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Abstract

The conventional approaches to routing and bandwidth
allocation, the two major components of traffic engineering,
have proved insufficient to address QoS requirements of flows
while optimizing utilization for complex communication
networks. In this paper we consider ant colony algorithms to
address this problem. Our studies show that the ant-based
routing models are sensitive to initial parameters settings.
Only careful adjustments of these initial parameters results in
an acceptable convergence behavior. The robust behavior of
the real ant compared to the routing algorithms derived from it
inspires us to investigate the reasons behind the shortcomings
of these algorithms. We present results from an in-depth study
of ant behavior in a quest for a robust algorithm. In this work
we consider a realistic environment in which multiple source-
destination flows compete for resources. We study the routing
and load balancing behavior that emerges and show how the
behavior relates to analytical approaches. We show the results
using simulations in OPNET and derive recommendations on
the improvement of the ant-like algorithms.
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1. Introduction

Traffic engineering is one of the active research areas in
communication networks. The traditional form of routing and
resource allocation, as the two major building blocks of traffic
engineering cannot address quality of service requirements of
flows while optimizing network utilization for complex
communication networks. In this paper we consider ant colony
algorithms to address this problem. In this approach foraging
ants find the shortest path in a synergistic way. While moving
back and forth between nest and food, ants mark their paths by
secreting pheromone. Step-by-step routing decisions are biased
based on the local intensity of pheromone field which is the
colony’s collective and distributed memory. Ants will follow
the most dense route in a maximum likelihood way. The actual
algorithm implemented in nature by real ants is slow in
convergence.

Our studies show that the ant-based routing models are
sensitive to initial parameters settings. Only careful
adjustments of these initial parameters results in an acceptable
convergence behavior. The robust behavior of the real ant
compared to the routing algorithms derived from it justifies the

investigation of these algorithms in depth to find the reasons
behind their shortcomings. We present results from our study
of ant behavior in a quest for a robust algorithm. Most of the
ant-based algorithms have been studied with limited source-
destination traffic. In this work we have extended the algorithm
to a more realistic environment in which multiple source-
destination flows compete for the resources. We study the
routing and load balancing behavior that emerges and show
how the behavior relates to analytical approaches for optimal
minimum delay algorithms by Gallager [3], Mitra [6], and
others [4], [5]. We show the results using simulations in
OPNET and derive recommendations on the improvement of
the ant-like algorithms to achieve load balancing.

The rest of this paper is organized as follows. In chapter 2
we highlight the problems of traffic engineering. Chapter 3 is
dedicated to the ant algorithm to provide the overall view of
the ant approach. In chapter 4 we briefly describe the
outstanding analytical methods introduced to address the
problem of dynamic routing and flow assignment. Our
experiments and the results including our view of the ant
algorithm is discussed in chapter 5. Finally we conclude the
paper in chapter 6.

2. Traffic Engineering

Traffic engineering is the process of mapping traffic flows
onto the physical topology to meet traffic requirements, to
enhance overall network utilization and create a uniform
distribution of traffic throughout the network.

Traffic engineering in the traditional Internet is achieved by
manipulating routing metrics, such as monetary cost, hop-
count, bandwidth, reliability and delay. Since IGP (Interior
Gateway Protocol) route calculation is topology driven and
based on a simple additive metric such as the hop-count, it
does not consider other important dynamic criteria such as
bandwidth availability. As a result, traffic can be unevenly
distributed across the network causing inefficient use of
resources. Uneven distribution of traffic is complicated since it
can be the product of the dynamic routing protocols such as
OSPF and IS-IS, that select the shortest paths to forward
packets. Hence a solution is required that takes into account
more factors than the common path-metrics. While using
shortest path conserves network resources, it may cause some
other problems, such as congestion on some paths and under
utilization of other paths.
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These known problems with routing and the trends in
networking and telecommunication provide incentive to look
for another approach in routing and flow assignment as two
main parts of traffic engineering.

3. Ant Algorithm

3.1. History

Nature has always been an important source of inspiration
for academic research. In particular there is much interest in
the behavior of ants. Individual ants seem to move at random,
do nothing but wander off, and yet groups of ants can
accomplish complex tasks. Somehow, a collective intelligence
is formed out of many simple elements which is called swarm
intelligence. Each agent (ant) processes a very simple
algorithm. The collective outcome realizes a much more
complex algorithm. The whole system is distributed and
adaptive. Ants cannot see or hear. They only sense the
environment, and also the food. Ants cannot talk either, they
communicate indirectly through the environment. An ant can
leave a trial of pheromones which are materials with particular
fragrance. Ants can smell and sense the pheromones left by
other ants, moreover, ants can detect the density of the
pheromones.

3.2. Finding the Shortest Path

Ants find the shortest path to food according to this
procedure: two ants start their random walk. They both
eventually find the food. The one taking the shorter path finds
the food first. Each ant leaves a trail of pheromones behind.
Having taken the food the ants follow their pheromone trail
towards the nest. The one with the shorter path returns first
and arrives back to the nest first. Now a third ant wants to
search for food. The ant realizes the trials left behind by its
predecessors. Most likely it follows one of the existing trials
rather than initiating a new trial and most likely it follows the
trial with the higher density of pheromones. This results in
even denser pheromone trial on the shorter path and in the
long run this results in most ants using the shortest path.

When an ant starts its walk with some small probability it
starts a new trial. The first ants may not necessarily have
chosen the shortest path but starting new paths helps continue
the quest for shorter paths until finding the shortest one and
eventually the ants emerge around the shortest path. The
pheromones evaporate over time. This is an essential
requirement for the dynamism of the algorithm. The
algorithm is adaptive because of the evaporation and the fact
that ants keep starting new paths with some probability.

3.3. Ants in Communications Networks

Ants in networks are emulated by mobile agents. Mobile
agents are carried by packets. Special packets can be used as
mobile agents (ants). Pheromones pass the information about
the length of the path (time) to other ants. The agents can pass

the same information to data packets at the nodes. Ants decide
based on the density of the pheromones and some probability
values. The probability values can be calculated based on the
path information and listed in routing tables in the nodes.
Starting with a static routing table for each node, every
individual routing table stores the probabilities of using the
next hops to reach all possible destinations. The sum of all the
probabilities at each row should be equal to one.

Different methods have been used in the literature for
implementing and updating the routing tables using the ant
approach such as AntNet [1].

4. Analytical Approaches

In this section we will briefly review existing analytical
approaches to addressing the traffic engineering issue.
Analytical routing algorithms can be distributed or centralized
and also static or dynamic. Static routing algorithms cannot
keep themselves up-to-date with the continuing changes in
networks. Centralized methods suffer from the lack of
scalability and having a single point of failure. Other
distributed and dynamic routing and flow assignment
algorithms have stability and convergence issues.

A common characteristic of these methods is their
dependence on one or more heuristic parameters that are found
based on experiments. In Gallager’s algorithm [3] in order to
avoid loops the algorithm uses a parameter η that should be

globally chosen and every router must use it to ensure
appropriate behavior but this parameter depends on input
traffic pattern. It is impossible to find one working value for
all input traffics.

In Mitra’s approach [6] also a heuristic parameter is used
which is critical for the robustness of the algorithm. This
factor is called “bandwidth protection” R. In [5] again a
heuristic is used which is in the form of a function.

5. Our View

In this section we present our study of the ant colony
algorithm based on simulation and discuss the results. We
followed [1] for implementing ant colony algorithm, but we
also examined modifications to show how the ant approach
can be exploited to achieve load balancing.

5.1. Methodology

Our simulations of the ant algorithm are applied to a fish-
like network configuration as illustrated in figure 1. The
network consists of four routers and four hosts at the edges.
Ants are generated at routers regularly and addressed to the
destination hosts randomly. We use a uniform distribution to
assign the destinations to the ants which are called forward
ants at this stage.
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Figure 1

The forward ants are routed to output links at each router
until they find their way to their assigned destination hosts. A
trace of the route traversed by the ant is also stored in the ant.
At the host the ants are transformed to backward ants and sent
back to the source through the same path that they took to
arrive to the destination. At each router across the path the
ants will then update the routing table that is used to route data
packets. In the original ant colony algorithm the same table is
used to route forward ants as well.

Data packets are generated by the hosts and addressed to
certain destination hosts to create data traffic flows. At each
router data packets will be routed to output links based on the
information listed in the routing table. In an ant colony
algorithm the routing table contains a probability number for
every destination host though every existing output link.
Packets are directed to an output link in proportion to the link
probability.

The forward ants measure the travel time from each interim
router to the final destination. The travel time which is a
reflection of the route conditions is used to update the
probability table when the backward ants come back to the
router.

Except for the routing table, each node also keeps a table
with records of the mean and variance of the trip time to
every destination (delay). At each node, backward ants update
the trip time statistics to the destination in addition to the
output link probability. We derived these equations for
updating the probabilities [1]:
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This equation gives an interim probability value for
destination i from this router. In this equation j refers to all
output links and k is the link that backward ant came from.

The probability values are filtered according to the
following equation before being set into the routing table. This
is to reduce the variations in the table because of temporary
increases in the travel times.
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In these equations α and β are two parameters that could

be tuned, σ,, md are the instant delay or trip time, mean of

delay and standard deviation of the delay.

5.2. Simulations

We examined three different approaches. In the first approach
we used the original ant colony algorithm. In this approach
forward ants are routed at the routers using the probability
values in the routing tables similar to data packets.

In the second approach we used round-robin to forward the
forward ants to the existing output links. The probability values
are used to route only data packets.

In the third approach we modified the probability calculation
algorithm while using the same round-robin approach for
forward ants.

5.3. Analysis and Discussion

First we consider the results from the first set of
experiments based on the first approach. In the majority of
scenarios using various settings of the parameters, the ant
algorithm reveals a strong tendency towards finding and using
a major route to the destination (which is most likely the
fastest one). Other routes exist but with much less share of the
carried traffic.

As shown in figure 2, even though links 3 and 4 of router 0
are exactly alike, the probability value for link 3 rapidly rises
and as a result the traffic from source 1 to destination 2
eventually flows entirely through link 3.

This result seems to be in agreement with the actual
behavior of ants in the real world which is basically directed in
finding the best path to the food source while exploring other
paths. This behavior leads to finding a robust path to the
destination with enough dynamism to adapt to changes and to
find new and better paths.

Figure 2

In a network of multiple sources and destinations with
traffic flows from various sources to various destinations, the
desired outcome involves distribution of data traffic across
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multiple routes from source to destination in a balanced way
such that overall delay and utilization of the links is optimized
over the network.

The ant colony implementation of ant behavior does not
seem to be the best solution to this situation according to our
observations of the results from the first approach.

In analytical solutions for the multi-commodity flow
assignment problem, information about the links is used at the
edge routers in a distributed way to calculate the best
distribution of traffic into possible routes to achieve load
balancing aimed at reducing delay and increasing link
utilization.

Using probability tables for forwarding ants in the ant
colony algorithm creates a feedback loop in favor of links that
have better trip time results. This is the reason behind the
convergence behavior of this method.

Figure 3

In the second approach we eliminate this mechanism and
replace it with a round-robin selection of output links for
forward ants. As expected the result as shown in figure 3,
shows a better load balancing between existing possible links
to the destination represented in the form of closer probability
values.

Inspired by the analytical solutions, in a third approach we
used local processing of the link information gathered by the
ants to achieve a better load balancing, which also results in a
better delay performance and link utilization. Our results, as
shown in figure 4, show that a better and more robust load
balancing (closer and more stable probability values) is
achieved between link 3 and 4, compared to the previous
cases.

Our experiments revealed that somewhere a friendly
relationship between analytical and bio-inspired approaches
has to be made. We believe the real ant in nature has a robust
behavior but this process is slow and also is not necessarily
promoting load balancing. While the evaporation property of
ant pheromone brings some relevance to the concept of load-
sharing, in fact the evaporation in ants is to provide the
dynamism necessary for adaptive behavior. In other words
ants have completely robust, adaptive and distributed behavior

but this behavior is not aimed at load-balancing as an
objective.

On the other hand there are some analytical solutions to
balance the load in the whole network and to do resource
allocation and resource assignment as a direct result.

Our findings show that there is opportunity for thinking
differently. We can be inspired by the wonders of the
nature but we need not imitate them. We are free to modify
the bio-inspired approaches (ant in our discussion) to obtain
new desired behavior.

Figure 4

6. Conclusions and Future Works

In conclusion, our suggestion regarding the use of ant
algorithms is that improved behavior is possible by
augmenting it with the analytical computation.

Our current work involves applying analytical solutions to
ant like algorithms for routing and flow assignment to extract
a robust and autonomic routing algorithm capable of tolerating
predictable changes in traffic patterns and learn the
unpredicted ones.
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