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Abstract- One of the issues in Cognitive Radio Networks 

(CRNs) is how to manage the transmit powers of the 

secondary users to achieve the best network performance 

while preserving the interference on the primary users 

below an acceptable level. Link failures, node mobility and 

changing interference level make robustness a challenging 

issue in CRN. In this paper, considering robustness as the 

optimization criterion for power management, we 

minimize Network Criticality, a recently developed 

robustness metric, with primary users’ interference 

requirements and total capacity concavity as the 

constraints. Our method is carried out on a decentralized 

strategy distributed in secondary nodes. We show that the 

proposed method not only provides stability to the power 

control mechanism but also improves network 

performance in terms of capacity increase.
1
 

I. INTRODUCTION 

Boosted by Software Defined Radio (SDR), Cognitive 

Radio technology is anticipated to enhance spectrum 

utilization by leveraging spectrum holes. The objective of 

CRN is to promote spectrum utilization enhancement through 

opportunistic or cooperative relay networking. In such a 

network the spectrum which is likely licensed to some Primary 

Users (PUs) (legacy users such as TV broadcast stations), is 

shared by unlicensed or Secondary Users (SUs) 

opportunistically (Opportunistic Spectrum Allocation (OSA)), 

or on a leasing basis abiding by the constraints imposed by the 

PUs, provided that no interference or disturbance is to be 

caused to the PUs. The SUs may relay the PUs’ signal to 

provide transmission as well as capacity gain for the system as 

a whole. To achieve higher bandwidth utilization and 

reliability, another approach for spectrum sharing between PUs 

and SUs is to allow CR to transmit even when the PR link is 

active, provided that the interference to the primary 

transmissions remains below an acceptable threshold.  

In typical CR systems the PUs’ unpredictable presence, the 

contention among SUs to seize the vacant bandwidth, the 

traffic variations, and the interference caused by rivals result in 

fluctuating capacity provided to SUs, requiring enhanced 

power control mechanisms. On other hand, unequal PUs’ 

channel bandwidth, different interference levels and dissimilar 

assigned power for SUs may cause poor throughput or 

unfairness. Per se, inappropriate power assignment to SUs 
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brings about reduced system efficiency. Therefore, there 

should be a centralized or distributed (more consistent with ad 

hoc networks) mechanism to manage the transmission powers 

in a collaborative fashion to decrease level of interference and 

improve utilization while maintain robustness.  

As link outage due to node movements and unreliable 

wireless media may cause network break down especially in 

bottlenecks, robustness is one of the main concerns in CRNs. 

In this paper our target is to optimize the power control 

mechanism in terms of network wide robustness criterion 

while the PU’s interference levels are preserved below the 

acceptable thresholds. Our approach is based on a concept 

developed for network resource management which is referred 

to as Network Criticality [1], to achieve highest level of 

robustness as well as fairness and network capacity increase.  

The rest of this paper is organized as follows. In section II, 

we review some of the previous research in CR power control. 

In section III our approach based on network criticality is 

described. In section IV we show how to deploy relaxation 

method to solve a nonlinear optimization problem. Section V 

is dedicated to simulation results and the paper in concluded in 

section VI. 

II.  PREVIOUS RESEARCH 

Power management in the context of CR networks has been 

considered in recent literature. To control the secondary 

transmitter transmit power, [2] considers the peak power and 

the average interference constraints at the primary receivers to 

characterize the power adaptation strategies that maximize the 

secondary user SNR and capacity. In [3] a power control 

strategy for the cognitive users is proposed where by 

opportunistically adapting its transmit power, the cognitive 

user can maximize its achievable transmission rate without 

degrading the outage probability of the primary user. 

Reference [4] considers the case when global knowledge of all 

active subscribers is available for making control decisions. 

Solving a mixed-integer linear programming for downlink 

channel/power allocation, they propose a scheme that 

maximizes the number of supported subscribers. For local 

knowledge of active subscribers within each cell they propose 

a scalable two-phase channel/power allocation scheme. 

In [5] a method, called PCLC (Primary-Capacity-Loss 

Constraint), is proposed to protect the primary transmission by 

ensuring that the maximum Ergodic capacity loss of the PR 

link due to the CR transmission is not greater than some 

predefined value. The new CR power control policy is shown 



 

 

 

to be superior over the conventional one based on PIPC in 

terms of the achievable ergodic capacities of both the PR and 

CR links. Reference [6] considers the transmit-power control 

in a non-cooperative framework, using control theory tools to 

study both the equilibrium and transient behaviors of the 

network under dynamically varying conditions. The iterative 

water-filling algorithm (IWFA) is formulated for transmit 

power control. They propose an optimization problem in which 

the capacity of the links are maximized, subject to preserving 

the interference level of PUs bellow an acceptable level. As 

link capacity is not always concave function of transmit 

powers, their method tends to be unstable during simulations. 

To maintain stability a Max-Min procedure is applied which 

brings about stability, however it is suboptimal in maximizing 

the overall capacity. 

Applying game theory for cognitive radio power adjustment 

so that some utility function is maximized has been the focus 

of a number of papers. To ensure a minimum required QoS 

(interference) for PUs and to achieve energy efficient 

transmissions for SUs, [7] proposes a primary-secondary 

power control game with an exponential pricing term 

incorporated into the utility function. In [8], non-cooperative, 

finite repeated game, based on incomplete information of the 

system is used for power control of two users in a CR system. 

Reference [9] proposes a non-cooperative primary-secondary 

user power control game for dynamic spectrum leasing, to 

primary utility, defining a utility function that is proportional 

to the amount of primary user tolerable interference level, and 

a utility for secondary users to enhance their throughput per 

unit power. Taking into consideration both network efficiency 

and user fairness, in [10] a cooperative Nash bargaining power 

control game called NBPCG in which interference power 

constraints are imposed to protect the primary users’ 

transmissions is proposed. A utility function based on signal to 

interference plus noise ratio is employed to provide reliable 

transmission opportunities to secondary cognitive users. 

Although disapproved by the FCC in May 2007, the notice 

to the interference temperature limit for PUs has attracted 

much attention by researchers. Reference [11] tries to jointly 

adjust SUs’ rates, frequencies, and power resources, under the 

constraints of multiple PUs' interference temperatures to 

maximize multiple weighted SUs by a nonlinear and non-

convex optimization problem. Considering interference 

temperature constraints, in [12] the optimal power control in 

CR network is modeled as a concave maximization problem of 

the total capacity. Based on that, an improved branch and 

bound algorithm is proposed for power control optimization. 

III. THE PROPOSED NETWORK CRITICALITY APPROACH 

As we pointed out, our approach is based on the network 

criticality concept which results in a set of nonlinear 

optimization equations. To solve this set of equations, we 

deploy a method called Relaxation. This method results in a 

Simultaneous Iterative Water Filling (SIWF) approach, in 

which each SU updates its power using the most recent 

transmission parameters of the others. 

 We assume that a spectrum pool comprising slightly-

overlapping channels is available to be assigned to SUs. The 

communication system is assumed to consist of some number 

of Primary Transmitters (such as TV stations) and Primary 

Receivers, and a mobile mesh network of Secondary 

Transmitters/Receivers which are using the primary licensed 

spectrum band. The primary spectrum band is assumed to be 

divided into a number of OFDM channels which have been 

allocated to the secondary transmitters. Each channel includes 

n subcarriers to accommodate OFDM symbols. The locations 

of primary systems are assumed to be known by all of the 

secondary nodes. Moreover, at the end of each execution of 

our distributed algorithm, the secondary nodes exchange their 

location and transmission parameter information over a 

common control channel or by broadcasting on all frequency 

bands. The secondary terminals are considered to be equipped 

with single antennas to transmit on the assigned frequency 

bands. The SUs’ mobile mesh network topology is assumed to 

change slowly relative to one iteration of our algorithm so that 

the situation of the network can be considered constant with 

respect to the power control mechanism. The additive noise 

and interference at PU’s and SU’s are assumed to be 

independent Gaussian white noise (AWGN assumption). 

As an introduction to our optimization problem, in the next 

sub-section we present the definition of network criticality and 

some of its characteristics. Then we define our cost function 

and introduce the optimization problem which provides our 

power control mechanism. 

A. Network Criticality Concept 

Network criticality is a global measure on a graph which 

quantifies the robustness of a network graph to the 

environmental changes, mainly traffic shifts, topology 

modifications, and changes in the origin and destination for 

traffic. Network criticality derives its roots from the definition 

of random-walk betweenness in graphs. Consider a set of 

trajectories walked by a random walker, starting at s and 

terminating when the walk arrives at destination d for the first 

time. The random walk betweenness of a node k for the set of 

trajectories from s to d is defined as the average number of 

visits to node k. the total random walk betweenness of node k 

is the sum of the contributions for all s-d trajectories. 

It has been shown that for a weighted random walk, where 

the probability of transitioning along a link to a neighbor node 

is proportional to the weight of that link, the normalized 

random walk betweenness of a node (i.e. the node betweenness 

divided by the node weight) is a global measure on the graph 

and it is independent of the node location [1]. This global 

graph metric is referred to as network criticality which has 

some nice properties and interpretations, describing why it is 

an important robustness measure on graphs. Network 

criticality can be interpreted as the total resistance of a network 

if we view the network as an electrical circuit. Consider an 

electrical circuit with the same graph as our original network 



 

 

 

graph, and with link resistances equal to the reciprocal of link 

weights. It can be shown that network criticality numerically 

equals the total resistance distance (effective resistance) seen 

between different pairs of nodes in the electrical circuit. A high 

network criticality is an indication of high resistance in the 

equivalent electrical circuit, therefore, in two networks with 

the same number of nodes, the one with lower network 

criticality is better connected, hence better positioned to 

accommodate network flows. Furthermore, network criticality 

quantifies the sensitivity of a network to the environmental 

changes. It has been shown that network criticality equals the 

average of link betweenness sensitivities, where link 

betweenness sensitivity is defined as the partial derivative of 

link betweenness with respect to the corresponding link weight 

[1]: 

  
 

   
 

    

    
           (1) 

where E, m,     and     denote the set of links, the number of 

links, the betweenness of link (i,j), and the weight of link (i,j) 

respectively. Equation (1) states that minimization network 

criticality results in minimizing the average sensitivity of link 

betweennesses with respect to the changes in link weights 

(which in turn captures environmental changes). In fact, 

designing a control algorithm for network criticality balances 

the betweenness of the links in such a way to keep the average 

sensitivity below a desired level. From another point of view, 

the lower the criticality, the better distributed is the traffic 

between all the links of a network, and the better balanced the 

load of the traffic among all active links. This implies better 

fairness in routing the traffic in the nodes of the network. 

Another advantage of having low network criticality is the 

robustness enhancement of the network. Suppose that a node is 

failing or becoming inaccessible so that it is unable to route the 

traffic passing through it. Minimizing network criticality 

adaptively results in adjusting the betweenness in such a way 

that traffic is re-routed to other nodes instead of the impaired 

one and that brings about higher robustness against 

unpredictable deleterious situations. 

In conclusion, since the wireless networks have intrinsic 

dynamism, minimizing the criticality adaptively yields higher 

utilization of resources, better fairness and increased 

robustness of the network. 

In our approach network criticality minimization is 

performed under the constraint of having limited interference 

on PU bands. Denoting the transmission power of secondary 

user j (SUj) in subcarrier k as   
 
, the received interference at 

primary user i (PUi) is given by the following equation: 
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 is defined as: 
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where   
  

 is the average channel gain between SUj and PUi in 

subcarrier k,   
  

 is the coefficient representing the overlapped 

bandwidth of SUj and PUi causing interference at the primary 

user,     is the distance between SUj and PUi,   is the path 

fading factor and N is the number of active secondary users. 

Having equations (5), the interference power at the primary 

users should satisfy the following inequality: 
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     , P and       are the primary users interference, the 

secondary users transmit power and the primary users 

acceptable interference threshold vectors which are defined in 

the following set of equations as well as     matrix   : 
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where     
    

 is the acceptable interference power at the 

primary user i. These equations can be solved to find the 

maximum allowed power for each secondary node in each 

subcarrier such that: 

      
     

                                  (6) 

Letting the bandwidth dedicated to the secondary node i in 

subcarrier k be   
 , the weight (capacity) of the radio link 

between the secondary node i as the transmitter and node j as 

the receiver considering the interference caused by other nodes 

transmissions can be written as: 
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where   
 
 is the background Gaussian white noise power at the 

receiver node j in subcarrier k, and   
  

 and   
 
 are the signal 

power received form node i, and interference power at that 

receiver j which are given by: 
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In the above equation   
  

 is the average channel gain 

between the transmitting node SUi and the receiving node SUj, 

  
  

 is the average channel gain between interfering node SUl 

and the receiving node SUj, and   
   is the coefficient 

representing the bandwidth overlap between the transmitting 

and the interfering SUs, all for subcarrier k. 

B. Cost Function Definition 

Our objective in this work is to minimize the criticality of 

the network to achieve the highest robustness, while keeping 

the resulting interference on each of the PUs below the 

acceptable threshold.  

As we need   minimization to coincide with total capacity 

increase, we add another constraint that necessitates the total 

capacity of all the SUs to be concave with respect to   
  

       
  . As network criticality is a monotone decreasing 

function of weights (link capacities) [1], this constraint 

guarantees that each node may increase its power only when 



 

 

 

the total capacity is increased thereafter. Proscribing the nodes 

to be selfish, we drive them not only think of their own good, 

but also to consider the benefit of the whole network. The first 

order of conditions for concavity of the total capacity (denoted 

by          ), with respect to each node transmit power 

logarithm can be stated as: 

     
       

    
       

        
                       (11) 

where   
         

   and    
          

   are two values of the log 

power of the node l transmitting in subcarrier k during the course 

of optimization, and       
   is the gradient of the total capacity 

with respect to   
  which is given by the following equation: 
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To maintain the convexity of our cost function, we assume 

the SINRs at the receiving nodes are relatively high (e.g.  
  

  

  
 
   

     ) so the approximation       
  

  

  
 
   

        
  

  

  
 
   

    

can be used. Having this approximation, it is proved in [13] 

that the link capacities         are concave in variable   . 

To continue with convergence of   minimization with 

respect to   , we refer to the following inequality which has 

been proven in [1]: 
  

    
    

  

    
                                      (13) 

                                                  (14) 

In the above inequalities,         and               are 

two values for the capacity of link i to j. Considering the 

concavity of         we may write: 

        
          

           
               

   (15) 

Putting inequalities (14) and (15) together, one can conclude: 

      
          

          
               

    (16) 

which is the required condition for convexity of   with respect 

to the transmit powers. 

IV. POWER OPTIMIZATION USING RELAXATION METHOD 

In this section, using the proposed cost function, our 

optimization problem is defined and then an iterative solution 

based on relaxation method is presented. 

A. Optimization Statement 

Now, having   as the cost function and inequalities (7) and 

(11) as constraints, our optimization problem would be: 

For each subcarrier k Minimize:                                             

                         Subject to:   
        

        
              (17) 

where               
     

  and 

                                    ,  

(                 is the component wise product for two 

vectors        and            
The Lagrangian function associated with our cost function 

and its constraints can be defined for each subcarrier k as: 
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where vectors   
 ,   

  are the Lagrange multipliers associated 

with our constraints. For our nonlinear optimization problem, 

the optimum solution   
         

   satisfies our 

constraints, while there should exist   
  

,   
  

 such that: 
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The optimality conditions can be restated as the following: 

 
   

   
  

 
   

     
   

   
  

 
   

    
  

   
    

     
            

     

  
   

      
           

  
        

      

   
  

       
  

      
   

                 (20) 

B. Solution Using Relaxation Method 

To solve the optimization problem based on the relaxation 

method an iterative partitioning algorithm is performed in 

which each secondary user carries out its own part in a 

distributed SIWF approach. In each iteration, the active nodes 

adjust their transmit power in turn and update their powers 

simultaneously using the most recent transmission parameters 

(power values, location coordinates, destination nodes, 

transmission gains, path fading factors and frequency band 

overlaps). When a node is in relaxation, it assumes the other 

parts of the network are doing perfectly and the only problem 

to be solved is optimizing its own power level as the source of 

transmission to the sink which is its destination. The 

interactions between this node and other parts of the network 

are considered in the interferences that active nodes cause for 

each other and for primary systems. 

V. SIMULATION RESULTS 

To evaluate the performance of our proposed scheme, a set 

of simulations are performed similar to [6] and the results are 

compared to those obtained using the method proposed therein. 

In [6] the utility function is considered to be the data rate of 

each user; however since this is not a convex function of 

transmit powers, the mechanism is not stable causing severe 

fluctuations in power control and user data rates. Thus, the 

authors propose a Max-Min solution that is suboptimal but 

robust. We are interested to evaluate the gains that can be 

achieved using a network criticality cost function. 

The simulation scenario, as depicted in Fig. 1, contains three 

overlapping cluster of eight SUs. The background noise levels 

  
 
, the interference coefficients   

  
, the propagation 

attenuations   
  

 for the nodes in each cluster, and the 

maximum transmit power vector      are chosen as uniform 

random values in (0,0.1/(m-1)), (0,1/(m-1)), (0.6,0.9), (n/2,n) 

intervals respectively. As in [6] two subcarriers (n=2) are 

assumed to be used by each CR node. The exclusive members 

of two neighboring clusters are supposed to be roughly twice 

further apart compared to the nodes belonging to same cluster, 

so   
  

 and   
  

 are divided by four for them which corresponds 

to path fading factor,  =2. So the distances between the distant 

nodes are assumed to be 4 times of the distances between the 

nodes in same cluster. 
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Figure 1.   The scenario used for simulations. 

The spectral efficiency for the nodes 1, 4, 7, 9 and 12 for 

rate based utility function, and network criticality cost function 

methods are illustrated in Fig. 2-a and 2-b. In both of the 

methods the link capacities between node 2 and the far end 

nodes 9 and 12 are very low due to the further distances and 

lower allocated transmit powers to reduce the interference 

imposed on other nodes transmissions. The fluctuations at the 

first iteration of Fig. 2-(a) are due to having zero interference 

because of zero powers at initiation of the simulations, so 

theses values are transient and invalid. Comparing these two 

figures, one can infer that although the power assignments to 

nodes are different for the two schemes, but the network 

criticality minimization leads to higher overall capacity.  

Fig. 3 depicts the total bit rate per Hertz for all the possible 

communications between all the nodes using the two methods. 

This figure shows the improved performance of our proposed 

method based on criticality minimization which is about 22% 

higher than the Max-Min rate maximization method.  Thus the 

criticality minimization does not incur a "robustness penalty" 

as the Max-Min method does. Furthermore, we note that in 

addition to maximizing user rate performance locally, network 

criticality minimization method considers the entire network to 

also achieve higher performance in terms of robustness and 

stability.  

 

 

 

 

 

 

 

 

 

 

Figure 2.  The spectral efficiency for users 1, 4, 7, 9 and 12 communicating 

with node 2 using (a): Rate Maximization, and (b): Network Criticality 
Minimization methods. 

 

 

 

 

 

 

 

Figure 3.  The total bit rate using Rate Maximization and Network Criticality 

Minimization methods. 

VI. CONCLUSION 

Cognitive Radio performance strongly depends on how well 

the power control is carried out. To maximize the robustness of 

CRN, in this paper an approach is proposed based on 

minimizing network criticality which is performed under two 

constraints: increasing the total capacity of the network, and 

preserving the total interference imposed on each of the PUs 

below an acceptable threshold. The lower network criticality 

results in more robustness against shortage in network 

connectivity, and better distributing traffic among all the 

available links. Moreover, the relaxation method is employed 

to solve the power control optimization problem in a 

distributed Simultaneous Iterative Water Filling fashion. In 

addition to robustness and stability enhancement, the 

simulation results showed improved performance for the 

proposed method in terms of achieved total capacity, compared 

to a previous method based on users’ rates maximization with 

Max-Min scheme. 
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