
On Robust Traffic Engineering in Core Networks
Ali Tizghadam

School of Electrical and Computer Engineering
University of Toronto, Toronto, Canada

Email: ali.tizghadam@utoronto.ca

Alberto Leon-Garcia
School of Electrical and Computer Engineering

University of Toronto, Toronto, Canada
Email: alberto.leongarcia@utoronto.ca

Abstract—This paper reports on a probabilistic method for
traffic engineering (specifically routing and resource allocation)
in backbone networks, where the transport is the main service
and robustness to the unexpected changes in network parameters
is required. We analyze the network using the probabilistic
betweenness of the network nodes (or links). The theoretical
results lead to the definition of ”criticality” for nodes and links.
Link criticality is used as the main metric to model the risk
of taking a specific path from a source to a destination node.
Different paths will be ranked based on their criticality measure,
and the best path will be selected to route the flow along
the core network. The choice of the path is in the direction
of preserving the robustness of the network to the unforeseen
changes in topology and traffic demands. The proposed method
is useful in situations like MPLS and Ethernet networks where
path assignment is required.

Index Terms—Robustness, Graph-Theory, Betweenness, Con-
gestion, Traffic Engineering.

I. INTRODUCTION

Robustness is a well studied subject in network literature.
Intuitively robustness is the resilience against possible changes
in different parameters of the network due to uncertainties. In
order to establish the discussion, we give our definition of
robustness. There are three major types of changes that may
affect the performance of the network:
1. Network topology and connectivity. This includes changes
in capacity of the links.
2. Community of interest.
3. Traffic Matrix.
Throughout this paper, we call a ”routing algorithm” or a
”resource allocation method” robust if it can resist against
uncertainties which are the result of changes in topology,
traffic or community of interest. Our stress in this paper is in
traffic surges that might guide network to the congestion mode
and our main resource in this study is the link bandwidth.

In contrast to a previous work [1], we used a probabilistic
approach to design a robust routing plan for the core network
that allows the network service provider to manage the as-
signment of flows to the paths primarily at the edge of the
core network. Using this approach we were able to investigate
the problem analytically using metrics from graph-theory and
discover some useful aspects of the robustness problem in
networks.

The rest of this paper is organized as follows. Section II
reviews previous works on network design and robustness
problem in networks. In section III the analytical results are

discussed. The proposed robust routing plan is introduced in
section IV, followed by the simulation results and validation
for the case of MPLS networks in section V. The paper is
concluded in section VI.

II. PREVIOUS WORK

A wealth of literature is available for network robustness
and different aspects of it. In [2] some facts from graph-
theory are reviewed which are important for the development
of robust network topologies.

Robustness to the traffic uncertainty is investigated from
different standpoints. In [1] a framework for robust routing in
core network is proposed based on the idea of ”link criticality”
and ”path criticality”. Originally, the shortest path betweenness
centrality [3], a metric from graph theory, is used to measure
the criticality of a node. Suppose that we are measuring the
centrality of node k. The betweenness centrality is defined
as the share of times a node i needs a node k in order to
reach a node j via the shortest path. Link betweenness can also
be defined in the same way. A modified version of the link
betweenness is used in [1] to define link criticality. Suppose
nij is the number of paths between source-destination pair
(s,d) and nikj is the number of paths between i, j containing
the specific link k . Then betweenness of node k for i (source)
and j (destination) is given by nikj

nij
. The overall betweenness

of a link is defined as the sum of all betweennesses for link k
when i, j are changing. This gives an indication of how critical
the link is in the network topology. Based on this interpretation
of the betweenness centrality, the Path-Criticality Routing
(PCR) is proposed in [1] to find the least biased paths (paths
with minimum sensitivity to the changes in traffic demands or
topology of the network) to run the flow. In [2] a number of
graph properties are listed which are useful for determining the
robustness of a network against changes in network topology.
There is also an abundance of literature for oblivious routing
([4], [5]).

The proposed work in this paper is along the line of our
previous research on quantifying the robustness by link and
path criticality [1]. Here, we introduce a probabilistic approach
to the definition of criticality for links and nodes, and provide
the details of our analytical results that lead us to the idea of
Random-Walk based Path Criticality Routing (RW-PCR).

III. ANALYTICAL RESULTS ON ROBUSTNESS

In this section we provide the details of theoretical results
that motivate the approach in this paper. We start by intro-
ducing the notions and metrics. In this paper, we consider
the probabilistic definition of the node (link) betweenness as
the main metric to quantify the criticality. In [6] a proba-
bilistic interpretation of the betweenness is defined based on
random walks. The betweenness of a node (link) k for source-
destination pair (s,d) is the expected number of times that a
random walk passes node k in its journey from source s to
destination d. the total betweenness of node k is the sum of
this quantity over all possible (s,d) pairs. Now, we define the
node criticality for a weighted network simply as the random-
walk betweenness of that node over the weight of the node.

ηk =
bk

Wk
(1)

Wk =
∑

j

wkj

where ηk, bk, Wk are the criticality, betweenness, and weight
of the node k (or weighted degree of the node) respectively.
Wk is equal to the sum of all link weights incident to node k
(weight of link (j,k) is shown by wjk). Similarly, the criticality
of a link (i,j) (ηij) is defined as the betweenness of the link
over its weight:

ηij =
bij

wij
(2)

The main goal to introduce criticality of the nodes (and links
in a similar way) is to be able to sort different networks based
on their robustness to the changes in traffic demand, topology,
and community of interest (source-destination pairs).
To this end, we consider a network which is specified by a
graph G=(N,L). Based on our definition of the betweenness,
we can quantify the criticality as follows. Each node has a
certain probability to send its data to the adjacent nodes. Let’s
assume a random walk at node s wants to go to node d as its
final destination. The destination node is an absorbing state
for this random walk and the walk stops as soon as it reaches
the destination. Starting from node s the probability of passing
node k in next step is given by pskd.

pskd = {0 if s=d
wsk∑

q∈A(s) wsq
otherwise

(3)

where A(s) is the set of adjacent nodes of s and wsk is the
weight of link (s, d), if any. The first condition in equation 3 is
due to the fact that the destination node d is an absorbing node,
and any random-walk coming to this state, will be absorbed or
equivalently pdkd = 0. Clearly, equation 3 defines a Markovian
system. The betweenness of node (link) k for the source-
destination pair (s, d) is denoted by bskd and defined as the
expected number of times that a random walk from s to d
traverses k.
Note that the path from i to k could be of length 0 to infinity. If
we specify the probability values pskd for destination d with
matrix Pd, then for all k != d, the probability of entering

node k at qth step for different values of s and k can be
obtained from corresponding entries of the matrix Pd

q and
in case of k = d it would be 0. In our calculations, we treat
the destination d as a fixed point and write all matrices based
on this assumption. At the end we obtain the general results for
our metrics by adding up the results for different destinations.
In other words, the matrix Pd can be viewed as routing matrix
to destination d when the random walk starts from node s. One
can write this relationship in matrix form as follows:

Bd = [bskd] = {
∑∞

q=0 P q
d if k !=d

0 otherwise

Bd is the betweenness matrix for destination d. Using well-
known matrix relation

∑∞
q=0 P q

d = (I − Pd)−1, this equation
can be simplified as:

Bd = [bskd] = {(I−Pd)−1 if k !=d
0 otherwise (4)

By examining equation 4 one can easily see that the removal of
column and row d from betweenness and probability matrices
does not affect the other entries. We use M(i|j) to denote
the reduced matrix resulted from removing ith row and jth

column of matrix M . The equation 4 can be written as:

Bd(d|d) = (I − Pd(d|d))−1 (5)

Let W = [wij] be the weight matrix of the graph, D be the
diagonal matrix of weighted degrees or graph nodes, and L
be the Laplacian of the graph. We know that:

L = D − W

D = diag(W1,W2, ...,Wn), Wi =
n∑

k=1

wik

Pd(d|d) = D−1(d|d) × W (d|d)

The last equation is the direct result of equation 3. Now we
have:

I − Pd(d|d) = I − D−1(d|d) × W (d|d)
= D−1(d|d) × (D(d|d) − W (d|d))

⇒ I − P (d|d) = D−1(d|d) × L(d|d) (6)

Replacing equation 6 in 5 results in:

Bd(d|d) = L−1(d|d) × D(d|d) (7)

Note that the graph G(N,L) is assumed to be connected which
means that the rank of graph Laplacian L is (n−1). As a result,
the inverse of reduced Laplacian L(d|d) exists and equation 7
has a unique solution.
Now we need to write the equation 7 in terms of the Laplacian
of the original graph. Without loss of generality, we rename
the nodes so that the removed node becomes the last node
of the graph (node n). Now, in order to write L−1(n|n) in
terms of L, we use the Moore-Penrose generalized inverse
matrix of L ([7]). The Moore-Penrose inverse of L(n|n) and
the L−1(n|n) are equal since L(n|n) is an (n− 1)× (n− 1)
matrix with rank n − 1. In other words, L(n|n) is full-rank
and its inverse is the same as its Moore-Penrose inverse. To
obtain L from L(n|n), we first add a column to L(n|n) to

get: Q = [L(n|n) zn−1].
The column-vector zn−1 has to be chosen in a way to make
the sum of every row of the matrix Q equal to zero. We use
the following formula from [7] which is a recursive formula to
obtain the Moore-Penrose inverse of a matrix when a column
is added to the original matrix. Let A ∈ Fp×q be a p×q matrix
and b ∈ Fp be a p × 1 column vector.

(
A bp

)+ =
(

A+(I − bpζp)
ζp

)
(8)

where ζp is a 1 × p row vector such that

ζp = {(bp−AA+bp)+ if bp !=AA+bp

b∗p(AA∗)+

1+b∗p(AA∗)+bp
bp=AA+bp

. (9)

where ∗ means conjugate transpose.
To satisfy the requirement of Laplacian matrix we need to
have

[L(n|n) zn−1]
−→
1 n−1 = 0 (10)

where
−→
1 n−1 is a (n − 1) × 1 vector of all ones:

−→
1 n−1 =

[1 1 1 ... 1]t.
From 10 one can easily see that:

L(n|n)
−→
1 n−1 + zn−1 = 0

zn−1 = −L(n|n)
−→
1 n−1 (11)

Now from 8 by replacing A = L(n|n) and using 11, one can
see:

Q+ =
(
L(n|n) zn−1

)+

=
(

L+(n|n) − L+(n|n)zn−1ζn−1

ζn−1

)

=
(

L+(n|n) + L+(n|n)L(n|n)
−→
1 n−1ζn−1

ζn−1

)

=
(

L(n|n)+ +
−→
1 n−1ζn−1

ζn−1

)

=
(

L(n|n)+
0

)
+
−→
1 n−1ζn−1

This expression for Q+ can be expanded as:

Q+ =
(
L(n|n) zn−1

)+ =
(

L+(n|n)
0

)
+

ζn−1

ζn−1

.

.

.
ζn−1

(12)

Equation 12 asserts that:

q+
sk = (L+(n|n))sk + (ζn−1)k if s != n

q+
nk = 0 + (ζn−1)k if s = n

Subtracting these two equations show that:

⇒ (L+(n|n))sk = q+
sk − q+

nk (13)

With the same approach , we add the nth row to Q to obtain

the n × n Laplacian matrix L: L =
[

Q
d

]
With similar

reasoning and using equation 8 for the transpose of this matrix
(which is equal to matrix L as the Laplacian is symmetric),
one can obtain:

⇒ q+
sk = l+sk − l+sn (14)

Using equations 13, 14 we can find our desired result.

(L+(n|n))sk = l+sk − l+sn − l+nk + l+nn (15)

but L+(n|n) = L−1(n|n), so:

(L−1(d|d))sk = l+sk − l+sd − l+dk + l+dd

In this equation we replaced node n with d to make it more
general. Now, according to the equation 7, we can obtain the
betweenness of the node k for source-destination pair (s, d):

Bd(d|d) =L−1(d|d) × D(d|d)
(Bd(d|d))sk =(l+sk − l+sd − l+dk + l+dd) × Wk

bskd

Wk
=l+sk − l+sd − l+dk + l+dd

To obtain the total betweenness of node k, we need to consider
the effect of all source-destination pairs.

bk

Wk
=

1
Wk

∑

s

∑

d

bskd =
1

Wk

∑

s

∑

d

bskd + bdks

2

bk

Wk
=

∑

s

∑

d

l+sk − l+sd − l+dk + l+dd + l+dk − l+ds − l+sk + l+ss

2

bk

Wk
=

∑

s

∑

d

l+dd − l+sd − l+ds + l+ss

2

bk

Wk
=

1
2

∑

s

∑

d

(l+ss + l+dd − 2l+sd) =
1
2
τ (16)

τ =
∑

s

∑

d

(l+ss + l+dd − 2l+sd)

To obtain equation 16 we used the fact that Laplacian matrix
(and its Moore-Penrose inverse) is symmetric.
A similar result can be derived for a link of the graph as well.
For a link (i,j), one can write the betweenness of the link based
on the betweenness of its two end nodes:

bij =
1
2
(

wij∑
k wik

bi +
wji∑
k wkj

bj)

=
1
2
(
wij

Wi
τWi +

wji

Wj
τWj)

=
1
2
(wij + wji)τ = wijτ

or equivalently

ηij =
bij

wij
= τ (17)

Equations 16, 17 give exact formulas to measure the general-
ized criticality of a node or a link of a graph. If we consider

the capacity of a link as its weight, then the left hand side of
equation 16 is the same as equation 1.

Observation 3.1: From equations 16 and 17 one can see
that the node/link criticality is independent of the choice of
node/link.

Corollary 3.2: Let T be the average time that a random-
walk is in the system for all source-destination pairs, and B
be the average node betweenness of all nodes. Then:

B = (n − 1)T (18)

Proof: The average time that a random-walk starting at node
s is in the system before reaches to its destination node d is
equal to

Tsd =
∑

s,d

bskd

=
n∑

k=1

(l+sk − l+sd − l+dk + l+dd)Wk

Now, the average time in system considering all possible
source-destination pairs would be

T =
1

n(n − 1)

∑

s,d

Tsd

=
1

n(n − 1)

∑

s,d

n∑

k=1

(l+sk − l+sd − l+dk + l+dd)Wk

=
1

n(n − 1)

n∑

k=1

(Wk

∑

s,d

(l+sk − l+sd − l+dk + l+dd))

=
1

n(n − 1)

n∑

k=1

(Wk × bk

Wk
)

=
1

n(n − 1)

n∑

k=1

bk =
B

n − 1

This is exactly what we want in equation 18.
Corollary 3.3: The normalized betweenness of each node i

of the graph is bi∑ n
k=1 bk

. It can be shown that this quantity is
equal to the stationary probability of that node in a Markov
chain built on the weights of the graph.
Proof: Equation 17 can be used to simplify the normalized
betweenness of a node.

Normalized bi =
bi∑n

k=1 bk

=
1
2τWi

1
2

∑n
k=1 τWk

=
Wk

W
= πi (19)

In these equations: Wk =
∑n

j=1 wij , W =
∑n

i=1

∑n
j=1 wij .

Now we are ready to state the main result of this research.
Let λ be the average input rate at any individual node of the
network, and let the weight of each link be the capacity of the
link (i, j) = l (i.e. wij = cij = c(l)). Further, let xmax be the
average load on the node which has the maximum betweenness

among all the nodes, and consider the capacity of this node
as c∗ . xmax can be approximated by the total average rate
of this node times the average time that a demand is in the
system.

xmax = nλπmaxT

= nλ
bmax∑

i bi
T

= nλ
bmax

nB

B

n − 1

xmax =
λ

n − 1
bmax (20)

To obtain 20 we used corollary 3.2 and 3.3. Hence:

xmax <= c∗

λ

n − 1
bmax <= c∗

λ ≤ n − 1
bmax

c∗

λ ≤ n − 1
maxn∈N η

(21)

λ ≤ n − 1
η

(22)

we used observation 3.1 to get the equation 22 . This result
can be summarized in the following theorem.

Theorem 3.4: To maximize the acceptable input load of a
network, one needs to minimize the node/link criticality of the
network.
This result has many consequences. In this paper we are look-
ing for possible ways to engineer the traffic of the transport
network. Hence, we use theorem 3.4 to design a heuristic
method for routing and flow assignment problem. This is the
subject of the next section.

IV. DESIGN OF A ROBUST ROUTING SCHEME

An application of the analytical results extracted in previous
section is the design of a robust routing scheme which is
required for every core network in order to be able to cope with
unpredicted changes in traffic and topology. In this section we
briefly outline an approach to the design of a robust routing
algorithm.

A. Random Walk Path Criticality Routing (RW-PCR)

In this part our goal is to find a robust routing plan for
the core network that allows the network service provider to
manage the assignment of flows to the paths primarily at the
edge of the core network. To achieve the goal first we need
to identify the important factors affecting the routing plan and
flow assignment. We have already mentioned that these factors
are topology, community of interest (source-destination pairs),
capacity of the links, and traffic matrix.
In order to have a robust routing plan we need to recognize
the effect of link and node failure. References [8], [3], [6]
provide us with useful metrics to measure the sensitivity of
the network to node or link failures. Capacity of a network
is another key issue in flow assignment problem. Clearly the

paths with more capacity are desired since the low capacity
paths are prone to congestion. Hence an intelligent routing
plan should avoid routing the flows onto the low capacity paths
and should request for capacity increases for those paths if
possible. Finally traffic demand directly affects the routing
plan. The traffic demand profile may change from time to
time (e.g. week-day traffic profile). Traffic changes might be
predictable and periodical or chaotic. We need to find a routing
scheme which is robust to the predicted traffic patterns and
unpredicted ones to the extent possible.

B. Link Criticality Index

We need some metrics to estimate the effect of the afore-
mentioned characteristics. Link Criticality is already defined
in equation 2. we chose to have the link betweenness over
”available capacity” as our main metric, and called it Link
Criticality Index (LCI). Indeed the LCI is the same as criti-
cality in 2 when the link weight is chosen to be the available
bandwidth of the link. LCI captures the effects that we would
like to quantify. One can easily see that betweenness centrality
captures the effect of load. The higher the link betweenness,
the more the chance of congestion. On the other hand, the
available capacity has inverse effect on the congestion. In
other words, the more the available capacity, the less the
chance of congestion. In order to capture the effect of source-
destination pairs (community of interest) we use the equation
14 to obtain the betweenness, but the summation is only on the
active source-destination pairs. This approximation makes our
approach away from optimal solution, but still gives a near-
optimal estimation of the paths.
The link criticality index (LCI) could be obtained by having
the betweenness and available capacity of the link.

I(x) = 0 if x > 0 otherwise 0

LCI(i, j) =
bij

cr(i, j)
× 1

I(cr(i, j) − γij)

In above equations I(x) is the indicator function, LCI(i, j)
is the total criticality of the link (i, j), cr(i, j) is the available
capacity of link (i, j), and γ(i, j)) is the present demand on
link (i, j). The indicator function is added in the denominator
to guarantee that if the demand is more than the available
capacity of the link, the demand is not accepted in this link (the
link criticality would be effectively infinite in this situation).
Definition of the link criticality is clearly showing that the
criticality of a link is increasing if more load is carried through
this link.
When the LCI of all the links are known, the criticality of a
path, Path Criticality Index (PCI), will be the defined as the
maximum of the LCI of the links belonging to the path.

PCI(p) = max(LCI(s, i1), LCI(i1, i2), ..., LCI(iq, d))

where p is a nominal path from node s to node d and q is the
order or the number of links of the path. Note that the use of
maximum in calculation of PCI is motivated by equation 21.

C. RW-PCR Algorithm

The basic idea of our routing algorithm is to accommodate
new requests for connections along the paths with low PCI.
The basic idea of the PCR algorithm is as follows. We label
each and every link of the graph with its LCI as the cost
(note that this cost is different than the weight set wij) and
use Dijkstra’s algorithm to obtain the shortest path(s) from
a source s to a destination d using the assigned cost for the
links. When a demand for source-destination pair s−d arrives,
the shortest path obtained in this way would be considered
as a candidate to be assigned to the demand. A simple call-
admission control is applied here by considering a threshold
tr for the criticality of the path. If the PCI is more than this
threshold, then the flow would be considered too risky for the
network and be rejected (blocked), otherwise the path is used
as the route and the demand flow is assigned to this path. The
available bandwidth of all the links on this path is updated
and the LCI’s are also modified accordingly. These steps are
shown in flowchart of Fig. 1.
To approximate the time complexity of the algorithm, we

Fig. 1. Flowchart of RW-PCR Algorithm

note that the running time to get the Moore-Penrose inverse
is O(mn

1
2) [7], where m and n are the number of links and

nodes in the graph respectively. The main part of the RW-
PCR can be obtained in O(nlog(n)) as it is just a shortest
path algorithm with link costs. Hence the complexity of the
algorithm would be O(mn

3
2 log(n)).

V. EVALUATION

In order to investigate the effectiveness of our RW-PCR
algorithm, we ran a set of simulations on the network of Fig.
2. The numbers on some of the links show the bandwidth
of the link, and the bandwidth is assumed to be 100 units
for all the links whose bandwidth are not shown in Fig.
2. We apply RW-PCR to create LSPs (Label Switch Path)
assuming that MPLS is used in the network to create the
paths. In the first experiment the requests for LSP arrive with
Poisson distribution and stay for ever (no departures). In our
tests the bandwidth requests for paths (LSPs) are taken to be

Fig. 2. The Test Network

uniformly distributed between 1 to 3 units. In Fig. 3 we show
the number of rejected calls for this case and compare the
performance to that of original PCR, shortest path (SP), and
widest shortest path (WSP). The test is performed 20 times and
each time with 2000 path requests. We measured the number
of blocked requests. In another experiment we examined the

Fig. 3. Static Case: Result of Applying PCR, Random-Walk PCR, SP, and
WSP to the Network under Test

behavior of the algorithms in the presence of dynamic traffic.
Fig. 4 shows the number of the path requests rejected in 20
experiments for the following scenario. Path requests arrive
between each source-destination point (which is chosen at
random) according to a Poisson process with an average rate
λ, and the holding times are exponentially distributed with
mean µ. We set λ

µ = 1800 in our experiments. We generate
7000 requests and measure the rejections or blocking for each
one of the algorithms. The results are illustrated in Fig. 4.
In both static and dynamic cases, one can easily see that the
RW-PCR has the best performance, the original PCR is in
second place and WSP and SP in next positions.

Fig. 4. Dynamic Case: Result of Applying PCR, Random-Walk PCR, SP,
and WSP to the Network under Test

VI. CONCLUSION

In this paper we analyzed the robustness of a network to
the unexpected changes in different parameters and proposed
an approach for path setup and routing of flows in transport
networks.
The essence of our work is based on determining a criticality
index for each link/path showing how critical that link/path is
to the changes in the topology and traffic demand of a network.
We gave an analytical expression for the link and node
criticality, and then proposed a heuristic for flow assignment
based on it. Our algorithm identifies the least critical paths
for allocation of new traffic flow requests. The results from
applying the proposed algorithm to networks that are difficult
to handle by existing approaches are very encouraging.
There are many issues that remain to be investigated in the
new approach. We need to investigate more on the effect of the
threshold parameters. As another research challenge we need
to look into the back up paths and the efficient algorithms to
find them again with the goal of having less critical paths and
back up paths.

REFERENCES

[1] A. Tizghadam and A. Leon-Garcia. A robust routing plan to optimize
throughput in core networks. ITC20, Elsvier, pages 117–128, 2007.

[2] A. H. Dekker and B. D. Colbert. Network robustness and graph topology.
Australasian Computer Science Conference, 26:359–368, Jan. 2004.

[3] L. C. Freeman. Centrality in networks: I. conceptual clarification. Social
Networks, (1):215–239, 1978/79.

[4] M. S. Kodialam and et al. Maximum throughput routing of traffic in the
hose model. INFOCOM, pages 1217–1225, 2006.

[5] N. G. Duffield and et al. A flexible model for resource management in
virtual private network. ACM SIGCOMM, Aug. 1999.

[6] M. E. J. Newman. A measure of betweenness centrality based on random
walks. arXiv cond-mat/0309045., 2003.

[7] D. S. Bernstein. Matrix Mathematics. Pronston University Press, 2005.
[8] L. S. P. Borgatti. Centrality and network flow. Social Networks, 27(1):55–

71, 2005.

