
On Robust Network Planning
Ali Tizghadam

School of Electrical and Computer Engineering
University of Toronto, Toronto, Canada

Email: ali.tizghadam@utoronto.ca

Alberto Leon-Garcia
School of Electrical and Computer Engineering

University of Toronto, Toronto, Canada
Email: alberto.leongarcia@utoronto.ca

Abstract—One of the important properties of a reliable com-
munication network is the robustness to the environmental
changes. This paper looks at the design of robust networks from
a new perspective. A graph-theoretical metric, betweenness, in
combination with network weight matrix is used to define a
global quantity, network criticality, to characterize the robustness
of a network. We show that network criticality is a monotone
decreasing function of weight matrix. Furthermore, it is shown
that network criticality is a strictly convex function of network
weight matrix. This leads to a well-defined convex optimization
problem to find the optimal weight matrix assignment to mini-
mize network criticality.

I. INTRODUCTION

Robustness to the environmental changes is an important
factor in the design of reliable communication networks.
Robustness is the capability of a network to keep itself in
a stable mode when environmental changes take place. Let
us begin with our definition of robustness. There are three
major types of environmental changes that may affect the
performance of the network:

1) Changes in network topology including capacity.
2) Changes in community of interest, the set of active

sources and sinks for traffic.
3) Changes in traffic demand.
Throughout this paper, we say that a ”network” is robust

if its performance is not sensitive to changes in topology,
traffic or community of interest. In this sense, a robust network
is more reliable, since unanticipated environmental changes
(such as traffic shifts) cannot significantly impact the behavior
of network. We aim to develop methods to design such robust
networks with the help of graph-theoretical concepts.

In this work our approach is to find a metric to capture the
effect of topology, traffic demand, and community of interest,
and then design a network to control the sensitivity of the
network to the shifts in traffic, or changes in topology by
controlling the proposed metric. Using this approach we are
able to investigate the problem analytically with the help of
metrics from graph-theory. We can also discover some useful
aspects of the robustness problem in networks.

The paper is organized as follows. Section II reviews pre-
vious work on network design and robustness in networks. In
section III a review of our main metric, network criticality, is
provided. The proposed optimization problem and its attributes
are discussed in section IV, followed by some examples of
network planning for well-defined graphs in section V. The
paper is concluded in section VI.

II. PREVIOUS WORK

A wealth of literature is available on network robustness and
its different aspects. [1] investigates the relationship between
node similarity and optimal connectivity, and arrives at the
result that a network provides maximum resistance to node
destruction if it is both node-similar and optimally connected.
The paper then describes a number of ways to design robust
networks satisfying these conditions. But this paper considers
only the effect of topology in the robustness of a network.

In [2] a way to design backbone networks is proposed that
is insensitive to the traffic matrix (i.e., that works equally
well for all valid traffic matrices), and that continues to
provide guaranteed performance under a user-defined number
of link and router failures. Valiant Load-Balancing method
is used and the authors argue that it is a promising way
to design robust backbone networks. The approach was first
proposed by Valiant for processor interconnection networks
[3], and has received recent interest for scalable routers with
performance guarantees [4]. [2] applies Valiant method to
backbone network design problem and provides appropriate
capacity allocation for the links of a logical full mesh topology
to support load-balancing for all possible traffic matrices. In
the Valiant load-balancing method, traffic destined for a sink
d is forwarded to intermediate hops with equal splits to all
nodes, and then it is forwarded to the destination d. Delay
propagation is one of the shortcomings of this method.

In [5] we proposed a framework for robust routing in core
networks based on the idea of ”link criticality” and ”path
criticality”. Further development of the idea of criticality
is studied in [6], where a mathematical framework for the
definition of criticality is given within the context of Markov
chain theory.

In this paper we quantify the robustness using the concept
of criticality from [6]. We study the behavior of criticality and
derive some useful results for the design of robust networks
in the face of both topology and traffic variations.

III. NETWORK CRITICALITY

In this section we summarize the results of our previous
work on robustness [6].

A. Network Model

We model a network with an undirected weighted graph G =

(N,E,W) where N is the set of nodes, E is the set of graph
links, and W is the weight matrix of the graph. Throughout

this paper we assume that G is a connected graph. We assume
that SLA (Service Level Agreement) parameters are already
mapped to the weights by some appropriate method. Some of
these methods are discussed in [7]. This permits us to abstract
different business policies and/or SLA’s as parts of the weight
definition. In this paper we are interested in the study of the
weights and their effect on robustness.

In [8] a probabilistic interpretation of the betweenness is
defined based on random walks. The betweenness of a node
(link) k for source-destination pair s−d is the expected number
of times that a random walk passes node k in its journey from
source s to destination d. The total betweenness of node k

is the sum of this quantity over all possible s − d pairs. The
random-walk is defined on a Markov chain M with transition
probability matrix P according to the following rule:

pij =

{
wij∑

k∈A(i) wik
if j ∈ A(i)

0 otherwise
(1)

where A(i) is the set of adjacent nodes of i and wik ≥ 0 is the
weight of link (i, k).

B. Definition of Network Criticality

We now introduce network criticality, the metric that we
proposed in [6], to quantify the robustness of a network. We
start by defining node/link criticality.

Definition 3.1: Node criticality is defined as the random-
walk betweenness of a node over its weight (weight of a node
is defined as the sum of the weights of its incident links). Link
criticality is also defined as the betweenness of a link over its
weight.

Let ηk be the criticality of node k and ηij be the criticality
of link l = (i, j). It is shown in [6] that ηi and ηij can be
obtained by the following expressions:

τsd = l+ss + l+dd − 2l+sd or τsd = utsdL
+usd (2)

τ =
∑
s

∑
d

τsd, τ̄ =
1

n(n− 1)
τ (3)

ηk =
bk
Wk

=
1

2
τ =

n(n− 1)

2
τ̄ (4)

ηij =
bij
wij

= τ = n(n− 1)τ̄ (5)

where L+ is the Moore-Penrose inverse of graph Lapla-
cian matrix L [9], n is the number of nodes, and uij =

[0 ... 1 ... − 1 ... 0]t (1 and −1 are in ith and jth position).
Observation 3.2: Equations (2) to (5) show that node crit-

icality (ηk) and link criticality (ηij) are independent of the
node/link position and only depend on τ (or τ̄) which is a
global quantity of the network.

Definition 3.3: We refer to τ̄ as the normalized network
criticality or simply network criticality.
One can see that τ̄ is a global quantity on network graph
G. Equations (4) and (5) show that node (link) betweenness
consists of a local parameter (weight) and a global metric
(network criticality). τ̄ can capture the effect of topology and
community of interest via betweenness, and the effect of traffic
via weight (by appropriate definition of weight). The higher

the betweenness of a node/link, the higher the risk of using
the node/link. Furthermore, one can define node/link capacity
as the weight of a node/link, then the higher the weight of a
node/link, the lower the risk of using the node/link. Therefore
network criticality can quantify the risk of using a node/link
in a network which in turn indicates the degree of robustness
of the network.

This motivates the rest of our work in this paper. We
investigate network criticality as a network-wide metric to
capture and optimize network robustness. In this paper our
goal is to investigate τ̄ as a function of weight matrix (W) and
find necessary conditions for its optimality. We aim to find an
appropriate weight matrix that can optimize the robustness of
a network.

IV. OPTIMIZATION OF NETWORK CRITICALITY

In this section we investigate the behavior of τ̄ as a function
of the weight matrix.

A. Monotonicity and Convexity of τ̄

We start by investigating the convexity of τ̄ . In order to
proceed we need the following lemma.

Lemma 4.1: Network criticality (τ̄) is a monotone decreas-
ing function of weights. More precisely

∂τ̄

∂wij
= − 2

n− 1
‖L+

i − L
+
j ‖

2

Furthermore, the second partial derivative of τ̄ with respect
to the weight wij is non-negative and can be found from the
following equation:

∂2τ̄

∂wij2
= −2τij

∂τ̄

∂wij

Proof: See Appendix A.

Theorem 4.2: Network criticality (τ̄) is a strictly convex
function of weights.

Proof: It’s enough to show that the first derivative of τ̄
is always negative and it’s second derivative is always non-
negative. Considering the result of lemma 4.1, these conditions
are met in τ̄ .

B. Optimization of τ̄

Since τ̄ is a strictly convex function of the weights, an
optimization problem with linear constraints has a unique
solution.

We consider the minimization of τ under some constraints.
We set the following as a constraint for our optimization
problem:

∑
(i,j)∈E zijwij ≤ C, where zij is the cost of link

(i, j). One can consider C as the allowable budget for total
network weight. Consider the following optimization problem
on graph G(N,E,W):

Minimize τ̄

Subject to
∑

(i,j)∈E zijwij ≤ C ,C is fixed (6)
wij ≥ 0

Theorem 4.3: For the optimal weight set, W ∗, in optimiza-
tion problem (6) we have:

w∗ij(C
∂τ̄

∂wij
+ zij τ̄) = 0 ∀ (i, j) ∈ E (7)

Proof: We will prove theorem 4.3 using the following
lemma.

Lemma 4.4: For any weight matrix W of links of a graph:

V ec(W)t∇τ̄ + τ̄ = 0

where V ec(W) is a vector obtained by concatenating all the
rows of matrix W to get a vector of wij’s.

Proof: Suppose we scale all the link weights in a graph
with factor t, then using equation (5) we have:

τ̄(tV ec(W)) =
1

n(n− 1)

bij
twij

Note that the transition probabilities are invariant to the scaling
of the weights based on their definition in equation (1). This
implies the invariance of link betweenness bij . Therefore:

τ̄(tV ec(W)) =
1

t
τ̄(V ec(W)) (8)

By taking the derivative of τ with respect to t, we have

V ec(W)t∇τ̄ =
−1

t2
τ̄(V ec(W)) (9)

It is enough to consider equation (9) at t = 1 to obtain
V ec(W)t∇τ̄ + τ̄ = 0.

In optimization problem (6), τ̄ is a continuous decreasing
function of link weights and it is strictly convex. This implies
that in first constraint of problem (6) the inequality can be
replaced by equality.

Now, to conclude the proof of theorem 4.3 we notice that
for the optimal weight matrix W ∗ we can write

(V ec(Z).V ec(W ∗))τ̄ = (
∑

(i,j)∈E

w∗ijzij)τ̄ = Cτ̄ (10)

Combining lemma 4.4 and equation (10) one can see

C∇τ̄ .V ec(W ∗) + V ec(Z).V ec(W ∗)τ̄ = 0

V ec(W ∗).(C∇τ̄ + τ̄V ec(Z)) = 0

w∗ij(C
∂τ̄

∂wij
+ τ̄ zij) = 0 ∀ (i, j) ∈ E

This completes the proof of theorem 4.3.

Equation (7) gives the necessary condition for the optimality
of convex problem (6).

Optimization problem (6) can be converted to a semi-
definite programming. In order to find the semi-definite pro-
gramming representation of the optimization problem (6), we
need the following lemma.

Lemma 4.5: τ̄ = 2
n−1

Tr(L+).
Proof: Since τsd = l+ss + l+dd − 2l+sd, we have:

τ = n
∑
i

l+ii + n
∑
i

l+ii − 2× 0 = 2n
∑
i

l+ii = 2nTr(L+)

τ̄ =
1

n(n− 1)
2nTr(L+) =

2

n− 1
Tr(L+)

This completes the proof of lemma 4.5.

Suppose we let Γ = (L+ J
n

)−1, where J is a n-by-n matrix with
all elements equal to 1, then Γ can be written as a semi-definite

inequality as follows. We consider matrix Θ =

(
Γ I

I L+ J
n

)
.

The necessary and sufficient condition for positive semi-
definiteness of Θ is that its Schur complement ([10]) be
positive semi-definite. In general, the Schur complement of

a matrix of the form

(
A B

C D

)
is: A − BD−1C. Hence the

Schur complement of Θ is Γ− (L+ J
n

)−1, and

Θ =

(
Γ I

I L+ J
n

)
≥ 0⇔ Γ ≥ (L+

J

n
)−1 (11)

where ≥ means positive semi-definite. Since the optimization
problem (6) should minimize Tr(Γ), the equality in equation
(11) is chosen which is equivalent to Γ = (L + J

n
)−1. Now

optimization problem (6) can be converted to a semi-definite
programming:

Minimize
2

n− 1
Tr(Γ)− 2

n− 1
(12)

Subject to
∑
i,j

zijwij = C(
Γ I

I L+ J
n

)
≥ 0

This new optimization problem can be solved with standard
methods of solving semi-definite programs.

In this paper we solve this optimization problem for some
specific graphs to show how the concept of network criticality
helps find robust network topologies.

C. Capacity Planning

In this section we consider the capacity planning as an
important special case of network design problem. Consider
a network G(N,E,W) where the link weights are equal
to the link capacities, that is, wij = cij ∀(i, j) ∈ E (cij
denotes the capacity of link (i, j)). We investigate the capacity
assignment problem in which network topology and traffic
load γij ∀(i, j) ∈ E are assumed known and fixed. The goal
is to find the capacity of the links so as to minimize the
network criticality under the constraint that the total cost of the
planning is fixed. Let zij be the symmetric cost of assigning
capacity cij to link (i, j), and suppose that we have a linear cost
function. The total cost of the capacity assignment problem
is
∑

(i,j)∈E zijcij . We fix this total cost to C. We can write
the optimization problem for capacity assignment problem as
follows:

Minimize τ̄

Subject to
∑

(i,j)∈E cijzij = C ,C is fixed (13)
cij ≥ γij

By applying the change of variable cij = c′ij + γij to the
optimization problem (13), we will have the following convex

optimization problem.

Minimize τ̄

Subject to
∑

(i,j)∈E c
′
ijzij = C′ , C′ is fixed (14)
c′ij ≥ 0

where C′ = C −
∑

(i,j)∈E zijγij . The optimization problem
(14) is now converted to the optimization problem (6) (with
wij → c′ij and C → C′), therefore, all the results of this section
are applicable for the capacity assignment problem. Later in
this chapter we will see when the optimization problem (14)
is equal to the Kleinrock’s capacity assignment problem [11].

V. CASE STUDY

In this section we investigate the optimal network weight
allocation for some well-defined network topologies. In the
following examples if we assume that the weight of a link
is equal to its capacity, then the problem is converted to a
capacity assignment problem.

A. Complete Graph on n Nodes (Kn)

For Kn we can obtain the solution of optimization problem
(6) analytically. In this example we assume zij = 1 ∀ (i, j) ∈
E. In order to find the optimal weight set for Kn we need the
following lemmas.

Lemma 5.1: τ̄ can be written as: τ̄ = 2
n−2

∑n
i=2

1
λi

, where
λ1 ≤ λ2 ≤ ... ≤ λn are eigenvalues of graph Laplacian L.

Proof: We know from linear algebra that the sum of
eigenvalues of a square matrix is equal to the trace of the
matrix. On the other hand, the non-zero eigenvalues of L+

are reciprocals of the non-zero eigenvalues of L.Consequenty,
Lemma 5.1 will be a direct result of Lemma 4.5.

Lemma 5.2: Consider optimization problem (12) and sup-
pose all the links have equal costs, that is, Z = J − I (this is
a square-matrix whose entries are all 1, except the diagonal
elements which are set to zero) . If there is an automorphism
on a graph G(N,E,W) that can map link l = (i, j) on link
l′ = (i′, j′), then these links should have equal optimal weights.

Proof: Let G’ be the new graph after applying the
automorphism. Any automorphism on graph G can be shown
by a matrix T so that the Laplacian of transformed graph
G’ can be obtained from Laplacian of original graph G as
L(G′) = TL(G)T t. This means that L(G) and L(G’) have the
same eigenvalues. As a result according to the Lemma 5.1
criticality of graph G and G’ are the same: τ̄(G) = τ̄(G′).
On the other hand the solution of optimization problem (6) is
unique. As a result the weight of link l and l’ are the same.

Corollary 5.3: Consider optimization problem (12) and as-
sume that the graph of the network is an edge-transitive graph
with equal link costs. The optimal weight for a link (i, j) ∈ E
is equal to wij = C

m
, where m denotes the number of graph

links.
Proof: A graph is edge-transitive, if there is an automor-

phism that can map any two links of the graph. According to

lemma 5.2 all the link weights are equal. In addition, suppose
wij = w ∀ (i, j) ∈ E, then constraint

∑
(i,j)∈E wij = C implies

that w = C
m

. This completes the proof of corollary 5.3.

Complete graph Kn is an edge-transitive graph, therefore,
according to corollary 5.3 the optimal weight of all the links
of Kn are equal. Let denote this common weight by w.
Further, let vector X be the eigenvector of Laplacian matrix
for eigenvalue λ. Then:

L(Kn) = w(nI − J) and LX = λX

w((n− 1)xj −
∑
i 6=j xi) = λxj for i 6= 1

In addition
∑n
i=1 xi = 0 (property of the Laplacian matrix for

Kn). Therefore

w((n− 1)xj − (−xj)) = λxj

λi = nw for i = 2 ... n

One can also find link weight w from corollary 5.3. The total
number of links in Kn is m = n(n − 1), therefore, according
to the corollary 5.3 w = 1

n(n−1)
C. Therefore

λi =
1

n− 1
C ∀ i ∈ N (15)

It is easy now to calculate network criticality for graph Kn

using Lemma 5.1 and equation (15).

τ̄ =
2

n− 1

n∑
i=2

1

λi
=

2(n− 1)

C
(16)

According to equation (16) the optimal network criticality
in a complete graph is linearly increasing with the size of the
network. This provides a basis for comparing the normalized
network criticality of different networks against the full-mesh
on n nodes.

1) Case of Unequal Link Costs for Kn: When the link costs
(zij’s) are not equal, we can use the semi-definite approach to
find the best weight assignment. We use a numerical example
to show the effect of changes in link costs. We consider the
complete graph on 6 nodes (K6), and we assume that the
matrix of link costs is given as follows:

Z = [zij] =



0 1.2 1 1 1 2

1.2 0 1 1 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 0 1

2 1 1 1 1 0


Further, let C = 2000. We used the semi-definite form of the
optimization problem which is described in equation (12) and
solved semi-definite program for complete graph K6 using
CVX, a package for specifying and solving convex programs
[12], [13]. The optimal weight assignment is given in the

Fig. 1: Hypercube Topology (H1, H2, H3)

following.

W =



0 54.982 85.765 85.746 85.738 0.003
54.982 0 64.057 63.995 63.975 78.027

85.765 64.057 0 54.321 54.233 81.188

85.746 63.995 54.321 0 54.435 81.258

85.738 63.975 54.233 54.435 0 81.276

0.003 78.027 81.188 81.258 81.276 0


The weight matrix shows that the optimal weight assignment
is not uniform. The optimal weight of link (1, 6) is w16 =

w61 = 0.003 which means that link (1, 6) is effectively down.
In other words, the topology of the optimal network is not K6

any more.

B. Hypercube with 2n nodes (Hn)

Now we consider hypercube of order n (Hn), another well-
structured graph whose criticality can be obtained analytically.
In this example we assume zij = 1 ∀ (i, j) ∈ E. Hypercube
is an edge-transitive graph, therefore, by corollary 5.3 the
optimal solution of the optimization problem (12) for hy-
percube has equal weights. Hence, we consider a hypercube
with weight w for all the links. Hypercube can be recursively
built by the use of ”Cartesian Product” of a graph with K2

(complete graph on 2 nodes):

Hn+1 = Hn�K2;

where � denotes the cartesian product. This equation can also
be written using ”Kronecker Product”:

Hn+1 = Hn�K2;

= Hn ⊗ I2 + I2n ⊗K2 (17)

We have used the symbol ⊗ to denote Kronecker product.
Fig. 1 shows hypercube topology for n = 1 to 3.

We try to obtain eigenvalues of adjacency matrix of Hn
using equation (17). We find the eigenvalues for w = 1, then
we multiply these normalized eigenvalues by w to find the
eigenvalues for the general case.

Hn+1 = Hn ⊗ I2 + I2n ⊗K2

=

(
Hn 0

0 Hn

)
+

(
0 I2n

I2n 0

)

Hn+1 =

(
Hn I2n

I2n Hn

)

For simplicity of notation, we drop the subscript from
I2n and use I instead, which means the identity matrix of
appropriate order. Now we try to build the determinant of
characteristic matrix Hn+1 − λI:

Hn+1 − λI =

(
Hn − λI I

I Hn − λI

)

dn+1 = |Hn+1 − λI| = det

(
Hn − λI I

I Hn − λI

)

= det

(
I Hn − λI

Hn − λI I

)

Now we multiply the first row by Hn − λI, and then subtract
the first row from the second row. We have:

dn+1(λ) = det

(
I Hn − λI

Hn − λI − (Hn − λI) I − (Hn − λI)2

)

= det

(
I Hn − λI
0 I − (Hn − λI)2

)
= |I − (Hn − λI)2|
= |Hn − (λ− 1)I||Hn − (λ+ 1)I|

dn+1(λ) = dn(λ− 1)dn(λ+ 1)

Using this recursive formula for determinant of hypercube,
one can find with induction that the eigenvalues of Hn are
2k − n, k = 0, 1, ..., n with multiplicity C(n, k) = n!

k!(n−k)!
.

This result is true when all the weights are set to 1. In general
case where we have a weight w for each link, the eigenvalue
is also multiplied by this weight.

We notice that hypercube is a regular graph (degree of all
nodes are n). This means that we can find eigenvalues of
Laplacian using eigenvalues of the adjacency matrix of Hn:

Ln = nI −Hn
λk = n− (2k − n) with multiplicity C(n, k)

λk = 2(n− k) with multiplicity C(n, k)

Now one can easily find the network criticality for Hn using
lemma 5.1.

τ̄ =
2

2n − 1

∑
k

1

λk

=
2

2n − 1

n−1∑
k=0

C(n, k)

2(n− k)w

=
1

(2n − 1)w

n−1∑
k=0

C(n, k)

n− k (18)

On the other hand, by considering the fact that the number of
links in Hn is m = n2n, by corollary 5.3, we have:

w = C
n2n (19)

The final expression for network criticality of Hn can be found

Fig. 2: The Ratio of Normalized Network Criticality of Hy-
percube and Complete Graph

by applying equation (19) in (18):

τ̄ =
n2n

(2n − 1)C

n−1∑
k=0

C(n, k)

n− k

τ̄ =
n

(1− 1
2n)C

n∑
i=1

C(n, i)

i
(20)

To obtain the last equation we applied the change of variable
i = n−k and used the fact that C(n, n− i) = C(n, i). Equation
(20) shows the behavior of normalized network criticality
when the size of hypercube increases.

We can compare the normalized criticality of a hypercube
Hn with a complete graph K2n to see how the robustness is
decreased by changing a complete graph to a hypercube (with
the same number of nodes).

τ̄(Hn)

τ̄(K2n)
=

n

(1− 1
2n)C

∑n
i=1

C(n,i)
i

2(2n−1)
C

→ n

2n+1

n∑
i=1

C(n, i)

i
(21)

Fig. 2 shows the graphical behavior of equation (21) for
different values of n. It can be seen that for higher values
of n, fraction τ̄(Hn)

τ̄(K2n)
approaches 1. Note that even for high

values of n the difference between the normalized criticality of
Hn and K2n is considerable, although the ratio is decreasing.

C. Optimal Network Criticality for a Tree

We note that a tree is an acyclic simple graph, which means
that there is exactly one path between every two nodes of a
tree. It follows that network criticality of a tree can be found
from the following equation.

τ =
∑

(i,j)∈E

nij
wij

(22)

∂τ

∂wij
= − nij

w2
ij

(23)

where nij denotes the number of times that link (i, j) is in
the path connecting any source to any destination. But from
equation (7) we know that for optimal weights C ∂τ

∂wij
+τzij =

0. By using this relation in equation (23) we get:

∂τ

∂wij
= − nij

w2
ij

= −zijτ
C

(24)

⇒ wij = (
nijC

zijτ
)

1
2 (25)

From the constraint of the optimization problem we have∑
(i,j)∈E zijwij = C. Hence:

∑
(i,j)∈E

(
nijzijC

τ
)

1
2 = C (26)

τ = (
∑

(i,j)∈E

(
nijzij
C

)
1
2)2 (27)

Now it is enough to substitute τ from equation (27) in equation
(25) to have optimal weight for tree.

wij = (
nijC

zij
)

1
2 × 1∑

(i,j)∈E(
nijzij

C
)

1
2

Finally

wij =
C

zij
× (nijzij)

1
2∑

(i,j)∈E(nijzij)
1
2

(28)

Equation (28) shows that the optimal weight of a link in a
tree is proportional to the square root of nij .

1) Capacity Planning for a Tree: The capacity assignment
problem for a tree can be solved analytically using the
guidelines provided in section IV-C. It is enough to apply the
following changes in equation (28):

wij → cij − γij
C → C −

∑
(i,j)∈E

zijγij

The optimal capacity assignment for a tree would be:

cij = γij +
C −

∑
(i,j)∈E zijγij

zij
× (nijzij)

1
2∑

(i,j)∈E(nijzij)
1
2

(29)

There is a close analogy between our result and Kleinrock’s
result for capacity assignment. In [11] Kleinrock showed
that under the independence assumption the optimal capacity
(to minimize average delay of the network) of a link is
proportional to the square root of the link rate. Note that for
a tree nij is proportional to the link load (γij) since there
is only one path between every source-destination pair. As a
result, equation (29) is similar to the Kleinrock’s equation for
optimal capacity ([11], §5.7, equation 5.26). This result is not
surprising because the network criticality of a tree according
to equation (22) is equal to τ =

∑
(i,j)∈E

nij

cij−γij
(considering

wij = c′ij). This is the same expression that is used in [11]
to find the average delay of a network ([11], §5.6, equation
5.19), therefore, the minimization of network criticality is
equal to the minimization of the average network delay when
the network is a tree.

Fig. 3: Kleinrock’s Network

D. Kleinrock’s Network

In this following the proposed optimal weight assignment
method is compared with Kleinrock’s method for capacity
assignment [14], [11] and Meister’s extension [15] using the
example of telegraph network in Kleinrock illustrated in Fig.
3(see [14], pp. 22-23). In this example the link cost factors
zij are all considered equal to unity. Kleinrock’s method finds
capacities of the links in such a way to minimize the average
delay of the network under the independence assumption and
when the link loads are known. One problem with Kleinrock’s
approach is that it assigns very long delays to the links with
small loads. Meister’s method is an alternative approach which
assigns equal delays to all the links, of course at the expense
of a large deviation from optimal average network delay
which can be achieved by Kleinrock’s solution. The proposed
solution in this paper assigns capacity of the links in a way
to balance the individual link delays so as to have acceptable
link delays while still we have a good average network delay.
Table I shows the capacity assigned to the links using all the
methods. The second column of table I shows the individual

Link Load Kleinrock Meister Criticality Method
1 3.15 27.93 27.00 29.63
2 3.55 29.85 27.40 33.31
3 0.13 5.16 23.98 12.67
4 3.64 30.28 27.49 32.95
5 0.82 13.46 24.67 13.36
6 3.88 31.38 27.73 33.64
7 9.95 53.99 33.80 36.43

TABLE I: Capacity Assignment using 3 Different Methods

link loads. Columns 3, 4, and 5 show the optimal capacity
assignment using Kleinrock’s method, Meister’s method, and
our proposed method (which we call it criticality method)
respectively. The minimum average network delay for these
methods are given in second column of table II. The third
column also shows the value of network criticality. In the
criticality method we actually optimize the robustness (not
the average delay as it is the case in Kleinrock and Meister),
therefore it is not surprising to see that the average delay
obtained by criticality method is between two extremes of
Kleinrock (to minimize the average network delay) and Meis-
ter (to minimize the maximum link delay). Table III shows

Method Average Network Delay Network Criticality
Kleinrock 44.72 1.06
Meister 55.01 0.80

Criticality Method 49.30 0.56

TABLE II: Average Network Delay and Network Criticality
using Different Methods

Link Kleinrock Meister Criticality Method
1 40.36 41.93 37.76
2 38.02 41.93 33.60
3 198.67 41.93 79.71
4 37.54 41.93 34.12
5 79.10 41.93 79.71
6 36.36 41.93 33.60
7 22.71 41.93 37.76

TABLE III: Individual Link Delays using 3 Different Methods

individual link values for three methods. Kleinrock’s method
assigns very large delay to link 3 because the demand on
link 3 is much less than other links. Meister’s method assigns
equal delays for all the links. This resolves the issue with
Kleinrock’s method, but introduces a fairness problem. In our
proposed method, the link delays are nt equal to allow for
fairness based on the demand for each link, and at the same
time the individual link delay are kept in a reasonable range.

VI. CONCLUSION

In this paper we proposed an approach to the network
design problem and network planning using graph-theoretical
concepts. We used network criticality metric to quantify the
robustness of a network and investigated the properties of
network criticality. We showed that network criticality is
a strictly convex function of link weights and investigated
the convex optimization problem of minimizing the network
criticality under some constraints on the weight matrix. We
also found a semi-definite programming representation of this
problem which permits us to use available literature on semi-
definite programming to solve the optimization problem and
find the optimal weights. Capacity assignment problem can be
considered as a special case of this general problem where the
weight of a link is equal to its capacity.

APPENDIX A
PROOF OF LEMMA 4.1

We can calculate the first derivative of τsd with respect to
the weight of a typical link l = (i, j) using equation (2):

∂τsd
∂wij

= utsd ×
∂L+

∂wij
× usd (30)

Now, we use the following fact from graph-theory about
generalized inverse Laplacian of a graph [16].

L+ = (L+
J

n
)−1 − J

n
(31)

Matrix J in this equation is an n× n matrix with all elements
equal to 1. Using equation (31) we have: ∂L+

∂wij
=

∂(L+ J
n

)−1

∂wij
.

On the other hand:

(L+
J

n
)−1 × (L+

J

n
) = I

∂(L+ J
n

)−1

∂wij
× (L+

J

n
) + (L+

J

n
)−1 ×

∂(L+ J
n

)

∂wij
= 0

∂L+

∂wij
= −(L+

J

n
)−1 × ∂L

∂wij
× (L+

J

n
)−1 (32)

Replacing equation (32) in equation (30) will result in:

∂τsd
∂wij

= utsd ×
∂L+

∂wij
× usd

= −1× utsd × (L+
J

n
)−1 × ∂L

∂wij

×(L+
J

n
)−1 × usd (33)

To obtain ∂L
∂wij

we notice that in four elements of matrix
L the weight wij appears: lij , , lji, , lii, , ljj , . Based on the
definition of Laplacian (L =

∑
(i,j)∈E wijuiju

t
ij [9]) we have:

∂L

∂wij
= uij × utij (34)

Combining equations (34) and (33) we have

∂τsd
∂wij

= −1× utsd × (L+
J

n
)−1

×uij × utij × (L+
J

n
)−1 × usd (35)

One can also easily verify that:

(L+
J

n
)−1uij = ((L+

J

n
)−1 − J

n
)uij = L+uij = L+

i − L
+
j (36)

where L+
i is the ith column of L+. Here we used the fact that

Juij = utijJ = 0. Using equation (36) in (35) gives:

∂τsd
∂wij

= −1× utsd(L+
i − L

+
j)(L+

i − L
+
j)tusd

= −1× ((L+
i − L

+
j)tusd)

t(L+
i − L

+
j)tusd

= −1× ((l+is − l
+
id)− (l+js − l

+
jd))

2

= −1× ((l+is − l
+
js)

2 + (l+id − l
+
jd)

2

− 2(l+is − l
+
js)(l

+
id − l

+
jd))

Now we are ready to obtain the derivative of τ .

∂τ

∂wij
=

∑
d

∑
s

τsd

= −1× (
∑
d

∑
s

(l+is − l
+
js)

2 +
∑
d

∑
s

(l+id − l
+
jd)

2 −

2
∑
d

∑
s

(l+is − l
+
js)(l

+
id − l

+
jd))

= −1× (n‖L+uij‖2 + n‖L+uij‖2 −
2
∑
d

(l+id − l
+
jd)
∑
s

(l+is − l
+
js))

= −2n‖L+uij‖2

∂τ

∂wij
= −2n‖L+

i − L
+
j ‖

2 (37)

Equation (37) shows that the derivative of τ̄ is always non-
positive. It is also non-zero since if it would be zero for some
weights, it would mean that two columns of L+ are equal.
Another way to put this is to say that the rank of L+ is n-
2 while the rank of L+ has to be n-1 in order to guarantee
connectivity of the graph.

∂2τ̄

∂wij2
= − 2

n− 1

∂

∂wij
(utijL

+L+uij)

=
2

n− 1
(utij

∂L+

∂wij
L+uij + utijL

+ ∂L
+

∂wij
uij)

= − 2

n− 1
× (−2)τijL

+uiju
t
ijL

+

∂2τ̄

∂wij2
= −2τij

∂τ̄

∂wij
(38)

Equation (38) clearly shows that second derivative of τ̄ is non-
negative since its first derivative is always negative (according
to lemma 4.1) and τij is by definition a non-negative function
of weights. This completes the proof of lemma 4.1.

REFERENCES

[1] A. H. Dekker and B. D. Colbert. Network Robustness and Graph
Topology. Australasian Computer Science Conference, 26:359–368, Jan.
2004.

[2] R. Zhang-Shen and N. McKeown. Designing a Predictable Internet
Backbone with Valiant Load-Balancing. In Thirteenth International
Workshop on Quality of Service (IWQoS), Passau, Germany, June 2005.

[3] L. Valiant and G. Brebner. Universal Schemes for Parallel Communica-
tion. In 13th Annual Symposium on Theory of Computing, May 1981.

[4] C. S. Chang, D. S. Lee, and Y. S. Jou. Load Balanced Birkhoff-von
Neumann Switches, Part I: One-Stage Buffering. In HPSR ’01, Dallas,
May 2001. IEEE.

[5] A. Tizghadam and A. Leon-Garcia. A Robust Routing Plan to Optimize
Throughput in Core Networks. ITC20, Elsvier, pages 117–128, 2007.

[6] A. Tizghadam and A. Leon-Garcia. On Robust Traffic Engineering in
Core Networks. In IEEE GLOBECOM, December 2008.

[7] P. Van Mieghem and F. A. Kuipers. Concepts of Exact QoS Routing Al-
gorithms. IEEE/ACM TRANSACTIONS ON NETWORKING, 12(5):851–
864, October 2004.

[8] M. Newman. A Measure of Betweenness Centrality Based on Random
Walks. arXiv cond-mat/0309045., 2003.

[9] C. Godsil and G. Royle. Algebraic Graph Theory. Springer-Verlag,
2001.

[10] Dennis S. Bernstein. Matrix Mathematics. Prinston University Press,
2005.

[11] L. Kleinrock. Queueing Systems, volume II. John Wiley & Sons, 1975.
[12] M. Grant and S. Boyd. CVX: Matlab Software for Disci-

plined Convex Programming (Web Page and Software). http :
//stanford.edu/ boyd/cvx. September 2008.

[13] M. Grant and S. Boyd. Graph Implementations for Nonsmooth Convex
Programs, Recent Advances in Learning and Control (a tribute to M.
Vidyasagar), V. Blondel, S. Boyd, and H. Kimura, editors, http :
//stanford.edu/ boyd/graphdcp.html. Lecture Notes in Control
and Information Sciences, Springer, 2008.

[14] L. Kleinrock. Communication Nets, Stochastic Message Flow and Delay.
McGraw-Hill, New York, 1964.

[15] B. Meister, H. R. Muller, and H. R. Rudin. New optimization criteria
for message switching networks. IEEE Transactions on Communication
Technology, 19(3):256–260, June 1971.

[16] C. R. Rao and S. K. Mitra. Generalized Inverse of Matrices and its
Applications. John Weily and Sons Inc., 1971.

