demand flow. We compare our

proposed traffic engineering method with some other available routing algorithms. We

show that our approach is more robust and can support more diverse range of network

topologies through simulations on some well-known network topologies.

2.3 Robustness in Networks

In this thesis robustness is studied from two different points of view. First, we consider

design of robust networks which involves selecting appropriate topologies and assign-

ing suitable capacities in order to provide specified degree of robustness. Second, we
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consider design of on-line algorithms for robust traffic engineering in networks. In

this section we highlight some previous research work in this field.

2.3.1 Robust Network Design

In [52] robustness of network topologies is studied. Graph-theoretic concepts are

used to investigate which network topologies are the most robust. Authors argue that

”node connectivity” is the most useful metric in graph theory to study the robustness

problem. They examine the relationship between node connectivity and the degree

of symmetry of the network and they suggest that it is important for robust networks

to satisfy node similarity and optimal connectivity conditions. Two nodes are similar if

there is an automorphism that can map one to the other. A network is node similar if

all of its nodes are similar. A graph is optimally connected if its node connectivity is

equal to the link connectivity metric and both equal to the minimum node degree of

the graph. [52] investigates the relationship between these conditions, and arrives at

the result that a network provides maximum resistance to node destruction if it is both

node-similar and optimally connected. The paper then describes a number of ways to

design robust networks satisfying these conditions.

[53] introduces a new measure of symmetry, symmetry ratio of a network. This

metric is defined to be the ratio of the number of distinct eigenvalues of the network

to the diameter. This metric is used to study the robustness of a network topology in

the face of targeted attacks.

A way to design backbone networks is proposed in [54] that is insensitive to

the traffic matrix (i.e., that works equally well for all valid traffic matrices), and that

continues to provide guaranteed performance under a user-defined number of link and

router failures. The authors use Valiant Load-Balancing method and argue that it is a

promising way to design robust backbone networks. The approach was first proposed

by Valiant for processor interconnection networks [55], and has received recent interest
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for scalable routers with performance guarantees [56, 57]. [54] applies Valiant method

to backbone network design problem and provides appropriate capacity allocation for

the links of a logical full mesh topology to support load-balancing for all possible traffic

matrices. In Valiant load-balancing method, traffic destined for a sink d is forwarded

to intermediate hops with equal splits to all nodes, and then it is forwarded to the

destination d. Delay propagation is one of the shortcomings of this method.

2.3.2 Robust Routing

Network operators would like their network to support current and future traffic

matrices, even when links and routers fail. Not surprisingly, no backbone network can

do this today: It is hard to accurately measure the current matrix, and harder still to

predict future ones. Even if the matrices are known, how do we know a network will

support them, particularly under failures? As a result, today’s networks are designed

in a somewhat ad-hoc fashion, using rules-of-thumb and crude estimates of current

and future traffic. To tackle this problem, an abundance of work has been done.

2.3.2.1 Robust Shortest Path Problem

The Absolute Robust Shortest Path problem consists in finding a path corresponding

to the minimum weight over a set of scenarios. Each scenario corresponds to a pre-

determined set of edge weights. The motivation for studying this problem comes from

telecommunications where a communication network is used to send packets from a

given source to a given destination. The aim is to determine a shortest path between

some given source and destination under some criteria (total delay, congestion, . . . ).

The network manager has to choose a robust path where the total delay is acceptable

regardless of the realized congestion [58, 59].
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2.3.2.2 Robust Solution to Minimize the Maximum Regret

One common approach to robustness consists in finding a robust solution which

minimizes the maximum regret, i.e., the worst case scenario. Several approaches

have been proposed. In [60] the focus is on minmax regret for optimization over

uniform matroid. [61] and [62] work on ellipsoidal uncertainty. [63] investigates

robust optimization with control of the conservation of a solution. The focus of

[64] is on minmax regret robust optimization and [65] also works on absolute and

relative robustness for spanning tree problem. In Robust Shortest Path problem, the

uncertainty is only related to link weights and does not take into account the possible

evolutions of the network topology. Future telecommunication networks may become

very dynamic, thus, an existing route between two protagonists may appear less

profitable after adding new connections or nodes, and it may have to be reconsidered

with the network evolution. Further cost may appear during this evolution, especially

for resource dis-allocation and re-allocation.

2.3.2.3 Oblivious Routing

Another category of algorithms in the area of robust routing is oblivious routing

[66, 67, 68, 69, 70, 71]. In oblivious routing, routes are computed to optimize the worst-

case performance over all traffic demands, therefore, the computed routes are prepared

for dynamic changes in traffic demands. In their pioneering work [66], Applegate and

Cohen propose an efficient algorithm to compute the worst case oblivious routing for

real networks. They also extend oblivious routing to compute failure scenarios [67].

They found that the oblivious ratio is typically around a factor of 2. A penalty as

high as 100% may be acceptable when traffic demands are completely unpredictable,

but it is a high cost to pay under predictable demands. In other words, oblivious

routing takes a pessimistic point of view and may not be appropriate in relatively

stable periods or stable networks.



C 2. B 21

There are also recent studies on the interaction of intra-domain traffic engineering

with inter-domain routes and traffic. Examples include evaluation [72, 73, 74, 75, 76]

and design [77, 78]. Recently, researchers observed that intra-domain traffic engineer-

ing within an AS can cause substantial traffic changes outside the AS [79, 77, 73]. For

example, Agarwal et al. report in [79] that for an operational tier-1 ISP, intra-domain

traffic engineering can cause up to 25% of its traffic to a neighboring AS to shift the

exit point. Such traffic changes could trigger routing changes at the neighboring AS,

and result in network instability. Motivated by these studies, another proposal for

traffic engineering is introduced in [15]. Both prediction-based routing and oblivious

routing are used in this work. Routing is optimized for predicted demands to achieve

high efficiency under normal network conditions; in the meantime bounds we placed

on the worst-case performance penalty to ensure acceptable performance when the

network experiences unpredictable changes. As many of other research works in this

category, [15] does not provide absolute bandwidth guarantee. In addition, it is an

off-line traffic engineering algorithm.

An extension to Valiant load-balancing method for routing ([54]), two-phase rout-

ing, is proposed in [70, 80],where a message for a specific destination is sent to some

intermediate nodes with possibly unequal split ratios and the proposed algorithm

considers the problem of minimum bandwidth (physical) routing under router node

capacity constraints. Worst case efficiency in two-phase routing is poor and delay

propagation could not be controlled.

In this thesis we investigate the problem of oblivious routing from a different

perspective. We assign a value to each path in a network to quantify its sensitivity

to traffic shifts and topology changes. We propose a routing algorithm that assigns

demands to less sensitive paths.
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2.4 Autonomic Computing

Autonomic computing is the ability of an IT infrastructure to adapt to change in

accordance with business policies and objectives. Quite simply, it is about freeing IT

professionals to focus on higher-value tasks by making technology work smarter, with

business rules guiding systems to be self-configuring, self-healing, self-optimizing,

and self-protecting.

2.4.1 What is Autonomic Computing?

The term ”autonomic” comes from an analogy to the autonomic central nervous sys-

tem in the human body, which adjusts to many situations automatically without any

external help. We walk up a flight of stairs and our heart rate increases. If it is hot,

we perspire. If it is cold, we shiver. We do not tell ourselves to do these things, they

just happen. Similarly, the way to handle the problem of managing a complex IT

infrastructure is to create computer systems and software that can respond to changes

in the IT (and ultimately, the business) environment, so the systems can adapt, heal

and protect themselves.

The cost of technology continues to decrease, yet overall IT costs do not. With the

expensive challenges that many companies face, IT managers are looking for ways to

improve the return on investment of IT by:

• Reducing total cost of ownership

• Improving quality of service

• Accelerating time to value

• Managing IT complexity

The autonomic computing vision is for intelligent, open systems that:
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• Manage complexity

• ”Know” themselves

• Continuously tune themselves

• Adapt to unpredictable conditions

• Prevent and recover from failures

• Provide a secure environment

Autonomic computing systems consist of four attributes. As illustrated in Fig. 2.1,

they are:

-Self-configuring With the ability to dynamically configure itself, an IT environment

can adapt immediately with minimal intervention to the deployment of new

components or changes in the IT environment. Depending on a particular task’s

context, a system shall achieve that its components automatically assemble into a

constellation that is both flexible and without redundancies to perform that task.

-Self-healing Autonomic systems should be conceived with the capabilities to au-

tonomously detect, diagnose and repair localized problems resulting from soft-

ware or hardware failures. In a problem situation, a system component will be

attributed the task to report the bug, as well as the source to a manager compo-

nent. This requires the capability of the system components to be aware of each

other and each others resources. To fix a bug occurring in a system component,

this component may be able to localize the appropriate manager component ca-

pable to relay the faulty component or to provide prophylaxis for healing the

diseased component.

-Self-optimizing Self-optimization refers to the ability of the IT environment to ef-

ficiently maximize resource allocation and utilization to meet end users’ needs
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Figure 2.1: Main Attributes of Autonomic Computing

with minimal intervention. In the near term, self-optimization primarily ad-

dresses the complexity of managing system performance. In the long term,

self-optimizing components may learn from experience and automatically and

pro-actively tune themselves in the context of an overall business objective.

-Self-protecting A self-protecting environment allows authorized people to access the

right data at the right time and can take appropriate actions automatically to make

itself less vulnerable to attacks on its run-time infrastructure and business data. A

self-protecting IT environment can detect hostile or intrusive behavior as it occurs

and take autonomous actions to make itself less vulnerable to unauthorized

access and use, viruses, denial-of-service attacks, and general failures.

2.4.2 Autonomic Computing Concepts

In an autonomic environment, components work together, communicating with each

other and with high-level management tools. They can manage or control themselves

and each other. Components can manage themselves to some extent, but from an

overall system standpoint, some decisions need to be made by higher level components

that can make the appropriate trade-offs based on policies that are in place. Let us

start by looking at how a single entity is managed in an autonomic environment. Fig.

2.2 represents the control loop that is the core of the autonomic architecture.
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Figure 2.2: General Autonomic Control Loop

Figure 2.3: Manageability Interface in Autonomic Architecture

2.4.3 Managed Resources

The managed resource is a controlled system component. The managed resource can

be a single resource or a collection of resources. The managed resource is controlled

through its sensors and effectors. The sensors provide mechanisms to collect informa-

tion about the state and state transitions of an element. Sensors can be implemented

using a set of get operations to retrieve information about the current state, or a set of

management events (unsolicited, asynchronous messages, or notifications) that flow

when the state of the element changes in a significant way, or both. The effectors

are mechanisms that change the state (configuration) of an element. In other words,

the effectors are a collection of set commands or application programming interfaces

(APIs) that change the configuration of the managed resource in some way.

The combination of sensors and effectors form the manageability interface (referred

to as the touch-point; see Fig. 2.3) that is available to an autonomic manager. The
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architecture encourages the idea that sensors and effectors are linked together. For

example, a configuration change that occurs through effectors should be reflected as a

configuration change notification through the sensor interface.

Web services can (and will) be used to implement sensor-effector functions. By

utilizing a Web services architecture for communication to the managed resource

touch-point, current approaches to resource management can be reused and wrapped

with a Web service.

2.4.4 Autonomic Managers

The autonomic manager is a component that implements the control loop. The archi-

tecture dissects the loop into four parts that share knowledge:

• The monitor part provides the mechanisms that collect, aggregate, filter, manage,

and report details (metrics and topologies) collected from an element.

• The analyze part provides the mechanisms that correlate and model complex

situations. These mechanisms allow the autonomic manager to learn about the

IT environment and help predict future situations.

• The plan part provides the mechanisms that structure the action needed to

achieve goals and objectives. The planning mechanism uses policy information

to guide its work.

• The execute part provides the mechanisms that control the execution of a plan

with considerations for on-the-fly updates.

The four parts work together to provide the control loop function. Fig. 2.2 shows

a structural arrangement of the parts. The bold line that connects the four parts

should be thought of as a common messaging bus rather than a strict control flow.

In other words, there can be situations where the plan part may ask the monitor part
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to collect more or less information. There could also be situations where the monitor

part may trigger the plan part to create a new plan. The four parts collaborate using

asynchronous communication techniques, like a messaging bus.



Chapter 3

Path Criticality Routing

In this chapter we present the conceptual idea of our management system, AutoNet.

We propose a two-loop control and resource management system in AutoNet. Our

focus is in one block, the general topology manager, which is the main block dealing

with traffic engineering issues. The main goal of the topology manager block is to

distribute traffic flows among different paths so as to maximize network robustness.

We develop an algorithmic framework for robust traffic engineering methods that

can be used in this block. We propose Path Criticality Routing (PCR) algorithm as a

heuristic to find robust routes in AutoNet. PCR became the main inspiration for the

theoretical study which follows in subsequent chapters.

3.1 The Proposed Management Approach

The conceptual idea underlying our management architecture is inspired by the con-

cept of survival value in the theory of evolution. Evolutionary processes are good

examples of self-organizing systems. Darwin’s seminal work describing the long-

term processes in life, and the theory of ”natural selection” [81], suggests viewing the

management architecture as an evolutionary process that evolves by natural selection

28
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in response to environmental changes. According to the natural selection process

slight variations, if useful, are preserved. Darwin’s theory assigns a survival value to

all the processes in the world. This value is a measure of resistance or robustness of a

process or element to the changes in nature. In other words, survival value indicates

how adaptable a system is to unexpected events.

In this thesis we are trying to find appropriate metrics to model and quantify the

survival value of communication networks based on their characteristics including

topology, capacity and offered/accepted traffic. At the same time we build conceptual

architecture for autonomic management and control systems which are capable of

reacting to the survival value.

Darwin’s theory does not consider any ”final target” for the evolutionary changes

in the nature, but one can see that the survival as the goal can lead to an implicit

optimization problem. Therefore we arrive at the view that the first goal of the man-

agement system is to keep the system ”alive” under unforeseen circumstances. For

our purposes, the system (network) can be modeled as a graph, and our main service

is data transfer.

In any network, from small designed networks to large scale social networks or the

Internet, connectivity is a crucial factor as it is necessary for communication purposes.

Therefore, the first parameter to consider in the survival value is the connectivity of the

graph. Any communication network should evolve in a way that guarantees future

connectivity to the extent possible.

The management system can be viewed as an optimization process that attempts to

converge to some optimum steady state that provides some required level of connec-

tivity. Therefore, the optimization deals with the real-time efficiency and performance

of the whole network as a short-term goal, while it strives to maintain and improve

the survival value of the network as a long-term goal. To achieve long-term and short-

term goals, one needs to have control mechanisms to monitor the present situation
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Figure 3.1: Self-Management Architecture

and make decisions accordingly using a corresponding controller. A simple model of

such a system with two feedback loops is shown in Fig. 3.1. In long-term loop the

control system learns a policy evolved as the result of gradual changes in the controlled

system. In this evolutionary process, sometimes the control system cannot provide

an appropriate policy. In this situation a re-planning process takes place and the new

plan is put in place.

We used this short/long loop approach to the network management problem to

design our management system, AutoNet. The main idea behind AutoNet, is to design

appropriate long-term and short-term control loops to achieve the desired connectivity

and performance simultaneously. Our performance metric should directly reflect our

traffic engineering goal, the optimization of robustness. In particular AutoNet must

provide robustness against changes in topology, such as link/node failures or changes

in capacity, uncertainty in traffic demands, and changes in community of interest

(active source-sink pairs). In later sections of this chapter we shed more light on this

view of robustness and show that we can reach at an appropriate metric to quantify

survival value by analyzing robustness properties of a network. In AutoNet, the
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short-term and long-term control loops are designed to achieve robustness first and

goodness or efficiency of the other QoS metrics next.

We have used IBM’s ”Autonomic Computing” [82] framework as a reference model

and built our ”Autonomic Networking” architecture based on the model’s philosophy

and the techniques adopted from autonomic computing (AC). While AC is useful to

describe the evolution of a network to the stable position and configuration, there is still

a problem with large networks such as Internet. Having the information of the Internet

topology and its other attributes is next to impossible. The traffic cannot be monitored

in real-time and there are unavoidable delays in procuring traffic information that is

to be used to control and manage the whole network.

Furthermore, in the Internet performance is sacrificed in exchange for flexibility,

scalability and robustness. In a holistic view, this makes the management of large

networks a challenging task that requires human intervention in many situations. For

this reason, there has been a proliferation of overlay networks on top of IP networks.

Overlays and virtual networks are smaller in size and can be easily managed. It

is possible to offer QoS-based services on top of overlay networks that improve on

the best-effort nature of the Internet. AutoNet uses the concept of virtual networks

(VN) and overlays to ease the structure and algorithms. In chapter 6, we present the

architecture of AutoNet based on this methodology.

3.1.1 Conceptual Architecture of AutoNet

The overall conceptual architecture of the AutoNet autonomic management system is

shown in Fig. 3.2. We introduce a hierarchical arrangement of two parts, a long-term

(slow) and short-term (fast) part. The short-term part reacts to the network changes in

real-time and the ’slow’ part takes actions over a longer time-horizon.

The long-term part of AutoNet develops the evolution part based on an initial

knowledge base that consists of the business policy as well as empirical results from
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Figure 3.2: Conceptual Architecture of AutoNet

previous experience about customer demand, network element reliability, price elas-

ticity, etc.

The network plan includes the translation of business policy into policies that are

meaningful to the short-term part for use in the handling of customer requests. Our

methodology is to convert the SLA to metrics from graph theory to capture both the

topological aspects and SLA requirements. The plan also includes the synthesis of

the SLA templates that will be offered to customers taking into account forecasted

demand, resource requirements and price elasticity. All these planning parts are

aimed at providing robustness through the long loop while providing immediate

performance with the short-term loop. Finally, the plan also includes pre-partitioning

of network resources to facilitate the handling of customer requests by the short-term

part. For example, the plan may include pre-provisioned routes per each (ingress,

egress) pair or more generally pre-provisioned VNs.

Because of the autonomic nature of the overall system, the short-term part needs

to interact with the slow (long-term) part when carrying out certain self-healing, self-

optimizing, and self-configuring functions (bringing robustness as the final result).

This mainly occurs when un-predictable events take place, such as sudden surges in

demand or major failures in the network, or in the case of adapting to gradual changes.
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In these situations the short-term part will respond to provide a fast real-time cure, but

will act to provide a long-lasting cure by making a request for re-dimensioning to the

slow part, if necessary. The interaction between slow and fast parts of the system could

also be the result of detecting inefficiency in resource usage in the fast part. In this case

a request for re-dimensioning is sent to the slow part to re-optimize the allocation of

resources. Indeed these interactions are evolutionary processes which bring stability

and robustness for AutoNet.

The short-term or ’fast’ part of the system consists of four major building blocks

that are driven by customer requests. As shown in Fig. 3.2, the ’SLA Interpreter’

block is responsible for negotiating the SLA with the customer and for converting the

SLA contract to an appropriate form understandable by a ’General Topology Manager’

block. This latter block plans the route (or VN) and resource allocation based on the

converted SLA, the already allocated resources, and current network demands. The

results are delivered to the ’General Resource Manager’ block which executes orders

that allocate the appropriate amount of resources. The ’Monitoring’ block continuously

monitors the system to identify possible problems (e.g., SLA violations, failure alarms

and so on). After filtering, it sends information to the ’General Topology Manager’ to

develop an immediate cure, and in parallel it may send a message to the ’Analysis’

block of the ’slow’ part to report an unpredictable event. If appropriate, the ’Analyze’

block may initiate new network planning.

We will return to this conceptual architecture in chapter 6 and we will develop the

details of our system to realize this conceptual architecture. In the remaining of this

chapter our focus is in the general topology manager (Fig. 3.2), which is the main

block dealing with traffic engineering issues in AutoNet. We develop a fast algorithm

for distributing the traffic demands to appropriate paths of the network to maximize

the robustness.
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3.2 Robustness Quantification

This first step towards designing a robust routing algorithm is to clarify the meaning

of robustness. In this thesis we provide a quantitative definition of robustness.

3.2.1 Definition of Robustness

From a control-theoretical point of view, robustness is the capability of a network to

keep itself in a stable mode when changes take place in different parameters of the

network in unpredictable fashion. In order to fix our notion of robustness we begin

with our definition of robustness. There are three major types of changes that may

affect the performance of the network:

1. Changes in network topology including capacity.

2. Changes in community of interest (CoI), the set of active source-destination pairs.

3. Changes in Traffic demand.

Throughout this thesis, we call a ”network topology”, ”network control strategy”

or a ”traffic engineering method” robust if its performance is not sensitive to changes

in topology, traffic or community of interest. We aim to develop robust methods by

studying the interaction between flow assignment and network structure with the help

of graph-theoretical concepts.

In order to have a robust routing plan we need to recognize the effect of link and

node changes on network connectivity. Connectivity is a well studied subject in graph

theory [52, 53] which allows us to define some useful metrics to measure the sensitivity

of the network to node or link failures.

Capacity of a network is another key issue in flow assignment problem. Clearly

the paths with more capacity are desired since the low capacity paths are prone to
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congestion. Hence an intelligent routing plan should avoid routing the flows onto the

low capacity paths and should request for capacity increases for those paths if possible.

Finally traffic demand directly affects the routing plan. The traffic demand profile

may change from time to time (e.g. week-day traffic profile). We need to find routing

schemes that are robust to the predicted traffic patterns and unpredicted ones to the

extent possible.

We will next introduce two metrics to estimate the effect of these characteristics:

Link Criticality Index (LCI) and Path Criticality Index (PCI) which are based on the

theory of graphs [83, 84]. We will subsequently propose our first heuristic routing

algorithm based on PCI. This algorithm provides the ”general topology manager”

block of AutoNet.

3.2.2 Link Criticality Index (LCI)

Freeman [83] introduced a useful measure in graph theory called betweenness cen-

trality. Suppose that we are measuring the centrality of node k. The betweenness

centrality of the node is defined as the share of times a node i traverses a node k in

order to reach a node j via the shortest path(s). A similar definition of betweenness

centrality is also valid for the links of a network graph. Suppose n(sp)
sd is the number of

shortest paths between source-destination pair s−d and n(sp)
sd (l) is the number of shortest

paths between source s and destination d containing the specific link l . According to

the original definition of betweenness, the betweenness of link l for source-destination

pair s − d would be
n(sp)

sd (l)

n(sp)
sd

. The total betweenness of link l is the sum of shortest path

betweennesses of link l for all possible source-destination pairs: bl =
∑

s,d
n(sp)

sd (l)

n(sp)
sd

.

Example 3.2.1 Fig. 3.3 shows a high-level view of a network with 3 different active source

destination pairs s1 − d1, s2 − d2, s3 − d3. There are 3 paths between s1 and d1 (P1, P2, P3), 2

paths between s2 and d2 (P4, P5), and 3 paths between s3 and d3 (P6, P7, P8). Among these
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paths P1, P3, P5, P6, P7, P8 are shortest paths. Further, paths P1, P2, P5, P7, P8 include link

l. These information are summarized in table 3.1. Based on table 3.1 shortest-path betweenness

of link l can be obtained for different source-destination pairs as follows:

b(sp)
s1d1

(l) =
1
2

b(sp)
s2d2

(l) =
1
1

b(sp)
s3d3

(l) =
2
3

The shortest-path link betweenness is then:

b(sp)(l) =
1
2

+
1
1

+
2
3

=
13
6

Figure 3.3: Test Network to Study Link Be-

tweenness

Path Src Dest SP? l in Path?

P1 s1 d1 Y Y

P2 s1 d1 N Y

P3 s1 d1 Y N

P4 s2 d2 N N

P5 s2 d2 Y Y

P6 s3 d3 Y N

P7 s3 d3 Y Y

P8 s3 d3 Y Y

Table 3.1: Path Characteristics for the Test

Network

In order to provide robustness, the shortest path is not necessarily the best path

because it may overload some paths and underload other possible paths. For this



C 3. P C R 37

reason we modified the definition of link/node betweenness (we call it deterministic

betweenness) as follows:

Definition 3.2.2 Let nsd be the total number of simple (loop-free) paths between source-

destination pair s − d and nsd(l) be the total number of simple paths between source s and

destination d containing the specific link l. Now one can define deterministic betweenness of

link l for source destination pair s− d as the fraction nsd(l)
nsd

. The total deterministic betweenness

of link l is the sum of all these fractions for active source-destination pairs.

b(l) =
∑

(s,d)∈CoI(G)

nsd(l)
nsd

(3.1)

By active source-destination pairs in definition 3.2.2 we mean those nodes which are

actively sending and/or receiving traffic,or in brief community of interest for network

G (CoI(G)). One can easily see two major differences between our modified definition

of betweenness and the original shortest path one:

• In deterministic betweenness all the paths are involved, whereas in shortest-path

betweenness only shortest paths are considered.

• In deterministic betweenness only the active path set (CoI) is involved in defini-

tion of betweenness, whereas in original shortest path betweenness, all possible

node pairs are considered.

Example 3.2.3 For the network of example 3.2.1, one can find the deterministic betweenness

of link l for different source-destination pairs as follows:

bs1ld1 =
2
3

bs2ld2 =
1
2

bs3ld3 =
2
3

b(l) =
2
3

+
1
2

+
2
3

=
11
6
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Figure 3.4: Weighted Trap Network

Example 3.2.4 Consider network of Fig. 3.4 which is called ”Trap Network”. Details of

information about deterministic betweenness is given in Table 3.2. In this table, psx(d) shows

the deterministic betweenness of link x for source-destination pair s − d.

The trap topology is well-known in the context of survivable routing. Suppose

there is a demand from node 1 for node 6. The min-hop path from node 1 to 6 is the

straight line 1 → 3 → 4 → 6. It appears that this path is the best choice to run the

demand, but in survivable routing we need to assign backup paths to each primary

route. In trap network there is no link-disjoint backup path for 1 → 3 → 4 → 6.

Therefore it would be beneficial to choose path 1 → 2 → 4 → 6 (1 → 3 → 5 → 6)

as the primary route for demands from 1 to 6. Then the link-disjoint backup path

will be 1 → 3 → 5 → 6 (1 → 2 → 4 → 6). We will return to the trap topology in

chapter 5 and will find its optimal weight assignment to maximize network robustness.

Deterministic link/node betweenness can characterize the topological load of a

link/node regardless of the nature of the traffic. We use the available capacity of link

l to characterize its load carrying capacity. Now we define our metric to quantify the

robustness of a given link.

Definition 3.2.5 Link Criticality Index (LCI) of link l is the deterministic betweenness of link



C 3. P C R 39

s-d No. of Paths nsa(d) nsb(d) nsc(d) nst(d) nse(d) ns f (d) nsg(d)

1-2 3 1 2 2 1 1 1 1

1-3 3 2 1 2 1 1 1 1

1-4 3 1 2 1 1 1 1 1

1-5 4 2 2 2 2 2 2 2

1-6 4 2 2 2 2 2 2 2

2-3 3 1 1 2 1 1 1 1

2-4 3 2 2 1 1 1 1 1

2-5 4 2 2 2 2 2 2 2

2-6 4 2 2 2 2 2 2 2

3-4 3 1 1 1 1 1 1 1

3-5 3 1 1 1 1 1 2 2

3-6 3 1 1 1 1 1 2 1

4-5 3 1 1 1 1 2 1 1

4-6 3 1 1 1 1 2 1 2

5-6 3 1 1 1 1 2 2 1

Betweenness 61
3 62

3 62
3 62

3 62
3 62

3 61
3

Table 3.2: Deterministic Betweenness for the Links of Trap Network
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l divided by its available capacity (capacity - demand).

More precisely, the link criticality index (LCI) of link l = (i, j) can be written as

follows.

I(x) = 1 i f x > 0 otherwise 0

LCI(i, j) =
bi j

cr(i, j)
×

1
I(cr(i, j) − γi j)

where I(x) is the indicator function, LCI(i, j) is the total criticality of link (i, j), cr(i, j)

is the available capacity of link (i, j), bi j is the deterministic betweenness of link (i, j)

and γi j is the present demand on link (i, j). The indicator function is added in the

denominator to guarantee that if the demand is more than the available capacity of the

link, the demand is not accepted in this link (the link criticality would be effectively

infinite in this situation). Definition of the link criticality is clearly showing that the

criticality of a link is increasing if more load is carried through this link.

LCI captures the effects that we would like to quantify. One can see that between-

ness centrality captures the effect of load. The higher the link betweenness, the more

the chance of congestion. On the other hand, the available capacity has an inverse

effect on the congestion.

3.2.3 Path Criticality Index (PCI)

The Path Criticality Index (PCI) is defined as the maximum of the LCI of the links

along the path.

Definition 3.2.6 Path Criticality Index (PCI) of a simple path πsd = (i0 = s, i1, ..., iq−1, iq = d)

is defined as:

PCI(πsd) = max (LCI(s, i1),LCI(i1, i2), ..., LCI(iq−1, d))

where πsd is a given path from node s to node d, q is the number of links of the path, and

i0 = s, iq = d.
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Our definition of PCI was first based on the average of the LCIs, but our simulations

showed that max operator is more effective particularly in heavy traffic. A theory that

justifies this choice of PCI will come in subsequent chapters.

3.3 Path Criticality Routing Algorithm

The basic idea of our routing algorithm is to accommodate new connection requests

along paths that have a low PCI. This requires that we find the link criticality indices.

To do this, we need to obtain all possible paths for each source-destination pair. This

is not feasible since the number of paths grows rapidly with the number of network

nodes and links.

Although the shortest path is not necessarily the path with the lowest PCI, one can

expect that the path or paths with lowest PCI are among the k-shortest paths of the

network. Hence we use the k-shortest path method proposed by Eppstein [85] with a

modification to avoid loops.

A flowchart of our algorithm, Path Criticality Routing (PCR), is shown in Fig. 3.5.

PCR algorithm begins with a predefined value of k (default is 1), which may be

increased during the course of running the routing algorithm if the desired number

of paths to route the traffic cannot not be found. We use thresholds tr1 (the default

value is infinity) and tr2 (the default value is zero) for PCI. The first threshold defines

the lower confidence boundary for the path criticality index. All the paths with path

criticality index less than tr1 are considered eligible to route traffic. On the other hand

all the paths with the criticality index larger than tr2 are considered too risky and may

be identified to the re-planning block of AutoNet (via long-loop) for possible capacity

enhancement (see Fig. 3.2). If there is no path whose PCI is less than tr1, the paths with

criticality index in between the thresholds will carry traffic based on their criticality

index as long as they remain within the boundaries. These thresholds in fact define a
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Figure 3.5: PCR Algorithm

simple Call Admission Control (CAC) mechanism that avoids accepting inappropriate

traffic into the system.

We note that when a path accepts traffic, the residual capacity of its links will

decrease by the carried flow for the duration of the traffic flow. This means that the

criticality index of this path must be increased. In other words a constant monitoring

of the PCI for all the paths is necessary (not real-time necessarily but in reasonable

time slots).

In this thesis we are not interested in finding exact methods to determine thresholds

tr1, tr2. We just mention that different methods can be used to find appropriate values

for thresholds in each scenario. One reasonable approach is to use a percentage of link

bandwidth as spare part for unpredicted situations and define threshold tr2 based on

it. For example, Cisco considers 25% of a link bandwidth as spare part. The default

configuration of link bandwidths are set for maximum utilization of 75%. This limit

is programmable and can be changed by costumer. Threshold tr2 can be considered

as the PCI of a path when the network utilization is 75% (each link has utilized 75%

of its bandwidth). In this case the average of LCI is increased to 4 × ¯LCIin, where
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¯LCIin is the initial average of LCI (this is the average of LCI when the network is not

loaded). Therefore, we can choose tr2 = 4 × ¯PCIin, where ¯PCIin is the average of PCI

when network is not loaded. A path can be considered eligible to be assigned to the

demand, when its utilization is less than 25%. This in turn defines threshold tr1 as

tr1 = 4
3 ×

¯PCIin.

3.3.1 Time-Complexity of PCR

The most time-consuming part of the algorithm is the k-shortest path calculation.

According to [85] the complexity of the proposed k-shortest path algorithm is O(m +

nlogn+k) where, m is the number of links and n is the number of nodes. The algorithm

is polynomial time and as a result PCR is also a polynomial time algorithm if we set a

maximum value for k such as kmax. The complexity of the other parts of the algorithm

(without k-shortest path) is O(m2). Therefore the time complexity of PCR will be:

O((m + nlogn + kmax)m2).

3.4 Evaluation of PCR

We implemented PCR algorithm in C++ and tested it for many network configurations.

Here we use four benchmark topologies as well as a realistic topology to compare the

effectiveness of PCR with Shortest-Path (SP) and Widest Shortest Path (WSP). We did

not have access to the source code (or executable file) of other traffic engineering

methods such as MIRA and PBR.

3.4.1 Parking Lot

The parking-lot network topology, shown in Fig. 3.6, is an interesting example. The

capacity of all the links are 1. If one unit of bandwidth is requested to be sent from S0

to D0 , all the previous routing algorithms (SP, WSP and MIRA) will choose the straight
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path and run the flow resulting in the blocking of demands of one unit come from any

other source Si to the destination Di [25]. A wiser decision is to block the first request

from S0 to D0 so the network will be able to route the other n requests. In order to

do this we need to have appropriate thresholds as discussed in PCR algorithm. We

choose tr1 = 20 and tr2 = 25. This choice of thresholds will block demand from S0 to D0

since its PCI is more than threshold tr2 (according to table 3.3), but will pass requests

from other source-destination pairs as their PCI is less than tr1.

Figure 3.6: Parking-lot Topology n=10,

PCR Parameters: tr1 = 20, tr2 = 25, kmax = 3

.

Path PCI

S0 −D0 27.590902

S1 −D1 11.333333

S2 −D2 14.090907

S3 −D3 15.909087

S4 −D4 17.121209

S5 −D5 17.727271

S6 −D6 17.727271

S7 −D7 17.121209

S8 −D8 15.909087

S9 −D9 14.090907

S10 −D10 11.3333330

Table 3.3: PCI for Differ-

ent Paths in Parking-Lot

In chapter 5 we will return to the parking-lot topology and will optimize it for

maximum robustness.
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3.4.2 Concentrator Network

The second test network to study the effectiveness of PCR in determining critical

situations is shown in Fig. 3.7, which is called concentrator topology [25]. We consider

the following scenario: an online sequence of n + 1 requests arrive in sequence for

source-destination pairs S0 − D, S1 − D, ... Sn − D. The first request has bandwidth

requirement n, all others have bandwidth requirement 1. Applying shortest path

routing,widest shortest path routing, and minimum interference routing algorithm,

one can easily see that all of these methods will choose the shortest path (S0 − C − D)

but this will leave only one unit of bandwidth for link (C,D). In other words just one

more requests (with 1 unit of bandwidth) can be handled by SP, WSP, and MIRA. All

incoming traffic will be blocked during the life-time of this request.

Figure 3.7: Concentrator Topology n=3,

PCR Parameters: kmax = 3

Path PCI

S0 −D (3 links) 0.166667

S0 −D (2 links) 0.520833

S1 −D 0.937500

S2 −D 0.937500

S3 −D 0.937500

Table 3.4: PCI for Differ-

ent Paths in Concentrator

Table 3.4 reflects the result of our tests on concentrator topology. It is clear that the

PCI of path (S0 → C→ D) (or the path with two links from S0 to D) is much more than

the longer path. So, PCR algorithm will choose the longer path (the path with three

links) to save the bandwidth of link C-D for other source-destination pairs.
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3.4.3 Distributor Topology

Our next example is the distributor network [25] shown in Fig. 3.8. We consider

the following scenario: distributor network receives n requests each asking for one

unit of bandwidth from S0 to D. After this, the network gets n requests each one

demanding a unit of bandwidth from Si to D (i = 1, 2, ...,n). Applying shortest path

routing,widest shortest path routing, and minimum interference routing algorithm

will result in choosing shorter paths from S0 to D. This will block all demands from

other sources (Si, i = 1, 2, ...n) to destination D. Table 3.5 reflects the result of our tests

Figure 3.8: Distributor Topology n=3, PCR

Parameters: kmax = 3

Path PCI

S0 −D (3 links) 0.083333

S0 −D (2 links) 0.693182

S1 −D 1.068182

S2 −D 1.068182

S3 −D 1.068182

Table 3.5: PCI for Differ-

ent Paths in Distributor

on distributor topology. In our algorithm, the path criticality of the longer path is the

smallest. Hence this path is dominant and will transport the flow and the blocking

problem of the previous algorithms will not be an issue any more.

3.4.4 Rainbow Topology

The fourth network topology of interest is called rainbow. [27] uses this topology

to show the difficulty with the profile-based routing algorithm (PBR). The authors in

[27] show that the performance of Profile-Based Routing algorithm (PBR) in rainbow
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Figure 3.9: Rainbow Topology

network is worse than MIRA, WSP and SP. They have shown that PBR would be

blocked after accepting 2 units of bandwidth for S1 −D1 and 2 units for S2 −D2 .

Path PCI

S1− > D1 (6 links) 0.166667

S1− > D1 (5 links) 0.420000

S1− > D1 (4 links) 0.425000

S1− > D1 (3 links) 0.433333

S1− > D1 (2 links) 0.450000

Table 3.6: Rainbow Topology - First Two

Demands Arrive

Path PCI

S2− > D2 (6 links) 0.250000

S2− > D2 (5 links) 0.420000

S2− > D2 (4 links) 0.425000

S2− > D2 (3 links) 0.433333

S2− > D2 (2 links) 0.450000

Table 3.7: Rainbow Topology - Second Two

Demands Arrive

We conducted our experiment in two phases to show the details of the PCR al-

gorithm. Table 3.6 shows the PCI for different paths between source-destination pair

S1 − D1. One can observe that the longest path is the least critical one, hence routing

two units of bandwidth. In second step source-destination pair S2 − D2 will ask for

routing two units of bandwidth. At this time the residual capacities are changed and
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Figure 3.10: Test Network to Evaluate PCR Algorithm

the new PCIs have to be re-calculated as shown in Table 3.7. Again the longest path is

still the less critical one and the best candidate for routing the requested flow.

3.4.5 Evaluation of PCR Algorithm on Real Networks

In order to investigate the effectiveness of our PCR algorithm, we ran a set of simula-

tions on the network of Fig. 3.10. We apply PCR to create LSPs (Label Switch Path)

assuming that MPLS is used in the network to create the paths.

We considered two scenarios. In the first experiment the requests for LSPs arrive

according to a Poisson process and stay for ever (no departures). In our tests the

bandwidth requests for paths (LSPs) are taken to be uniformly distributed between

1 to 3 units. In Fig. 3.11 we show the number of rejected requests for this case and
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Figure 3.11: Static Scenario- Path Rejection in 2000 Requests, PCR Algorithm

compare the performance to shortest path (SP), and widest shortest path (WSP). The

test is performed 20 times, and each test has 2000 path requests. We measured the

number of blocked requests.

In a second experiment we examined the behavior of the algorithms in the presence

of dynamic traffic. Fig. 3.12 shows the percentage of the path requests rejected in 20

experiments for the following scenario. Path requests arrive between each source-

destination point (which is chosen at random) according to a Poisson process with an

average rate λ, and the holding times are exponentially distributed with mean µ. We

set λµ = 1500 in our experiments. We generate 7000 requests and measure the rejections

or blocking for each one of the algorithms. The results are shown in Fig. 3.12.

In both static and dynamic cases, one can easily see that the PCR has better perfor-

mance, comparing with WSP and SP algorithms.

3.4.6 AutoNet Software: Integration of PCR with TOTEM

We close this section with a brief description of AutoNet software. The backbone

of AutoNet software is TOTEM [12], an open-source toolbox for traffic engineering

purposes. TOTEM integrates a series of tools for intra-domain and inter-domain
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Figure 3.12: Dynamic Scenario- λ
µ = 1500, 7000 Requests

traffic engineering of IP and MPLS networks. It provides an open source software

to test different traffic engineering methods. The toolbox is designed to be deployed

either as an on-line tool in an operational network, or as an off-line traffic engineering

simulator.

We adopted TOTEM as the backbone of AutoNet software. The architecture of

TOTEM allows to add various algorithms as a library and TOTEM will see them as

an object (object-oriented view). We added PCR to the library of available algorithms

in TOTEM. TOTEM provides us with necessary (but not sufficient) graphical tools to

visualize different aspects of our developed algorithm.

The part that is missing in TOTEM is the graph-theoretic tools to characterize

different graph properties. In addition, integration of traffic matrices and building

traffic scenarios is a cumbersome task and needs to be modified.

3.5 Random-Walk Betweenness

The success of the PCR heuristic convinced us that there must be a theoretical basis

for its excellent performance, and that this basis must revolve around the notion of

betweenness. In this section we attempt to find an explanation for the importance
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of betweenness centrality in the analysis of communication networks. Our particular

attention is to determine the behavior of a given network (its robustness) in the presence

of heavy load (congestion).

Unfortunately the enumeration of paths does not lend itself to tractable analytic

results that explain the behavior of PCI. The number of paths between a source-

destination pair increases rapidly with the size of networks and there is no mathemat-

ical method to calculate the number of paths in general topologies. An upper bound

can be found by considering the complete-graph, but even that is not helpful since a

simple change in topology can significantly affect the betweenness of nodes or links.

However, we have found that the notion of Random-Walk Betweenness, introduced

by Newman [86], do support the development of a rich set of tractable network op-

timization algorithms. In order to overcome these problems we used a probabilistic

approach to define and analyze the betweenness of a node/link which is based on [86].

Consider a finite-state irreducible Markov Chain with transition probabilities pi j

of transitioning from state i at time t to state j at time t + 1 (discrete time). The

Markov chain can be represented by a state transition diagram with states as nodes in

a graph and edges corresponding to allowable transitions, and labels associated with

the edges denoting the transition probabilities. The Markov chain can also be viewed

as a random walk on the n-node graph with next-step transition probabilities pi j.

We are interested in quantifying the betweenness of a node in the random-walk

corresponding to a Markov chain. Consider the set of trajectories that begin at node s

and terminate when the walk first arrives at node d, that is, destination node d is an

absorbing node. We define the betweenness bsk(d) of node k for the s − d trajectories

as the average number of times node k is visited in trajectories from s to d. Note that

bdk(d) = 0 for k not equal to d since such walks are terminated at step zero.

The path from i to k can be of length 0 to infinity. Let Pd be the matrix of transition

probabilities when the random walk is modified so that state d is an absorbing state.
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Then Pd
q is the matrix of q-step transition probabilities for random walks that terminate

at node d. For all k , d, the probability of entering node k at qth step for a walk that starts

at s can be obtained from [sk] element of the matrix Pd
q. Therefore, the betweenness of

a node k for walks from any source s destined for destination d can be obtained by the

following matrix equation. Let Bd = [bsk(d)] be the n× n matrix of betweenness metrics

of node k for walks that begin at node s and end at node d. Let [A]d denote the matrix

that results when column d and row d of matrix A are set to zero. Then

[B]d = [bsk(d)]d = [
∑
∞

q=0 Pq
d]d

or

[B]d = [bsk(d)]d = [(I − Pd)−1]d (3.2)

We define the matrix that results from setting the dth diagonal element of the n × n

identity matrix to zero:

Θd = [θsk(d)] =

 1 i f s = k , d

0 otherwise

Now from equation 3.2, matrix Bd can be written as:

Bd = (I − Pd)−1Θd (3.3)

3.6 Packet Networks and Random-Walk Betweenness

We now show that random-walk betweenness is closely related to packet network

models. Consider a packet switching network in which packets arrive to packet

switches from outside the network according to independent Poisson processes. Each

external packet arrival has a specific destination and the packet is forwarded along

the network until it reaches said destination. We suppose that packet switches are

interconnected by transmission lines that can be modeled as single-server queues.
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Furthermore, we also assume that packet switches use a form of datagram routing

where a packet at queue i is forwarded to the next-hop queue j with probability pi j.

We calculate the total arrival/departure rate of the traffic to/from each node. The

total input rate of node k (internal plus external) is denoted by xk. After receiving

service at the ith node, a customer (random-walk) goes next to node k with probability

pik. To find xk we need to solve the following set of linear equations (see [87]):

xk = λk +

n∑
i=1

xipik (3.4)

where λk is the arrival rate to node k from outside the network. If we denote −→x =

[x1, x2, ..., xn] and
−→
λ = [λ1, λ2, ..., λn], then equation 3.4 becomes:

−→x =
−→
λ + −→x P (3.5)

Suppose node d is an absorbing node, then we suppose that the arrival rate at node d

is zero (since said arrivals do not affect other nodes) and equation 3.5 can be written

as:

−→xd = (
−→
λd + −→xdPd)Θd (3.6)

and −→xd and
−→
λd are the same as −→x and

−→
λ except for the dth element which is 0. Matrix Pd

is also the same as P except that its dth row and dth column are zero vectors. Equation

3.6 can be solved for −→xd.
−→xd × (I − Pd ×Θd) =

−→
λd ×Θd

Finally:
−→xd =

−→
λd ×Θd × (I − Pd ×Θd)−1 (3.7)

To find the relationship of betweenness Bd and the input arrival rate xk we notice that

pdk(d) = 0 which means that Pd = Θd × Pd. Thus:

Pd ×Θd = Θd × Pd ×Θd

Θd − Pd ×Θd = Θd −Θd × Pd ×Θd

(I − Pd) ×Θd = Θd × (I − Pd ×Θd)
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or

Θd × (I − Pd ×Θd)−1 = (I − Pd)−1
×Θd

Using equation 3.3 we will have:

Θd × (I − Pd ×Θd)−1 = Bd (3.8)

We substitute equation 3.8 in 3.7 to find the relationship between the node traffic and

node betweenness.
−→xd =

−→
λd × Bd (3.9)

If we denote the kth element of −→xd and
−→
λd by xk(d) and λk(d) respectively, we have:

xk(d) =
∑

s

λs(d)bsk(d) (3.10)

Equation 3.9 shows that the total arrival rate on node k which is destined for node d

is a weighted average of external input rate at each node s destined for node d, where

the weight is equal to the betweenness of node k for source-destination pair s − d.

It is constructive to establish the relationship of node betweenness and node traffic

in a more intuitive way. Consider the traffic generated by packets that arrive at s and

are destined for d. Each packet in this flow generates bsk(d) arrivals on average at node

k. Let λs(d) be the number of external packets per second that arrive at node s with

destination d. Over a large number of such trials, say N, the average number of times

node k is visited will be approximately N × bsk(d). Suppose that it takes T seconds to

have N arrivals at node s, then the average number of visits per second to node k is
N×bsk(d)

T = λs(d) × bsk(d), since the average arrival rate at s for d is approximately N
T .

We only consider external arrivals with destinations other that the originating node

soλdd = 0. The total traffic xsk(d) generated by the s−d flow at node k is thenλs(d)×bsk(d),

where s is not equal to d. Recalling that bsd(d) = 1, we obtain:

xsk(d) =


λs(d)bsk(d) i f s , d & d , k

λs(d) i f s , d & k = d

0 i f s = d
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The total traffic into node k is obtained by summing over all s and d, with s not equal

to d

yk =
∑
s,d

xsk(d)

=
∑
s,k

λs(k) +
∑
s,d

∑
d,k

λs(d)bsk(d) (3.11)

The first sum on the right hand side of equation 3.11 is the total network packet arrival

rate destined for k, that is, the total flow absorbed at node k. The second term is the

total traffic that flows across queue k, that is, the flow through k that originates at nodes

other than d and that are not destined for k. This second term, the transit flow through

queue k, accounts for the effect of the network topology, so we let xk denote this flow:

xk =
∑
d,k

λk(d)bkk(d) +
∑
s,k

∑
d,k

λs(d)bsk(d) (3.12)

The first sum in equation 3.12 is the arrivals at k destined for d, including revisits.

The second sum is the total transit traffic through k that did not originate locally. xk

can be viewed as a measure of betweenness of queue k that takes the different arrival

rates into account.

Suppose that different queues have different total external arrival rates but the

fraction of external traffic destined for d does not depend on s, that is,

λs(d) = λsad

where

ad ≥ 0,
∑

d

ad = 1

The total traffic through queue k is then

xk =
∑
d,k

λkadbkk(d) +
∑
s,k

λs[
∑
d,k

adbsk(d)]

= λk[
∑
d,k

adbkk(d)] +
∑
s,k

λs[
∑
d,k

adbsk(d)] (3.13)



C 3. P C R 56

The terms inside the square brackets in equation 3.14 can be viewed as betweenness

measures that have been weighted by the differential preferences for destinations

according to ad. These weighted betweenness measures are in turn scaled according

to the arrival rates at different queues.

In the case where arriving packets are equally likely to be destined to any destina-

tion (other than the arriving node), we have ad = 1
n−1 , so

xk =
λk

n − 1
[
∑
d,k

bkk(d)] +
∑
s,k

λs

n − 1
[
∑
d,k

bsk(d)]

= λkb̄kk +
∑
s,k

λsb̄sk (3.14)

Finally suppose that the arrival rate at every node is equal, that is, λs = λ
n , where λ is

the total external packet arrival rate to the network then

xk =
λ

n(n − 1)
(
∑
d,k

bkk(d)) +
λ

n(n − 1)

∑
s,k

∑
d,k

bsk(d)

=
λ

n(n − 1)
bk (3.15)

where we define bk as the random walk betweenness for node k:

bk =
∑

s

∑
d,k

bsk(d)

We have derived the following theorem.

Theorem 3.6.1 Consider a network with n similar nodes, and assume that the average traffic

rate on all of the nodes is γ = λ
n where λ is the total external input traffic rate of the network.

Let xk be the total arrival rate of a node k and bk be the total betweenness of this node, then:

xk =
γ

n − 1
bk =

λ
n(n − 1)

× bk
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3.6.1 Betweennness and Mean Packet Delay Across the Network

(Jackson Networks)

By applying Littles formula to the entire packet network as well as to each of its queues,

it can be shown that the average packet delay across the network is given by (see [87]):

E[T] =
1
λ

∑
k

xkE[Tk]

where xk is the total arrival rate to queue k (in packets per second), E[Tk] is the average

delay in queue k, and E[T] is the average network delay.

Assume that packets arrive to the network according to a Poisson process, that

service times are exponential, and that the service time of a packet at one queue is

independent of its service times at other queues, then the network of queues is a

Jackson network [87] and the average delay in queue k is given by

E[Tk] =
1

ck − xk

where ck is the total transmission rate of node k (also in packets per second), therefore

E[T] =
1
λ

∑
k

xk

ck − xk

From Littles formula we also have that the number of packets in the entire network is

given by:

E[N] = λE[T] =
∑

k

xk

ck − xk
(3.16)

In order to investigate equation 3.16 we consider two extreme cases.

3.6.1.1 Case 1: Light Traffic

When the network is lightly loaded we can assume that λ→ 0. This means that node

traffic xk is much smaller than the transmission rate of the node (xk � ck). In this case

equation 3.16 can be written as:

E[N]→
∑

k

xk

ck
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Let ρk = xk
ck

(ρk is the utilization of node k), and ρ̄ =
∑

k ρk
n (n is the number of nodes), then

we have:

E[N]→
∑

k

ρk = nρ̄ (3.17)

E[T]→
1
λ

∑
k

ρk =
n
λ
ρ̄ (3.18)

3.6.1.2 Case 2: Heavy Traffic

When the network is heavily loaded, equation 3.16 can be estimated as:

E[N] ' max
k

xk

ck − xk
= max

k

ρk

1 − ρk

E[N]→
1

1
maxk ρk

− 1
(3.19)

In other words there is a bottleneck node in heavy traffic that dominates E[N]. This

node is the one with maximum utilization ρk. Note that we assume ck ≥ xk for all the

network nodes.

Equations 3.17 and 3.19 provide some directions to the network design problem

in the sense that they show the network condition under light and heavy traffic. In

lightly loaded networks, in order to minimize the average number of packets in the

network we need to minimize the average node utilization, whereas in heavily loaded

networks the maximum node utilization should be minimized.

Note that in all of these results the node betweenness plays an important role

because the node traffic xk is a function of node betweenness. To see this in a more

clear way consider the special case, where the average external traffic of all the nodes

are equal to γ = λ
n (λ is the total external traffic of the network). Then we can use

theorem 3.6.1 to write equations 3.17 and 3.19 based on the node betweenness. For

lightly loaded scenario, we have:

E[N]→
∑

k

ρk =
γ

n − 1

∑
k

bk

ck
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One can see that bk
ck

is very similar to the definition of LCI (see definition 3.2.5). We

call bk
ck

the Node Criticality Index (NCI) of k. We see that in case of light traffic, in order

to minimize network delay, one needs to minimize the average of NCI of the network.

In case of heavy traffic we need to minimize the maximum ρk to get the least

network delay for packets in the network. But:

ρk =
xk

ck
=

γ

n − 1
bk

ck

max
k
ρk =

γ

n − 1
max

k
(
bk

ck
)

This means that we need to minimize the maximum NCI of a network to have the best

delay performance. We summarize these results in the following theorem.

Theorem 3.6.2 Consider a network in which the packets arrive according to a Poisson process,

service times are exponential, and the service time of a packet at one queue is independent of

its service times at other queues. In order to minimize the average network delay when the

network is heavily loaded, the maximum of NCI of the network should be minimized. Further,

when the network is lightly loaded, the average NCI should be minimized to achieve the best

average delay performance.

In chapter 4, which is entirely dedicated to the concept of criticality, we extend

the idea of NCI to a general weighted graph and derive useful interpretations for

criticality.

Theorem 3.6.2 provides useful guidelines for designing robust networks. In case of

light load a network should solve an optimization problem which tries to minimize the

average node criticality of the network, while in scenarios with heavy traffic one should

consider networks that minimizes the maximum node criticality of the network. We

will integrate these two optimization problems into one general convex optimization

problem later in this thesis.



Chapter 4

Network Criticality using Betweenness

Metrics

This chapter develops the main theoretical foundation for the metric to quantify the

survival value of a network. To do this, we generalize the definition of LCI (link

criticality index) and introduce link/node criticality for weighted graphs. We show

that the criticality of any given node/link in a graph has a common global measure and

a specific local measure. The global quantity is what we call network criticality and

will be used to quantify the survival value of a network. This metric is an indicator of

the robustness of a network.

4.1 Network Model

We model a network with an undirected weighted graph G = (N,E,W) where N is the

set of nodes, E is the set of graph links, and W is the weight matrix of the graph (a

weight is associated with each link of the graph). Throughout this thesis we assume

that G is a connected graph.

The random-walk betweenness is determined by the transition probabilities of the

60
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walk, that is the probability of proceeding to a given neighbor when the walk is at a

specified node. We will suppose that the transition probabilities are defined by the

weights as follows.

pi j =


wi j∑

k∈A(i) wik
i f j ∈ A(i)

0 otherwise
(4.1)

where A(i) is the set of adjacent nodes of i and wik is the non-negative weight of link

(i, k) if any. Equation 4.1 defines a Markov chain on graph G = (N,E,W). In this thesis

we are interested in random-walks with specified source and destinations, where the

destination of the walk is an absorbing state of the Markov chain, that is node d is

an absorbing node, and any random-walk coming to this state, will be absorbed. Let

psk(d) be the probability of proceeding to a neighbor k when the walk is at node s and

its final destination is node d. We can write psk(d) based on equation 4.1 as follows:

psk(d) = psk(1 − δsd) (4.2)

where δkd denotes Kronecker delta function. Note that pdk(d) = 0.

Observation 4.1.1 Equation 4.1 shows that if the weight increases, the desirability or goodness

of that link (probability of being chosen) also increases. In the context of QoS this means

that QoS parameters for which larger value denotes goodness should be positively related to

the weight. We call these parameters ”beneficial QoS parameters”. In contrast, the QoS

parameters for which increasing value denotes decreasing goodness, are called ”detrimental

QoS parameters”.

Mathematically speaking, the derivative of the link weight with respect to a ben-

eficial QoS parameter is non-negative, while the derivative of the link weight with

respect to a detrimental QoS parameter is non-positive.

Example The following metrics are examples of beneficial and detrimental QoS pa-

rameters.



C 4. N C  BM 62

• Capacity is a beneficial QoS parameter.

• Available bandwidth is a beneficial QoS parameter.

• Used bandwidth is a detrimental QoS parameter.

• Packet loss is a detrimental QoS parameter.

Observation 4.1.1 suggests that SLA parameters can be related to the link weights.

In this thesis we are interested in the study of the weight and its effect on robustness. We

assume that SLA parameters are already mapped to the weights with an appropriate

method. Some of these methods are discussed in [88]. This permits us to abstract

different business policies and/or SLA’s as parts of the weight definition. This is

indeed an important feature of an autonomic system that differentiates it from an

adaptive system, which needs to be re-designed when business policies change [82].

One way of mapping QoS parameters to the link weights is as follows.

wi j = wqos1

i j × wqos2

i j × ...w
qosk
i j (4.3)

=
w(1)

i j

w(a1)
i j

×

w(2)
i j

w(a2)
i j

× ...
w(k)

i j

w(ak)
i j

where wq
i j is a beneficial QoS parameter and waq

i j is a detrimental QoS parameter.

4.2 Betweenness as a Function of Weights

In chapter 3 we established the relationship between the probability transition matrix

Pd and betweenness matrix Bd in equation 3.3. One can see that the removal of column

and row d from the betweenness and probability matrices does not affect the other

equations. We use P(i| j) to show the truncated (n− 1)× (n− 1) matrix that results from

removing ith row and jth column of matrix P. Equation 3.3 can be written as:

Bd(d|d) = (I − Pd(d|d))−1 (4.4)
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Let W be the weight matrix and let D be the diagonal matrix of weighted graph degrees:

D = diag(W1,W2, ...,Wn)

Wi =

n∑
k=1

wik

Note also that Pd(d|d) = D−1(d|d)W(d|d). Therefore:

I − Pd(d|d) = I −D−1(d|d) ×W(d|d)

= D−1(d|d) × (D(d|d) −W(d|d))

But L = D −W is the Laplacian matrix of the graph [89, 90, 91, 92] (A short review of

the graph Laplacian is given in appendix A). Therefore

⇒ I − Pd(d|d) = D−1(d|d) × L(d|d) (4.5)

Substitution of equation 4.5 in 4.4 results in:

Bd(d|d) = L−1(d|d) ×D(d|d) (4.6)

Note that the graph G(N,E,W) is assumed to be connected which means that the rank

of graph Laplacian L is (n − 1). As a result, the inverse of the reduced Laplacian L(d|d)

exists and equation 4.6 has a unique solution.

We will now develop equation 4.6 to obtain an expression in terms of the original

Laplacian of the graph. We use lowercase Roman letters to denote column vectors

and lowercase Greek letters to denote row vectors. We use subscripts to specify the

dimension of a vector. For example zn−1 is a (n − 1) × 1 column vector and ζn−1 is a

1 × (n − 1) row vector.

Without loss of generality, we relabel the nodes so that the removed node becomes

the last node of the graph (node n).

Now, in order to write L−1(n|n) in terms of L, we use the Moore-Penrose generalized

inverse matrix of L [93]. The Moore-Penrose inverse of L(n|n) and the matrix L−1(n|n)
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are equal since L(n|n) is an (n − 1) × (n − 1) matrix with rank n − 1. In other words,

L(n|n) is full-rank and its inverse is the same as its Moore-Penrose inverse. To obtain

L from L(n|n), we first add a column to L(n|n) to get: Q = [L(n|n) zn−1].

One important property of the Laplacian matrix of a graph is that the sum of any

row of the Laplacian matrix is zero. Therefore, the column-vector zn−1 has to be chosen

in a way to make the sum of every row of the matrix Q equal to zero. We use the

following recursive formula from [93] to obtain the Moore-Penrose inverse of a matrix

when a column is added to the original matrix. Let A be a p× q matrix and bp be a p× 1

column vector.

(
A bp

)+

=

A+(I − bpζp)

ζp

 (4.7)

where ζp is a 1 × p row vector such that

ζp =

 bp − AA+bp i f bp , AA+bp

b∗p(AA∗)+

1+b∗p(AA∗)+bp
i f bp = AA+bp

(4.8)

where ∗ denotes conjugate transpose of a matrix. To satisfy the requirement of Laplacian

matrix we need to have

[L(n|n) zn−1]
−→
1 n = 0 (4.9)

where
−→
1 n is a n × 1 vector of all ones:

−→
1 n = [1 1 1 ... 1]t.

From 4.9 one can see that:

L(n|n)
−→
1 n−1 + zn−1 = 0

zn−1 = −L(n|n)
−→
1 n−1 (4.10)
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Now from 4.7 by replacing A = L(n|n), p = n− 1, bn−1 = zn−1 and using 4.10, we have:

Q+ =
(
L(n|n) zn−1

)+

=

L+(n|n) − L+(n|n)zn−1ζn−1

ζn−1


=

L+(n|n) + L+(n|n)L(n|n)
−→
1 n−1ζn−1

ζn−1


=

L(n|n)+ +
−→
1 n−1ζn−1

ζn−1


=

L(n|n)+

0

 +
−→
1 nζn−1

This expression for Q+ can be expanded as:

Q+ =
(
L(n|n) zn−1

)+

=

L+(n|n)

0

 +



ζn−1

ζn−1

.

.

.

ζn−1


(4.11)

Equation 4.11 asserts that the [sk] and [nk] element of Q+ are:

q+
sk = (L+(n|n))sk + (ζn−1)k

q+
nk = 0 + (ζn−1)k

Subtracting these two equations gives the [sk] element of L+(n|n):

⇒ (L+(n|n))sk = q+
sk − q+

nk (4.12)

With the same approach , we can add the nth row to Q to obtain the n × n Laplacian

matrix L: L =

 Q

d


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With a similar derivation and using equation 4.7 one can obtain:

⇒ q+
sk = l+sk − l+sn (4.13)

Combining equations 4.12, 4.13 we can find our desired result:

(L+(n|n))sk = l+sk − l+sn − l+nk + l+nn (4.14)

Now, according to equation 4.6, we can obtain the betweenness of the node k for

source-destination pair (s, d):

Bd(d|d) = L−1(d|d) ×D(d|d)

(Bd(d|d))sk = (l+sk − l+sd − l+dk + l+dd) ×Wk

bsk(d)
Wk

= l+sk − l+sd − l+dk + l+dd (4.15)

Lemma 4.2.1 For a network with transition probabilities given by equation 4.1, there is a

simple relationship between bsk(d) and bdk(s): bsk(d)+bdk(s)
Wk

= l+dd + l+ss − 2l+sd

Proof According to equation 4.15 we have:

bsk(d)
Wk

= l+sk − l+sd − l+dk + l+dd

bdk(s)
Wk

= l+dk − l+ds − l+sk + l+ss

bsk(d) + bdk(s)
Wk

= l+ss + l+dd − l+ds − l+sd

bsk(d) + bdk(s)
Wk

= l+ss + l+dd − 2l+sd

The last equation is a direct result of the symmetry of the Laplacian matrix and its

generalized inverse.

Lemma 4.2.1 shows that bsk(d)+bdk(s)
Wk

is independent of node k.

Definition 4.2.2 We define τsd = l+ss + l+dd − 2l+sd as the criticality of source-destination pair

s − d or d − s.
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Lemma 4.2.1 gives an interpretation of τsd based on the betweenness of any node k for

pair s−d or d− s. The criticality between node s and d is the betweenness of any node k

per unit of node weight for pair s−d or d− s. Note that τsd = τds since L+ is a symmetric

matrix.

Finally we obtain the total betweenness of node k. We notice that
∑

s
∑

d bsk(d) =∑
s
∑

d bdk(s). This can easily be verified by changing subscript s with d. Hence:

bk

Wk
=

1
Wk

∑
s

∑
d

bsk(d) =
1

Wk

∑
s

∑
d

bsk(d) + bdk(s)
2

=
∑

s

∑
d

τsd

2

=
1
2

∑
s

∑
d

(l+ss + l+dd − 2l+ds) (4.16)

4.3 Network Criticality

Now, we are ready to extend our metric LCI to a more general quantity.

Definition 4.3.1 The criticality of a node k is defined as the ratio of the node betweenness to

its total weight:

ηk =
bk

Wk
=

1
2

∑
s

∑
d

τsd =
1
2
τ (4.17)

where

τsd = l+ss + l+dd − 2l+sd (4.18)

τ =
∑

s

∑
d

τsd (4.19)

We give another representation of τsd which will be used in subsequent chapters. Let

ui be the ith unit vector, and define ui j = ui − u j. Since ui = [0 0 ... 1 ... 0]t, where the 1

is in ith position and ui j = [0 ... 1 ... − 1 ... 0]t, where 1 and −1 are in ith and jth position.
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Now equation 4.18 can be written as:

τsd = ut
sdL+usd (4.20)

Definition 4.3.2 We define criticality of an edge or link l=(i,j) as the betweenness of the node

over its weight: ηi j = ηi j =
bi j

wi j

Lemma 4.3.3 The criticality of a link l=(i,j) is equal to τ :

ηi j =
bi j

wi j
= τ (4.21)

Proof The betweenness of link l = (i, j) can be extracted from the betweenness of its

end nodes i,j. If bi is the betweenness of node i, then the share of link (i, j) is on average

bi × pi j in i→ j direction, where pi j is the probability of transitioning from i to j in next

step. Similarly, if the betweenness of node j is b j, then the share of link (i, j) in j → i

direction will be b j × p ji. Therefore total betweenness of link (i, j) is:

bi j = bi
wi j∑
k wik

+ b j
w ji∑
k w jk

=
1
2
τ
∑

k

wik
wi j∑
r wir

+
1
2
τ
∑

k

w jk
w ji∑
r w jr

=
1
2
τ(wi j + w ji) = τwi j

bi j = τwi j ∀(i, j) ∈ E
bi j

wi j
= τ ∀(i, j) ∈ E (4.22)

Where wi j and ηi j show the weight and the criticality of link l = (i, j) respectively.

Observation 4.3.4 One can see from 4.17 and 4.21 that the criticality of a node k or a link

(i, j) is independent of its position and is proportional to τ.

Observation 4.3.4 is a significant result showing that the betweenness of a node

(link) can be written as the product of two graph values (bk = Wk
τ
2 for a node k or

bi j = wi jτ for a link (i, j)) one of which values is a local metric i.e. the weighted degree
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of a node (or weight of a link), and the other of which values is a network-wide metric

τ which is only a function of the graph weight matrix. This global metric is our main

tool to investigate the robustness of different networks. The smaller the value of τ, the

better the robustness of a network. Indeed τ is the survival value that we postulated

in our discussion in Chapter 3 because it can be used to quantify the resistance of

a network to the unwanted changes in network topology or traffic demands. The

smaller the value of τ, the less the sensitivity to the changes in topology and traffic.

Note that increasing the betweenness of a node (link) decreases the robustness, whereas

increasing the beneficial weight of a node (link) increases the network robustness as

well. We will shed more light on this matter later in this chapter by providing different

interpretations of τ and through extensive examples.

Definition 4.3.5 τ is defined as the network criticality for G(N,E,W). The average (or

normalized) network criticality is also defined as: τ̂ = τ
n(n−1) .

The average (normalized) network criticality quantifies the average criticality of

any two pairs of nodes in a network. Therefore τ̂ is useful for robustness comparison

between network topologies. A network topology is more robust if its τ̂ is less than

another network topology.

Network criticality can also be used to design methods to engineer the evolution

of network flows or network topology. Chapter 5 of the thesis will focus on the design

methodologies to manage the evolution of network topologies or network algorithms.

4.4 Some Facts about Network Criticality

In this section we establish some lemmas which will be central to our other derivations.

Lemma 4.4.1 Network Criticality τ is equal to 2nTr(L+). Equivalently, average network

criticality τ̂ is 2
n−1Tr(L+).
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Proof Since τsd = l+ss + l+dd − 2l+sd, we have

τ =
∑
s,d

τsd

=
∑

d

∑
s

l+ss +
∑

s

∑
d

l+dd − 2
∑

s

∑
d

l+sd

= n
∑

s

l+ss + n
∑

d

l+dd − 2 × 0

= 2n
∑

i

l+ii

τ = 2nTr(L+)

τ̂ =
1

n(n − 1)
2nTr(L+)

τ̂ =
2

n − 1
Tr(L+)

This completes the proof of lemma 4.4.1.

Lemma 4.4.2 τ̂ can be written as: τ̂ = 2
n−1

∑n
i=2

1
λi

, where 0 = λ1 ≤ λ2 ≤ ... ≤ λn are

eigenvalues of graph Laplacian L.

Proof We know from linear algebra that the trace of a square matrix is equal to the sum

of its eigenvalues. On the other hand, the non-zero eigenvalues of L+ are reciprocals

of the non-zero eigenvalues of L. Lemma 4.4.2 is then a direct result of Lemma 4.4.1.

Lemma 4.4.2 will establish a connection between network criticality and the spec-

trum of graph Laplacian.

Lemma 4.4.3 For any weight matrix W of links of a graph: Vec(W)t
∇τ + τ = 0, where

Vec(W) is a vector obtained by concatenating all the rows of matrix W to get a vector of wi j’s.

Proof Suppose we scale all the link weights in a graph with factor t, then by lemma

4.3.3

τ(Vec(W)) =
bi j

wi j

τ(tVec(W)) =
bi j

twi j
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Note that the transition probabilities psk(d) are invariant to the scaling of the weights

based on their definition in equation 4.1. Therefore matrix Pd is also invariant to the

scaling of the weights. As a direct result matrix Bd (and each one of its elements bsk(d))

is invariant to the scaling of the weights based on equation 3.3. This verifies that any

node betweenness bk =
∑

s,d bsk(d) is invariant to the scaling and finally equation 4.22

asserts that any link betweenness bi j is invariant to the scaling of the link weights.

Therefore

τ(tVec(W)) =
1
t
τ(Vec(W)) (4.23)

By taking the derivative of τ with respect to t, we have

Vec(W)t
∇τ =

−1
t2 τ(W) (4.24)

It is enough to consider equation 4.24 at t = 1 to get Vec(W)t
∇τ + τ = 0.

4.5 Some Interpretations of Network Criticality

In this section we try to shed more light on the concept of network criticality by

providing some interpretations of it.

4.5.1 Network Criticality and Average Path Cost

We assume certain cost to travel along a path and study the effect of network criticality

τ on average cost incurred by a message during its walk from source s to destination

d.

We consider the following scenario. For each link l = (i, j) there is a cost zl = z(i, j)

(Fig. 4.1). Note that this cost is different from the weight of the link. After a random-

walk starts from source node s, at each step it traverses one link, incurs a cost, and

continues until it is absorbed by destination d. We wish to calculate the average cost of
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Figure 4.1: Random-walk Movement

this journey. Theoretically, the number of hops of a path that is taken by random-walk

can be infinite.

Using the properties of Markov Chains one can calculate the average cost ϕ(s, d)

incurred by paths between source s and destination d:

ϕ(s, d) = E{
∞∑

k=0

z(dk, dk+1)} where s = d0 (4.25)

We expand equation 4.25 using elementary probability.

ϕ(s, d) =
∑

d1,d2,...

p(d1, d2, ...|d0 = s)(
∞∑

k=0

z(dk, dk+1))

=
∑

d1

p(d1|d0){
∑

d2,d3,...

p(d2, ...|d1)(z(s, d1) +

∞∑
k=1

z(dk, dk+1))}

=
∑

d1

psd1{z(s, d1) +
∑

d2,d3,...

p(d2, ...|d1)
∞∑

k=1

z(dk, dk+1)}

=
∑

d1

psd1z(s, d1) +
∑

d1

psd1ϕ(d1, d)

in brief:

ϕ(s, d) =
∑

j

psjz(s, j) +
∑

j

psjϕ( j, d) (4.26)

Equation 4.26 has a recursive form, which we will express in matrix form. We relabel

the nodes so that node d is the last node. We also define fs =
∑

j psjz(s, j). Equation 4.26

can be written as:

−→
φ d(d|d) =

−→
f (d|d) + Pd(d|d)

−→
φ d(d|d)

−→
φ d(d|d) = (I − Pd(d|d))−1−→f (d|d) (4.27)
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where
−→
φ d = [φ(s1, d), φ(s2, d), ..., φ(sn, d)],

−→
f = [ fs1 , fs2 , ..., fsn]. Now we can use equation

4.4 to write the cost as a function of betweenness. In order to simplify the notation,

we substitute psk(d) with psk in the following equations. This is safe because node d

is an absorbing node and it does not have any effect on the transition probability of

other node pairs. In the following equations we work with reduced matrices where

the effect of absorbing state is already considered by removing the row and column

corresponding to node d.

−→
φ d(d|d) = Bd(d|d)

−→
f (d|d)

or ϕ(s, d) =

n∑
k=1

bsk(d) × fk

=

n∑
k=1

bsk(d)
∑

j

pkjz(k, j) (4.28)

Equation 4.28 has a nice interpretation. In order to obtain average cost from any

node s to any other node d, one needs to find the average cost from a node k to any

other node in the network first (i.e. fk =
∑

j pkjz(k, j)). Then the average cost from node

s to node d is the product of this cost for node k with the betweenness of node k for

source-destination pair (s, d) summed over all nodes. Note that the average cost of any

node k to other nodes ( fk) depends on the Markov chain probabilities, while the term∑
k bsk(d) fk is in fact a kind of topological average.

Now we are ready to calculate the average cost over all node-pairs.

ϕ̄ =
1

n(n − 1)

∑
s,d

ϕ(s, d)

=
1

n(n − 1)

∑
k

(
∑
s,d

bsk(d)
∑

j

pkjz(k, j))

=
1

n(n − 1)

∑
k

(
∑

j

pkjz(k, j)
∑
s,d

bsk(d))

=
1

n(n − 1)

∑
k

(
∑

j

pkjz(k, j)bk)
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One can use relation 4.17 to find the relationship between average cost and criticality.

ϕ̄ =
1

n(n − 1)

∑
k

(
∑

j

pkjz(k, j)
1
2
τWk)

=
1

2n(n − 1)
τ
∑

k

(
∑

j

wkj

Wk
z(k, j)Wk)

=
1

2n(n − 1)
τ
∑

k

(
∑

j

wkjz(k, j)) (4.29)

=
1
2
τ̂
∑

k

(
∑

j

wkjz(k, j)) (4.30)

Observation 4.5.1 Equation 4.29 shows that the average network cost is the product of average

network criticality and total weighted graph cost (
∑

k(
∑

j wkjz(k, j))). If
∑

k(
∑

j wkjz(k, j)) is

fixed at constant value C (maximum budget) then the average network cost is proportional

to the criticality of the network. If we interpret a link weight wkj as the price we should pay

for a unit of cost for link (k, j), then C can be interpreted as a total budget of the network.

This interpretation of network criticality is important because in many practical

situations we aim to minimize the average cost of a network. For example most

of the traffic engineering algorithms try to minimize a kind of cost in the system.

Another example is network planning (or re-planning). In network design we have

an optimization criteria where a cost metric is minimized. We will see some examples

of network planning using τ in chapter 5. Motivated by this observation, in chapter

5 we will investigate the problem of minimizing network criticality by defining some

appropriate constraints.

4.5.2 Network Criticality and Average Hop Length

Network Criticality is also related to the average hop length of a walk. The following

important result relates the average length of random-walk to the network criticality.
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Lemma 4.5.2 Let T be the average length (number of hops) of a random-walk over all source-

destination pairs, and W̄ be the average weight of all nodes. Then:

T =
n
2

W̄τ̂

Proof An special case of cost z(i, j), as defined in section 4.5.1, is the case of equal cost

for all the links. While it is possible to derive lemma 4.5.2 by considering z(i, j) = 1

for all possible links in equation 4.30, we take an alternative approach, because some

parts of the proof will be used later. The average hop count of a random-walk that

starts at node s before it reaches its destination node d is equal to the average number

of times a node k is visited summed over all possible k’s. In terms of betweenness this

is:

Tsd =
∑

k

bsk(d)

Substituting bsk(d) from equation 4.15 results in:

Tsd =

n∑
k=1

(l+sk − l+sd − l+dk + l+dd)Wk

Now, the average time in system considering all possible source-destination pairs

would be:

T =
1

n(n − 1)

∑
s,d

Tsd

=
1

n(n − 1)

∑
s,d

n∑
k=1

(l+sk − l+sd − l+dk + l+dd)Wk

=
1

n(n − 1)

n∑
k=1

(Wk

∑
s,d

(l+sk − l+sd − l+dk + l+dd))

=
1

n(n − 1)

n∑
k=1

(Wk ×
bk

Wk
)

=
1

n(n − 1)

n∑
k=1

bk

=
B

n − 1
(4.31)
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On the other hand, since bk
Wk

= 1
2τ (equation 4.17), we have:

B =

∑
k bk

n
=

∑
k

1
2τWk

n
=

1
2
τ

∑
k Wk

n

B =
1
2

W̄τ

Therefore using equation 4.31 we have:

T =
B

n − 1
=

1
2(n − 1)

W̄τ

T =
n
2

W̄τ̂

This completes the proof of lemma 4.5.2.

Lemma 4.5.2 reveals that the average hop length of a random-walk is proportional

to the product of average network criticality and average node weights. If we fix the

total weight of a network at a budget C, then the average hop length of a walk would

be proportional to the average network criticality, therefore, the average network

criticality can quantify the average hop count of a random-walk.

4.5.3 Network Criticality and Average Betweenness Sensitivity

Another interpretation for network criticality is based on the betweenness of different

network links. Since τ =
bi j

wi j
, we have for wi j > 0, and wuv > 0

∂τ
∂wuv

=
wi j

∂bi j

∂wuv
− bi j

∂wi j

∂wuv

w2
i j

=
1

wi j

∂bi j

∂wuv
− δiuδ jv

bi j

w2
i j

=
1

wi j

∂bi j

∂wuv
−
τ

wi j
δiuδ jv
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Now we consider the special case where (u, v) = (i, j).

∂τ
∂wi j

=
1

wi j

∂bi j

∂wi j
−
τ

wi j

wi j
∂τ
∂wi j

=
∂bi j

∂wi j
− τ (4.32)

By adding the results of equation 4.32 for different links of the network one can see:∑
(i, j)∈E

wi j
∂τ
∂wi j

=
∑

(i, j)∈E

∂bi j

∂wi j
−mτ (4.33)

Combining equation 4.33 and Lemma 4.4.3 results in:∑
(i, j)∈E

∂bi j

∂wi j
= (m − 1)τ

τ =
1

m − 1

∑
(i, j)∈E

∂bi j

∂wi j
(4.34)

where m is the number of links of the network.

Observation 4.5.3 According to equation 4.34 network criticality τ can be interpreted as the

average of link betweenness derivatives or sensitivities with respect to link weight.

Equation 4.34 suggests an effective approach to design routing and flow assignment

algorithms. If we can estimate the variation of each link betweenness with respect to its

weight (i.e.
∂bi j

∂wi j
), then we can use this variation as a cost to develop routing strategies

to find min-cost paths. This idea will be developed in chapter 5.

4.5.4 Network Criticality and Algebraic Connectivity

Fiedler [94] defined algebraic connectivity as the first non-zero eigenvalue (λ2) of the

Laplacian matrix of a connected graph (recall from appendix A that the first eigenvalue

of Laplacian matrix for a connected graph is zero). Algebraic connectivity is a lower

bound for node connectivity and link connectivity. Therefore, the further λ2 is from zero,

the higher the node and link connectivity of a graph.
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We now establish lower and upper bounds for network criticality based on algebraic

connectivity.

Theorem 4.5.4 Normalized network criticality satisfies the following bounds in terms of

algebraic connectivity: 2
(n−1)λ2

≤ τ̂ ≤ 2
λ2

.

Proof Lemma 4.4.2 can be used to obtain spectral bounds for network criticality. Since

λ2 is the smallest non-zero eigenvalue of graph Laplacian and all the eigenvalues are

non-negative, we have:

τ̂ =
2

n − 1

n∑
i=2

1
λi

τ̂ ≤
2

n − 1
×

n − 1
λ2

τ̂ ≤
2
λ2

This establishes the upper bound for normalized network criticality. To get the lower

bound we observe that:

τ̂ =
2

n − 1

n∑
i=2

1
λi

τ̂ ≥
2

n − 1
1
λ 2

τ̂ ≥
2

(n − 1)λ2

combining these two inequalities results in:

2
(n−1)λ2

≤ τ̂ ≤ 2
λ2

2
n−1 ≤ τ̂λ2 ≤ 2

This completes the proof of theorem 4.5.4.

Theorem 4.5.4 shows the relationship between network criticality and connectivity.

Since normalized network criticality is upper bounded by the reciprocal of algebraic
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connectivity, improvement of connectivity (increasing λ2) improves the robustness as

well (decreasing the upper bound of τ̂), but it is important to note that increasing

connectivity at the same time decreases the lower bound of network criticality, which

in turn causes more variance in network criticality. In other words, we can’t uniformly

improve the robustness of a network just by increasing the connectivity. Theorem 4.5.4

implies an effect similar to Heisenberg Uncertainty Principle. In quantum physics, the

Heisenberg uncertainty principle states that the values of certain pairs of conjugate

variables (position and momentum, for instance) cannot both be known with arbitrary

precision. That is, the more precisely one variable is known, the less precisely the other

is known. It appears that pair (τ̂, λ2) is another example of these conjugate pairs.

4.6 Calculation of Network Criticality for Some Graphs

To get a better understanding of the concept of criticality, we obtain exact expressions

for network criticality of some well-structured network topologies.

4.6.1 Simple Link Network (K2)

Here we calculate τ for a simple connected graph with two nodes and one link (Fig.

4.2). The weight and Laplacian matrices are:

W =

0 a

a 0

 ⇒ L =

 a −a

−a a

 = a

 1 −1

−1 1


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Figure 4.2: Simple Link Network

In order to find the Moore-Penrose inverse of Laplacian matrix L+ we assume L+ =x y

y x

, and use known matrix formula LL+L = L [93].

LL+L = L

a2

 1 −1

−1 1


x y

y x


 1 −1

−1 1

 = a

 1 −1

−1 1


a

 2(x − y) −2(x − y)

−2(x − y) 2(x − y)

 =

 1 −1

−1 1


⇒ 2a(x − y) = 1

On the other hand the row sum of pseudo-Laplacian is zero (property of Laplacian

matrix). Hence:  2a(x − y) = 1

x + y = 0

⇒ x = 1
4a , y = − 1

4a ⇒ L+ =


1
4a −

1
4a

−
1
4a

1
4a


τ12 = τ21 = l+11 + l+22 − 2l+12 = 1

a

τ(K2) = τ12 + τ21 = 2
a

τ̂(K2) = 1
a

This result shows that the average network criticality of K2 is equal to the reciprocal

of its link weight. The more the weight of the link, the less the criticality of the

network. Theoretically, network criticality of K2 approaches zero when the link weight
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approaches∞. This implies that the link weight can be interpreted as capacity. Indeed

any beneficial QoS parameter can be incorporated into the definition of the link weight.

It is clear that increasing the weight improves the robustness of the network. The

worst case happens when the link weight approaches zero (a → 0). In this case

network criticality approaches infinity (τ → ∞). This is the most critical situation

where the connectivity of the network is violated. Connectivity in this context does

not necessarily mean the physical connectivity, we consider a network K2 disconnected

if its transport service is interrupted (for example due to the link congestion).

4.6.2 Complete Graph on 3 Nodes (K3)

We investigate τ for a complete graph on 3 nodes as shown in Fig. 4.3. We use equation

4.7 to obtain Moore-Penrose inverse of Laplacian L.

W =


0 a b

a 0 c

b c 0

 ⇒ L =


a + b −a −b

−a a + c −c

−b −c b + c


A = L(3|3) =

a + b −a

−a a + c


A+ = L+(3|3) = L−1(3|3) =

1
ab + bc + ca

a + c a

a a + b



Now we use the iterative formula for A+ (equations 4.7 and 4.2). We let z =

−b

−c

.

Step 1:
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Figure 4.3: Complete Graph on 3 Nodes

A+z =
1

ab + bc + ca

a + c a

a a + b


−b

−c

 =

−1

−1

 = −
−→
12

1 + z∗(AA∗)+z = 1 + (A+z)t(A+z) = 1 + 2 = 3

ζ =
1
3

z∗A∗+A+ =
1
3

(A+z)tA+ = −
1
3

(
1 1

) 1
ab + bc + ca

a + c a

a a + b


ζ = −

1
3(ab + bc + ca)

(
2a + c 2a + b

)
A+
− A+zζ =

1
ab + bc + ca

a + c a

a a + b

 − 1
3(ab + bc + ca)

1

1

 (2a + c 2a + b
)

=
1

3(ab + bc + ca)

a + 2c a − b

a − c a + 2b


(
A z

)+

=
1

3(ab + bc + ca)


a + 2c a − b

a − c a + 2b

−2a − c −2a − b


Step 2:

Now we let A =


a + b −a

−a a + c

−b −c

 and z =


−b

−c

b + c

.

Then we can apply second recursion on equation 4.7 to obtain final L+. We repeat step
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one with new values of A and z.

A+ =
1

3(ab + bc + ca)

a + 2c a − c −2a − c

a − b a + 2b −2a − b


A+z =

1
3(ab + bc + ca)

−ab − 2bc − ac + c2
− 2ab − 2ac − bc − c2

−ab + b2
− ac − 2bc − 2ab − 2ac − b2

− bc

 =

−1

−1


1 + z∗(AA∗)+z = 1 + (A+z)t(A+z) = 1 + 2 = 3

ζ = −
1
3

−1

−1

 1
3(ab + bc + ca)

a + 2c a − c −2a − c

a − b a + 2b −2a − b


ζ = −

1
9(ab + bc + ca)

(
2a + 2c − b 2a + 2b − c −4a − b − c

)
A+
− A+zζ =

1
9(ab + bc + ca)

 a + b + 4c a − 2b − 2c −2a + b − 2c

a − 2b − 2c a + 4b + c −2a − 2b + c


Now using equation L+ =

(
A z

)+

we can find L+:

L+ =
1

9(ab + bc + ca)


a + b + 4c a − 2b − 2c −2a + b − 2c

a − 2b − 2c a + 4b + c −2a − 2b + c

−2a − 2c + b −2a − 2b + c 4a + b + c

 (4.35)

From equation 4.35 one can find the criticality of any two nodes as well as the network

criticality.

τ12 = ut
12L+u12 =

b + c
ab + bc + ca

(4.36)

τ13 = ut
13L+u13 =

a + c
ab + bc + ca

(4.37)

τ23 = ut
23L+u23 =

a + b
ab + bc + ca

(4.38)

τ =
∑
i, j

τi j = 4
a + b + c

ab + bc + ca
(4.39)

τ̂ =
1

n(n − 1)
τ =

2(a + b + c)
3(ab + bc + ca)

(4.40)

Equations 4.36, 4.37, 4.38 show a similar pattern. The denominator of τ12, τ13, τ23

are equal to the cofactor of Laplacian matrix L, and the numerator of τi j (for τ12, τ13, τ23)
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Figure 4.4: A Path of Length 2 on 3 nodes

appears to be the partial derivative of the cofactor with respect to the weight of link

(i, j). In order to get a better understanding of these results, we consider some special

cases.

4.6.2.1 Special Case: One link is shut down (A Linear Network on 3 nodes: P3)

If one of the links in a K3 graph is disconnected, the topology is converted to a path of

length 2 on 3 nodes (P3) as shown in Fig. 4.4. Let link between nodes 2 and 3 in graph

of Fig. 4.3 be disconnected. This situation can be reached if the weight of the link (2,3)

goes to zero (c → 0). Applying c → 0 to equations 4.36, 4.37, 4.38, and 4.39 provides

one with criticality measures of P3.

τ12(P3) = τ12(K3)|c→0 =
1
a

τ13(P3) = τ13(K3)|c→0 =
1
b

τ23(P3) = τ23(K3)|c→0 =
a + b

ab
=

1
a

+
1
b

(4.41)

τ(P3) = τ(K3)|c→0 = 4
a + b

ab
=

4
a

+
4
b

(4.42)

τ̂(P3) =
1

3 × 2
τ(P3) =

2(a + b)
3(ab)

Equation 4.41 shows that the criticality of node pair 2−3 (s = 3, d = 2 or s = 2, d = 3)

is the sum of the criticality of its path links. In addition, the network criticality of P3 can

be written as τ(P3) = n12
w12

+ n13
w13

, where ni j denotes the number of times that link (i, j) is in

the path connecting one source to a destination. For instance n12 = 4, because there are

four paths containing link (1, 2). These paths are: 1→ 2, 1→ 2→ 3, 2→ 1, 3→ 2→ 1.
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Figure 4.5: Graph R2: Two Parallel Links

4.6.2.2 Special Case: One link has unlimited capacity (Ring on 2 Nodes: R2)

Another special case for K3 is when capacity of one link is unlimited. Let c→∞, then

the complete graph is converted to a network with 2 nodes and 2 parallel links (Fig.

4.5) or a ring of length 2. We call this graph R2. Applying c → ∞ to equations 4.36,

4.37, 4.38, and 4.39 provides one with criticality measures of graph R2.

τ12(R2) = τ12(K3)|c→∞ =
1

a + b
(4.43)

τ13(R2) = τ13(K3)|c→∞ =
1

a + b
(4.44)

τ23(R2) = τ23(K3)|c→∞ = 0 (4.45)

τ(R2) = τ(K3)|c→∞ =
4

a + b
(4.46)

τ̂(R2) =
1

2 × (2 − 1)
τ(R2) =

2
a + b

(4.47)

Equations 4.43, 4.44 show that in the context criticality, two parallel links with

weights a and b can be replaced by one link whose weight is the sum of the weights

of original parallel links i.e. a + b. Equation 4.45 verifies that two end-nodes of a

link with infinite weight can be merged. Finally, equation 4.46 shows that graph R2

is disconnected only if both parallel links are disconnected, that is, with regard to

topological connectivity, two parallel links are more robust comparing one link with

higher weight (no matter what the link weights are). Note that this does not mean that

R2 (two parallel links topology) is always more robust than K2 (one link network).
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Figure 4.6: Complete Graph on 4 Nodes (K4)

4.6.3 Complete Graph on 4 Nodes (K4)

We investigate τ for a complete graph on 4 nodes as shown in Fig. 4.6. We omit the

details of derivations as it is exactly similar to what we did for K3 in §4.6.2

τ12 =
d f + eb + ed + e f + b f + cb + cd + c f

X

τ13 =
ce + cd + ca + e f + ed + d f + a f + ae

X

τ14 =
ab + ad + a f + db + d f + eb + ed + e f

X

τ23 =
a f + b f + cb + c f + ae + eb + ca + ce

X

τ24 =
ab + ad + a f + db + b f + cb + cd + c f

X

τ34 =
ad + ae + ab + db + eb + ca + cd + ce

X

τ =
2X1

X
τ̂ =

X1

6X

where

X1 = 3ca + 3ce + 4eb + 3d f + 4a f + 3b f + 4cd + 3cb

+ 3c f + 3ae + 3db + 3ad + 3ab + 3e f + 3ed

X = ce f + ced + ceb + cd f + cdb + ca f + cad + cab

+ be f + bed + bd f + ba f + ae f + aed + aeb + ad f

One can notice that the denominator of τ is the cofactor of the graph Laplacian.
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4.6.3.1 Special Case: Ring on 4 Nodes (R4)

One can find network criticality of a ring with 4 nodes by removing links (1, 3) and

(2, 4) from topology of K4. This means that link weights b and e should be zero. R4

topology is shown in Fig. 4.7. Criticality of different S − D pairs and total criticality

for R4 are listed here.

τ12(R4) = τ12(K4)|b,c→0 =
c f + cd + d f

cd f + ca f + cad + ad f

τ13(R4) = τ13(K4)|b,c→0 =
a f + d f + ca + cd

cd f + ca f + cad + ad f

τ14(R4) = τ14(K4)|b,c→0 =
ad + a f + d f

cd f + ca f + cad + ad f

τ23(R4) = τ23(K4)|b,c→0 =
a f + c f + ca

cd f + ca f + cad + ad f

τ24(R4) = τ24(K4)|b,c→0 =
ad + a f + cd + c f

cd f + ca f + cad + ad f

τ34(R4) = τ34(K4)|b,c→0 =
ad + ca + cd

cd f + ca f + cad + ad f

τ(R4) = τ(K4)|b,c→0 =
2(4cd + 3c f + 3ca + 3ad + 3d f + 4a f )

cd f + ca f + cad + ad f

τ̂(R4) =
4cd + 3c f + 3ca + 3ad + 3d f + 4a f

6(cd f + ca f + cad + ad f )

These results show that end-to-end criticality and network criticality are polynomial

fractions, where the numerator and the denominator are polynomial functions of link

weights and the denominator is always equal to the cofactor of the Laplacian matrix.

4.6.3.2 Special Case: Linear Network on 4 Nodes (P4)

One can find network criticality of a path on 4 nodes (length of 3) by removing one link

from ring topology R4. We remove link (2, 3) from R4. The result is P4 which is shown
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Figure 4.7: Ring on 4 Nodes (R4)

Figure 4.8: Path on 4 Nodes (P4)

in Fig. 4.8. Criticality between different S −D pairs are calculated in the following:

τ12(P4) = τ12(R4)| f→0 =
1
a

τ13(P4) = τ13(R4)| f→0 =
1
a

+
1
d

(4.48)

τ14(P4) = τ14(R4)| f→0 =
1
c

τ23(P4) = τ23(R4)| f→0 =
1
d

τ24(P4) = τ24(R4)| f→0 =
1
a

+
1
c

(4.49)

τ34(P4) = τ34(R4)| f→0 =
1
a

+
1
c

+
1
d

(4.50)

τ(P4) = τ(R4)| f→0 = 2(
4
a

+
3
c

+
3
d

) (4.51)

Equations 4.41, 4.48, 4.49, 4.50 show that the criticality of source-destination pair

s − d is the sum of the criticality of its links. In addition, according to equation 4.51

the network criticality of P4 can be written as τ(P4) = na
a + nc

c + nd
d , where na shows

the number of times that link with weight a is in the path connecting one source to a

destination.
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Figure 4.9: Network Criticality for (Pn)

4.6.4 Criticality for a General Linear Graph on n Nodes (Pn)

Equations 4.41, 4.48, 4.49, 4.50 suggest a general formula for obtaining the criticality of

any source-destination pair s− d on a path. Criticality of any node pair s− d in a linear

graph is the sum of the reciprocal of all link weights between s and d. Note that there

is only one path between any source-destination pair as our graph is a path by itself.

Equations 4.42 and 4.51 also suggest a general formula for calculating network

criticality of a path. The criticality of Pn can be written as τ(Pn) =
∑

(i, j)∈E
ni j

wi j
, where ni j

shows the number of times that link (i, j) is in an arbitrary path connecting one source

node to a destination node.

Suppose nodes of a path Pn are numbered from 1 to n. Then the number of paths

containing link (i, i + 1) is equal to ni j = 2i(n − i) (Fig. 4.9). The coefficient 2 accounts

for the paths in reverse direction.

τ(Pn) =
∑
i∈N

2i(n − i)
wi,i+1

(4.52)

4.6.5 Criticality for a General Tree

Since a tree is a graph without cycle, there is only one path between every source-

destination pair. The criticality of this single path can be found by adding the criticality

of its links (reciprocal of link weight). The criticality of the tree is the sum of the

criticality of all such paths. If ni j denotes the number of times all such paths include
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link (i, j), the criticality of the tree can be written as:

τ =
∑

(i, j)∈E

ni j

wi j
(4.53)



Chapter 5

Design of Robust Networks

In this chapter we elaborate on the use of network criticality as a metric to quantify

robustness of a network. We show that network criticality is a strictly convex function

of network weight matrix and we develop an optimization problem to minimize the

criticality. The optimization then leads to guidelines for network design problem and

network traffic management either online of offline. Essentially, the idea is to find

the difference between the solution of primal and dual convex optimization problem

(duality gap). For a strictly convex function, the duality gap has to be zero for the

optimal solution. In sub-optimal cases, the duality gap is always greater than zero.

The algorithms are built based on the idea of minimizing the duality gap to the extent

possible. In the following sections, we try to shed more light on this approach.

5.1 Why is Network Criticality so Important?

In chapter 4 we have shown some important interpretations of network criticality.

We saw that the average cost, average walk-length, and average link betweenness

sensitivity are proportional to the network criticality. In this section we study another

important aspect of network criticality. In chapter 3 we investigated the behavior of

91
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the betweenness in the presence of external input traffic rate. We showed that for a

Jackson network, the maximization of carried load is equal to minimizing the average

of NCI when the network is lightly loaded, or to minimizing the maximum of NCI

when the network is heavily loaded (see theorem 3.6.2). In this section we extend

those results to general networks and show that to maximize carried load, one needs to

minimize the network criticality. We start by deriving a useful result about betweenness

as a direct consequence of equation 4.17.

Corollary 5.1.1 The normalized betweenness of node i in a graph is πi = bi∑n
k=1 bk

, where πi is

the stationary probability of node i in a Markov chain with transition probabilities pi j =
wi j∑
k wik

.

Proof Equation 4.17 can be used to simplify the normalized node betweenness.

Normalized bi =
bi∑n

k=1 bk

=
1
2τWi

1
2

∑n
k=1 τWk

=
Wi

W

= πi

where Wi =
∑n

j=1 wi j, W =
∑n

i=1
∑n

j=1 wi j. This completes the proof of corollary 5.1.1.

Let λ be the average input rate of the network, and let the weight of each link be

the capacity of the link (i, j) = l (i.e. wi j = ci j = c(l)). Further, let xk be the average load

on node k and ck be the capacity of node k. By applying Little’s formula and using

corollary 5.1.1 and equation 4.31 we have:

xk = λπkT

= λ
bk∑
i bi

T

= λ
bk

nB
B

n − 1

xk =
λ

n(n − 1)
bk (5.1)
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Therefore, if we denote the maximum load with xmax and the capacity of the node that

carries maximum load with c∗ then we have:

xmax ≤ c∗

λ
n(n − 1)

bmax ≤ c∗

λ ≤
n(n − 1)

bmax
c∗

λ ≤
n(n − 1)

η

Since we know η = τ
2 (see definition 4.3.1), we will have:

λ ≤
2
τ̂

(5.2)

We can summarize these results in theorems 5.1.2 and 5.1.3.

Theorem 5.1.2 Consider a network topology G(N,E,W), and assume there is external expected

input traffic rate of λ for the network. Let xk be the expected load on node k, and bk be the total

betweenness of node k, then:

xk =
λ

n(n − 1)
× bk

Theorem 5.1.3 To maximize the carried load of a network, one needs to minimize the network

criticality, where the link weight is defined as the link capacity:

max
W

λ =
2

minW τ̂

Proof The proof is a direct result of equation 5.2. According to this equation, the

offered load λ is bounded to the reciprocal of network criticality. This means that to

maximize λ one needs to minimize η (or network criticality).

Observation 5.1.4 Comparing theorem 5.1.3 and 3.6.2 one can notice that in general the

optimization problem defined in theorem 5.1.3 is incorporating both cases of theorem 3.6.2.
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Theorem 5.1.3 reveals the importance of criticality in the study of networks. Re-

ciprocal of the network criticality provides an upper bound for the maximum load

that a network can carry. If input traffic goes beyond the limit of theorem 5.1.3, the

network experiences congestion. In other words by minimizing the network criticality

we delay the onset of congestion to the extent possible.

In the following sections we will study dynamic properties of network criticality

and show that the minimization of τ is possible. Then we will derive useful directions

to design networks with appropriate network criticality, or to design control algorithms

to maintain network criticality as low as possible. The latter situation happens when

the weight matrix changes dynamically, which in turn changes network criticality.

5.2 Convexity of Network Criticality

In this section we prove an important property of network criticality. We derive

expressions for first, second, and in general nth derivative of τ with respect to link

weight wi j and using the results we show that network criticality τ is a strictly convex

function of link weights. We start by stating a well-known fact from graph-theory

about generalized inverse matrix of a graph.

Proposition 5.2.1 For a connected graph, matrix (L + J
n )−1 is invertible and the generalized

inverse (Moore-Penrose inverse) of the Laplacian matrix is:

L+ = (L +
J
n

)−1
−

J
n

(5.3)

where matrix J in this equation is an n × n matrix with all elements equal to 1.

Proof See [95].

In order to prove the convexity of network criticality we need the following lemmas.
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Lemma 5.2.2 Network criticality (τ̂) is a monotone decreasing function of weights. In addi-

tion, the first partial derivative of τ with respect to a link weight wi j is:

∂τ̂
∂wi j

= −
2

n − 1
‖L+

i − L+
j ‖

2

where L+
i denotes the ith column of matrix L+.

Proof In chapter 4, we saw that the network criticality is a polynomial fraction, where

the numerator and the denominator are polynomial functions of link weights. It

follows that ∂nτ
∂wn

ij
exist except at the poles of τ. Using equations 4.20 and 5.3 we can

calculate the first derivative of τsd for the weight of a typical link l = (i, j).

∂τsd

∂wi j
= ut

sd ×
∂L+

∂wi j
× usd (5.4)

In order to calculate the derivative of matrix L+ with respect to wi j we use equation

5.3’: ∂L+

∂wi j
=

∂(L+
J
n )−1

∂wi j
. On the other hand:

(L + J
n )−1
× (L + J

n ) = I

∂(L+
J
n )−1

∂wi j
× (L + J

n ) + (L + J
n )−1
×

∂(L+
J
n )

∂wi j
= 0

∂(L+
J
n )−1

∂wi j
= −(L + J

n )−1
×

∂L
∂wi j
× (L + J

n )−1

∂L+

∂wi j
= −(L + J

n )−1
×

∂L
∂wi j
× (L + J

n )−1 (5.5)

Replacing equation 5.5 in equation 5.4 gives:

∂τsd

∂wi j
= ut

sd ×
∂L+

∂wi j
× usd

= −1 × ut
sd × (L +

J
n

)−1
×
∂(L + J

n )
∂wi j

× (L +
J
n

)−1
× usd

= −1 × ut
sd × (L +

J
n

)−1
×
∂L
∂wi j

× (L +
J
n

)−1
× usd (5.6)

To obtain ∂L
∂wi j

we notice that wi j appears in four elements of matrix L: li j, , l ji, , lii, , l j j, .
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For these elements based on the definition of Laplacian (L = D −W) we have:

( ∂L
∂wi j

)pq =



1 p = i, q = i

1 p = j, q = j

−1 p = i, q = j

−1 p = j, q = i

0 otherwise

(5.7)

Equation 5.7 can be written in matrix form as:

∂L
∂wi j

= ui j × ut
i j (5.8)

Equation 5.8 can also be found directly from an alternative definition of Laplacian for

weighted graphs given in appendix A equation A.1. Combining equations 5.6 and 5.8,

∂τsd

∂wi j
= −1 × ut

sd × (L +
J
n

)−1
× ui j × ut

i j × (L +
J
n

)−1
× usd (5.9)

Using the fact that Jui j = ut
i jJ = 0, one can easily verify that:

(L +
J
n

)−1ui j = ((L +
J
n

)−1
−

J
n

)ui j

= L+ui j = L+
i − L+

j (5.10)

where L+
i is the ith column of L+. Using equation 5.10 in 5.9 gives:

∂τsd

∂wi j
= −1 × ut

sd(L+
i − L+

j )(L+
i − L+

j )tusd (5.11)

= −1 × ((L+
i − L+

j )tusd)t(L+
i − L+

j )tusd

= −1 × ((l+is − l+id) − (l+js − l+jd))2

= −1 × ((l+is − l+js)
2 + (l+id − l+jd)2

− 2(l+is − l+js)(l
+
id − l+jd))
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Now we are ready to obtain the derivative of τ.

∂τ
∂wi j

=
∑

d

∑
s

∂τsd

∂wi j

= −1 × (
∑

d

∑
s

(l+is − l+js)
2 +

∑
d

∑
s

(l+id − l+jd)2
−

2
∑

d

∑
s

(l+is − l+js)(l
+
id − l+jd))

= −1 × (n‖L+ui j‖
2 + n‖L+ui j‖

2
−

2
∑

d

(l+id − l+jd)
∑

s

(l+is − l+js))

= −2n‖L+ui j‖
2

∂τ
∂wi j

= −2n‖L+
i − L+

j ‖
2 (5.12)

Note that ‖L+
i − L+

j ‖
2 > 0 because if ‖L+

i − L+
j ‖

2 = 0 then rank(L+) < (n − 1) and this

violates the connectivity of our graph. Therefore 5.12 shows that the derivative of τ is

always negative. This completes the proof of lemma 5.2.2.

Lemma 5.2.3 The first partial derivative of τi j with respect to wi j satisfies the following partial

differential equation.
∂τi j

∂wi j
= −τ2

i j

Proof We use equation 5.11 to find the partial derivative of τi j

∂τi j

∂wi j
= −1 × ut

i j(L
+
i − L+

j )(L+
i − L+

j )tui j

= −ut
i jL

+ui jut
i jL

+ui j

= −τ2
i j (5.13)

This completes the proof of lemma 5.2.3.

Now we find higher order derivatives of network criticality.
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Lemma 5.2.4 The nth derivative of τ with respect to the link weights is:

∂nτ
∂wi j

n = n!(−τi j)n−1 ∂τ
∂wi j

(5.14)

Proof We use induction. First we find the second partial derivative of τ with respect

to wi j.

∂τ
∂wi j

= −2n‖L+ui j‖
2

= −2nL+ui jut
i jL

+

∂2τ
∂wi j

2 = −2n
∂
∂wi j

(L+ui jut
i jL

+)

= 2n(
∂L+

∂wi j
ui jut

i jL
+ + L+ui jut

i jui j
∂L+

∂wi j
)

= −2n(−L+ui jut
i jL

+ui jut
i jL

+
− L+ui jut

i jL
+ui jut

i jL
+)

= −2n × (−2)τi jL+ui jut
i jL

+

∂2τ
∂wi j

2 = −2τi j
∂τ
∂wi j

(5.15)

This proves that equation 5.14 is valid for n = 2. Now we assume that equation 5.14 is

true for n = k, we prove that it will be true for n = k + 1 too.

∂k+1τ

∂wk+1
i j

=
∂
∂wi j
{k!(−τi j)k ∂τ

∂wi j
}

= k!{(k − 1)(−
∂τi j

∂wi j
)(−τi j)k−2 ∂τ

∂wi j
+ (−τi j)k−1 ∂

2τ

∂w2
i j

}

= k!(−τi j)k−2
{−(k − 1)

∂τi j

∂wi j

∂τ
∂wi j

+ (−τi j)(−2τi j)
∂τ
∂wi j
}

= k!(−τi j)k−2 ∂τ
∂wi j
{−(k − 1)

∂τi j

∂wi j
+ 2τ2

i j} (5.16)

We use lemma 5.2.3 in equation 5.16:

∂k+1τ

∂wk+1
i j

= k!(−τi j)k−2 ∂τ
∂wi j
{−(k − 1)(−τ2

i j) + 2τ2
i j}

= k!(−τi j)k−2 ∂τ
∂wi j
{(k + 1)τ2

i j}

= (k + 1)!(−τi j)k ∂τ
∂wi j
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This completes the proof of lemma 5.2.4.

Theorem 5.2.5 τ is a strictly convex function of the graph weights.

Proof: It is sufficient to show that the first derivative of τ is always negative and it’s

second derivative is always non-negative. Lemma 5.2.2 verifies that the first partial

derivative of τ with respect to wi j is negative and lemma 5.2.4 shows that the second

derivative of τ is non-negative which means that τ is a strict convex function on weight

set. This completes the proof of theorem 5.2.5.

5.3 Convex Optimization Problem for Network Critical-

ity

Theorem 5.2.5 has some direct consequences.

Observation 5.3.1 The problem of finding the graph weights to optimize a specific metric is

a convex optimization problem and all the related literature can be used to solve it.

Observation 5.3.2 Due to the fact that τ is a strictly convex function of the weights, an

optimization problem with some constraints has a unique solution.

The ultimate goal is to come up with a method to minimize the criticality. Our

results show that minimizing node/link criticality is equivalent to minimizing the

function τ. Hence, we consider the minimization of τ under some constraints. We

assume that there is a cost zi j = z ji related to each link weight wi j. A reasonable

constraint is to assume that we have a maximum total budget C. This constraint is

motivated by observation 4.5.1.
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Theorem 5.3.3 Consider the following optimization problem on graph G(N,E,W):

Minimize τ

Subject to
∑

(i, j)∈E wi jzi j = C ,C is f ixed (5.17)

wi j ≥ 0

For the optimal weight set, W∗, we have:

w∗i j(C
∂τ
∂wi j

+ zi jτ) = 0 (i, j) ∈ E (5.18)

Proof The cost constraint can be written as an inner product of costs and weights, so

we can write

(Vec(Z).Vec(W∗))τ = (
∑

(i, j)∈E

w∗i jzi j)τ = Cτ (5.19)

Combining lemma 4.4.3 and equation 5.19 one can see:

C∇τ.Vec(W∗) + Vec(Z).Vec(W∗)τ = 0

Vec(W∗).(C∇τ + τVec(Z)) = 0

w∗i j(C
∂τ
∂wi j

+ τzi j) = 0 (5.20)

This completes the proof of theorem 5.3.3.

Observation 5.3.4 Theorem 5.3.3 shows that the partial derivative of τ with respect to any

optimal weight w∗i j is proportional to the τ if the link weight is non-zero.

In general, one can apply the condition of optimality [96, 97] on optimization

problem 5.17 to get necessary condition for a weight vector to be optimal. Let W∗ be the

optimal weight matrix, and let Wt be another weight matrix satisfying the constraints

of optimization problem 5.17, then according to the condition of optimality:

∇τ.(Vec(Wt) − Vec(W∗)) ≥ 0
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Now, we choose Wt as follows:

Wt = [wuv] =


C

2zi j
i f u = i & v = j

C
2zi j

i f u = j & v = i

0 otherwise

Clearly, Wt satisfies the constraints of optimization problem 5.17, therefore, using the

condition of optimality and considering lemma 4.4.3 we have:

∇τ.(Vec(Wt) − Vec(W∗)) ≥ 0

∇τ.Vec(Wt) − ∇τ.Vec(W∗) ≥ 0

C
zi j

∂τ
∂wi j

+ τ ≥ 0 ∀(i, j) ∈ E

min
(i, j)∈E

C
zi j

∂τ
∂wi j

+ τ ≥ 0 (5.21)

The constraints of optimization problem 5.17 and inequality 5.21 state necessary

and sufficient conditions for the optimality of any weight matrix.

5.4 Design of a Robust Routing Algorithm for AutoNet

Before we go into further details of the optimization problem 5.17, we use equation

5.20 to derive an algorithm for robust routing. In chapter 4 we saw that network

criticality can be viewed as the average of changes in link betweennesses with respect

to the weights (see §4.5.3). Equation 4.34 suggests that we can use
∂bi j

∂wi j
as link cost and

try to design algorithms to run network flows in paths with less cost. Lets consider

a network in optimal condition, i.e. satisfying equation 5.20. We can find a simple

expression for
∂bi j

∂wi j
(when the weight set is optimal) by combining equation 5.20 and
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4.34.

bi j = τwi j

∂bi j

∂wi j
=

∂τ
∂wi j

wi j + τ

∂bi j

∂wi j
= τ(1 −

zi jwi j

C
) (5.22)

Equation 5.22 has a nice interpretation. For small weight costs (
zi jwi j

C � 1) the variation

of link betweenness with respect to the changes in link weight is near the network

criticality. For links with higher cost, the betweenness sensitivity is smaller. Note that

equation 5.22 is the expression for link betweenness sensitivity only if we have optimal

weight setting, but in general, the weight set is not optimal and using equation 5.22

is not a right choice (for example if we use this equation as the link cost for Dijkstra’s

algorithm, the optimal path using Dijkstra’s method will be the same as min-hop

shortest path method, which is clearly not an improvement for us). Instead we need

to directly obtain the link betweenness sensitivity, one simple method to use the

approximation:
∂bi j

∂wi j
|t=k ≈

bi j(k) − bi j(k − 1)
wi j(k) − wi j(k − 1)

where t = k shows kth step. In next section we will show how to use link betweenness

sensitivity to design an improved version of PCR algorithm.

5.4.1 Random-Walk Path Criticality Routing Algorithm (RW-PCR)

The idea of RW-PCR is simple. We label each and every link of the graph with its
∂bi j

∂wi j

as the cost and use Dijkstra’s algorithm to obtain the shortest path(s) from a source s to

a destination d using the assigned cost for the links. Bear in mind that this cost is not

the same as zi j. In fact the cost has the same role as LCI in our heuristic PCR algorithm

which is described in chapter 3 (§3.3).

Definition 5.4.1 We call ∂bi j

∂wi j
as Random-Walk Link Criticality Index (LCIRW).
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Figure 5.1: Flowchart of RW-PCR Algorithm

Definition 5.4.2 We define the maximum of the LCIRW of the links in a path as Random-Walk

Path Criticality Index (PCIRW). This is motivated by equation 5.2. For a path p = uu1u2...ukv:

PCIRW(p) = max(LCIRW(u,u1), ...,LCIRW(uk−1,uk),LCIRW(uk, v))

where LCIRW(x, y) denotes the LCIRW of link (x, y).

When a demand for source-destination pair s−d arrives, the shortest path obtained

in this way would be considered as a candidate to be assigned to the demand. A simple

call-admission control is applied here by considering a threshold tr for the criticality of

the path. If the PCIRW is more than this threshold, then the flow would be considered

too risky for the network and be rejected (blocked), otherwise the path is used as the

route and the demand flow is assigned to this path. The available bandwidth of all

the links on this path is updated and the LCI’s are also modified accordingly. In case

of having more than one shortest path, the path with least PCIRW will be chosen. A

simple flowchart of RW-PCR algorithm is shown in Fig. 5.1.



C 5. D  R N 104

5.4.1.1 Time Complexity of RW-PCR Argorithm

To estimate the time complexity of the algorithm, we note that the running time to

get the Moore-Penrose inverse is O(mn
1
2 ) [93], where m and n are the number of links

and nodes in the graph respectively. The main part of the RW-PCR can be obtained

in O(nlog(n)) as it is just a shortest path algorithm with link costs. Therefore, the

complexity of the algorithm would be O(mn
3
2 log(n)).

5.4.1.2 Evaluation of RW-PCR

In order to investigate the effectiveness of our RW-PCR algorithm, we run a set of

simulations similar to those we conducted for evaluation of PCR in §3.4.5 on the same

network (Fig. 3.10). We apply RW-PCR to create LSPs (Label Switch Path) assuming

that MPLS is used in the network to create the paths.

In the first experiment the requests for LSPs arrive at random and stay forever

(no departures). In our tests the bandwidth requests for paths (LSPs) are taken to be

uniformly distributed between 1 to 3 units. In Fig. 5.2 we show the number of rejected

calls for this case and compare the performance to that of original deterministic PCR ,

shortest path (SP), and widest shortest path (WSP). The test is performed 20 times and

each time with 2000 path requests. We measured the number of blocked requests. Fig.

5.2 shows that RW-PCR algorithm has the best performance and the performance of

PCR and RW-PCR algorithms are much better than WSP and SP.

In another experiment we examined the behavior of the algorithms in the presence

of dynamic traffic. Path requests arrive between each source-destination point (which

is chosen at random) according to a Poisson process with an average rate λ, and

the holding times are exponentially distributed with mean µ and λ
µ = 1800. The

bandwidth of input demands are taken to be uniformly distributed between 1 to 3

units. We generate 7000 requests and measure the rejections or blocking for each one

of the algorithms. Fig. 5.3 shows the number of the path requests rejected in 20
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Figure 5.2: Static Case- Result of Applying PCR, RW-PCR, SP, and WSP to the Network

under Test

experiments.

From Fig. 5.3, one can see that the number of blocks in RW-PCR is less than

other algorithms. PCR has the second best performance and WSP and SP are in next

positions. The main reason for the success of RW-PCR is the fact that RW-PCR finds

the path that has minimum effect on network criticality (or betweenness sensitivity).

5.5 Behavior of Network Criticality in Sub-Optimal Con-

ditions

In order to investigate the behavior of τ when the optimality condition is not met, we

need to explore the properties of the optimization problem introduced in theorem 5.3.3.

Our approach is to find an upper bound for the optimality gap (the difference between

the optimal and sub-optimal objective values of the optimization problem). The goal is

then to minimize this upper bound. In order to establish the upper bound, we use the

fact that according to the duality theorem [96], any value of the dual objective function
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Figure 5.3: Dynamic Case- Result of Applying PCR,RW-PCR, SP, and WSP to the

Network under Test

is a lower bound for the optimal value of the primal one. The duality gap, which is the

difference between the value of the primal and dual objective functions, provides an

upper bound for the optimality gap of a solution for the optimization problem In the

optimal case the duality gap is zero because we optimize a strictly convex function of

the variables, but in sub-optimal cases, it provides an upper bound for the optimality

gap. We try to find this upper bound and use it as a metric to quantify the behavior

of network criticality. Note that the optimality gap quantifies the variation of survival

value, and it is desired to minimize this variation by applying appropriate control

mechanisms. This section tries to provide some directions towards this goal.

5.5.1 Main Result

The main result of this chapter can be summarized in the following theorem.
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Theorem 5.5.1 Consider the following optimization problem:

Minimize τ

Subject to
∑

(i, j)∈E zi jwi j = C ,C is f ixed

wi j ≥ 0

For any sub-optimal solution of the convex optimization problem, the deviation from optimal

solution (optimality gap) has the upper bound of τ
C min(i, j)∈E

1
zi j

∂τ
∂wij

(C min(i, j)∈E
1
zi j

∂τ
∂wi j

+ τ).

Before proving theorem5.5.1, we state one implication of theorem 5.5.1 that leads to an

improvement in RW-PCR algorithm.

Observation 5.5.2 It can be seen from theorem 5.5.1, that the upper bound for τ−τdual
τ is equal

to 1 + τ
C min(i, j)∈E

1
zi j

∂τ
∂wij

Theorem 5.5.1 and observation 5.5.2 can be used as the foundation for building

centralized and distributed algorithms for flow assignment and routing problem, as

well as network planning. Both centralized and decentralized approaches are possible.

Here we show one simple application in traffic engineering. In centralized approach

it is enough to consider the statement of observation 5.5.2 as the link weights and find

the shortest path(s) using Dijkstra’s algorithm:

Dikstra′s weight f or link (i, j) = 1 +
τ

C 1
zi j

∂τ
∂wi j

(5.23)

To compare the performance of RW-PCR and the modified version of it based on

equation 5.23 we ran a scenario on the network of Fig. 5.4.

In each experiment we sent 50000 demands each one with a random bandwidth

request between 1 to 3. The traffic was Poisson with offered load of λ
µ = 1200. In each

experiment the number of blocked requests were counted. This experiment repeated

20 times, then we obtained the average of the blockage in each experiment for RW-PCR

and modified RW-PCR. Figure 5.5 shows the results.
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Figure 5.4: Test Network 15 Nodes, 28 Links

Figure 5.5: Comparison of RW-PCR and Modified RW-PCR
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While equation 5.12 can be used to get the derivative of τ with respect to wi j,

we used an approximate approach which is also appropriate when a decentralized

algorithm needs to be found. In each iteration we divided the difference of new and

old τ to the difference of new weight and old weight. In other words:

∂τ
∂wi j
|t=n+1 ≈

τ(n + 1) − τ(n)
wi j(n + 1) − wi j(n)

(5.24)

where t = n + 1 shows the step n + 1.

The performance of modified RW-PCR is better than RW-PCR. According to the

table of Fig. 5.5, the average of the number of blockages in all the experiments for

RW-PCR was 88.9 and it was 82.15 for the modified version.

5.5.2 Dual of τ Optimization Problem

In this section we formulate the dual of the optimization problem 5.17. This is the first

step to prove theorem 5.5.1. Using lemma 4.4.1, the optimization problem 5.17 can be

written as:

Minimize 2nTr(L+)

Subject to
∑

(i, j)∈E wi jzi j = C ,C is f ixed

wi j ≥ 0

Considering equation 5.3 and assuming Γ = L + J
n , the optimization problem becomes:

Minimize 2nTr(Γ−1) − 2n (5.25)

Subject to Γ =
∑

(i, j)∈E wi jui jut
i j + J

n∑
(i, j)∈E wi jzi j = C ,C is f ixed

wi j ≥ 0

where we have used an alternative expression for graph Laplacian matrix, that is,∑
(i, j)∈E wi jui jut

i j (see appendix A, equation A.1). We write the Lagrangian of the opti-
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mization problem 5.25. To this end we first obtain a simple formula for Lagrangian of

matrix equation Γ = L + J
n .

Lemma 5.5.3 Lagrangian of matrix constraint Γ = L + J
n is as follows:

Ł = Tr(TΓ) −
∑

(i, j)∈E

wi jut
i jTui j −

1
n
−→
1 tT
−→
1

where T is the n × n matrix of dual variables.

Proof Let T = [ti j], Γ = [γi j], L = [li j].

Γ = L +
J
n

or γi j = li j +
1
n
∀i, j ∈ N

t jiγi j = t jili j +
1
n

t ji ∀i, j ∈ N∑
i, j∈N

t jiγi j =
∑
i, j∈N

t jili j +
∑
i, j∈N

1
n

t ji ∀i, j ∈ N

Tr(TΓ) = Tr(TL) +
∑
i, j∈N

1
n

t ji (5.26)

Now if we consider equation L =
∑

(i, j)∈E wi jui jut
i j, we can simplify equation 5.26 as

follows:

Tr(TL) = Tr(
∑

(i, j)∈E

wi jTui jut
i j)

=
∑

(i, j)∈E

wi jTr(Tui jut
i j)

=
∑

(i, j)∈E

wi jut
i jTui j

Here we used the fact that Tr(Tui jut
i j) = ut

i jTui j. Then:

Tr(TΓ) =
∑

(i, j)∈E

wi jut
i jTui j +

∑
i, j∈N

1
n

ti j (5.27)

Equation 5.27 shows that the Lagrangian of matrix equation Γ = L+ J
n can be written

as Tr(TΓ) −
∑

(i, j)∈E wi jut
i jTui j −

1
n

−→
1 tT
−→
1 . This completes the proof of lemma 5.5.3.



C 5. D  R N 111

We use lemma 5.5.3 to derive the dual of optimization problem 5.25.

Theorem 5.5.4 Consider the following convex optimization problem:

Minimize 2nTr(Γ−1) − 2n

Subject to Γ =
∑

(i, j)∈E wi jui jut
i j + J

n∑
(i, j)∈E wi jzi j = C ,C is f ixed

wi j ≥ 0

The dual of the optimization problem is as follows:

maximize 2Tr(2nT)
1
2 − 2n − Cλ − 1

n

−→
1 tT
−→
1

subject to 1
zi j

ut
i jTui j ≤ λ

T
−→
1 = 2n

−→
1

T � 0

where T � 0 means that T is a positive semi-definite matrix. T and λ are the dual variables.

Proof Using lemma 5.5.3, the Lagrangian of optimization problem 5.25 is:

L(Γ,W,T, λ,ρ) = 2nTr(Γ−1) + Tr(TΓ) − 2n − Cλ

+
∑

(i, j)∈E

wi j(−ut
i jTui j + λzi j − ρi j) −

1
n
−→
1 tT
−→
1

To find the dual formulation, it is enough to take the infimum of the Lagrangian over

Γ, W. Considering the fact that
∑

(i, j)∈E ti jγi j = Tr(TΓ), we will have:

d(T, λ,ρ) = in fΓ,WL(Γ,W,T, λ,ρ) (5.28)

= in fΓTr(2nΓ−1 + TΓ) + in fW(−2n

−

∑
(i, j)∈E

wi j(−ut
i jTui j + λzi j − ρi j) −

1
n
−→
1 tT
−→
1 − Cλ)

The second term in equation 5.28 is minimized if its derivative with respect to all link

weights is zero. The minimum of the first term is −∞ unless matrix T is positive
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semi-definite, because if T is not positive semi-definite, then its spectrum consists of at

least one negative eigenvalue. This implies that if T is not positive semi-definite, then

d(T, λ,ρ) goes to −∞. Therefore

d(T, λ,ρ) =


in fΓTr(2nΓ−1 + TΓ) − 1

n

−→
1 tT
−→
1 − 2n − Cλ

i f − ut
i jTui j + λzi j − ρi j = 0, ρi j ≥ 0 ∀(i, j) ∈ E and T � 0

−∞ otherwise

(5.29)

where T = [ti j] and Γ = [γi j], and T � 0 means that matrix T is positive semi-definite.

Term in fΓTr(2nΓ−1 + TΓ) can also be obtained analytically using some known facts

from matrix algebra.

Proposition 5.5.5 For any non-singular square (n × n) matrix X and any n × n matrices A

and B, we have :

d
dX

Tr(AX) = A

d
dX

Tr(AX−1B) = −X−1BAX−1

where in general the derivative d
dX f (X) of a scalar-valued differentiable function f (X) of a

matrix argument X ∈ Rp×q is the q × p matrix whose (i, j)th entry is ∂ f (X)
∂X( j,i) [93].

Proof See [93].

Using proposition 5.5.5 one can find in fΓ(2nTrΓ−1 + TΓ) as follows.

d
dΓ

Tr(2nTrΓ−1 + TΓ) =
d

dΓ
Tr(2nTrΓ−1) +

d
dΓ

Tr(TΓ) = 0

−2nΓ−1IIΓ−1 + T = 0

−2nΓ−2 + T = 0

T = 2nΓ−2 (5.30)

Γ = (
T
2n

)−
1
2 (5.31)
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Thus, we have:

in fΓ(2nTrΓ−1 + TΓ) = Tr(2n(
T
2n

)
1
2 + T(

T
2n

)
−1
2 )

= 2Tr(2nT)
1
2 (5.32)

From equation 5.30 one can see that if L is the optimal solution for Laplacian of the

graph, then:

T = 2n(L +
J
n

)−2 (5.33)

Note that

T
−→
1 = 2n(L +

J
n

)−2−→1

But we know:

(L +
J
n

)
−→
1 = L

−→
1 +

1
n

J
−→
1

= 0 +
1
n
× n
−→
1 =
−→
1

Therefore:

(L +
J
n

)−1(L +
J
n

)
−→
1 = (L +

J
n

)−1−→1

(L +
J
n

)−1−→1 = (L +
J
n

)−2−→1

(L +
J
n

)−2−→1 =
−→
1

2n(L +
J
n

)−2−→1 = 2n
−→
1

So:

T
−→
1 = 2n

−→
1 (5.34)

Equation 5.34 is valid for optimal solution of the optimization problem 5.28. Hence,

we can use it as a constraint in our optimization problem.
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We need one more step to take before writing the dual optimization problem. We

can remove the dual variable set ρi j considering the fact that ρi j ≥ 0. Using this

inequality in the constraint part of equation 5.29 results in:

−ut
i jTui j + λzi j − ρi j = 0 and ρi j ≥ 0

−ut
i jTui j + λzi j ≥ 0

1
zi j

ut
i jTui j ≤ λ

Hence, the dual optimization problem can be written as follows:

maximize 2Tr(2nT)
1
2 − 2n − Cλ − 1

n

−→
1 tT
−→
1 (5.35)

subject to 1
zi j

ut
i jTui j ≤ λ (5.36)

T
−→
1 = 2n

−→
1 (5.37)

T � 0

This completes the proof of theorem 5.5.4.

5.5.3 Orthogonalization

We observe that according to equation 5.30 for the optimal solution of the optimization

problem, one can write

T = 2nΓ−2

= 2n(L +
J
n

)−2

Using equation 5.3 we have

T = 2n(L+ +
J
n

)2 (5.38)

= 2n(L+)2 + 2n ×
1
n2 × n × J
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We notice that L+J = 0 and J × J = nJ, therefore

T = 2n(L+)2 + 2J (5.39)

Equation 5.39 shows that matrix T−2J is proportional to the square of L+. Motivated

by this, we define a new variable Q = (T−2J
λ )

1
2 . We use λ in the denominator of Q to

remove it from the constraint 5.36.

Now we use equation 5.39 to obtain matrix Q for the optimal case.

Q = (
T − 2J
λ

)
1
2

= (
2nL+2 + 2J − 2J

λ
)

1
2

= (
2n
λ

)
1
2 L+ (5.40)

According to equation 5.40, projection of Q on vector
−→
1 is zero (because L+

−→
1 = 0).

Q
−→
1 = (

2n
λ

)
1
2 L+−→1

Q
−→
1 = 0 (5.41)

Equation 5.41 shows that the span of matrix Q is in the space orthogonal to vector
−→
1 (similar to Laplacian matrix), in contrast to the span of matrix T which includes

vector
−→
1 .

We apply this change of variable in optimization problem 5.35.

Lemma 5.5.6 Let Q = (T−2J
λ )

1
2 . If we apply this change of variable in optimization problem

5.35, the new optimization problem will be:

maximize 2nC−1(Tr(Q))2

subject to 1
√zi j

∥∥∥Qi −Q j

∥∥∥ ≤ 1

Q
−→
1 = 0

Q � 0
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Proof Applying the variable change to the dual function results in:

(2nT)
1
2 = (2n)

1
2 (λQ2 + 2J)

1
2

= (2n)
1
2 (λQ2 + (

2
n

)J2)
1
2

= (2n)
1
2 (λ

1
2 Q + (

2
n

)
1
2 J)

= (2nλ)
1
2 Q + 2J (5.42)

Therefore:

Tr((2nT)
1
2 ) = (2nλ)

1
2 Tr(Q) + 2Tr(J)

= (2nλ)
1
2 Tr(Q) + 2n (5.43)

Now we apply equation 5.43 to the dual function 5.35.

d(T, λ) = 2Tr(2nT)
1
2 − 2n − Cλ −

1
n
−→
1 tT
−→
1

= 2(2nλ)
1
2 Tr(Q) + 4n − 2n − Cλ −

1
n
λ
−→
1 tQ2−→1 −

1
n
× 2
−→
1 t−→1
−→
1 t−→1

= 2(2nλ)
1
2 Tr(Q) + 4n − 2n − Cλ − 0 − 2n

= 2(2nλ)
1
2 Tr(Q) − Cλ (5.44)

Note that Q is symmetric (because L+ is symmetric) and Jui j = 0, therefore the first

constraint of the dual problem 5.35 (constraint 5.36) can be written in terms of new

variable Q as follows:

1
zi j

ut
i jTui j ≤ λ

1
zi j

(λut
i jQ

2ui j + ut
i jJui j) ≤ λ

1
zi j

(λ(ut
i jQ

t)(Qui j) + 0) ≤ λ

1
zi j
λ(Qui j)t(Qui j) ≤ λ

1
zi j

∥∥∥Qui j

∥∥∥2
≤ 1

1
√zi j

∥∥∥Qi −Q j

∥∥∥ ≤ 1
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where Qi denotes the ith column of matrix Q. Our dual optimization problem now can

be written as:

maximize 2(2nλ)
1
2 Tr(Q) − Cλ (5.45)

subject to 1
√zi j

∥∥∥Qi −Q j

∥∥∥ ≤ 1 (5.46)

Q
−→
1 = 0

Q � 0

The maximization over λ in optimization problem 5.45 can be done analytically.

d(Q, λ) = 2(2nλ)
1
2 Tr(Q) − Cλ

∂d
∂λ

= 0 ⇒ 2 × (2n)
1
2 ×

1
2
λ−

1
2 Tr(Q) − C = 0

λ = 2nC−2(Tr(Q))2 (5.47)

d(Q) = 2(2n)
1
2 × (2n)

1
2 C−1(Tr(Q))2

− C × 2nC−2(Tr(Q))2

= 2nC−1(Tr(Q))2 (5.48)

Using equation 5.48, the final form of our dual optimization problem would be

maximize 2nC−1(Tr(Q))2 (5.49)

subject to 1
√zi j

∥∥∥Qi −Q j

∥∥∥ ≤ 1 (5.50)

Q
−→
1 = 0

Q � 0

This completes the proof of lemma 5.5.6.

We can now find an expression for matrix Q.

Lemma 5.5.7 Matrix Q in optimization problem 5.49 is equal to:

Q =
1

max(i, j)∈E
1
√zi j

∥∥∥∥L+
i − L+

j

∥∥∥∥L+
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Proof Since 1
zi j

ui jTut
i j ≤ λ (inequality 5.36), we can find the value of λ for optimal

solution as follows:

λ = max
1
zi j

ui jTut
i j

= max
1
zi j

ui j2nΓ−2ut
i j

= max
2n
zi j

ui j2nL+2ut
i j

= max
2n
zi j

∥∥∥L+ui j

∥∥∥2
(5.51)

= max
2n
zi j

∥∥∥∥L+
i − L+

j

∥∥∥∥2
(5.52)

Replacing equation 5.52 in 5.40 we get

Q = (
2n
λ

)
1
2 L+

= (2n)
1
2

1

(2n max(i, j)∈E
1
zi j

∥∥∥∥L+
i − L+

j

∥∥∥∥2
) 1

2

L+

=
1

max(i, j)∈E
1
√zi j

∥∥∥∥L+
i − L+

j

∥∥∥∥L+ (5.53)

This completes the proof of lemma 5.5.7.

Equation 5.53 gives matrix Q based on the Moore-Penrose inverse of the graph Lapla-

cian L+.

5.5.3.1 Proof of Theorem 5.5.1

We have now enough information to prove one of our main result, theorem 5.5.1.

Proof The value of the objective function of dual problem 5.49 can be obtained by

applying equation 5.53 to equation 5.49.

τdual = 2nC−1Tr(Q)2
|Q= 1

max(i, j)∈E
1√
zi j

∥∥∥∥∥L+
i −L+

j

∥∥∥∥∥ L+

= 2nC−1 1

max(i, j)∈E
1
zi j

∥∥∥∥L+
i − L+

j

∥∥∥∥2 (TrL+)2 (5.54)



C 5. D  R N 119

Let W∗ be the optimal weight matrix for the optimization problem, and let τ∗ denote

the optimal value of τ, that is:

τ∗ = τ|W=W∗

According to the duality theorem, the objective value of the dual problem is a lower

bound for the optimal objective value of the primal optimization problem, thus:

τ∗ ≥ τdual

τ − τ∗ ≤ τ − τdual (5.55)

Inequality 5.55 shows that the duality gap τ − τdual provides an upper bound for the

optimality gap τ − τ∗. On the other hand, the duality gap can be obtained as follows:

τ − τdual = 2nTrL+
− 2nC−1 1

max(i, j)∈E
1
zi j

∥∥∥∥L+
i − L+

j

∥∥∥∥2 (TrL+)2

= 2nTrL+ + (2n)2C−1 1

−2n max(i, j)∈E
1
zi j

∥∥∥∥L+
i − L+

j

∥∥∥∥2 (TrL+)2

= τ + C−1 τ2

min(i, j)∈E
1
zi j

∂τ
∂wi j

=
τ

C min(i, j)∈E
1
zi j

∂τ
∂wi j

(C min
(i, j)∈E

1
zi j

∂τ
∂wi j

+ τ) (5.56)

This completes the proof of theorem 5.5.1.

In case that we don’t have the optimal solution, we should have C min(i, j)∈E
1
zi j

∂τ
∂wi j

+

τ < 0 which is clearly a result of equation 5.56. When we do not have the optimal

solution:

τ − τdual > 0

τ

C min(i, j)∈E
1
zi j

∂τ
∂wi j

(C min
(i, j)∈E

1
zi j

∂τ
∂wi j

+ τ) > 0

C min
(i, j)∈E

1
zi j

∂τ
∂wi j

+ τ < 0 (5.57)

Here we used the fact that ∂τ
∂wi j

< 0.
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Observation 5.5.8 All the results that we have obtained for network criticality (τ) are appli-

cable for normalized network criticality (τ̂) as well, with just a normalization factor 1
n(n−1) since

τ̂ = 1
n(n−1)τ.

5.6 Network Design Problem

One of the important applications of our survival value analysis is to design robust

networks. Network criticality is again the main reference. Lets take the case of core

networks. Reliable data transport is the main service of a core network. Backbone

networks may be congested in different times of the day regularly (based of a predicted

traffic pattern) or irregularly caused by unpredicted disturbances.

In designing core networks we need to consider the robustness of the network to

these unwanted changes. In other words we need to design a network with reasonable

average network criticality. The same is true when we re-plan a network. For instance

in AutoNet the general topology manager may not be able to accommodate customer

demands with the present network parameters, then a process is activated in long-term

loop to re-plan the network accordingly. The main goal in this re-dimensioning phase

is also to keep τ as low as possible.

In the previous sections of this chapter we provided the details of the optimization

problem to minimize τ. We can use those results to derive appropriate algorithms to

minimize the duality gap of the network criticality for different purposes (modified

RW-PCR is one instance of such algorithms which is used for traffic management). In

the following we propose an alternate approach to the weight assignment problem,

which is useful when we want to use an offline method to find the exact solution

of the optimization problem. This approach is based on the idea of semi-definite

programming. The method is very simple but effective.
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5.6.1 Semi-Definite Programming Approach

Network criticality is a nonlinear function of weights. There are some powerful soft-

ware packages to solve nonlinear optimization problems (see [98] as an elegant exam-

ple), however, all of which have some limitations and cannot provide solution for some

nonlinear objectives. In some of the nonlinear optimization problems, it is possible to

convert the optimization problem to a Semi-definite Programming [99, 100, 101]. Semi-

definite programming can be viewed as an extension for linear programming where

the objective and constraints are linear combinations of semi-definite matrices (see

appendix B for a brief review of semi-definite programming concepts). Semi-definite

programs can be efficiently solved in a reasonable time.

Optimization problem 5.17 can be converted to a semi-definite programming prob-

lem. Suppose Γ = (L + J
n )−1. In order to have a semi-definite program we need to have

the constraints of the optimization as linear functions of semi-definite matrices. In fact

Γ can be written as a semi-definite inequality. We consider matrix Θ =

Γ I

I L + J
n

. The

necessary and sufficient condition for positive semi-definiteness of Θ is that its Schur

complement (see appendix B) be positive semi-definite. The Schur complement of Θ

is Γ − (L + J
n )−1.

Θ =

Γ I

I L + J
n

 � 0⇔ Γ � (L +
J
n

)−1 (5.58)

where � means positive semi-definite. Since the optimization problem 5.17 should

minimize Tr(Γ), the equality in equation 5.58 is chosen which is equal to Γ = (L + J
n )−1.

The Constraint of optimization problem 4.12 can also be represented in semi-definite

form as follows:

∑
(i, j)inE

zi jwi j = C

Tr(Diag(Vec(Z)) ×Diag(Vec(W))) = C
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Note that Diag(Vec(W)) is a diagonal matrix with wi j’s in main diagonal. This matrix

is positive semi-definite because wi j ≥ 0 ∀(i, j) ∈ E. Now optimization problem

5.17 can be converted to a semi-definite programming. We write the semi-definite

optimization problem for normalized criticality, τ̂, as in practical cases τ̂ is more

useful, particularly when we need to compare the robustness of different networks.

According to observation 5.5.8, the optimization problem is the same as problem 5.17

except the objective which is divided by 1
n(n−1) .

Minimize 2
n−1Tr(Γ) (5.59)

Subject to Tr(Diag(Vec(Z)) ×Diag(Vec(W))) = CΓ I

I L + J
n

 � 0

Diag(Vec(W)) � 0

This new optimization problem can be solved with standard methods of solving

semi-definite programs. Later in this chapter we solve optimization problem 5.59 for

some specific graphs to show how the concept of network criticality helps find robust

network topologies.

5.6.2 Capacity Planning

In this section we consider the capacity planning as an important special case of

network design problem. Consider a network G(N,E,W) where the link weights are

equal to the link capacities, that is, wi j = ci j ∀(i, j) ∈ E (ci j denotes the capacity of link

(i, j)). We investigate the capacity assignment problem in which network topology

and traffic load γi j ∀(i, j) ∈ E are assumed known and fixed. The goal is to find the

capacity of the links so as to minimize the network criticality under the constraint

that the total cost of the planning is fixed. Let zi j be the symmetric cost of assigning

capacity ci j to link (i, j), and suppose that we have a liner cost function. The total cost
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of the capacity assignment problem is
∑

(i, j)∈E zi jci j. We fix this total cost to C. We can

write the optimization problem for capacity assignment as follows:

Minimize τ

Subject to
∑

(i, j)∈E ci jzi j = C ,C is f ixed (5.60)

ci j ≥ γi j

By applying the change of variable ci j = c′i j + γi j to the optimization problem 5.60, we

will have the following convex optimization problem.

Minimize τ

Subject to
∑

(i, j)∈E c′i jzi j = C′ ,C′ is f ixed (5.61)

c′i j ≥ 0

where C′ = C −
∑

(i, j)∈E zi jγi j. The optimization problem 5.61 is now converted to the

optimization problem 5.17 (with wi j → c′i j and C → C′), therefore, all the results of

this chapter are applicable for the capacity assignment problem. Later in this chapter

we will see when the optimization problem 5.61 is equal to the Kleinrock’s capacity

assignment problem [87].

5.7 Case study

In this section we will find the optimal weight matrix for some well-structured graphs

where the analytical study is possible. We also give some examples of network design

using semi-definite programming approach.

5.7.1 Complete Graph on n Nodes (Kn)

For Kn we can obtain the solution of optimization problem 5.17 analytically. In this

example we assume zi j = 1 ∀ (i, j) ∈ E. In order to find the optimal weight set for Kn

we need the following lemma.
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Lemma 5.7.1 Consider optimization problem 5.59 and suppose all the links have equal costs.

If there is an automorphism on a graph G(N,E,W) that can map link l = (i, j) on link l′ = (i′, j′),

then these links should have equal optimal weights.

Proof Let G’ be the new graph after applying the automorphism. Any automorphism

on graph G can be shown by a matrix T so that the Laplacian of transformed graph G’

can be obtained from Laplacian of original graph G as L(G′) = TL(G)Tt. This means

that L(G) and L(G’) have the same eigenvalues. As a result according to the Lemma

4.4.2 criticality of graph G and G’ are the same: τ̂(G) = τ̂(G′). On the other hand the

solution of optimization problem 5.17 is unique. As a result the weight of link l and l’

are the same.

Corollary 5.7.2 Consider optimization problem 5.59 and assume that the graph of the network

is an edge-transitive graph with equal link costs. The optimal weight for a link (i, j) ∈ E is

equal to wi j = C
m , where m denotes the number of graph links.

Proof A graph is edge-transitive, if there is an automorphism that can map any two

links of the graph. According to lemma 5.7.1 all the link weights are equal. In addition,

suppose wi j = w ∀ (i, j) ∈ E, then constraint
∑

(i, j)∈E wi j = C implies that w = C
m . This

completes the proof of corollary 5.7.2.

Complete graph Kn is an edge-transitive graph, therefore, according to corollary 5.7.2

the optimal weight of all the links of Kn are equal. Let denote this common weight by

w. Further, let vector X be the eigenvector of Laplacian matrix for eigenvalue λ. Then:

L(Kn) = w(nI − J)

LX = λX

w((n − 1)x j −

∑
i, j

xi) = λx j f or i , 1
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In addition
∑n

i=1 xi = 0 (see appendix A). Therefore

w((n − 1)x j − (−x j)) = λx j

λi = nw f or i = 2 ... n

One can also find link weight w from corollary 5.7.2. The total number of links in Kn is

m = n(n − 1), therefore, according to the corollary 5.7.2:

w = 1
n(n−1)C

The eigenvalues of Kn are:

λi = 1
n−1C ∀ i ∈ N (5.62)

It is easy now to calculate network criticality for graph Kn using Lemma 4.4.2 and

equation 5.62.

τ̂ =
2

n − 1

n∑
i=2

1
λi

=
2

n − 1
(n − 1)(n − 1)

1
C

=
2(n − 1)

C
(5.63)

According to equation 5.63 the optimal weight of a link in a complete graph is

linearly increasing with the size of the network. This provides a basis for comparing

the normalized network criticality of different networks against the full-mesh on n

nodes.

5.7.1.1 Case of Unequal Link Costs for Kn

When the link costs (zi j’s) are not equal, we can use the semi-definite approach to find

the best weight assignment. We use a numerical example to show the effect of changes

in link costs. We consider the complete graph on 6 nodes (K6), and we assume that the
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matrix of link costs is given as follows:

Z = [zi j] =



0 1.2 1 1 1 2

1.2 0 1 1 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 0 1

2 1 1 1 1 0


Further, let C = 2000. We used the semi-definite form of the optimization problem

which is described in equation 5.59 and solved semi-definite program for complete

graph K6 using CVX, a package for specifying and solving convex programs [102], [103].

The optimal weight assignment is given in the following.

W = [wi j] =



0 54.9820 85.7652 85.7463 85.7378 0.0031

54.9820 0 64.0572 63.9948 63.9753 78.0271

85.7652 64.0572 0 54.3210 54.2332 81.1880

85.7463 63.9948 54.3210 0 54.4351 81.2583

85.7378 63.9753 54.2332 54.4351 0 81.2762

0.0031 78.0271 81.1880 81.2583 81.2762 0


The weight matrix shows that the optimal weight assignment is not uniform. The

optimal weight of link (1, 6) is w16 = w61 = 0.0031 which means that link (1, 6) is

effectively down. In other words, the topology of the optimal network is not K6 any

more.

5.7.2 Optimal Network Criticality for a Tree

In order to find the optimal weight set for a tree we use equation 4.53.

τ =
∑

(i, j)∈E

ni j

wi j

⇒
∂τ
∂wi j

= −
ni j

w2
i j

(5.64)
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But from equation 5.20 we know that for optimal weights C ∂τ
∂wi j

+ τzi j = 0. By using

this relation in equation 5.64 we get:

∂τ
∂wi j

= −
ni j

w2
i j

= −
zi jτ

C
(5.65)

⇒ wi j = (
ni jC
zi jτ

)
1
2 (5.66)

From the constraint of the optimization problem we have
∑

(i, j)∈E zi jwi j = C. Hence:∑
(i, j)∈E

(
ni jzi jC
τ

)
1
2 = C (5.67)

τ = (
∑

(i, j)∈E

(
ni jzi j

C
)

1
2 )2 (5.68)

Now it is enough to substitute τ from equation 5.68 in equation 5.66 to have optimal

weight for tree.

wi j = (
ni jC
zi j

)
1
2 ×

1∑
(i, j)∈E(

ni jzi j

C ) 1
2

Finally

wi j =
C
zi j
×

(ni jzi j)
1
2∑

(i, j)∈E(ni jzi j)
1
2

(5.69)

Equation 5.69 shows that the optimal weight of a link in a tree is proportional to

the square root of ni j.

5.7.2.1 Capacity Planning for a Tree

The capacity assignment problem for a tree can be solved analytically using the guide-

lines provided in section 5.6.2. It is enough to apply the following changes in equation

5.69:

wi j → ci j − γi j

C → C −
∑

(i, j)∈E

zi jγi j
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The optimal capacity assignment for a tree would be:

ci j = γi j +
C −

∑
(i, j)∈E zi jγi j

zi j
×

(ni jzi j)
1
2∑

(i, j)∈E(ni jzi j)
1
2

(5.70)

There is a close analogy between our result and Kleinrock’s result for capacity

assignment. In [87] Kleinrock showed that under the independence assumption the

optimal capacity (to minimize average delay of the network) of a link is proportional

to the square root of the link rate. Note that for a tree ni j is proportional to the link

load (γi j) since there is only one path between every source-destination pair. As a

result, equation 5.70 is similar to the Kleinrock’s equation for optimal capacity ([87],

§5.7, equation 5.26). This result is not surprising because the network criticality of

a tree according to equation 4.53 is equal to τ =
∑

(i, j)∈E
ni j

ci j−γi j
(considering wi j = c′i j).

This is the same expression that is used in [87] to find the average delay of a network

([87], §5.6, equation 5.19), therefore, the minimization of network criticality is equal to

the minimization of the average network delay when the network is a tree (an acyclic

connected graph).

5.7.3 Hypercube with 2n nodes (Hn)

Now we consider hypercube of order n (Hn), another well-structured graph whose

criticality can be obtained analytically. In this example we assume zi j = 1 ∀ (i, j) ∈

E. Hypercube is an edge-transitive graph, therefore, by corollary 5.7.2 the optimal

solution of the optimization problem 5.59 for hypercube has equal weights. Hence, we

consider a hypercube with weight w for all the links. Hypercube can be recursively

built by the use of ”Cartesian Product” of a graph with K2 (complete graph on 2 nodes):

Hn+1 = Hn�K2;

where � denotes the cartesian product. This equation can also be written using

”Kronecker Product” (see appendix C for the definition of cartesian and Kronecker
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Figure 5.6: Hypercube Topology (H1,H2,H3)

products of two graphs):

Hn+1 = Hn�K2;

= Hn ⊗ I2 + I2n ⊗ K2 (5.71)

We have used the symbol⊗ to denote Kronecker product. Fig. 5.6 shows hypercube

topology for n = 1 to 3.

We try to obtain eigenvalues of adjacency matrix of Hn using equation 5.71. We

find the eigenvalues for w = 1, then we multiply these normalized eigenvalues by w

to find the eigenvalues for the general case.

Hn+1 = Hn ⊗ I2 + I2n ⊗ K2

=

Hn 0

0 Hn

 +

 0 I2n

I2n 0


Hn+1 =

Hn I2n

I2n Hn


For simplicity of notation, we drop the subscript from I2n and use I instead, which

means the identity matrix of appropriate order. Now we try to build the determinant
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of characteristic matrix Hn+1 − λI:

Hn+1 − λI =

Hn − λI I

I Hn − λI


dn+1 = |Hn+1 − λI| = det

Hn − λI I

I Hn − λI


= det

 I Hn − λI

Hn − λI I


Now we multiply the first row by Hn − λI, and then subtract the first row from the

second row. We have:

dn+1(λ) = det

 I Hn − λI

Hn − λI − (Hn − λI) I − (Hn − λI)2


= det

I Hn − λI

0 I − (Hn − λI)2


= |I − (Hn − λI)2

|

= |Hn − (λ − 1)I||Hn − (λ + 1)I|

dn+1(λ) = dn(λ − 1)dn(λ + 1)

Using this recursive formula for determinant of hypercube, one can find with

induction that the eigenvalues of Hn are 2k−n, k = 0, 1, ...,n with multiplicity C(n, k) =

n!
k!(n−k)! . This result is true when all the weights are set to 1. In general case where we

have a weight w for each link, the eigenvalue is also multiplied by this weight.

We notice that hypercube is a regular graph (degree of all nodes are n). This means

that we can find eigenvalues of Laplacian using eigenvalues of the adjacency matrix

of Hn:

Ln = nI −Hn ⇒ λk = n − (2k − n) with multiplicity C(n, k)

λk = 2(n − k) with multiplicity C(n, k)
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Now one can easily find the network criticality for Hn using lemma 4.4.2.

τ̂ =
2

2n − 1

∑
k

1
λk

=
2

2n − 1

n−1∑
k=0

C(n, k)
2(n − k)w

=
1

(2n − 1)w

n−1∑
k=0

C(n, k)
n − k

(5.72)

On the other hand form the constraint of the optimization problem 5.17, it is clear that:

∑
(i, j)∈E

wi j = C

n2nw = C

w =
C

n2n (5.73)

The final expression for network criticality of Hn can be found by applying equation

5.73 in 5.72:

τ̂ =
n2n

(2n − 1)C

n−1∑
k=0

C(n, k)
n − k

τ̂ =
n

(1 − 1
2n )C

n−1∑
k=0

C(n, k)
n − k

τ̂ =
n

(1 − 1
2n )C

n∑
i=1

C(n, i)
i

(5.74)

To obtain the last equation we applied the change of variable i = n − k and used the

fact that C(n,n− i) = C(n, i). Equation 5.74 shows the behavior of normalized network

criticality when the size of hypercube increases. Fig. 5.7 shows the normalized network

criticality of hypercube for n = 1 to n = 7.

We can also compare the normalized criticality of a hypercube Hn with a complete

graph K2n to see how the robustness is decreased by changing a complete graph to a

hypercube (with the same number of nodes).
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Figure 5.7: Normalized Network Criticality (τ̂) for Hypercube

Figure 5.8: The Ratio of Normalized Network Criticality of Hypercube and Complete

Graph
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Figure 5.9: Parking-Lot Topology on 12 Nodes

τ̂(Hn)
τ̂(K2n)

=

n
(1− 1

2n )C

∑n
i=1

C(n,i)
i

2(2n−1)
C

→
n

2n+1

n∑
i=1

C(n, i)
i

(5.75)

Fig. 5.8 shows the graphical behavior of equation 5.75 for different values of n. It

can be seen that for higher values of n, fraction τ̂(Hn)
τ̂(K2n ) approaches 1. Note that even

for high values of n the difference between the normalized criticality of Hn and K2n is

considerable, although the ratio is decreasing.

5.7.4 Parking-Lot Network

We consider optimization of parking-lot topology on 12 nodes (Fig. 5.9). In this

example we assume that all link costs are 1, that is, zi j = 1 ∀ (i, j) ∈ E. We use the semi-

definite programming method to find the optimal weight assignment for parking-lot

topology. The optimal weight set for parking-lot topology when the total weight is

1000 (i.e.
∑

(i, j)∈E wi j = 1000), is shown in Table 5.1. It is clear that link (5, 8) has the

maximum weight (intuitively because its load is more than other links).

The optimal weight assignment for parking-lot can also be found from equation

5.69 (note that parking-lot topology is a tree). We have provided the value of ni j for

all the links of parking-lot topology in table 5.2. By substituting these ni j’s in equation
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Link Optimal Link Weight

(1,3) 77.2654

(2,3) 77.2654

(3,5) 121.0498

(4,5) 77.2656

(5,6) 77.2653

(5,8) 139.7768

(7,8) 77.2655

(8,9) 77.2656

(8,10) 121.0496

(10,11) 77.2655

(10,12) 77.2655

Table 5.1: Optimal Weights for Parking-Lot

5.69, we reach at the optimal weight assignment of table 5.1.

5.7.5 Trap Network

Our next example is the trap network introduced in chapter 3, example 3.2.4. We

use the semi-definite programming approach to find the optimal weight assignment

for trap network. At first, we consider the special case of equal link costs. Let

zi j = 1 ∀ (i, j) ∈ E. The optimal weight matrix Wopt for the trap network (Fig. 3.4) is
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Figure 5.10: Optimal Parking-Lot Topology

Link ni j Link ni j

(1,3) 11 (7,8) 11

(2,3) 11 (8,9) 11

(3,5) 27 (8,10) 27

(4,5) 11 (10,11) 11

(5,6) 113 (10,12) 11

(5,8) 36

Table 5.2: ni j for Parking-lot Topology

given in the following.

Wopt = [wi j] =



0 135.2401 157.9781 0 0 0

135.2401 0 0 157.9785 0 0

157.9781 0 0 97.6082 157.9764 0

0 157.9785 97.6082 0 0 157.9779

0 0 157.9764 0 0 135.2408

0 0 0 157.9779 135.2408 0


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Figure 5.11: Optimized Trap Topology

The minimum weight is assigned to link (3, 4). Now we increase the cost of this link

to 5, that is z34 = z43 = 5. The new optimal weight matrix would be W′

opt:

W′

opt = [w′i j] =



0 166.6642 166.6681 0 0 0

166.6642 0 0 166.6662 0 0

166.6681 0 0 0.0000 166.6671 0

0 166.6662 0.0000 0 0 166.6691

0 0 166.6671 0 0 166.6652

0 0 0 166.6691 166.6652 0


One can see that the weight of link (3, 4) is now changed to zero, that is, link (3, 4) is

effectively down. This means that the topology of the trap network is changed. In

fact, if we set w34 = w43 = 0 in the optimization problem, and if we use the equal cost

for all the links, the optimal weight matrix would still be W′

opt. The new topology of

the network is shown in Fig. 5.11.

5.7.6 Kleinrock’s Network

In the following example our proposed optimal weight assignment method is com-

pared with Kleinrock’s method for capacity assignment [104, 87] and Meister’s ex-

tension [105]. We use the telegraph network of Fig. 5.12 from Kleinrock’s book (see

[104], pp. 22-23). All of the link cost factors are assumed to be equal to one, that is,
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Figure 5.12: Kleinrock’s Network

zi j = 1 ∀(i, j) ∈ E. Kleinrock’s method finds capacities of the links in such a way to

minimize the average delay of the network under the independence assumption and

when the link loads are known.

One problem with Kleinrock’s approach is that it assigns very long delays to the

links with small loads. Meister’s method is an alternative approach which assigns

equal delays to all the links, of course at the expense of a large deviation from optimal

average network delay that can be achieved by Kleinrock’s solution.

The proposed solution in this paper assigns capacity of the links in a way to balance

the individual link delays so as to have acceptable link delays while still we have a good

average network delay. Table 5.3 shows the capacity assigned to the links using all the

methods. The second column of table 5.3 shows the individual link loads. Columns

3, 4, and 5 show the optimal capacity assignment using Kleinrock’s method, Meister’s

method, and our proposed method (which we call it criticality method) respectively.

The minimum average network delay for these methods are given in second column

of table 5.4. The third column also shows the value of network criticality. In the

criticality method we actually optimize the robustness (not the average delay as it is

the case in Kleinrock’s and Meister’s method), therefore it is not surprising to see that

the average delay obtained by criticality method is between two extremes of Kleinrock

(to minimize the average network delay) and Meister (to minimize the maximum link
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Link Load Kleinrock Meister Criticality Method

1 3.15 27.93 27.00 29.63

2 3.55 29.85 27.40 33.31

3 0.13 5.16 23.98 12.67

4 3.64 30.28 27.49 32.95

5 0.82 13.46 24.67 13.36

6 3.88 31.38 27.73 33.64

7 9.95 53.99 33.80 36.43

Table 5.3: Capacity Assignment using 3 Different Methods

delay).

Table 5.5 shows individual link values. Kleinrock’s method assigns very large de-

lay to link 3 because the demand on link 3 is much less than other links. Meister’s

method assigns equal delays to all the links. This resolves the issue with Kleinrock’s

method, but introduces a fairness problem. In our proposed method, the link delays

are not equal to allow for fairness based on the demand for each link, and at the same

time the individual link delay are kept in a reasonable range.

These examples are simple cases of network design where the goal is to find optimal

link weights for a network in order to minimize the network criticality. Note that the

case of wi j = 0 is also included in the weight assignment problem which leads to the

change of topology. Semi-definite programming method can also be used to solve the

optimization problem when more constraints are added to problem 5.59. It is also

possible to design a numerical iterative algorithm to solve optimization problem 5.59

using standard methods of numerical calculus. For example, theorem 5.5.1, lemma
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Method Average Network Delay Network Criticality

Kleinrock 44.72 1.06

Meister 55.01 0.80

Criticality Method 49.30 0.56

Table 5.4: Average Network Delay and Network Criticality using Different Methods

5.2.2, and lemma 5.2.4 provide us with enough information to apply Newtonś method

to problem 5.59 and find an iterative algorithm to calculate the optimal weights as well

as to design distributed traffic engineering algorithms for AutoNet.

Network planning (replanning) in the long-term loop of AutoNet is based on

solving an optimization problem similar to 5.59. The constraints of problem 5.59 may

be added depending on the type of requests and contracted SLAs with costumers, but

as long as positive semi-definiteness is preserved, the method will be exactly the same.

In summary, the short-term loop of AutoNet in Fig. 3.1 (and Fig. 3.2) is controlled by

modified RW-PCR algorithm, and the long-term loop solves the optimization problem

5.59.

So far, we have discussed algorithmic aspects of AutoNet and provided the details

of our traffic management methods as well as network dimensioning (re-dimensioning)

strategies. In the following chapter we focus on the architectural aspects of AutoNet

and describe the requirements to realize different blocks of AutoNet illustrated in Fig.

3.2.
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Link Kleinrock Meister Criticality Method

1 40.36 41.93 37.76

2 38.02 41.93 33.60

3 198.67 41.93 79.71

4 37.54 41.93 34.12

5 79.10 41.93 79.71

6 36.36 41.93 33.60

7 22.71 41.93 37.76

Table 5.5: Individual Link Delays using 3 Different Methods



Chapter 6

AutoNet: Autonomic Network Control

and Management System

This chapter is dedicated to the architecture of AutoNet. In chapter 3 we introduced

the conceptual architecture of AutoNet. Here we try to shed more light on the building

blocks of AutoNet and their interactions. The concept of virtual networks (VN) and

autonomic computing are used to develop different blocks of AutoNet.

6.1 Requirements for SLA-based Network Service

In this section, we consider requirements on the SLA-based network service from

the perspective of the customers and the service provider. Based on this requirement

analysis we design our autonomic network resource management system. A customer

is a user of the network resources. The customer can be an enterprise, a content service

provider, a 3rd party network re-seller like a VPN provider, and application service

provider, e.g. VoIP or IPTV. The network service provider (NSP) owns and operates

the physical core network resources. The service instance delivered from the NSP to

a customer is a virtual network (VN). The virtual network (VN) is an abstraction of a

141



C 6. AN: A N C M S 142

physical network that consists of a subset of network resources.

6.1.1 Customer Requirements

Customers have the following important requirements:

1. The customer requires the creation of a VN that can deliver a certain level of

quality. The metric of VN quality can be end-to-end bandwidth and delay for

multiple routes. When a customer negotiates the SLA for a VN, the VN topology

may or may not be specified. If a customer aims to provide service for some

other customers, then the customer needs to know the topology of its VN.

2. The customer wishes to monitor the current and historical status of its VN at

various times. This VN usage data allows the customer to anticipate future VN

usage and to plan for improved utilization.

3. The customer may wish to reconfigure the contracted VN capacity or to remove

the VN. For example, suppose a customer provides service for some other cus-

tomers. The customer may receive requests for service from new clients while it

does not have enough resources to address the requirements of new users. Then

the contracted SLA should be negotiated with the service provider in order to

add more resources.

4. Some customers may choose to create one or more new VNs within their own VN

capacity boundary and to resell these to other customers. This reselling activity

should be performed independently from the NSP.

5. A VN control and management system should be provided to the customer when

a new VN is created. Starting from the physical network infrastructure, a multi-

level recursive creation of VNs and associated control and management system

should be supported.
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6.1.2 Service Provider Requirements

These are important needs of network service providers:

1. Every service provider attempts to optimize the use of its resources (whether

physical or virtual) to maximize its service revenue. In this general sense, the

NSP that owns the physical network resources has the ”root-VN” from which

other VNs can be spawned. The VN customer in turn can be a service provider

to other customers.

2. The operations expense of a VN should be minimized by automatically and

efficiently carrying out the customer or service provider requests. The automatic

configuration of VN is very important to reduce network operator errors which

are the cause for a significant amount of misuses and faults.

3. The system should provide an autonomic way to handle fault and overload

conditions on each VN and on its virtual network resources (VNR). For this

autonomic operation, the system should have pre-defined autonomic routines to

determine, isolate, and repair faults according to policy.

4. The service provider may wish to provide VN services with different levels of

availability (such as 99.999% of availability) to different customers. For this goal,

the system should provide appropriate levels of resource redundancy and fast

fault recovery mechanisms.

5. When a new VN is created, the system should select an appropriate topology,

link bandwidths and call admission control mechanism.

6. The ultimate goal of the NSP is to maximize its revenue, and to do so, it must

decide on the optimal mix of services and prices it should offer to its customers

based on the available infrastructure and the forecasted demand.
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Figure 6.1: Service Life Cycle

6.2 Overall System Architecture

We now describe the overall architecture of AutoNet. The virtual network and auto-

nomic computing concepts are applied to this architecture to make the service provi-

sioning and operation efficient, scalable and cost-effective. In order to find required

ingredients of AutoNet, we first define the required life-cycle for a service.

6.2.1 Service Life Cycle and Autonomic Computing

In this thesis the main service is ”data transport”, however, the following description

of service life cycle is general. Fig. 6.1 illustrates a general service life cycle, which has

four subsequent stages: service creation, service activation, service maintenance, and

service extinction.
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Figure 6.2: A Simple Network Partitioning by VN

The autonomic service provisioning system should carry out the tasks in the stage

of the service activation and service maintenance in an autonomic manner. For the

autonomic process, the service control and management system should be devel-

oped with the autonomic concept in the service creation stage. Therefore, the service

provider should consider the autonomic control and management when it develops a

new service. With this philosophy, we developed the AutoNet.

6.2.2 Overall Architecture of AutoNet

Virtual network (VN) concept is key to the idea of AutoNet. A VN is the set of network

resources that are dedicated in routers and transmission links to one such customer

and can be viewed as a subset of the overall network resources ([106, 107]). The

partitioning of network resources is made possible by abstracting the set of physical

network resources into a set of Virtual Network Resources (VNR). The value of a VNR

is specified by a resource quantity (e.g., equivalent bandwidth, protection bandwidth).

The allocation of resources to VNs can then be specified in terms of these quantities.

A simple example of a VN is shown in Fig. 6.2.

In AutoNet, any managed element is a VN and the management system tries

to provide enough resources (according to the contracted SLA) to the clients in a
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self-organizing way. We now present a VN-based network resource management ar-

chitecture which is compatible with the autonomic architecture illustrated in Fig. 3.2.

The proposed system attempts to strike a balance between the flexibility of manag-

ing VNs separately and the complexity inherent in requiring a network element to

interact with multiple managers. The proposed autonomic VN management system is

composed of three different autonomic managers: autonomic system re-dimensioning

(ASD), autonomic VN manager (AVNM), and autonomic resource manager (ARM), as

illustrated in Fig. 6.3. We note that this system follows the traditional manager/agent

paradigm along the network and resource management layer. Furthermore, the three

autonomic managers are arranged according to the autonomic control loop structure:

monitor, analyze, plan, and execute [82, 108].

By monitoring their target managed objects, the autonomic managers diagnose the

object status. When a problem is determined, first, the manager tries to localize the

problem and repair it by itself. In Fig. 6.3 this local process takes place in autonomic

resource managers (ARM). Depending on the nature of the problem this will provide

us with self-healing (in case of an error) or self-organizing (re-arrange the resources

to attain optimum utilization) or self-configuring (adapt to the other changes). If it

cannot handle the problem by itself, the high-level autonomic manager is involved

(AVNM in Fig. 6.3).

By this hierarchical autonomic problem handling, the autonomic manager structure

can manage and control large networks. The high-level policy from a service provider

is deployed automatically through the hierarchical autonomic manager structure and

each autonomic manager configures itself based on the given policy (self-configuring),

resulting in minimization of human intervention and consequently yields cost effective

operation.

Each autonomic manager tries to optimize its corresponding managed objects by

forecasting future demand based on policy. The system can also adapt easily to the
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Figure 6.3: Autonomic VN Management System Architecture

changes in network topology by adding new management components in the resource

and network management layer.

The ASD is responsible for the long-term loop and is in charge of the business level

network analysis and design on a long-term scale as in Fig. 3.2. The role of AVNM

is to manage and control the VNs according to the customer SLAs and the service

provider’s policy. The role of the ARM, on the other hand, is to manage and control

the VNRs. A single ARM is responsible for the control of a group of VNRs: a virtual

switching resource and multiple virtual link resources connected to it. Customers can

create, configure, monitor, and destroy their own VN through the AVNM, and the

service provider can configure and monitor its network through the AVNM. Every

human action is handled on the AVNM which can separate the customer and service

provider’s knowledge from the system detailed process. Thus, this architecture can

minimize human intervention in the system operation.

Fig. 6.4 illustrates a more detailed view of AutoNet and the interactions with

external components (customers, service providers, and physical network resources).

The AutoNet provides VN to customers according to the service provider’s policy
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and customer’s quality demand. A customer provided a VN by a service provider,

in turn, could be a new service provider that sells some portion of its VN to another

customer by VN spawning process. This recursive VN spawning process is one of the

key features of our AutoNet system along with the autonomic features, which gives

the network re-sellers or service organizers flexibility and controllability in operating

their VNs.

The AVNM is responsible for the VN-level control and management, while the ARM

is responsible for the element-level resource control and management. In a single VN

topology, each switching resource is controlled by one ARM. Multiple AVNMs can

exist in our AutoNet in a hierarchical structure like that of the VNs. If there are ten

VNs created on a physical core network, there should be ten AVNMs, each of which

controls one VN assigned to it. There is no interaction among ARMs in a single VN.

The ARMs in different VNs run independently with little interaction, because, when

a new VN is spawned from a parent VN, the parent ARM creates a child ARM when

the parent AVNM creates the child AVNM.

6.2.3 Spawning in AutoNet

Fig. 6.5 illustrates an example of VN spawning operation and the relationship among

AVNMs and ARMs. The informational model in Fig. 6.5 shows that the VN1 spawns

the VN2 and the VN2 in turn spawns VN3. The ownership of VN1, VN2, and VN3

is to the SP, CSP (Customer-Service Provider), and CS, respectively. Initially, the SP

controls VN1 through the AVNM1, ARM1 and ARM2. In this example, there are

two network elements which can be routers or switches in a core network. When

CSP wants a VN (VN2 in this example) it contacts AVNM1 and requests a new VN

creation with a given SLA. After receiving a VN creation request, the AVNM1 calculates

an optimal VN topology and effective bandwidth for each end-to-end route on this

topology to create a new VN for the CSP. After creating VN2 for the CSP, the AVNM1
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Figure 6.4: Overall Architecture of AutoNet

and its ARMs (ARM1 and ARM2) perform additional actions to provide the CSP

with the controllability of VN2. AVNM1 creates AVNM2, and ARM1 and ARM2

spawn ARM3 and ARM4, respectively. With the newly created AVNM2, ARM3, and

ARM4, the CSP can control its own VN2. Similarly, CS contacts AVNM2 to create

a new VN. AVNM2 and ARM3 spawn AVNM3 and ARM5, respectively, after they

create VN3. The recursive spawning of AVNMs and ARMs, allows the customer of a

VN to have controllability to its own VN, independently of other VNs and customers.

Furthermore, this hierarchical processing of VNs provides scalability and extendibility.

All AVNMs and ARMs are autonomic managers. The autonomic manager handles

requests or notifications from external components in an autonomic way. A AVNM

communicates with its parent AVNM, its child AVNMs, its owner service provider,

customers, and its ARMs. For example, the AVNM2 in Fig. 6.5 receives requests
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Figure 6.5: Informational Model for AutoNet

or notifications from AVNM1, CSP, CS, ARM3 and ARM4. The contents of external

requests are listed in table of Fig. 6.6, which is not exhaustive but important.

In case of ARMs, the external components that generate requests or notifications

are the AVNM, the parent ARM and the physical network element. For example,

ARM3 in Fig. 6.5 receives the requests and notifications from AVNM2, ARM1, and the

physical element 1.

The high-level policy from a service provider is deployed automatically through

the hierarchical autonomic manager structure and each autonomic manager configures

itself based on the given policy (self-configuring) and processes requests from external

components based on the policy. This minimizes human intervention and leads to cost

effective operation. A complete set of events between AVNM and ARM is shown in

Fig. D.5 of Appendix D.



C 6. AN: A N C M S 151

Figure 6.6: Requests from Different Blocks of AutoNet

6.3 Detailed Architecture of AutoNet

We now present the detailed architecture of AVNM and ARM, the two types of au-

tonomic managers in the AutoNet. We describe the functional building blocks of the

AVNM and ARM and show an example of autonomic operation of AutoNet.

6.3.1 Autonomic Manager Functional Blocks

First, we define generic functional building blocks for an autonomic manager as an ex-

tension of the IBM autonomic manager structure [82]. To achieve complete autonomic

computing for a service, the four parts of the Fig. 6.7 should be executed automatically

in each autonomic manager: customer control, policy control, service activation, and

service maintenance. These four parts are tightly coupled and communicate to each

other to achieve the ultimate goal: self-management of a service. This concept can be
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Figure 6.7: The Functional Building Blocks of an Autonomic Manager

applied to all kinds of services, including application-layer services and network-layer

services.

The service provider uses the policy control building block to set up policy for

the other three functional building blocks. The customer control building block is in

charge of the interaction with customers. The customer contacts the system through

the customer control block and negotiates the service quality. Based on the SLA

information, the service activation building block creates a new service instance for the

customer. The service maintenance building block controls and manages the resources

during the lifetime of each service instance (problem detection, problem recovery,

etc). The maintenance outcomes are sent to the customer control for customer care

functionality, such as billing. There is some functional overlap among these parts. For

example, the service planning to find optimal resource allocation could be processed

in the service activation and service maintenance building blocks.

The IBM autonomic control loop architecture [82] mainly concentrates on the service
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maintenance part of the Fig. 6.7, and gives less attention to the interactions with a

service provider and customers of the autonomic system. Also, the deployment of

services and the creation of new service instances are not considered.

6.3.2 Detailed Architecture of AVNM

Fig. 6.8 illustrates the detailed ten functional building blocks of the AVNM. The AVNM

has three different knowledge bases: PIB (Policy Information Base), CIB (Customer In-

formation Base), and VNIB (Virtual Network Information Base), which store static and

dynamic information about policy, customer, and VN, respectively. The Policy Man-

ager is responsible for policy translation, policy distribution, and policy validation.

It receives the SP’s policy and translates it into VN and VNR policy. The VN policy

is stored in the PIB and VNR policy is distributed to all ARMs through the Resource

Manager. The appropriate policy form for autonomic manager is one of our and others

on-going research investigations [109]. In addition to the policy operation, the Policy

Manager handles all other requests from the service provider, e.g. VN reconfiguration

and VN removal requests. The Request Manager, on the other hand, handles all the

requests from customers.

The Request Manager is responsible for customer contact and SLA negotiation.

To create a new VN, a customer should subscribe itself to the AVNM and specify

VN quality requirements through the Request Manager. The Request Manager also

validates the customer VN requirements based on the pre-defined policy and its current

VN status, and if appropriate it sends a VN creation request to the VN Manager.

The VN Manager is responsible for the creation, modification, and removal of

child VNs. On reception of a VN creation request, the VN Manager makes a topology

request to the Topology Manager to find an appropriate VN topology. The VN Manager

then makes a resource reservation request to the Resource Manager. In addition, the

VN Manager handles the VN re-configuration and removal request from the Request
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Figure 6.8: The Functional Building Blocks of AVNM

Manager and the child AVNM. The VN Topology Manager is responsible for creating

a set of optimal routes and calculating the corresponding effective bandwidth when a

new VN is created, or when a VN is reconfigured. Much research [41, 110, 34] has been

devoted to route-level QoS, but extensions are required for VN-level QoS guarantees.

The goal of VN manager is to find optimal VN allocation from the given network

resources that maximize the resource utilization and service revenue.

The Resource Manager is responsible for the communication between the AVNM

and the ARMs. The resource manager translates the VN spawning message into a VNR

partitioning message and distributes it to the corresponding ARMs to create a new VN.

It also sends monitoring requests to the ARMs and receives status information from

them. The Operation Manager is responsible for the analysis of each child VN and the

overall VN status. It determines VN level problems and sends a VN reconfiguration

message to the VN Manager. In addition, it handles the SLA monitoring. The SLA
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analysis result is stored in the CIB, which is used for customer billing by the Accounting

Manager.

The AVNM implements the autonomic control loop that involves the four main

components: Resource Manager, Operation Manager, VN Manager, and Topology

Manager. The Resource Manager does monitoring; the Operation Manager does

monitoring and analysis; the VN Manager and Topology Managers do planning;

and the Resource Manager performs execution. Furthermore, the seven functional

components follow the four autonomic functional components described in Fig. 6.7.

6.3.3 Detailed Architecture of ARM

The ARM is composed of six functional building blocks, as illustrated in Fig. 6.9,

which interact with each other based on ARM policy. The Request Controller receives

VNR partitioning/reconfiguration requests and sends them to the VNR Controller after

validating the request. In addition, the Request Controller handles the ARM policy

setup request from the AVNM. The Request Controller is in charge of customer control

and policy control in the autonomic functional building block in Fig. 6.8.

The VNR Controller plans the operation of each virtual resource for incoming traffic.

For example, the methods of call admission control at edge routers and alternative route

selection at edge and core routers in case of congestion are decided and optimized in

the VNR Controller. Furthermore, the VNR Controller creates a new ARM when a new

VNR is created for a new VN and it sends VNR modification alarm reports to a child

ARM when its VNR status has changed. The Operation Controller determines VNR

level problems and tries to fix them before sending alarms to the AVNM. The VNR

status data is delivered from the Resource Controller of the same ARM and the VNR

controller of the parent ARM. The Resource Controller is responsible for the control of

physical network equipment. The serialization of operations from multiple ARMs is

another on-going investigation in the context of IP/MPLS networks.
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Figure 6.9: The Functional Building Blocks of ARM

The Resource Controller, Operation Controller, and VNR Controller form the main

autonomic control loop in the ARM. The ARM periodically retrieves status data of

the VNR through the Resource Controller. When any fault is detected the Operation

Controller tries to resolve the problem through the VNR controller. The Operation

Controller coordinates the sequence of VNR recovery when more than one VNR are in

an unstable state. The VNR Controller finds the optimal solution for the given problem

based on the VNR policy and configures the physical network device through the

Resource Controller. If the problem cannot be resolved by ARM itself, the Operation

Controller sends an alarm notification to the corresponding AVNM.

6.4 Autonomic Nature of AutoNet

In the final section of this chapter we show how the autonomicity is provided in

AutoNet. To do so, we will consider AutoNet as a system to which external distur-

bances are applied. Our goal is to show that regardless of the disturbances exerted on
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AutoNet, it handles them without human intervention. The players interacting with

AutoNet operation are the customers, service providers, resources, and demands. We

argue that regardless of the effects of the disturbing elements on AutoNet, the events

are handled autonomically.

Service providers interaction is mainly the manual creation of new policies or

updating existing policies. The policies entered by the SP manually through the Policy

Manager are changed to the appropriate format, and are stored in the PIB. These

policies are later used to automate the operation of AutoNet (self-configuring).

Customers interaction involves SLA Agreement by filling the required informa-

tion. The information entered by the customer in the SLA Agreement is forwarded

to the SLA Translator, which creates runtime policies in the appropriate format and

stores them in the PIB (Policy Information Base). These policies regulate the creation

of customer VN, its re-configuration in case of unsatisfactory performance detected

by the Operation Manager, its removal in case customers terminate the service, and its

resource allocation in case of problems such as failures or congestion in the underly-

ing resources are detected by the Operation Manager. Operation Manager then takes

appropriate actions remedy the problem (self-healing) and re-optimize the operation

of the whole system in response to the customer’s contracted SLA (self-optimizing).

In case of demand fluctuation dynamic resource allocation and re-allocation based

on problems detected or SLA violations observed, are performed by the Topology Man-

ager. In addition, performance is evaluated periodically by monitoring the resources

via Resource Manager and Operation Manager. If this performance is not deemed

optimal, reconfigurations can take place to ensure optimal resource use by the Topol-

ogy Manager. In some cases, predictions of future demands happen and AutoNet can

anticipate outages, congestion, or any kind of problems, using the knowledge accu-

mulated in the VNIB as an indicator. These are the self-configuring, self-optimizing,

and self-protecting properties of AutoNet.



C 6. AN: A N C M S 158

Resource problems such as Faults, overloads, congestion of resources, detected

by analyzing the raw performance data obtained from the Resource Manager. The

faults, overloads, and congestion detected from the measurement infrastructure by

the Resource Manager, are fed to the Operation Manager. In Operation Manager

the problem is evaluated against the contracted SLA to check for any SLA violation,

and to recognize the source of the problem. The results from these are fed into the

Topology Manager along with relevant policies from the PIB, so that it decides on

the appropriate actions to remedy to the situation at hand. The long-term algorithm

in Topology Manager analyzes the problem to take appropriate actions in order to

prevent future problems, if necessary. These are the self-healing, self-optimizing, and

self-protecting properties of AutoNet.



Chapter 7

Extensions and Further Work

There are several avenues for further research on network criticality. In general the

research works fall into two main categories: 1. theory, 2. applications. In this chapter

we attempt to describe some of the possible extensions in each one of these categories.

7.1 Theory

Theory of the network criticality can be extended in different ways.

7.1.1 Asymmetric Weight Matrix

In our work we supposed that the weight matrix of the network is symmetric. In

some practical situations we need to consider the case of asymmetric weight matrices.

Chapter 3 of this thesis is not changed even if we have an asymmetric weight matrix,

but in chapter 4 we use the symmetry of weight matrix and express the criticality based

on the graph Laplacian which is also a symmetric matrix. When the weight matrix is

asymmetric, we have two options, we need to either convert the directed graph to an

undirected graph with appropriate weight matrix, or we need to use the mathematics

of directed graphs [111, 112, 113]. In [111] the Laplacian of a directed graph is defined

159
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as follows. Let −→π be the left eigenvector of transition probability matrix P, that is,

−→π = −→πP. The Laplacian of a directed graph is:

L = I −
Φ

1
2 PΦ−

1
2 + Φ−

1
2 PtΦ

1
2

2
(7.1)

where Φ is a diagonal matrix whose main diagonal entries are the elements of−→π . While

the graph is assumed to be directed, the Laplacian (equation 7.1) is still a symmetric

matrix. Equation 7.1 can be used as an starting point to extend the results of this thesis

to digraphs.

Another version of the Laplacian matrix for digraphs is introduced in [114] which is

asymmetric in nature and its definition is similar to the definition of Laplacian matrix

for undirected graphs (L = D−W). This provides another method to extend the results

of this thesis to the asymmetric case.

7.1.2 Loop-Free Random-Walk Betweenness

Our definition of random-walk betweenness in chapter 3 and 4 allows for loops. If

we need to find loop-free betweenness of a node k, we have to count the number of

random-walks in reverse direction passing the links incident to node k (Fig. 7.1). For

every incident link (k, ki) the average number of walks from node k to ki is bsk(d)pkki , and

the average number of walks in reverse direction (node ki to k) is bski(d)pkik. Therefore,

the net number of walks passing node k will be:

b′sk(d) =
∑

i

(bsk(d)pkki(d) − bski(d)pkik(d))

=
∑

i

(bsk(d)
wkki

Wk
− bski(d)

wkik

Wki

)

=
∑

i

(
bsk(d)
Wk

−
bski(d)
Wki

)wkki (7.2)

Now we use equation 4.15 to simplify equation 7.2.
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Figure 7.1: Loop-Free Betweenness

b′sk(d) =
∑

i

(l+sk − l+sd − l+dk + l+dd − l+ski
+ l+sd + l+dki

− l+dd)wkki

=
∑

i

(l+sk − l+dk − l+ski
+ l+dki

)wkki (7.3)

Equation 7.3 expresses the loop-free betweenness of node k for source-destination pair

s − d based on the Moore-Penrose inverse of the graph Laplacian. This equation can

be used as the main definition of the node betweenness and can be synthesized using

the same approach we took in chapter 4 and 5.

7.1.3 Extending the Definition of Betweenness

In our work the effect of traffic demand is implicitly applied into the weight matrix

of the graph. Equation 3.10 can be used to define another variant of random-walk

betweenness that explicitly takes into account the effect of external input rates at each

node. Motivated by equation 3.10, we can define this new betweenness measure as

follows.

b′k =
∑

d

∑
s

λs(d)
λ

bsk(d) (7.4)

where λ =
∑

d
∑

s λs(d) is the total external traffic rate. b′k is a weighted average of

random-walk betweenness for every source-destination pair s − d over all available
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s − d pairs.

A nice research work is to study the behavior of b′k. The work includes analytical

study as well as simulation-based investigation. The goal is to find the attributes of b′k

and propose useful guidelines for network control purposes.

7.1.4 Investigation of the Community of Interest

In the analysis of random-walk betweenness throughout this thesis, we mostly consid-

ered the largest possible community of interest where all possible source-destination

pairs on a network assumed to be active. The definition of network criticality in equa-

tion 4.19 considers all s − d pairs as active source and sinks for traffic. In chapter 5

we saw that this definition of network criticality provides a strictly convex function of

weight matrix which leads to the synthesis of network criticality in chapter 5.

In some scenarios we may have a subset of source-destination pairs as active nodes

for originating and terminating the network traffic. In these situations the definition

of network criticality may include only the active s− d pairs as the CoI (community of

interest):

τ =
∑

sd∈CoI

τsd (7.5)

Equation 7.5 also defines a convex function of weights, since τsd is convex, but it is

not necessarily a strictly convex function. This means that the optimization problem

5.17 does not have unique solution. The optimization problem for this case is:

Minimize
∑

sd ∈ CoI τsd

Subject to
∑

(i, j)∈E wi jzi j = C ,C is f ixed (7.6)

wi j ≥ 0 ∀ (i, j) ∈ E

Semi-definite programming technique can still be used to solve problem 7.6. The

semi-definite form of problem 7.6 is similar to semi-definite form 5.59, the only differ-
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ence is in the objective function of the optimization problem:

Minimize
∑

sd∈CoI ut
sdΓ
−1usd (7.7)

Subject to Γ = L + J
n

Tr(Diag(Vec(Z)) ×Diag(Vec(W))) = CΓ I

I L + J
n

 � 0

Diag(Vec(W)) � 0

Optimization problem 7.7 can be solved using standard techniques of semi-definite

programming. Since the solution is not unique, we need to choose an appropriate

solution from the whole solution-space. Therefore, we need to have an in-depth study

on problem 7.6. It seems that we need to add some more constraints to the problem to

decrease the solution-space.

7.1.5 SLA-Weight Mapping

The problem of mapping QoS constraints to link weights is not new. In multi constraint

problems (MCP), there is usually a vector of weights assigned to each link of the

network to quantify QoS constraints. In MCP we try to find a network control strategy

to meet these constraints to the extent possible. Jaffe [115] proposed a shortest path

algorithm using a linear combination of the link weights. He considered an equivalent

link weight that was equal to the sum of the QoS weights for the link. In [88] a more

effective method is proposed based on Holders q-vector norm:

we f f (l) = (
m∑

i=1

[
wi(l)

Li
]q)

1
q

where wi(l) denotes ith QoS weight of link l, Li denotes the maximum value of wi(l),

and we f f (l) denotes the effective weight of link l. When q → ∞, the Holders q-vector
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norm is converted to the max operator:

w∞(l) = max
1≤i≤m

[
wi(l)

Li
]

In this thesis we suggested an alternative way to define link weights to include QoS

metrics (equation 4.3), but throughout the thesis we assumed that the SLA constraints

are already mapped to the weights. One research topic is to investigate the effectiveness

of different methods to map SLA parameters to the weight and find an appropriate

approach.

7.1.6 Network Criticality and Graph Spectrum

In chapter 4 we saw that network criticality is bounded by the reciprocal of algebraic

connectivity (see theorem 4.5.4). As a matter of fact there is a close similarity between

network criticality and algebraic connectivity. Table 7.1 summarizes some important

properties of τ and λ2.

Network Criticality (τ) Algebraic Connectivity (λ2)

∂τ
∂wi j

= −2n‖L+ui j‖
∂λ2
∂wi j

= ‖vt
2ui j‖

∂τ2

∂2wi j
= −2ut

i jL
+ui j

∂τ
∂wi j

∂λ2
2

∂2wi j
= 2ut

i jQ
+ui j

∂λ2
∂wi j

Convex Concave

Table 7.1: Network Criticality vs. Algebraic Connectivity

In table 7.1 v2 is the Fiedler eigenvector (eigenvector corresponding to λ2), and Q =

λ2I−L. Table 7.1 shows that network criticality and algebraic connectivity have similar

functional forms. From robustness point of view the algebraic criticality is investigated

in [116, 117]. In [116] the algebraic connectivity is studied in relation to the graphs

robustness to node and link failures. Three types of network topologies are considered:
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the random graph of Erdos-Renyi, the small-world graph of Watts-Strogatz and the

scale-free graph of Barabasi-Albert, and through extensive simulations with the three

complex network models, it is shown that the algebraic connectivity is not trivially

connected to the graph robustness to node and link failures. The authors have shown

that in some cases the speed of increasing the algebraic connectivity is much lower than

the speed of increasing node connectivity and it is very dependent on the considered

complex network model.

It is worth investigating the behavior of τ when node connectivity increases and

compare the results to that of [116, 117]. This investigation can include the analytical

study as well as simulation based experiments. An experimental plan for this investi-

gation is provided in section 7.2.7. Furthermore, lemma 4.4.2 shows that the reciprocal

of network criticality is proportional to the harmonic average of non-zero eigenvalues

of the graph Laplacian . Therefore there may exist some bounds for τ in terms of other

eigenvalues of the graph Laplaian. One of the future works is to study these bounds

and find the relationship between τ and other eigenvalues of the graph Laplacian.

7.2 Applications

In this section we summarize some of the possible applications of network criticality.

7.2.1 Job Assignment Problem

Consider a network of processors in which the processes enter into the network and

they should be assigned to the appropriate processor. The goal is to balance the

load among all the processors [118, 119]. This is an example of a job assignment

problem where the jobs are the processes that need to be assigned to appropriate

agents (processors).

In this thesis we considered the flow assignment problem, where the input demands
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Figure 7.2: Primal Network

Figure 7.3: Primal vs Linear Dual Graph

are assigned to different links of the network. The flow assignment problem and job

assignment problem can be converted to each other using the concept of Linear Dual

of a graph [120]. Consider the network of Fig. 7.2 as the primal network. Assign a

node to each link of the primal network. Connect two nodes if their corresponding

links in the primal graph have a common node. The new network topology is called

linear dual of the graph and it is shown in Fig. 7.3. Note that linear dual graph is not

the same as standard dual of a graph.

Linear dual graph is used in literature for different purposes. For instance, in [121]

linear dual graph is used to map a link queue in primal graph to a node potential

in linear dual graph. Here we are interested in job assignment problem. The flow
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assignment problem in the primal graph is converted to a job assignment problem in

the linear dual graph. This means that our results for flow-assignment can be used

in a job assignment problem in linear dual graph (and vice versa). It is interesting to

see the relationship between the network criticality of primal and linear dual graph.

There is a known result about the spectrum of linear dual graph that relates it to the

spectrum of the primal one [122]. This can be a good starting point to find the network

criticality of linear dual graph.

7.2.2 Improving Service Differentiation

The use of Multi Topology Routing (MTR) for traffic engineering purposes was pro-

posed in [123] based on dividing traffic matrix into smaller slices, each routed on a

separate topology the greater the number of slices, the better the performance as it

increases the ability to approximate optimal routing. Recently, the use of MTR has

been proposed to improve the resiliency of IP routing [124, 125, 126], with different

topologies offering backup routes for different failure scenarios. [127] seeks to investi-

gate how routing influences a networks ability to efficiently support different service

classes. Of particular interest is the extent to which the ability to route service classes

separately is beneficial. This question is explored for a base configuration involving

two classes with either similar or entirely different service objectives (cost functions).

The contributions of the paper are in demonstrating and quantifying the benefits that

the added flexibility of different (dual) routing affords, and in developing an efficient

heuristic for computing jointly optimal routing solutions.

The idea of network criticality may be useful to investigate the MTR problem. We

can consider a virtual network (VN) assigned to each service level and treat it as an

independent network. Each VN has its own resources and network weights, and a

network criticality is assigned to each VN. The goal is to solve a joint optimization

problem whose final solution is a set of weights for each VN that keeps τ for all VNs
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within a pre-defined threshold values. The problem can be formulated with the same

approach that we used in chapter 5 to investigate the optimization problem 5.17, but

here we have a weight vector assigned to each link of the network and we need to

optimize a vector of network criticalities.

7.2.3 Network Simplification

Network criticality can be used to simplify the topology of large networks. Some of

the nodes and links in a large graph may not contribute that much in providing the

robustness of the network. These are the links and nodes whose removal does not

cause any significant change in τ. This provides an approach to reduce the complexity

of large network while the robustness properties are preserved. As an example, the

nodes with degree one do not significantly affect the criticality of a network. There may

exist some more complex structures that do not heavily change the network criticality.

One research topic is to find these structures and provide some guidelines for network

simplification.

7.2.4 Network Criticality and Ant Colony Algorithm

Ant colony algorithms are a series of routing procedures inspired by the operation of

ants in nature [128, 129, 130]. Individual ants seem to move at random, do nothing

but wander off, and yet groups of ants can accomplish complex tasks. Somehow, a

collective intelligence is formed out of many simple elements which is called swarm

intelligence. Each agent (ant) processes a very simple algorithm. The collective out-

come realizes a much more complex algorithm. The whole system is distributed and

adaptive. Ants cannot see or hear. They only sense the environment, and also the

food. Ants cannot talk either, they communicate indirectly through the environment.

An ant can leave a trial of pheromones which are materials with particular fragrance.
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Ants can smell and sense the pheromones left by other ants, moreover, ants can detect

the density of the pheromones.

Ants in networks are emulated by mobile agents. Mobile agents are carried by

packets. Special packets can be used as mobile agents (ants). Pheromones pass the

information about the length of the path (time) to other ants. The agents can pass the

same information to data packets at the nodes. Ants decide based on the density of the

pheromones and some probability values. The probability values can be calculated

based on the path information and listed in routing tables in the nodes. Starting with a

static routing table for each node, every individual routing table stores the probabilities

of using the next hops to reach all possible destinations. The sum of all the probabilities

at each row should be equal to one.

It appears that the definition of random-walk betweenness can be used to model

pheromones. One can consider a random-walk as an ant. Assume that the random-

walk (ant) starts at node s and stops at d where the food is located, then the thickness

of pheromones on a link can be quantified by random-walk betweenness of the link

for source-destination pair s − d. In this case the evaporation of the pheromones

happens when a demand exits the network. This motivates a new line of research.

While the random-walk interpretation of an ant is not new, the notion of τ and its

interpretation in ant colony can result in a more understanding of ant’s behavior.

Since ant colony algorithms have successfully applied to many practical applications

(for instance vehicle routing problem), this research can open doors to an in-depth

analysis of these problems.

7.2.5 Network Design Problem Revisited

In chapter 5 we introduced the network design problem in the context of network

criticality. The solution of optimization problem 5.17 is a set of optimal link weights.

These weights in general are a function of link QoS parameters such as delay, packet
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loss, available bandwidth and so on. If we just consider the bandwidth as our QoS

metric, and assume that the weight of link (i, j) is equal to the available bandwidth

of the link, then for unloaded case the optimization problem 5.17 is converted to the

capacity assignment problem. For a more general case where links have different QoS

parameters, we may need to add more constraints to the optimization problem. The

solution of optimization problem 5.17 then provides the optimal weights. Now one

needs to map these weights to the link QoS parameters. This reverse map is not unique

and needs an in depth investigation to find an appropriate method to do this mapping

from link weights to link QoS parameters.

7.2.6 Wireless and Mobility

One can think of different applications of the network criticality in mobile and wireless

networks. For instance in mobile wireless networks the topology of the network is

dynamically changing. One control problem is to keep the network well-connected.

This problem motivates the optimization of algebraic connectivity among different

network topologies. Another control problem is to keep the mobile network in least

critical situation. Then one needs to find more robust topologies, this motivates

the optimization problem to find topologies with least network criticality. Network

weights should be defined appropriately. One good choice for the weight of link (i, j)

is the reciprocal of the euclidian distance of nodes i and j.

Another line of research in the area of wireless networks can be initiated by defining

appropriate link weights to include the effect of interference. Then one can formulate

the problem of minimum interference routing as an optimization problem to minimize

the network criticality.
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7.2.7 Network Criticality of Structured and Random Graphs

In order to compare the robustness properties of different graphs, we need to find

the network criticality of different graphs. In the following we provide a list of some

important networks accompanied with an experimental plan to assess the robustness

of different networks and compare the behavior of the network criticality and algebraic

connectivity. This study considers the following networks types.

1. Type 1: Networks with given degree distribution (power law is an example of

these networks)

2. Type 2: Networks with given link weight distributions (we assume that the

network topology has a fixed number of nodes and randomness is only in weight

distribution).

3. Type 3: Networks with given betweenness distribution

4. Type 4: Structured construction of recursive networks using Cartesian and Kro-

necker products.

5. Type 5: Erdos-Renyi random graphs

6. Type 6: Scale-free networks

7. Type 7: Small-world networks

8. Type 8: Networks with given node/link connectivity (and minimum degree)

distribution.

9. Type 9: Hierarchy of networks (type 1-7)

Here is an experimental plan to assess the robustness of these networks.

1. Find and plot the distribution of criticality and algebraic connectivity for net-

works of type 1-7.
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2. Find the distribution of criticality and algebraic connectivity for hierarchical

networks. Is there any relationship between criticality and algebraic connectivity

of the final network and its ingredients?

3. Investigate the behavior of criticality and algebraic connectivity when the node/link

connectivity changes (type 8).

4. Investigate the scalability issues in structured growing networks.

5. Investigate the distance variations in different network types and its effect on

criticality and algebraic connectivity.

6. Compare different networks types (their behavior with respect to criticality and

algebraic connectivity). This results in a better understanding of the properties

of algebraic connectivity and network criticality.

7. Investigate the behavior of network criticality versus other Laplacian eigenvalues

of the graph.

7.3 Conclusions

In this thesis, we addressed issues related to the management of backbone (core)

transport networks, namely the algorithmic architecture of such network management

systems. A main concern in core networks is the existence of unanticipated events in

the system, such as traffic surges, a sudden topology change, or changes in active

sources (sinks) for traffic. A core network should be able to smoothly react to such

unwanted events so as to provide reliable data delivery service for the customers

according to the service level agreements (SLA).

The majority of traffic control systems in use by service providers so far are man-

ually configured by human intervention. The continual growth in traffic volume, di-

versity, and heterogenous requirements make it impossible to continue working with
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the present network management systems. Automated service and network manage-

ment are essential to creating and maintaining a flexible and agile service/application

delivery infrastructure that also has much lower operations expense than existing

systems.

In this thesis we proposed the AutoNet, a management framework for data delivery

over core networks. We argued that the traffic engineering system requirements can

be met by a self-management system based on autonomic computing. We gave a

conceptual design of our autonomic traffic engineering system, AutoNet, but we

focused on a set of essential graph theoretic algorithms that provide the means for

adaptive management required by the autonomic system.

The theory of evolution motivated the conceptual idea underlying AutoNet. Evo-

lutionary processes are among self-organizing systems by nature. Darwin’s theory

describes the process of natural selection by which slight variations, if useful, are pre-

served. Every process has a survival value as a result of natural selection that quantifies

its overall sensitivity or robustness to the external variations. In this thesis we looked

for an appropriate survival value for communication networks that indicates how

adaptable a system is to unexpected events.

In any network, from small designed networks, to large-scale social networks, and

even to the Internet, connectivity is a crucial factor as it is essential for communication.

Therefore, the first parameter to consider as a candidate for ”survival value” is the

connectivity of the graph. In the first part of this thesis we proposed some metrics,

by extending some ideas from graph-theory, to model the robustness of a network.

This is the first step toward defining an appropriate survival value for communication

networks. We defined Link Criticality Index (LCI) as the deterministic betweenness of

a link per unit of available link bandwidth (betweenness of the link over its available

bandwidth). We proposed Path Criticality Routing (PCR) algorithm based on evalu-

ating the LCI of different links of the network. This algorithm tries to find the least



C 7. E  FW 174

critical path. The success of PCR algorithm encouraged us to study the behavior of

LCI analytically. This study is the subject of the second part of this thesis.

We extended the idea of LCI and defined node/link criticality as the probabilistic

betweenness of the node/link per unit of node/link weight (random-walk betweenness

of the node/link over its weight). We showed that the criticality of a node/link is

independent of the position of the node/link in the network, and it is only a function

of link weights. We termed the fraction of node/link betweenness over the node/link

weight ”network criticality” and investigated its properties. The network criticality is

a global metric quantifying the robustness of the network, therefore, we used network

criticality as the survival value for the networks. Any communication network should

evolve in a way that minimizes the network criticality.

While Darwin’s theory does not consider any ”final target” for the evolutionary

changes in the nature, viewing survival as the network management goal can lead

to an implicit optimization problem. The optimization must address the real-time

efficiency and performance of the whole network as a short-term goal, while striving

to maintain and improve the survival value of the network as a long-term goal. This is

the subject of the third part of the thesis. We investigated the problem of optimizing the

survival value (network criticality) under some constraints. We proved that network

criticality is a strictly convex function of link weights, and investigated the problem

of minimizing network criticality as a convex optimization problem. This led to some

guidelines for designing more precise traffic management methods (improving PCR

algorithm), as well as directions for network planning problem.

In the final part of the thesis, we returned to the architecture of AutoNet and

provided details of its necessary building blocks. Our emphasis in this section of the

thesis was to show how the concepts of autonomic computing and virtual networks

can be used to build autonomic networks capable of self-optimizing, self-configuring

and self-healing.
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This research work is just in its early stage of development. There are definitely

much more research questions that need to be addressed. While most of the work over

the last years has focused on frameworks and models, this thesis attempted to tackle

the algorithmic aspect of the autonomic promise in the telecommunications world. An

abundance of work remains to be done on these issues, and will definitely constitute

a major research area for years to come.



Appendix A

Graph Laplacian

In the following we provide a short review of the graph Laplacian matrix [89, 90, 91, 92].

A.1 The Definition of Graph Laplacian for Simple Graphs

Given a simple graph G = (N,E) with n vertices, we define the adjacency matrix A(G)

to be the n-by-n matrix with entries ai j such that ai j is 1 if (i, j) is an edge, and ai j is zero

otherwise. That is:

ai j =

 1 i f (i, j) ∈ E

0 otherwise

Example A.1.1 For the graph of Fig. A.1 the adjacency matrix is the following.

A =



0 1 1 0 0 0 0

1 0 1 0 0 0 0

1 1 0 1 0 0 0

0 0 1 0 1 1 0

0 0 0 1 0 0 1

0 0 0 1 0 0 1

0 0 0 0 1 1 0


176



A A. G L 177

Figure A.1: Fish Network Topology (not weighted)

We define the degree matrix D(G) to be the n-by-n diagonal matrix such that the

main diagonal entry dii is the degree of node i. That is

di j =

 di i f i = j

0 otherwise

where di denotes the degree of node i.

Example A.1.2 The degree matrix of the fish network (Fig. A.1) is given in the following.

D =



2 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 3 0 0 0 0

0 0 0 3 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 2 0

0 0 0 0 0 0 2


Now we define the Laplacian L(G) to be the n-by-n matrix with diagonal entries di

and off-diagonal entries li j such that di is the degree of vertex vi, and li j is −1 if (i, j) is
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an edge, and li j is 0 otherwise. That is

li j =


di i f i = j

−1 i f (i, j) ∈ E

0 otherwise

Observe that L(G) is a symmetric matrix. It is easy to see that the Laplacian matrix can

be obtained from the following equation: L = D − A.

Example A.1.3 The Laplacian matrix of the fish network is as follows.

L =



2 −1 −1 0 0 0 0

−1 2 −1 0 0 0 0

−1 −1 3 −1 0 0 0

0 0 −1 3 −1 −1 0

0 0 0 −1 2 0 −1

0 0 0 −1 0 2 −1

0 0 0 0 −1 −1 2


Now let us define another matrix which encodes information from a graph. For a

simple graph G = (N,E) with n vertices and m edges, define the incidence matrix U(G)

to be the n-by-m matrix defined as follows. Each column of U corresponds to an edge

(i, j) of G. In that column, put a ”1” in the ith row, a ”−1” in the jth row, and zeros

everywhere else. (Notice that we equally well could have put a −1 in the ith row and a

”1” in the jth row. You could devise some rule for which row gets the 1 and which gets

the ”−1”, but for our purposes it doesn’t matter.) For the graph above, the incidence

matrix is
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U =



1 1 0 0 0 0 0 0

−1 0 1 0 0 0 0 0

0 −1 −1 1 0 0 0 0

0 0 0 −1 1 1 0 0

0 0 0 0 −1 0 1 0

0 0 0 0 0 −1 0 1

0 0 0 0 0 0 −1 −1


Proposition A.1.4 L(G) = U(G)U(G)t (where t denotes transpose).

Proof An entry of U(G)(U(G))t is the inner product of two rows of U(G). The inner

product of a row with itself is simply the number of nonzero entries in that row, which

is equal to the number of edges incident to that vertex. The inner product of two

different rows of U(G) is 0 if there is no edge between those two vertices, and is −1 if

there is an edge. So U(G)U(G)t is in fact the Laplacian.

Observation A.1.5 If we let ui be the ith unit vector, then ui j = ui−u j is in fact the lth column

of U, where l = (i, j).

Take a vector x = (x1, x2, . . . , xn)t
∈ Rn. Then we have

xtLx = xtB · Btx = (xtB) · (xtB)t =
∑

(i, j)∈E(G)

(xi − x j)2

Let us list the facts we know about L(G).

L = Lt

L = BBt

xtLx =
∑

(i, j)∈E(G)(xi − x j)2,∀x ∈ Rn

All eigenvalues of L are real and non-negative. In fact, L is a positive semi-definite

matrix since xtLx ≥ 0 ∀ x ∈ Rn
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A.2 Graph Laplacian for Weighted Graphs

The definition of graph Laplacian can be extended for weighted graphs as follows.

Consider a graph G(N,E,W), where N and E denote the set of nodes and links respec-

tively, and W denotes the n-by-n matrix of link weights. Define the Laplacian L(G) to

be the n-by-n matrix with diagonal entries Wi =
∑

k wik (we term Wi as weighted degree

of node i, or simply weight of node i) and off-diagonal entries li j such that li j is −wi j if

(i, j) is an edge, and li j is 0 otherwise. That is

li j =


Wi i f i = j

−wi j i f (i, j) ∈ E

0 otherwise

Observe that L(G) is a symmetric matrix. The weighted Laplacian matrix can be

obtained from the following equation: L = D − W, where D is a diagonal matrix

with dii = Wi. The Laplacian matrix can also be written in terms of the incidence

matrix U: L = U ×Diag(Vec(W)) ×Ut, where Vec(W) is a m-by-1 vector obtained from

concatenating the rows of matrix W. This equation can also be written in the following

form:

L =
∑

(i, j)∈E

wi jui jut
i j (A.1)

Example A.2.1 In the weighted fish network (Fig. A.2), the weight matrix is given as follows.

W =



0 10 3 0 0 0 0

10 0 5 0 0 0 0

3 5 0 7 0 0 0

0 0 7 0 6 1 0

0 0 0 6 0 0 8

0 0 0 1 0 0 1

0 0 0 0 8 1 0


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Figure A.2: Weighted Fish Network Topology

The Laplacian of weighted fish network is:

L =



13 −10 −3 0 0 0 0

−10 15 −5 0 0 0 0

−3 −5 15 −7 0 0 0

0 0 −7 14 −6 −1 0

0 0 0 −6 14 0 −8

0 0 0 −1 0 2 −1

0 0 0 0 −8 −1 9


A.3 Eigenvalues of the Laplacian

Let λ1, λ2, . . . , λn denote the eigenvalues of L, with λ1 ≤ λ2 ≤ · · · ≤ λn. For starters,

observe that λ1 = 0, corresponding to the eigenvector (1, 1, . . . , 1)T. The eigenvalue of

interest to us is λ2. It happens that λ2 = 0 if and only if the graph G is disconnected.

λ2 is called ”Algebraic Connectivity”, and plays an important role in the theory of

graphs.

From here on, assume G is connected. Let us call λ2 the eigenvalue of the graph.
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Let u = (u1,u2, . . . ,un)T be an eigenvector corresponding to λ2. The eigenvectors of a

symmetric matrix are orthogonal, so we have u ⊥ (1, 1, . . . , 1)T, so
∑

ui = 0.

A.3.1 The Rayleigh quotient

Let x = (x1, x2, . . . , xn)T. Define the Rayleigh quotient to be

φx =
xTLx
xTx

=

∑
(i, j)∈E(G) wi j(xi − x j)2∑

x2
i

Observe that

λ1 = min
x,0

φx

and

λ2 = min
x⊥(1,1,...,1)T

φx.

A.4 Continuum vs. Combinatorial Differential Opera-

tors on Graphs

There is a simple correspondence between continuum differential operators and com-

binatorial differential operators on graphs, summarized in the following table.

Operator Vector Calculus Combinatorial

Gradient ∇ U

Divergence ∇. Ut

Laplacian ∇.∇ = ∇2 UUt

Beltrami-Laplace ∇W.∇ UDiag(Vec(W))Ut

Table A.1: Continuum and Combinatorial Differential Operators on Graphs



Appendix B

Semi-Definite Programming

In the following we provide a short review of the semi-definite programming (SDP)

method [97, 99, 100, 101].

B.1 Definition

A semi-definite program is the problem of minimizing a linear function of a variable

x = (x1, x2, ..., xn)t
∈ Rn subject to positive semi-definiteness of a certain matrix F(x). The

problem input consists of c ∈ Rn and n + 1 symmetric matrices F0,F1,F2, ...,Fn ∈ Rm×m

and asks for

Minimize < c, x > (B.1)

subject to F(x) � 0

where < c, x >= ctx, F(x) � 0 means that F(x) is a positive semi-definite matrix, and

F(x) = F0 +

n∑
i=1

xiFi

Proposition B.1.1 The feasible region of optimization problem B.1 is a convex set.

Proof The feasible set of problem B.1 is z = {x ∈ Rn
|F(x) � 0}. F(x) is a positive semi-

definite matrix, that is, < F(x)z, z > for all z ∈ Rm. Suppose x, y ∈ z and take λ ∈ [0, 1].
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Then for every z ∈ Rm, we have

< (λF(x) + (1 − λ)F(y))z, z >= λ < F(x)z, z > +(1 − λ) < F(y)z, z >≥ 0

Therefore λF(x) + (1 − λ)F(y) = F(λx + (1 − λ)y) � 0 and hence λx + (1 − λ)y ∈ z.

A semi-definite program is a convex optimization problem since its objective function

is a convex function, and the set of feasible solutions is a convex set.

B.2 Some Examples of Semi-Definite Programs

In this section, through some examples, we show that many optimization problems,

even complicated non-linear problems, can be represented as a semi-definite program.

Example B.2.1 Consider the following linear program (LP).

Minimize < c, x >

Subject to Ax + b ≥ 0 (B.2)

where c ∈ Rn, A ∈ Rm×n, and b ∈ Rn.

Inequality B.2 is a componentwise inequality since Ax + b ∈ Rm. Note that a vector x ≥ 0

(componentwise) if and only if diag(x) � 0 (i.e., the diagonal matrix containing components of

x on the diagonal is positive semi-definite). Let a1, a2, ..., andenote the columns of A. We have

diag(Ax + b) =

m∑
i=1

xidiag(ai) + diag(b)

Therefore, problem B.2 is a semi-definite program with F(x) = F0+
∑n

i=1 xiFi, where F0 = diag(b)

and Fi = diag(ai) for i = 1, 2, ...,n.

Example B.2.1 shows that a semi-definite program can be considered as generaliza-

tion of a linear program (LP). Let us now consider a non-linear optimization problem.
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Example B.2.2 Let A0,A1,A2, ...,An ∈ Rm×m be symmetric matrices, and for x ∈ Rn set

A(x) = A0 +
∑n

i=1 xiAi. Consider the following optimization problem.

Minimize λmax(A(x))

Subject to x ∈ U

where U is a linear subspace of Rn. The above problem can be translated into a semi-definite

program by introducing an auxiliary variable t ∈ R.

Minimize t

Subject to tI − A(x) � 0

x ∈ U

The first constraint is equal to t ≥ λmax(A(x)). To see this, it is enough to note that a matrix A

is positive semi-definite if and only if all of its eigenvalues are non-negative.

In many situations in semi-definite programs we need the following definition.

Definition B.2.3 The Schur complement of a matrix of the form Θ =

A B

Bt C

 is: A−BC−1Bt.

Proposition B.2.4 Matrix Θ =

A B

Bt C

 is positive definite (semi-definite) if and only if matrix

C is positive definite and the Schur complement of Θ is positive definite (semi-definite).

Proof See [93].

Example B.2.5 Consider the following optimization problem.

Minimize (ctx)2

dtx

Subject to Ax + b ≥ 0
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where we assume dtx > 0 whenever Ax + b ≥ 0. We introduce an auxiliary variable t that

serves as an upper bound on the objective.

Minimize t

Subject to Ax + b ≥ 0

(ctx)2

dtx ≤ t

The second constraint can be represented as a semi-definite constraint using proposition B.2.4.

Consider matrix Ω =

 t ctx

ctx dtx

. The Schur complement of matrix Ω is equal to t(dtx)− (ctx)2,

but t(dtx) − (ctx)2
≥ 0 (second constraint), therefore according to proposition B.2.4, Ω � 0.

Finally, we can combine both constraint into a linear matrix inequality as follows.

Minimize t

Subject to


diag(Ax + b) 0 0

0 t ctx

0 ctx dtx

 � 0

This is clearly a semi-definite program.

Above examples show that many problems, including non-linear optimization

problems, can be represented as a semi-definite program. So semi-definite program-

ming offers a unified way to study the properties of and derive algorithms for a wide

variety of convex optimization problems. Most importantly, however, semi-definite

programs can be solved very efficiently both in theory and in practice. Standard

methods such a barrier method, and interior point method [97] are developed to solve

semi-definite programs. There are also some open-source and commercial products to

solve semi-definite programming problems [102, 103].



Appendix C

Graph Products

In the following we provide the definition of two important graph products.

C.1 Kronecker (Tensor) Product of Two Graphs

Consider n-by-m matrix A = [ai j] and p-by-q matrix B = [bi j]. The Kronecker product

of matrices A and B is given by mp-by-nq matrix C = A ⊗ B as follows:

C = A ⊗ B =



a11B a12B . . . a1mB

a21B a22B . . . a2mB

. . . . . .

. . . . . .

. . . . . .

an1B an2B . . . anmB


Definition C.1.1 We define a Kronecker product of two graphs as a Kronecker product of their

adjacency matrices.

Example C.1.2 Fig. C.1 shows graph G1 and its Kronecker product by itself G2 = G1 ⊗ G1
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Figure C.1: Kronecker Product of Graph G1 and Itself

[131]. In matrix form the adjacency matrix of graph G1 is:

A(G1) =


1 1 0

1 1 1

0 1 1


The adjacency matrix of G2 according to the definition of Kronecker product is equal to:

A(G2) =



1 1 0 1 1 0 0 0 0

1 1 1 1 1 1 0 0 0

0 1 1 0 1 1 0 0 0

1 1 0 1 1 0 1 1 0

1 1 1 1 1 1 1 1 1

0 1 1 0 1 1 0 1 1

0 0 0 1 1 0 1 1 0

0 0 0 1 1 1 1 1 1

0 0 0 0 1 1 0 1 1





A C. G P 189

Figure C.2: Cartesian Product of 2 Simple Link Networks

C.2 Cartesian Product of Two Graphs

The cartesian product of two graphs G(NG,EG) and H(NH,EH) is given by C = G�H,

and defined as follows. The vertex set of G�H is the cartesian product of node sets of

two graphs: NG�H = NG×NH. Any two nodes (u, v) and (u′, v′) are adjacent (connected

by a link) in G�H if and only if either

1. v = v′, and u and u′ are adjacent in G.

2. u = u′, and v and v′ are adjacent in H.

Example C.2.1 Fig. C.2 shows that the cartesian product of two simple link networks (K2) is

a ring graph on 4 nodes (C4).

There is a simple relationship between cartesian and Kronecker product of graphs.

Proposition C.2.2 Let H be a graph with adjacency matrix A(G) ∈ Rn×n and H be a graph

with adjacency matrix A(H) ∈ Rm×m. The cartesian product of G and H can be expressed in

terms of the Kronecker product of G and H as follows.

A(G�H) = A(G) ⊗ Im + In ⊗ A(H)

where Im is the identity matrix of order m.
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Proof See [93].

C.3 Spectrum of Graph Products

Let the spectrum (set of eigenvalues) of graph G be SP(G) = {λ1, λ2, . . . , λn}, and the

spectrum of graph H be SP(H) = {µ1, µ2 . . . , µn}.

Proposition C.3.1 The spectrum of the Kronecker product G ⊗H is the following:

SP(G ⊗H) = {λµ | λ ∈ SP(G), µ ∈ SP(H)}

Furthermore, if x is the eigenvector of G associated with λ ∈ SP(G) and y is the eigenvector of

H associated with µ ∈ SP(H), then x ⊗ y is the eigenvector of G ⊗H associated with λµ.

Proof See [93].

Proposition C.3.2 The spectrum of the cartesian product G�H is the following:

SP(G�H) = {λ + µ | λ ∈ SP(G), µ ∈ SP(H)}

Furthermore, if x is the eigenvector of G associated with λ ∈ SP(G) and y is the eigenvector of

H associated with µ ∈ SP(H), then x ⊗ y is the eigenvector of G�H associated with λ + µ.

Proof This is a direct result of propositions C.2.2 and C.3.1.

The smallest non-zero eigenvalue of the cartesian product of two graphs can be found

as follows as a direct consequence of proposition C.3.2.

λ2(G�H) = max{λ2(G), λ2(H)}

Finally, the largest eigenvalue of the cartesian product of two graphs is:

λmax(G�H) = max{λmax(G), λmax(H)}



Appendix D

Sequence Diagrams for AutoNet

In this appendix we provide detailed diagrams for AVNM and ARM functionality. Fig.

D.1 shows the block diagram of AVNM specifying list of functions of each sub-block.

Fig. D.2 shows the block diagram of ARM specifying list of functions of each

sub-block.

Fig. D.3, D.4 and D.5 show a complete signal flow diagram including message

exchanges between different blocks of AutoNet. These blocks are mainly the AVNM,

ARM, network elements (NE), customer, and service provider.
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Figure D.1: Element-Wise Functionality of an AVNM
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Figure D.2: Element-Wise Functionality of an ARM

Figure D.3: Summary of Messages for AVNM
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Figure D.4: Summary of Messages for ARM

Figure D.5: Signal Flow for AVNM & ARM
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