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Abstract

Robustness to the environmental variations is an important feature of any
reliable communication network. This paper reports on a network theory
approach to the design of such networks where the environmental changes
are traffic fluctuations, topology modifications, and changes in the source
of external traffic. Motivated by the definition of betweenness centrality
in network science, we define the notion of traffic-aware betweenness
(TAB) for data networks, where usually an explicit (or implicit) traffic
matrix governs the distribution of external traffic into the network. We use
the average normalized traffic-aware betweenness, which is referred to as
traffic-aware network criticality (TANC), as our main metric to quantify
the robustness of a network. We show that TANC is directly related to
some important network performance metrics, such as average network
utilization and average network cost. We prove that TANC is a linear
function of end-to-end effective resistances of the graph. As a result, TANC
is a convex function of link weights and can be minimized using convex
optimization techniques. We use semi-definite programming method to
study the properties of the optimization problem and derive useful results
to be employed for network planning purposes.

Keywords:

1. Introduction

According to Darwin’s theory of natural selection, each slight variation,
if useful, is preserved. As a result of natural selection, every process
receives a survival value representing its overall sensitivity or robustness
to the external variations. Our goal in this paper is to design an appropriate
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survival value for communication networks. The survival value quantifies
the adaptability of a network to unexpected changes in environmental
parameters.

In Darwin’s theory there is no ”final target” for the evolutionary changes
in the nature, however, viewing survival as the goal can lead to an implicit
optimization problem, where the first goal of the optimization is to keep
the system alive under unforeseen circumstances.

Since a reliable communication takes place only in a connected network,
any metric for survival value should capture the effect of network connec-
tivity. Moreover, a robust network algorithm should force the network
to evolve in a way that maximizes the probability of future connectivity.
This implies that the optimization must address the real-time efficiency
and performance of the whole network as a short-term goal, while striving
to maintain and improve the survival value of the network as a long-term
goal. Response to nonuniform traffic shifts including the effect of modifi-
cations in the sources and sinks of traffic is another key factor in defining
an appropriate survival value for communication networks. The present
paper tries to find such survival value and investigate its main attributes.

In summary, one of the key properties of reliable communication net-
works is the robustness to the unexpected environmental changes. To
be more specific, in this paper we consider three types of environmental
changes:

1. Modifications in network topology such as node failure or variations
in link capacities.

2. Changes in active sources or sinks for external traffic, which we refer
to it as community of interest.

3. Traffic demand shifts (nonunifom).

Throughout, a network (or a network algorithm) is robust if its per-
formance is insensitive to the above mentioned environmental changes
to the extent possible. This infers that a robust network is more reliable,
since unpredicted environmental changes cannot dramatically impact its
performance. In this paper, we intend to propose methods to design such
robust networks using the concept of betweenness centrality and resis-
tance distance from graph theory . We try to find a metric for robustness
(as the survival value for data networks) to capture and quantify the effect
of topology, community of interest, and nonuniform traffic. The main con-
tribution of this work (which makes it different from previous ones) is that
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we take into account the effect of a given external set of traffic demands in
the definition of the survival value. We use this survival value to design
a network in such a way that the average sensitivity to the environmental
changes is minimized.

The paper is organized as follows. Section 2 provides a summary of
related works in literature. Section 3 reviews previous work on random-
walk betweenness and network criticality, and introduces necessary nota-
tions. The proposed metrics traffic-aware betweenness and traffic-aware
network criticality are introduced and investigated in section 4. Section
5 investigates the special case of uniform traffic scenarios and proposes
some important interpretations of the network criticality. In section 6 the
relationship between network utilization and traffic-aware network criti-
cality is discovered. The optimization problem to minimize traffic-aware
network criticality is investigated in section 7. Section 8 discusses the
application of the proposed optimization problem in network planning
for different traffic scenarios. A comprehensive evaluation of the network
planning method is provided in section 9. In section 10 we discuss the
main limitation of the proposed method. Conclusions are presented in
section 11.

2. Previous Work

There is a wealth of literature focusing on different aspects of network
robustness. [Dekker et al. (2004)] considers node similarity and optimal
connectivity as main robustness metrics and arrives at the result that a
node-similar and optimally connected network provides maximum resis-
tance to node failure. The paper discusses some methods to design node-
similar and optimally connected networks. The main focus of [Dekker et
al. (2004)] in on topological aspects of robustness.

[Zhang-Shen et al. (2005)] presents a novel approach to design back-
bone networks based on the concept of Valiant load-balancing, which is
insensitive to the traffic matrix (i.e. it works equally well for all valid traf-
fic matrices), and provides guaranteed performance under a predefined
number of interface and router failures. The main idea is to forward the
traffic destined for a sink d to intermediate hops with equal probability,
and then route the flow to the destination d. Delay propagation is one of
the disadvantages of the load-balancing method proposed in [Zhang-Shen
et al. (2005)].
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In graph theory literature, Freeman [Freeman (1978)] first introduced
shortest-path betweenness to measure the centrality (importance) of a node
(or link) in a graph. Shortest-path betweenness of node k for trajectories
from source node i to destination node j is defined as the proportion of
instances of the shortest paths from node i to j which include node k.
The overall shortest-path betweenness centrality of node k is the sum of
the betweennesses over all source-destination pairs. Link betweenness
is defined likewise. Due to the fundamental limitation of shortest-path
betweenness (shortest path considers only a small subset of available paths
between every pair of nodes), a series of other related metrics defined in
the field of network science, including flow-betweenness [Freeman et al.
(1991); Borgatti (2005)] and random-walk betweenness [Newman (2003)].

Using the concept of betweenness, [Tizghadam et al. (2007)] introduced
a framework for robust routing in core networks based on the idea of ”link
criticality” and ”path criticality”. In [Tizghadam et al. (2008)] we presented
an analysis of betweenness centrality, and provided a framework to study
network robustness. The concept of Network Criticality is investigated
in [Tizghadam et al. (2009)], where a mathematical framework for the
definition of criticality is proposed within the context of Markov chain
theory. [Tizghadam et al. (2010)] further elaborates on the concept of
network criticality and focuses on designing autonomic control loops and
algorithms for core networks. In [Tizghadam et al. 2 (2009)] we have
shown that ”network criticality” is an appropriate metric to be used as
survival value in uniform traffic scenarios, and in [Tizghadam et al. 3
(2009)] we presented a semi-definite approach to optimize this survival
value.

In this paper we extend the idea of survival value to the nonuniform
traffic case. Previous definitions of betweenness (shortest-path between-
ness, flow-betweenness, random-walk betweenness) are purely topologi-
cal and do not take into account the effect of nonuniform traffic between
different source-destination pairs, while in Internet and other communica-
tion networks the external traffic is a major factor in analyzing the behavior
of networks. Here we introduce a new notion of betweenness, Traffic-
Aware Betweenness (TAB), to account for the mutual effect of topology
and traffic in a network. This new definition can be applied to all dif-
ferent versions of betweenness, but our derivations are for traffic-aware
random-walk betweenness (TARWB). We assume that the traffic between
every node pair is given by a traffic matrix Γ = [γs(d)]. We will extend the
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concept of network criticality from [Tizghadam et al. (2010)] to the traffic-
aware network criticality (TANC). We will show that some critical features
and performance metrics of real networks are directly related to the TANC.
We consider TANC as the survival value and study its robustness proper-
ties. TANC can be thought as a generalization of network criticality, our
previous candidate for survival value. As a matter of fact, we will show
that in uniform traffic scenarios, TANC is reduced to network criticality.

3. Review of Random-Walk Betweenness and Network Criticality

This section briefly summarizes previous findings on random-walk
betweenness and network criticality. In graph theory, the concept of cen-
trality (and in particular betweenness centrality) is used to locate critical
nodes and links of a graph which have significant impact on the perfor-
mance of the network. Our interest in this paper is on probabilistic version
of betweenness centrality which is the basis for defining network critical-
ity. While betweenness centrality depends only on the topology of the
graph, network criticality tries to involve other environmental parameters
affecting the performance of a network. This section briefly reviews the
foundations of betweenness and network criticality.

In this paper we model a network by graph G(N,E,W), where N, E are
the set of nodes and links respectively, and W is the matrix of link weights.

3.1. Random-Walk Betweenness
Our work is motivated by Newman’s probabilistic view on between-

ness centrality [Newman (2003)]. We define a finite-state irreducible
Markov Chain on the network, where the states of the Markov chain are
the graph nodes and the edges correspond to permissible transitions, and
labels associated with the edges denote the transition probabilities pij of
moving from state i at time t to neighbor j at time t+ 1 (discrete time). The
Markov chain can be viewed as a random walk on the graph with next-step
transition probabilities pij.

We intend to quantify the betweenness of a node in the random-walk
corresponding to the above Markov chain. Consider the set of trajectories
starting at node s and terminating when the walk first arrives at node d, that
is, destination node d is an absorbing node. The random-walk betweenness
bsk(d) of node k for the s − d trajectories is defined as the average number
of times node k is visited in trajectories from s to d. Note that bdk(d) = 0 for
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k ! d as such walks are terminated at step zero. Also note that bsd(d) = 1
(s ! d) since the walk terminates exactly with the occurrence of the first
arrival to node d.

Let Bd = [bsk(d)] denote the n-by-n matrix of betweenness metrics when
d is an absorbing node (destination). Clearly the dth row of the matrix is
zero. Betweenness matrix Bd can be written as [Tizghadam et al. (2009)]:

Bd = (I − Pd)−1Θd (1)

Θd = [θsk(d)] =
{

1 i f s = k ! d
0 otherwise

Matrix Pd equals P except that the entries of its dth row and dth column are set
to zero. In this paper we are interested in a special type of random-walks
referred to as weight-based or generic random-walk, where the probability
of transitioning along a link is proportional to the weight of the link. More
specifically:

psk(d) =
wsk∑

q∈A(s) wsq
(1 − δsd) (2)

where A(s) is the set of adjacent nodes of s and wsk is the weight of link
(s, k) (if there is no link between node s and k, then wsk = 0), and δsd is
the Kronecker delta function (i.e. if s = d, then δsd = 1, otherwise δsd = 0).
The delta function in equation (2) is due to the fact that the destination
node d is an absorbing node, and any random-walk coming to this state,
will be absorbed or equivalently pdk(d) = 0. Clearly, equation (2) defines a
Markovian random-walk.

3.2. Network Criticality or Total Resistance Distance
This section reviews network criticality [Tizghadam et al. (2009)] which

is a metric to quantify the robustness of a network in uniform traffic cases,
where the average traffic demands between all active source-destination
pairs are the same (entries of the traffic matrix are equal). We first define
node/link criticality.

Definition 3.1. Node criticality is defined as the random-walk betweenness of a
node normalized by the node weight (weight of a node is defined as the sum of the
weights of its incident links). Link criticality is defined similarly.

Node (link) criticality can be written in terms of generalized inverse
of the graph Laplacian matrix. Let ηk denote the criticality of node k and
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ηi j denote the criticality of link l = (i, j), then we have [Tizghadam et al.
(2009)]:

bsk(d)
Wk

= l+dd − l+sd − l+dk + l+sk (3)

τsd = l+ss + l+dd − 2l+sd or τsd = ut
sdL+usd (4)

τsd =
bsk(d) + bdk(s)

Wk
(5)

ηk =
bk

Wk
=

1
2
τ , τ =

∑

s

∑

d

τsd (6)

ηi j =
bij

wij
= τ (7)

where L+ is the Moore-Penrose inverse of graph Laplacian matrix L [Rao
et al. (1971)], n is the number of nodes, and uij = [0 ... 1 ... − 1 ... 0]t (1
and −1 are in ith and jth positions respectively). We define the average (or
normalized) network criticality as τ̂ = 1

n(n−1)τ.

Observation 3.2. According to equations (4) to (7), node criticality (ηk) and link
criticality (ηi j) are independent of the node/link position and only depend on τ (or
τ̄) which is a global quantity of the network.

Definition 3.3. We refer to τsd as point-to-point network criticality and τ as
network criticality.

Point-to-point network criticality has a nice interpretation in electrical cir-
cuits. Suppose we build a resistive electrical network, where conductance
of a link in the resistive electrical circuit equals the weight of the corre-
sponding link in original network, then τsd is numerically the same as
resistance distance or effective resistance observed between two end points
s and d [Klein et al. (1993)], and τ is the total resistance distance of the
network with many useful interpretations [Ghosh et al. (2008)].

Based on equations (6) and (7), the node (link) betweenness consists
of a local parameter (weight) and a global metric (network criticality). τ
can capture the effect of topology through the betweenness values, where a
high value for the betweenness of a node/link means that there is a high risk
(criticality) in using the node/link. Moreover, if we consider the capacity
of a link as its weight, then the higher the weight of a node/link, the lower
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the risk of using the node/link. Hence, network criticality can quantify the
risk of using a node/link in a network which is an indication the degree of
robustness.

4. Traffic-Aware Betweenness

In this paper we extend the definition of betweenness, and network
criticality by considering the effect of an explicit nonuniform traffic matrix
in the system. In our previous works ([Tizghadam et al. (2009); Tizghadam
et al. 2 (2009)]) we implicitly assumed that the average input traffic
to all the nodes of the network are uniform. In this work we consider
a general traffic matrix [γs(d)] and will derive a generalized expression
for network criticality to account for the effect of traffic matrix. We start
by developing an expression for traffic-aware betweenness in the present
section. Generally speaking, the traffic-aware betweenness centrality is
defined as follows.

Definition 4.1. Let Γ = [γs(d)] andγ denote the traffic matrix and the total exter-
nal traffic (i.e. γ =

∑
s,d γs(d)) respectively. We define traffic-aware betweenness

(TAB) of node k as:

b′sk(d) = bsk(d) +
γs(d)
γ

bsk(d)

b′sk(d) = βsdbsk(d), βsd = 1 +
γs(d)
γ

(8)

b′k =
∑

s,d

βsdbsk(d) (9)

The main motivation behind equation (8) is the fact that when nonuniform
external traffic exists, we would like to see its explicit effect, however,
we want to recover the topological definition of betweenness when there
is no traffic, or at the presense of uniform traffic (i.e. γs(d) is zero or
fixed for all possible node pairs s ! d). Definition 4.1 reduces to the
topological definition of betweenness when there is no traffic, or when we
have uniform traffic.

Definition 4.1 is generally applicable for different types of betweenness
centralities. Considering bsk(d) as the shortest-path betweenness, definition
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4.1 gives traffic-aware shortest-path betweenness, and so on. However,
in this paper our focus is on random-walk betweenness centrality. In
the following we provide an expression for traffic-aware random-walk
betweenness.

4.1. Traffic-Aware Random-Walk Betweenness (TARWB)
In this section we develop traffic-aware random-walk betweenness,

where bsk(d) denotes the random-walk betweenness (weight-based random-
walk). We try to find an expression for TARWB based on point-to-point
network criticalities or resistance distances (equation (4)). To this end we
notice that:

b′k =
∑

s,d

βsdbsk(d)

=
1
2

∑

s,d

(βsdbsk(d) + βdsbdk(s)) (10)

But, from equation (5) we know that:

bsk(d) + bdk(s) =Wkτsd (11)

Substituting equation (11) in (10) will result in:

b′k =
Wk

2

∑

s,d

βdsτsd +
1
2

∑

s,d

(βsd − βds)bsk(d) (12)

Now we write bsk(d) in terms of point-to-point network criticalities. Con-
sidering equation (3) and (4), it is easy to verify that:

τsd + τdk − τsk = 2(l+dd − l+sd − l+dk + l+sk) = 2
bsk(d)
Wk

Therefore

bsk(d) =
Wk

2
(τsd + τdk − τsk) (13)

Using equation (13) in (12), we will have

b′k =
Wk

4

∑

s,d

(βsd + βds)τsd +
Wk

4

∑

s,d

(βsd − βds)(τdk − τsk) (14)
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Equation (14) can be written in the following form:

b′k
Wk

=
1
2

(
1
2

∑

s,d

(βsd + βds)τsd +
1
2

∑

s,d

(βsd − βds)(τdk − τsk)) (15)

In analogy with the notion of bk
Wk
= τ2 and using equation (15) we can define

Traffic-Aware Node Criticality (TANOC) τ′k:

τ′k =
1
2

∑

s,d

(βsd + βds)τsd +
1
2

∑

s,d

(βsd − βds)(τdk − τsk) (16)

We can also define traffic-aware criticality between two nodes as follows:

τ′sd(k) =
1
2

(βsd + βds)τsd +
1
2

(βsd − βds)(τdk − τsk) (17)

Observation 4.2. Equation (16) shows that TANOC depends on the node posi-
tion.

Observation 4.3. By averaging over k in equations (16) and (17) we obtain a
measure of average traffic-aware criticality. Let τ′sd =

1
n
∑

k τ
′
sd(k), then

τ′sd =
1
2

(βsd + βds)τsd +
1

2n
(βsd − βds)(τd∗ − τs∗) (18)

where τi∗ =
∑

k τik. In the same way, Let τ′ = 1
n
∑

k τ
′
k, then:

τ′ =
1
2

∑

s,d

(βsd + βds)τsd +
1

2n

∑

s,d

(βsd − βds)(τd∗ − τs∗) (19)

We refer to τ′ as Traffic-Aware Network Criticality (TANC).

Considering the fact that βsd = 1 + γs(d)
γ (see equation(8)), equation (19)

can be rearranged as follows:

τ′ =
∑

s,d

αsdτsd where αsd = 1 +
γsd + γds

2γ
+
γ∗s − γs∗

nγ
(20)

It can be easily shown that 1 − 1
n ≤ αsd ≤ 1 + 1

n which in turn means that
αsd ≥ 0 ∀ n ≥ 1.
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Observation 4.4. According to equation (20), TANC can be written as a linear
function of τsd’s (note that αsd ≥ 0). Since τsd is a convex function of link weights
([Ghosh et al. (2008)]), TANC is also a convex function of link weights.

Observation 4.5. There are two special cases of interest in equation (14).

1. γs(d) = 0, or γs(d) = γ
n(n−1) ∀ s − d pairs (s ! d)

When there is no traffic, equation (19) is reduced to the original definition
of network criticality given by equation (6). Moreover, when the external
traffic is uniform, TANC is proportional to the original network criticality.

2. γs(d) = γd(s) ∀ s − d pairs
In the case of symmetric traffic demand matrix, equation 19 can be simplified
as follows.

τ′k =
∑

s,d

βsdτsd = τ′ (21)

In this case, according to equation (21), TANOC is independent of the node
position.

5. Case of Uniform Traffic: Importance of Network Criticality

Our main goal in this part of the paper is to show why the concept of
network criticality is important in communication networks. In fact, we try
to shed more light on the concept of network criticality as the survival value
for networks by providing some of its interpretations. We will show that
network criticality can quantify the average path cost in a journey from one
arbitrary source to an arbitrary destination (averaged over all node pairs).
We will also show that network criticality quantifies connectivity proper-
ties of the network, and finally we show that network criticality can delay
the onset of congestion in data communication networks. In this section,
we consider a special case of the traffic-aware network criticality, where all
the entries of the traffic matrix are the same (uniform traffic). In the case of
uniform traffic the traffic-aware network criticality is proportional to the
network criticality or total effective resistance of a network (Observation
4.5).
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5.1. Network Criticality and Average Path Cost
We consider certain cost to traverse a link (and to move along a path)

and study the relationship between network criticality τ and average cost
incurred by a message walking from a source s to a destination d averaged
over all possible s − d pairs. Suppose for each link l = (i, j) there is a
cost zl = z(i, j) (which is different from the weight of the link). Suppose a
message (random-walk) starts from source node s, at each step it passes
one link, incurs a cost, and continues until it is absorbed by destination d.
We intend to calculate the average cost of such journey over all s− d pairs.
The following theorem summarizes the main result:

Theorem 5.1. The average network cost (denoted by ϕ̄) is the product of nor-
malized network criticality and total weighted graph cost (

∑
k(
∑

j wkjz(k, j))). If∑
k(
∑

j wkjz(k, j)) is fixed at constant value C (maximum budget) then the average
network cost is proportional to the criticality of the network. More specifically:

ϕ̄ =
1
2
τ̂
∑

k

(
∑

j

wkjz(k, j) (22)

Proof See Appendix A.
!

This interpretation of network criticality is important because in many
practical situations we aim to minimize the average cost of a network.
For example most of the traffic engineering algorithms try to minimize
a kind of cost in the system. Another example is network planning (or
re-planning). In network design we have an optimization criteria where a
cost metric is minimized.

One special case of interest is when different links of the network have
equal costs (normalized by one). In this case the average travel cost equals
the average hop length of a path (along which a message or random-walk
travels). Average hop length is an important quantity in the mathemati-
cal study of communication networks. The following lemma reveals the
relevance of network criticality and average hop length.

Lemma 5.2. Let T denote the average length (number of hops) of a path over all
source-destination pairs, and W̄ denote the average weight of all nodes. Then:

T =
n
2

W̄τ̂
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Proof It is enough to set z(i, j) = 1 for all the network links in equation
(22).

!

Lemma 5.2 shows that the average hop length of a random-walk is
proportional to the product of normalized network criticality and average
node weights. If we fix the total weight of a network at a budget C, then
the average hop length of a walk would be proportional to the normal-
ized network criticality, therefore, the normalized network criticality can
quantify the average path length for the network flows.

5.2. Network Criticality and Average Betweenness Sensitivity
Here we explain a key interpretation of network criticality. We will

show that network criticality equals the average link betweenness sensi-
tivity of the network, where sensitivity is defined as the partial derivative
of link betweenness with respect to its weight. According to this fact, min-
imization of network criticality results in least sensitive network conigu-
ration, which is one of our main goals in using network criticality as the
survival value.

To see this, we note that τ = bij

wij
, therefore for wij > 0 we have:

∂τ
∂wij

=
1

wij

∂bij

∂wij
− τ

wij
or wij

∂τ
∂wij

=
∂bij

∂wij
− τ (23)

By adding the results of equation (23) for different links of the network one
can see:

∑

(i, j)∈E

wij
∂τ
∂wij

=
∑

(i, j)∈E

∂bij

∂wij
−mτ (24)

Combining equation (24) and lemma Appendix D.1 results in:

τ =
1

m − 1

∑

(i, j)∈E

∂bij

∂wij
(25)

where m is the number of links of the network.

Observation 5.3. According to equation (25) network criticality τ can be inter-
preted as the average of link betweenness derivatives or sensitivities with respect
to link weight.
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Equation (25) suggests an effective approach to design routing and
flow assignment algorithms. If we can estimate the variation of each link
betweenness with respect to its weight (i.e. ∂bij

∂wij
), then we can use this

variation as a cost to develop routing strategies and to find min-cost paths.

5.3. Network Criticality and Connectivity
Now we investigate the effect of connectivity in the behavior of network

criticality, and the effect of controlling network criticality on the connectiv-
ity properties of a network. To develop the relationship we need another
metric to quantify the connectivity of a network. Fiedler [Fiedler (1973)]
defined algebraic connectivity as the smallest non-zero eigenvalue (λ2) of
the Laplacian matrix of a connected graph. Algebraic connectivity is a
lower bound for node connectivity and link connectivity. Therefore, the
further λ2 is from zero, the higher the node and link connectivity of a graph.
In graph literature, the algebraic connectivity is widely used as the main
metric to quantify the connectivity of a network.

We now establish lower and upper bounds for network criticality based
on algebraic connectivity.

Theorem 5.4. Normalized network criticality satisfies the following bounds :
2

(n−1)λ2
≤ τ̂ ≤ 2

λ2
.

Proof See Appendix B
!

Theorem 5.4 shows the relationship between network criticality and
connectivity. Since normalized network criticality is upper bounded by
the reciprocal of algebraic connectivity, improvement of connectivity (in-
creasing λ2) improves the robustness as well (decreasing the upper bound
of τ̂), but it is important to note that increasing connectivity at the same
time decreases the lower bound of network criticality, which in turn causes
more variance in network criticality. In other words, we can’t uniformly
improve the robustness of a network just by increasing the connectivity.

5.4. Network Criticality in Communication Networks
In this section we show the importance of network criticality in the

study of communication networks. Let λ be the average input rate of the
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network, and let the weight of each link be the capacity of the link (i, j) = l
(i.e. wij = cij = c(l)). Further, let xk be the average load on node k and ck be
the capacity of node k. By applying Little’s formula and using lemma 5.2
we have:

xk = λπkT = λ
Wk∑
i Wi

n
2

W̄τ̂ =
λ
2

Wkτ̂ (26)

But Wk is the total capacity of node k, therefore

xk ≤Wk ⇒
λ
2

Wkτ̂ ≤ Wk ⇒ λ ≤ 2
τ̂

(27)

We can summarize these results in theorem 5.5.

Theorem 5.5. To maximize the carried load of a network, one needs to minimize
the (normalized) network criticality, where the link weight is defined as the link
capacity:

max
W
λ =

2n(n − 1)
minW τ

=
2

minW τ̂
!

All of these interpretations have a common message: network criticality
is an important performance metric in a communication network, and it
should be minimized to have the most robust network. Next section will
provide an important interpretation of the concept of criticality in general
nonuniform traffic situations.

6. Importance of Traffic-Aware Network Criticality in Data Networks

In this section we will show that the traffic-aware random-walk be-
tweenness and network criticality as defined in section 3, are directly re-
lated to the load in data networks. We will show that the average network
utilization can be expressed in terms of TANC and network criticality,
which again manifests the importance of TANC.
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6.1. Packet Networks and Random-Walk Betweenness
First, we show that random-walk betweenness is closely related to

packet network models. Consider a packet switching network in which
packets arrive to packet switches from outside the network according to
independent arrival processes. Each external packet arrival has a spe-
cific destination and the packet is forwarded along the network until it
reaches said destination. We suppose that packet switches are intercon-
nected by transmission lines that can be modeled as single-server queues.
Furthermore, suppose that packet switches use a form of routing where
the proportion of packets at queue i forwarded to the next-hop queue j is
pij.

We calculate the total arrival/departure rate of the traffic to/from each
node. The total input rate of node k (internal plus external) is denoted by
xk. After receiving service at the ith node, the proportion of customers that
proceed to node k is pik. To find xk we need to solve the following set of
linear equations (see [Kleinrock (1975)]):

xk = γk +
n∑

i=1

xipik (28)

where γk is the external arrival rate to node k. Note that equation (28)
is essentially similar to KCL (Kirchhoff’s Current Law). If we denote−→x = [x1, x2, ..., xn] and −→γ = [γ1,γ2, ...,γn], then equation (28) becomes:

−→x = −→γ + −→x P (29)

Suppose we focus on traffic destined to node d, then node d is an absorbing
node, and we suppose that the arrival rate at node d is zero (since said
arrivals do not affect other nodes) and equation (29) can be written as:

−→xd = (−→γd +
−→xdPd)Θd (30)

where −→xd and −→γd are the same as −→x and −→γ except for the dth element which
is 0. Matrix Pd is also the same as P except that its dth row and dth column
are zero vectors. Equation (30) can be solved for −→xd.

−→xd =
−→γd ×Θd × (I − Pd ×Θd)−1 (31)
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To find the relationship of betweenness Bd and the input arrival rate xk we
notice that pdk(d) = 0 which means that Pd = Θd × Pd. Thus:

Pd ×Θd = Θd × Pd ×Θd

Θd − Pd ×Θd = Θd −Θd × Pd ×Θd

Θd × (I − Pd ×Θd)−1 = (I − Pd)−1 ×Θd

Using equation (1) we will have:

Θd × (I − Pd ×Θd)−1 = Bd (32)

We substitute equation (32) in (31) to find the relationship between the
node traffic and node betweenness.

−→xd =
−→γd × Bd (33)

If we denote the kth element of −→xd and −→γd by xk(d) and γk(d) respectively, we
have:

xk(d) =
∑

s

γs(d)bsk(d) (34)

Now we can find the total load at node k by adding the effect of all desti-
nations in equation (34).

xk =
∑

d

xk(d) =
∑

s,d

γs(d)bsk(d) (35)

Comparing equation (35) and equation (9) provide us with an important
fact. Suppose the packets are routed according to the random-walk transi-
tion probability matrix P. Then, the total load on each link of the network
is proportional to the traffic-aware random-walk betweenness, more pre-
cisely: xk = γb′k.

6.2. Network Utilization and Traffic-Aware Network Criticality
We now show that the average network utilization can be expressed

in terms of traffic-aware network criticality. Node utilization is defined as
the load of a node normalized by its capacity (or in a more general sense
by its weight), the utilization of node k is equal to Vk =

xk
Wk

. We denote the
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average network utility by V̄ =
∑

k Vk
n . Considering equations (35), (9), and

using
b′k
Wk
= 1

2τ
′
k, one can see that Vk =

γ
2 (τ′k − τ) and V = γ2 (τ′ − τ).

The important consequence of the above facts is that some key per-
formance measures in communication networks are directly related to the
concept of traffic-aware betweenness and traffic-aware network critical-
ity. For example, we saw that the average network utilization is equal to
V = γ2 (τ′ −τ), therefore, minimizing average network utilization is equal to
minimizing the difference of traffic-aware network criticality and original
network criticality. Hence, the problem of minimizing average network
utilization can be formulated as minimization of a convex+convace func-
tion which can be converted to a convex maximization problem.

7. Minimizing Traffic-Aware Network Criticality

Considering all the interpretations for network criticality and TANC
which are discussed in previous sections, we arrive at the result that the
minimization of TANC (or network criticality as special case) is desired. In
this section we formulate an optimization problem for TANC. We consider
minimization of a general linear function of effective resistances (or end-to-
end network criticalities) as τα =

∑
s,d αsdτsd, αsd ≥ 0∀s, d ∈ N. Traffic-aware

network criticality is clearly one example of τα with appropriate selection
of coefficients (according to equation (20)).

First we show that the minimization of τα is possible. To this end we
need the following lemma.

Lemma 7.1. The partial derivative of τα with respect to link weight wij is always
non-positive.

Proof See Appendix C.
!

Since τα is a convex function and its derivative with respect to the weights
is always non-positive (according to lemma 7.1), the minimization of τα
subject to some convex constraint set is possible.

In order to construct the optimization problem, we add a maximum
budget constraint to the problem. We assume that there is a cost zij to
deploy each unit of weight on link (i, j). We also assume that there is
a maximum budget of C to establish all network links. This constraint
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means that
∑

(i, j)∈E wijzij = C. Now we can write our optimization problem
as follows:

Minimize τα
Subject to

∑
(i, j)∈E zijwij = C ,C is f ixed (36)

wij ≥ 0 ∀(i, j) ∈ E

Theorem 7.2. The condition of optimality for optimization problem (36) can be
written as:

min
(i, j)∈E

C
zij

∂τα
∂wij

+ τα ≥ 0

More specifically:

w∗i j(C
∂τα
∂wij

+ zijτα) = 0 ∀(i, j) ∈ E (37)

where w∗i j denotes the optimal weight for link (i, j).

Proof See Appendix D.
!

7.1. Semi-definite Program (SDP) to Minimize τα
Optimization problem (36) can be converted to the following semi-

definite programming problem (SDP):

Minimize
∑

s,d∈N αsdtsd (38)
Subject to Tr(ZtW) = C ,C is f ixed

diag(Vec(W)) + 0(
tsd ut

sd
usd L + J

n

)
+ 0 ∀s, d ∈ N

where + means positive semi-definite. Furthermore, Vec(W) is a vector
obtained by concatenating all the rows of weight matrix W and diag(x)
means a diagonal matrix with main diagonal equal to vector x.

Before closing this section, we discuss some special cases of interest,
where we can simplify our semi-definite program (38).
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7.1.1. Uniform Traffic case
In case of uniform traffic, τα is proportional to the network criticality τ̂.

Suppose we let Γ = (L + J
n )−1, where J is a n-by-n matrix with all elements

equal to 1, then Γ can be written as a semi-definite inequality as follows.

We consider matrixΘ =
(
Γ I
I L + J

n

)
. The necessary and sufficient condition

for positive semi-definiteness ofΘ is that its Schur complement [Bernstein
(2005)] be positive semi-definite. In general, the Schur complement of a

matrix of the form
(
A B
C D

)
is: A − BD−1C. Hence the Schur complement of

Θ is Γ − (L + J
n )−1, and

Θ =

(
Γ I
I L + J

n

)
≥ 0⇔ Γ ≥ (L +

J
n

)−1 (39)

On the other hand, in [Tizghadam et al. (2010)] it is shown that average
network criticality is proportional to the some of the reciprocals of the non-
zero eigenvalues of the graph Laplacian matrix (or the trace of Laplacian).

τ̂ =
2

n − 2
Tr(L+) =

2
n − 1

n∑

i=2

1
λi

(40)

Since the optimization problem (36) should minimize Tr(Γ) (according
to equation (40)), the equality in equation (39) is chosen: Γ = (L + J

n )−1.
Now optimization problem (36) can be converted to a semi-definite pro-
gramming:

Minimize 2
n−1Tr(Γ) − 2

n−1 (41)
Subject to Tr(ZtW) = C ,C is f ixed

diag(Vec(W)) + 0(
Γ I
I L + J

n

)
+ 0

7.1.2. Minimizing Maximum of Point-to-Point Network Criticality
We consider one more extension. In some scenarios we need to min-

imize the maximum of point-to-point network criticality (instead of its
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linear weighted average). The optimization problem in this case is as
follows.

Minimize maxi, j∈N τi j (42)
Subject to

∑
(i, j)∈E wijzij = C ,C is f ixed

wij ≥ 0 ∀(i, j) ∈ E

Suppose t = maxi, j∈N τi j. We have:

t = max
i, j∈N
τi j

t ≥ ut
ijL
+uij

t ≥ ut
ij(L +

J
n

)−1uij

But, according to Schur’s complement, this can be written in the following

form:
(

t ut
ij

uij L + J
n

)
+ 0. Therefore, optimization problem (42) can be written

as the following semi-definite program.

Minimize t (43)
Subject to Tr(ZtW) = C ,C is f ixed

diag(Vec(W)) + 0
(

t ut
ij

uij L + J
n

)
+ 0 ∀i, j ∈ N

Note that this optimization problem is different from problem (38).

8. Network Planning

Optimization problem (38) provides a framework for designing appro-
priate link weights to minimize TANC, or equivalently to optimize many
network performance metrics according to the interpretations provided
for TANC and network criticality. As an instance, optimization problem
(38) can be used to minimize the average cost of traveling along a network,
or a modified version of optimization problem (38) can be used to mini-
mize the average network utilization. One can then use the properties of
optimization problem (38) to derive network control algorithms (such as
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traffic engineering). In this paper we concentrate on the first goal and try
to solve optimization problem (38) for some representative networks. The
optimization problem can be solved with standard methods for solving
semi-definite programs. There are also various commercial and academic
software tools to solve semi-definite programs. We used open-source CVX
package [Grant et al. (2008); Grant et al. 2 (2008)] for our examples in this
paper.

8.1. Capacity Planning
In this section we study the capacity planning as an important special

case of network planning problem. Consider a network G(N,E,W) where
the link weights are equal to the link capacities, that is, wij = cij ∀(i, j) ∈ E
(cij denotes the capacity of link (i, j)). We assume that a routing strategy is
already in place and the demands (based on traffic matrix) are mapped to
link loads according to this routing method (for example we can assume
the traffic is distributed using shortest path routing). We investigate the
capacity assignment problem in which network topology and link traffic
load λi j ∀(i, j) ∈ E are assumed known and fixed. The goal is to find
the capacity of the links so as to minimize TANC (or network criticality)
under the constraint that the total cost of the planning is fixed. Let zij be
the symmetric cost of assigning capacity cij to link (i, j), and suppose that
we have a linear cost function. The total cost of the capacity assignment
problem is

∑
(i, j)∈E zijci j. We fix this total cost at maximum budget C. We

can write the optimization problem for capacity assignment problem as
follows:

Minimize τα
Subject to

∑
(i, j)∈E cijzij = C ,C is f ixed (44)

cij ≥ λi j

By applying the change of variable cij = c′i j+λi j to the optimization problem
(44), we will have the following convex optimization problem.

Minimize τα
Subject to

∑
(i, j)∈E c′i jzi j = C′ ,C′ is f ixed (45)

c′i j ≥ 0

where C′ = C − ∑(i, j)∈E zijλi j. This has the same form of the optimiza-
tion problem (36) (with wij → c′i j and C → C′), therefore, all the results

22



developed for optimization problem (36) are applicable for the capacity
assignment problem.

Observation 8.1. In our capacity assignment problem we assumed that a known
routing method governs the distribution of traffic along different paths of the
network. A more general problem is the joint optimal allocation of capacities and
assignment of flows (routing). In other words, a more sophisticated problem is the
simultaneous routing and resource allocation in order to minimize TANC. This
problem can also be formulated with a similar approach. We just need to consider
link flows as our variables (in addition to weights or capacities) and add the flow
conservation constraints to the optimization problem.

9. Evaluation

In this section we solve optimization problem (36) for various network
scenarios and topologies to show our framework can be used to design
robust networks.

9.1. Parking-Lot Network
The parking-lot network topology, shown in Fig. 1-(a), has been a chal-

lenging network despite its simple topology. Suppose the capacity of all
the links are 1. Suppose one unit of bandwidth is requested to be sent
between the following source-destination pairs: (1, 12), (2, 6), (4, 9), and
(7, 11). If the demand from node 1 to node 12 is serviced first, almost all of
the existing routing algorithms will choose the straight path resulting in the
blocking of demands of one unit coming from all other source-destination
pairs. A wiser decision is to block the first request from node 1 to node
12 so the network will be able to route the other requests. This experi-
ment suggests that when the traffic is symmetric, in weight allocation for
parking-lot topology, it is desired to assign more weight for middle (core)
links. To verify this guess, we solve our previously discussed optimization
problems for parking-lot.

First suppose that there is traffic only between two specific nodes a
and b (i.e. γi j = 0 ∀i, j ∈ N except for γab = γba). In this case TANC
(and average network utilization) can be written as: τ′ = γabτab. Our
desired optimization problem in this case is (38). Solution of optimization
problem (38) suggests that we can minimize the end-to-end resistance
distance between points a and b by allocating non-zero weights along the
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(a) Parking-Lot Topology (b) Optimal Weight in different Scenarios

Figure 1: Optimal Weights for Parking-Lot

links between a and b. Thus if a = 4 and b = 9, the cost of all links is 1, and
the budget is C = 2000, then the optimal weight assignment assigns equal
weights as indicated in 1-(a) by thick lines.

Next suppose that all pairs in the network have the same volume of
traffic between them. The optimum weight assignment which is the so-
lution of optimization problem (41) is shown in the second column of the
table in Fig. 1-(b), assigns higher weights to the bottleneck links (3, 5),
(5, 8), and (8, 10).

Finally consider a nonuniform traffic matrix given by: γi( j) = 1
(i+ j)2 ∀i, j ∈

N, i ! j. In this case the nodes with lower indices have higher traffic vol-
umes flowing between them. The third column of the table in Fig. 1-(b)
shows how the optimal weight assignment places higher weight in the
links between lower-indexed nodes.

Instead of minimizing network criticality (total resistance distance) we
can minimize the maximum point-to-point resistance subject to a cost con-
straint. The fourth column of the table in Fig. 1-(b) shows the optimal
weight assignment (solution of optimization problem (42)) that achieves
the minimax value of point-to-point resistance distance for parking-lot
network.

9.2. A General Tree Network
In this section we derive a general formula for TANC of a tree with

a nonuniform traffic matrix [γi j]. We note that a tree is an acyclic simple
graph, which means that there is exactly one path between every two nodes
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of a tree. It follows that network criticality of a tree can be found from the
following equation.

τα =
∑

(i, j)∈E

λi j

wij
(46)

where λi j denotes the total traffic passing through link (i, j) (λi j is the sum
of those components of the traffic matrix whose end-to-end path traverses
link (i, j)). By equation (46) we have:

∂τα
∂wij

= −λi j

w2
i j

(47)

The condition of optimality given by equation (37) along with equation
(47) results in:

∂τα
∂wij

= −λi j

w2
i j

= −zijτα
C

Hence:

wij = (
λi jC
zijτα

)
1
2 (48)

On the other hand we have
∑

(i, j)∈E zijwij = C (constraint of the optimization
problem), therefore:

∑

(i, j)∈E

(
λi jzi jC
τα

)
1
2 = C (49)

τα = (
∑

(i, j)∈E

(
λi jzi j

C
)

1
2 )2 (50)

Now it is enough to substitute τ from equation (50) in equation (48) to have
optimal weight for tree.

wij =
C
zij
× (λi jzi j)

1
2

∑
(i, j)∈E(λi jzi j)

1
2

(51)

Equation (51) shows that the optimal weight of a link in a tree is pro-
portional to the square root of λi j.
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9.2.1. Capacity Planning for a Tree
The capacity assignment problem for a tree when the link loads are

known can be solved by applying the following changes in equation (51):

wij → cij − λi j

C → C −
∑

(i, j)∈E

zijλi j

The optimal capacity assignment for a tree would be:

cij = γi j +
C −∑(i, j)∈E zijγi j

zi j
× (λi jzi j)

1
2

∑
(i, j)∈E(λi jzi j)

1
2

(52)

Our result and Kleinrock’s result for capacity assignment coincide when
the network is acyclic (tree). In [Kleinrock (1975)] Kleinrock showed that
under the independence assumption the optimal capacity of a link, in order
to minimize average delay of the network, is proportional to the square
root of the link rate. Note that λi j is the link load, as a result, equation
(52) is similar to the Kleinrock’s equation for optimal capacity ([Kleinrock
(1975)], §5.7, equation 5.26). As a matter of fact, this result is expected
because the network criticality of a tree according to equation (46) is equal
to τ =

∑
(i, j)∈E

λi j

ci j−λi j
(considering wij = cij − λi j), which is exactly the same

expression that is used in [Kleinrock (1975)] to find the average delay of a
network (Kleinrock (1975), §5.6, equation 5.19), therefore, the minimization
of network criticality equals the minimization of the average network delay
in acyclic networks.

9.3. Kleinrock’s Network
Here we compare our proposed optimal weight assignment strategy

with two other well-known capacity assignment methods, Kleinrock’s ap-
proach [Kleinrock (1964, 1975)] and Meister’s extension [Meister et al.
(1971)] using the example of telegraph network in Kleinrock illustrated in
Fig. 2 (see [Kleinrock (1964)], pp. 22-23). We let zij = 1 for all the links
in this test. Kleinrock assumes that shortest path routing is used for rout-
ing and end-to-end traffic requirements (traffic matrix) are converted to
link loads, therefore, the link loads are assumed to be known. Kleinrock’s
method finds the link capacities that minimize the average delay of the
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Figure 2: Kleinrock’s Network

network. However this solution assigns very long delays to the links with
small flows. Meister’s method modified the objective function to reduce
this unfairness, and in an extreme case leads to a capacity assignment that
results in equal delays in all the links at the expense of a large deviation
from optimal average network delay which can be achieved by Kleinrock’s
solution. The proposed solution in this paper balances the individual link
delays so as to have fair link delays while the average network delay is still
kept small. Table 1 shows the capacity assigned to the links using all the
methods. The second column of table 1 shows the individual link loads.

Link Load Kleinrock Meister Criticality Method
1 3.15 27.93 27.00 29.63
2 3.55 29.85 27.40 33.31
3 0.13 5.16 23.98 12.67
4 3.64 30.28 27.49 32.95
5 0.82 13.46 24.67 13.36
6 3.88 31.38 27.73 33.64
7 9.95 53.99 33.80 36.43

Table 1: Capacity Assignment using 3 Different Methods

Columns 3, 4, and 5 show the optimal capacity assignment using Klein-
rock’s method, Meister’s method, and our proposed method (which we call
it criticality method) respectively. The second column of table 2 shows the
minimum average network delay for all three methods. The third column
shows the value of network criticality computed using optimal capacity
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Method Average Network Delay Network Criticality
Kleinrock 44.72 1.06
Meister 55.01 0.80

Criticality Method 49.30 0.56

Table 2: Average Network Delay and Network Criticality using Different Methods

in each one of the methods. In our method we optimize the robustness
(not the average delay as it is the case in Kleinrock and Meister), therefore
it is not surprising to see that the average delay obtained by our method
is between Kleinrock’s approach (minimizing the average network delay)
and Meister (minimizing the maximum link delay). Finally, table 3 shows

Link Kleinrock Meister Criticality Method
1 40.36 41.93 37.76
2 38.02 41.93 33.60
3 198.67 41.93 79.71
4 37.54 41.93 34.12
5 79.10 41.93 79.71
6 36.36 41.93 33.60
7 22.71 41.93 37.76

Table 3: Individual Link Delays using 3 Different Methods

individual link values for all three methods. As one can see, Kleinrock’s
method assigns very large delay to link 3 because the demand on link 3 is
much less than other links. Meister’s method assigns equal delays for all
the links. This resolves the issue with Kleinrock’s method, but introduces
a fairness problem. In our proposed method, the link delays are not equal
to allow for fairness based on the demand for each link, and at the same
time the individual link delays are kept in a reasonable range.

9.4. ISP Topologies
Our next experiment is on real ISP (Internet Service Provider) maps

from Rocketfuel dataset [Spring et al. (2004)]. We followed the method
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(a) Initial Link Capacities (b) Optimal Link Capacities

Figure 3: Initial and Optimal Capacity Allocation for Rocketfuel Topology (Sprintlink)

described in [Applegate et al. (2006)] and collapsed the Rocketfuel ISP
topologies into PoP to PoP connectivity networks. In other words, we
consolidated all the nodes within a city into a single node, and aggregated
all the links from one city to another one in a single link, where the capacity
of the link equals the sum of the capacity of all the original links connecting
different sub-nodes between two cities. There are six ISP topologies in
Rocketfuel dataset, whose topological information are given in [Applegate
et al. (2006)]. The topologies in Rocketfuel dataset did not include the
capacities of the links, but we can use OSPF weight information which
is provided in Rocketfuel dataset to associate compatible capacities using
Cisco recommendation as described in [Applegate et al. (2006)]. Cisco
recommends that the link capacities are proportional to the reciprocal of
the weights.

Among six Rocketfuel topologies, We chose Sprintlink topology (1239)
as our test network because it is the largest ISP topology in Rocketfuel
dataset. Sprintlink originally consists of 315 routers and 1944 links. The
collapsed Sprintlink network includes 30 nodes (reduced cities) and 69
reduced links. Using Cisco recommendation we estimated nominal (ini-
tial) capacities for Sprintlink topology and used the sum of the nominal
capacities (shown in Fig. 3-(a)) as our total capacity budget (this budget is
approximately C = 100 Gigabits for Sprintlink). Then we solved optimiza-
tion problem (36) for Sprintlink topology. Fig. 3-(b) shows the optimal link
capacity assignment for Sprintlink.

Comparing Fig. 3-(a) and Fig. 3-(b) suggests that the optimal capacity
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distribution for Sprintlink is more uniform than the initial capacity assign-
ment. This result is expected in dense network with large number of paths
between each source-destination pair.

9.5. Complete Graph on n Nodes (Kn)
For Kn and when we have uniform traffic, we can obtain the solution of

optimization problem (41) analytically. We let zij = 1 ∀ (i, j) ∈ E (we will
investigate the effect of link cost on complete graph in the next part of the
experiment). We need the following lemma to find the optimal weight set
for Kn.

Lemma 9.1. Consider optimization problem (41) and suppose that the cost matrix
Z = [zij] is equal to Z = J − I (this is a square-matrix with all the components
equal to 1, except the main diagonal components which are zero) . If there is an
automorphism on a graph G(N,E,W) that can map link l = (i, j) on link l′ = (i′, j′),
then these links should have equal optimal weights.

Proof Let G’ be the transformed graph ( after applying the automorphism).
An automorphism on a graph G can be represented by a matrix operator
T such that the Laplacian of transformed graph G’ can be obtained from
Laplacian of original graph G as L(G′) = TL(G)Tt. This means that L(G)
and L(G’) have the same eigenvalues. As a result according to equation
(40) the network criticality of graph G equals the network criticality of G’ :
τ̂(G) = τ̂(G′). But we know that the solution of optimization problem (41) is
unique due to strict convexity of average network criticality τ̂ [Tizghadam
et al. (2010)]. As a result the weights of link l and l’ are equal.

!

Corollary 9.2. Consider optimization problem (41) and suppose that the graph of
the network is an edge-transitive graph with equal link costs. The optimal weight
for a link (i, j) ∈ E is wij =

C
m, where m is the number of graph links.

Proof We say a graph is edge-transitive, if there is an automorphism that
can map any two links of the graph. According to lemma 9.1 all the
link weights of an edge-transitive graph are equal. In addition, suppose
wij = w ∀ (i, j) ∈ E, then constraint

∑
(i, j)∈E wij = C implies that w = C

m . This
completes the proof of corollary 9.2.

!
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Complete graph Kn is an edge-transitive graph, therefore, according to
corollary 9.2 the optimal weight of all the links of Kn are equal. Let denote
this common weight by w. It is an easy task to verify that the eigenvalues
of the Laplacian matrix of Kn are λi = nw ∀ i ∈ N. We can also find link
weight w from corollary 9.2. The total number of links in Kn is m = n(n−1),
therefore, considering corollary 9.2 we have: w = 1

n(n−1)C. As a result we
find: λi =

1
n−1C ∀ i ∈ N. Now we can calculate network criticality for

graph Kn using this equation and lemma 9.1.

τ̂ =
2

n − 1

n∑

i=2

1
λi
=

2(n − 1)
C

(53)

According to equation (53) the optimal network criticality in a complete
graph linearly increases with the size of the network.

9.5.1. Case of Unequal Link Costs for Kn

Now we would like to study the effect of link costs on the optimal so-
lution. We can use the semi-definite programming to find optimal weights
of Kn when the link costs (zij’s) are not equal. We use a numerical example
to show the effect of changes in link costs. We consider the complete graph
on 6 nodes (K6), and we let the link cost matrix be:

Z = [zij] =




0 1.2 1 1 1 2
1.2 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
2 1 1 1 1 0




Moreover, let C = 2000. We used the semi-definite form of the optimization
problem which is described in equation (41) and solved it for K6 using CVX.
The optimal weight assignment is given in the following matrix.

W =




0 54.982 85.765 85.746 85.738 0.003
54.982 0 64.057 63.995 63.975 78.027
85.765 64.057 0 54.321 54.233 81.188
85.746 63.995 54.321 0 54.435 81.258
85.738 63.975 54.233 54.435 0 81.276
0.003 78.027 81.188 81.258 81.276 0
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Figure 4: Hypercube Topology (H1,H2,H3)

The weight matrix shows that the optimal weight assignment is not uni-
form in this case. The optimal weight of link (1, 6) is w16 = w61 = 0.003
which means that link (1, 6) is effectively disconnected. In other words, the
topology of the optimal network is not K6 anymore.

9.6. Hypercube with 2n nodes (Hn)
In our last example, we consider hypercube of order n (Hn), another

well-structured graph whose criticality can be obtained analytically. Fig.
4 shows hypercube topology for n = 1 to 3. Hypercube is a good choice to
be used at the core of data centers assuming that there is a load-balancing
mechanism to uniformly distribute the traffic of the edge into the core of
the data center. In this example we assume uniform traffic and we let
zij = 1 ∀ (i, j) ∈ E. Hypercube is an edge-transitive graph, therefore,
by corollary 9.2 the optimal solution of the optimization problem (41)
for hypercube has equal weights. Hence, we consider a hypercube with
weight w for all the links. In order to find the optimal value of network
criticality for hypercube, we need the following lemma.

Lemma 9.3. Suppose we have a hypercube of order n (Hn) with all the link weights
equal to 1. The eigenvalues of the adjacency matrix of Hn are 2k−n, k = 0, 1, ...,n
with multiplicity C(n, k) = n!

k!(n−k)! .

Proof See Appendix E.
!

Lemma 9.3 is true when all the weights are set to 1. In general case where
we have a weight w for each link, the eigenvalue is also multiplied by this
weight.
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We notice that hypercube is a regular graph (degree of all nodes are n).
This means that we can find eigenvalues of Laplacian using eigenvalues
of the adjacency matrix of Hn:

Ln = nI −Hn

λk = n − (2k − n) with multiplicity C(n, k)
λk = 2(n − k) with multiplicity C(n, k)

Now one can easily find the network criticality for Hn.

τ̂ =
2

2n − 1

∑

k

1
λk

=
1

(2n − 1)w

n−1∑

k=0

C(n, k)
n − k

(54)

On the other hand, considering the fact that the number of links in Hn is
m = n2n, by corollary 9.2, we have:

w = C
n2n (55)

The final expression for network criticality of Hn can be found by applying
equation (55) in (54):

τ̂ =
n

(1 − 1
2n )C

n∑

i=1

C(n, i)
i

(56)

To obtain the last equation we applied the change of variable i = n− k and
used the fact that C(n,n − i) = C(n, i). Equation (56) shows the behavior of
normalized network criticality when the size of hypercube increases.

We can compare the normalized criticality of a hypercube Hn with a
complete graph K2n to see how the robustness is decreased by changing a
complete graph to a hypercube (with the same number of nodes).

τ̂(Hn)
τ̂(K2n)

=

n
(1− 1

2n )C

∑n
i=1

C(n,i)
i

2(2n−1)
C

→ n
2n+1

n∑

i=1

C(n, i)
i

(57)
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Figure 5: The Ratio of Normalized Network Criticality of Hypercube and Complete Graph

Fig. 5 shows the behavior of equation (57) for different values of n. Clearly
for higher values of n, fraction τ̂(Hn)

τ̂(K2n ) approaches 1. Note that even for high
values of n there is a significant gap between the normalized criticality of
Hn and K2n , although the ratio is decreasing.

10. Limitations

The main limitation of the proposed method discussed in this paper is
that our results are valid for networks that can be modeled by undirected
graphs with symmetric weights. It is not difficult to find communication
networks that require directed graph models. For example consider a
wireless network that consists of nodes with known transmit powers. The
Shannon capacity of each wireless link depends on the value of node
transmit power, inter-node distances, and the interference among different
nodes. Depending on the arrangement of nodes, the capacity of a link (i, j)
may be different from that of link ( j, i), and so, we cannot model such a
network with an undirected graph. While the results for random-walks
exists for directed graphs and the notion of random-walk betweenness
remains unchanged, the concept of resistance distance does not apply for
directed graphs, therefore, the concept of network criticality in its present
form is not applicable in asymmetric graphs.

While the analogy between network criticality and random-walks does
not hold in directed graphs, the interpretation of average travel cost (or
equivalently average commute time) for network criticality still holds. In
fact we have recently shown that the average travel time in a directed
graph can be found using the exact same analytical machinery (i.e. the
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trace of generalized inverse Laplacian matrix) when we use combinatoric
Laplacian matrix of a directed graph Tizghadam et al. (2010). However,
our expression for the average travel time of directed graph (i.e. the trace of
generalized inverse of the Laplacian matrix), in its most general form, is not
a convex function of link weights. Therefore, its properties and behavior
is far from what we have discussed for undirected graphs. Investigation
of this problem is one of the main topics in our present research.

11. Conclusion

In this paper we proposed an approach to the robust network design
problem and network planning using graph-theoretical concepts. We de-
fined a new performance metric,traffic-aware network criticality (TANC),
to quantify the robustness of a network in nonuniform traffic scenarios
and investigated the properties of TANC. We proposed various interpre-
tations for TANC and showed that TANC can measure some important
network parameters, such as network utilization and connectivity. We
proved that TANC is a convex function of link weights and investigated
the convex optimization problem to minimize the traffic-aware network
criticality under some constraints on the weight matrix. We found a semi-
definite programming representation of the problem which permits us to
use available literature on semi-definite programming to solve the opti-
mization problem and find the optimal weights. Capacity assignment
problem can be considered as a special case of this general problem where
the weight of a link is equal to its capacity.

We believe that framework we have presented in this paper opens a
number of venues for further research on a variety of network control
algorithms. Our results can be used to design different distributed control
mechanisms (for example in multi-agent control networks), or distributed
mechanisms for traffic engineering in data networks, in particular where
the network utilization needs to be kept at minimum level. One immediate
application of the proposed planning method is in data center design,
where we need to accommodate heterogeneous traffic at the core of the data
center.The framework presented in this paper also reveals the fundamental
relationship of communication network design to classical (non-linear)
electrical circuit design. We are currently elaborating on this relationship
with a view to develop novel design algorithms. Extension of the results
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of this research to the case of directed graphs is another challenging area
that needs further work.

Appendix A. Proof of Theorem 5.1

Let ϕ(s, d) denote the average cost incurred by paths between source s
and destination d. We have:

ϕ(s, d) = E{
∞∑

k=0

z(dk, dk+1)} where s = d0 (A.1)

Using elementary probability we can expand equation (A.1) as:

ϕ(s, d) =
∑

d1,d2,...

p(d1, d2, ...|d0 = s)(
∞∑

k=0

z(dk, dk+1))

=
∑

d1

psd1{z(s, d1) +
∞∑

k=1

p(d2, ...|d0)z(dk, dk+1)}

ϕ(s, d) =
∑

j

psjz(s, j) +
∑

j

psjϕ( j, d) (A.2)

Recursive equation (A.2) can be expressed in matrix form as follows.
We relabel the nodes so that node d is the last node. Moreover, let fs =∑

j psjz(s, j). Equation (A.2) can be written as:

−→
φ d(d|d) =

−→
f (d|d) + Pd(d|d)

−→
φ d(d|d)

−→
φ d(d|d) = (I − Pd(d|d))−1−→f (d|d) (A.3)

where
−→
φ d = [φ(s1, d),φ(s2, d), ...,φ(sn, d)]t,

−→
f = [ fs1 , fs2 , ..., fsn]t, and

−→
φ d(d|d)

denotes reduced vector where row d is removed from the vector (similarly
square matrices Pd(d|d) and Bd(d|d) denote the reduced matrices where row
and column d are removed). Now we can use equation (1) to write the cost
as a function of random-walk betweenness.

−→
φ d(d|d) = Bd(d|d)

−→
f (d|d) or

ϕ(s, d) =
n∑

k=1

bsk(d) fk =
n∑

k=1

bsk(d)
∑

j

pkjz(k, j) (A.4)
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Now we find the average cost over all node pairs.

ϕ̄ =
1

n(n − 1)

∑

s,d

ϕ(s, d)

=
1

n(n − 1)

∑

k

(
∑

s,d

bsk(d)
∑

j

pkjz(k, j))

=
1

n(n − 1)

∑

k

(
∑

j

pkjz(k, j)bk)

One can use relation (6) to find the relationship between average cost and
criticality.

ϕ̄ =
1

n(n − 1)

∑

k

(
∑

j

pkjz(k, j)
1
2
τWk)

=
1

2n(n − 1)
τ
∑

k

(
∑

j

wkj

Wk
z(k, j)Wk)

=
1
2
τ̂
∑

k

(
∑

j

wkjz(k, j))

!

Appendix B. Proof of Theorem 5.4

Since λ2 is the smallest non-zero eigenvalue of graph Laplacian and all
the eigenvalues are non-negative, using equation (40) we have:

τ̂ =
2

n − 1

n∑

i=2

1
λi
≤ 2

n − 1
× n − 1
λ2

≤ 2
λ2

(B.1)

This establishes the upper bound for normalized network criticality. To
get the lower bound we observe that:

τ̂ =
2

n − 1

n∑

i=2

1
λi
≥ 2

n − 1
1
λ 2

(B.2)

combining inequalities (B.1) and (B.2) completes the proof of theorem 5.4.
!
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Appendix C. Proof of Lemma 7.1

We notice that:

τα =
∑

s,d

αsdτsd

=
∑

i j

αsdut
sdL+usd

=
∑

i j

αsdTr(usdut
sdL+)

= Tr(UαL+) (C.1)

where Uα =
∑

sd αsdUsd and Usd = usdut
sd. It is easy to see that Uα is a

symmetric matrix with the sum of the entries of its rows equal to zero, and
for αsd ≥ 0 ∀s, d ∈ N, it is a positive semi-definite matrix.

Considering equation (C.1) we have:

∂τα
∂wij

=
∂Tr(UαΓ−1)
∂wij

= −Tr(UαΓ−1 ∂Γ
∂wij
Γ−1)

= −Tr(UαΓ−1uijut
i jΓ
−1)

= −Tr(Ft
αFαΓ

−1uijut
i jΓ
−1)

= −Tr(FαL+uijut
i jL
+Ft
α)

= −Tr((FαL+uij)(FαL+uij)t)
= −Tr((FαL+uij)t(FαL+uij))

= −
∥∥∥FαL+uij

∥∥∥2

where Uα = Ft
αFα. This decomposition is always possible since Uα is a

symmetric matrix. Therefore, the first partial derivative of τα is always
non-positive.

!

Appendix D. Proof of Theorem 7.2

We need the following lemma.
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Lemma Appendix D.1. For any weight matrix W of links of a graph: Vec(W)t∇τ+
τ = 0, where Vec(W) is a vector obtained by concatenating all the rows of matrix
W to get a vector of wij’s.

Proof In [Ghosh et al. (2008)] it has been shown that if we scale all the link
weights with t, the effective resistance τi j will scale with 1

t . Since τα is a
linear combination of point-to-point effective resistances, τα will also scale
with 1

t :

τα(tVec(W)) =
1
t
τα(Vec(W)) (D.1)

By taking the derivative of τwith respect to t, we have

Vec(W)t∇τα =
−1
t2 τα(W) (D.2)

It is enough to consider equation D.2 at t = 1 to get Vec(W)t∇τα + τα = 0.
!

In general, one can apply the condition of optimality [Bertsekas et al.
(2003); Boyd et al. (2004)] on optimization problem (36) to get necessary
condition for a weight vector to be optimal. Let W∗ be the optimal weight
matrix, and let Wt be another weight matrix satisfying the constraints of
optimization problem (36), then according to the condition of optimality:

∇τα.(Vec(Wt) − Vec(W∗)) ≥ 0

Now, we choose Wt as follows:

Wt = [wuv] =



C
2zij

i f u = i & v = j
C

2zij
i f u = j & v = i

0 otherwise

Clearly, Wt satisfies the constraints of optimization problem (36), therefore,
using the condition of optimality and considering lemma Appendix D.1
we have:

∇τα.(Vec(Wt) − Vec(W∗)) ≥ 0
∇τα.Vec(Wt) − ∇τα.Vec(W∗) ≥ 0

C
zij

∂τα
∂wij

+ τα ≥ 0 ∀(i, j) ∈ E

min
(i, j)∈E

C
zij

∂τα
∂wij

+ τα ≥ 0 (D.3)
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Now, to prove the second part of the theorem we write the constraint of
the optimization problem as an inner product of costs and weights.

(Vec(Z).Vec(W∗))τα = (
∑

(i, j)∈E

w∗i jzi j)τα = Cτα (D.4)

Combining lemma Appendix D.1 and equation D.4 one can see:

C∇τα.Vec(W∗) + Vec(Z).Vec(W∗)τα = 0
Vec(W∗).(C∇τα + ταVec(Z)) = 0

w∗i j(C
∂τα
∂wij

+ ταzij) = 0

This completes the proof of theorem 7.2.
!

Appendix E. Proof of Lemma 9.3

Hypercube can be recursively built using the Cartesian Product of a
graph with K2 (complete graph on 2 nodes):

Hn+1 = Hn!K2

where ! denotes the cartesian product. Alternatively, this equation can be
written using Kronecker Product:

Hn+1 = Hn!K2

= Hn ⊗ I2 + I2n ⊗ K2 (E.1)

We have used the symbol ⊗ to denote Kronecker product. We try to obtain
eigenvalues of adjacency matrix of Hn using equation (E.1).

Hn+1 = Hn ⊗ I2 + I2n ⊗ K2

=

(
Hn 0
0 Hn

)
+

(
0 I2n

I2n 0

)

Hn+1 =

(
Hn I2n

I2n Hn

)
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For the sake of simplicity, we drop the subscript from I2n and use I instead,
which means the identity matrix of appropriate order. Now we try to build
the determinant of characteristic matrix Hn+1 − λI:

Hn+1 − λI =
(
Hn − λI I

I Hn − λI

)

dn+1 = |Hn+1 − λI| = det
(
Hn − λI I

I Hn − λI

)

= det
(

I Hn − λI
Hn − λI I

)

Now we multiply the first row by Hn − λI, and then subtract the first row
from the second row. We have:

dn+1(λ) = det
(

I Hn − λI
Hn − λI − (Hn − λI) I − (Hn − λI)2

)

= det
(
I Hn − λI
0 I − (Hn − λI)2

)

= |I − (Hn − λI)2|
= |Hn − (λ − 1)I||Hn − (λ + 1)I|

dn+1(λ) = dn(λ − 1)dn(λ + 1)

Using this recursive formula for determinant of hypercube, one can find
with induction that the eigenvalues of Hn are 2k − n, k = 0, 1, ...,n with
multiplicity C(n, k) = n!

k!(n−k)! .
!
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