
LSP and Back up Path Setup in MPLS Networks
Based on Path Criticality Index

Ali Tizghadam, Alberto Leon-Garcia
Dept. of Electrical and Computer Engineering

University of Toronto
40 St. George St., Toronto, ON, M5S 2E4, Canada
{ali.tizghadam, alberto.leongarcia}@utoronto.ca

Abstract— This paper reports on a promising approach for
solving problems found when Multi Protocol Label Switching
(MPLS), soon to be a dominant protocol, is used in core network
systems. Difficulty is found largely in LSP routing and traffic
engineering approaches. While there are a number of online and
offline proposals to establish the LSPs but no one is a complete
solution considering all the aspects of routing plan from traffic
engineering point of view. Our research takes a viewpoint
inspired by the concept of “between-ness” from graph theory,
from which we introduce notions of link and path criticality
indexes. The basis of the work is finding the most critical paths
which are mathematically defined based on the algebra of
routing. We try to avoid running aggregated flows or
commodities on the most critical paths for the short term, and
plan increasing the bandwidth of the critical paths for future if
possible. This approach shows promise in simulations have run
on benchmark networks available from research literature.

Keywords- Flow Assignment; Graph Theory; MPLS; Quality of
Service (QoS); Routing; Traffic Engineering

I. INTRODUCTION
The infrastructure of the traditional service provider is

undergoing a fundamental transition from a telephone-service-
focused circuit-switching architecture to a multi-service packet-
switching architecture based on Internet Protocol (IP) and
enhancements that enable Quality of Service and traffic
engineering. IP transport networks that can transfer packets
according to differentiated levels of QoS, availability and price
are a key element to generating revenue through a rich offering
of services and applications.

 In this shared infrastructure MPLS has a key role. In
addition to providing a transparent intermediate layer to hide
the complexity of the different data layer technologies from the
higher layers, MPLS provides a flexible routing mechanism by
assigning traffic flows to the end-to-end label switched paths
(LSP). MPLS can be used to engineer the traffic among
different paths of the network by intelligent matching of the
path capacities with flows to avoid network congestion.

 An abundance of work has been done in the research
community and industry to address the routing and flow
assignment problem and traffic engineering issues in MPLS

networks [1], [2], [3]. The main goal of the research reported in
this paper is to look at the problem from another standpoint.
Motivated by the definition of “between-ness” from graph
theory [4], [5] we introduce the notion of link and path
criticality indexes. The essence of the approach is to identify
the most critical paths to avoid running the flows on these paths
and try to set up LSPs and back up LSPs on less critical paths
in the short-term as well as to plan to increase the bandwidth of
the paths with high criticality index when possible. Our
simulations on some benchmark networks discussed in the
research literature show that the approach is promising.

 The paper organized as follows. Section II reviews the
state of the art in MPLS routing and flow assignment problems.
We describe the issues with existing methods and the
associated research challenges. In section III, we introduce the
mathematics and notions of algebraic routing based on [6] that
allow us, in section IV, propose our path-criticality index-based
routing scheme. Section V provides an extension to compute
maximally disjoint back up paths. Section VI provides
validation for our proposal. We assess our proposed method on
some benchmark networks and present encouraging results.
Finally we conclude with a discussion of open issues and future
work.

II. CURRENT STATE OF THE ART

The most popular algorithm used in the research
community for routing LSPs is the shortest path routing (SP).
In this method the path with the least total number of links
between source and destination (or the one with minimum
overall weight when the links are weighted) is chosen. If there
is more than one shortest path between source and destination,
the algorithm is flexible, and one can choose a shortest path at
random. Typically, the LSP setup algorithm keeps information
about the residual capacity of each link, and when a new
request comes, only the links with enough residual capacity are
considered by the shortest path algorithm. While the shortest
path algorithm enjoys the benefit of simplicity, it can cause
major problems to the network due to the lack of any load
balancing mechanism. Some links might become saturated
while some remain underutilized.

 A variant of shortest path algorithm called widest
shortest path (WSP) is introduced in [7]. The authors select the
path with greater capacity in case where there is more than one
shortest path between source and destination. WSP improves
the performance of the shortest path algorithm but the
possibility of having bottlenecks remains. Furthermore both SP
and WSP do not impose any form of admission control. These
algorithms always accept flows if a path with sufficient
capacity exists and this may block a large number of future
flows. We will shed more light on this problem when we
describe the benchmark topology of Fig. 2.

 Ref. [1] introduced the minimum interference routing
algorithm (MIRA). In contrast to the prior methods, MIRA
considers the effect of source-destination pairs on the routing
plan. A number (max-flow) is assigned to every source-
destination pair),(DS , showing the maximum amount of
traffic that can be sent from S to D through the network.
MIRA operates based on the notion that running traffic on
some of the links may decrease the max-flow of),(DS . This
process is called “interference”. MIRA tries to find the links
causing interference for a specific source-destination pair and
avoid using them in the LSP construction phase. Indeed MIRA
tries to build the paths in a way to minimize the interference.
Introducing the notion of “interference” is significant, but some
problems are still present with the algorithm introduced in [1].
MIRA concentrates on the effect of interference on just one
source-destination pair, but there are situations where some
links can cause bottleneck on a cluster of node pairs. Ref. [3]
investigates three benchmark networks: parking-lot (Fig. 2),
concentrator (Fig. 3) and distributor and shows that MIRA is
unable to respond to the network flow requests correctly and
causes blocking for a large number of incoming flows in these
networks. Another issue with MIRA is its computational
complexity in comparison to shortest path and widest shortest
path algorithms. Finally MIRA is designed to provide
bandwidth guaranteed paths. It does not account for any other
QoS constraint in the network.

 Profile-based routing (PBR) is another proposal for routing
of bandwidth guaranteed flows in MPLS networks [3]. PBR
assumes that the source-destination pair and the traffic-profile
between them are known. According to PBR, a traffic profile is
the aggregate bandwidth demand for a specific traffic class
between a source-destination pair. PBR has two phases. In the
offline phase a multicommodity flow assignment problem (an
optimization problem) is solved with the goal of routing as
much commodity as possible. Each profile is considered as a
separate commodity. The result of this phase is used to assign
the capacity of the links for each commodity. The online part
will use these pre-allocated capacities to route the flows per
class. In this phase PBR simply uses the shortest path algorithm
and because of this the computational complexity of the online
phase in PBR is less than MIRA and comparable with SP and
WSP. But PBR also has some problems. Like MIRA, PBR just
cares about bandwidth and does not consider multi constraint

QoS problem. Furthermore in [8] the authors introduce a
network called “Rainbow Topology” and show that the
performance of PBR in this network is much worse than MIRA
and WSP. The main reason behind this is that PBR relies on the
results of the offline part which is not always correct.

III. ALGEBRA FOR ROUTING
In this section we introduce some mathematical notions that

are used in the rest of the paper. The methodology and notions
that are being used in this section are mostly based on ref. [6].
We model a network as a directed graph),(EVG . V is the set
of nodes and E is the set of links or edges of the network. A
walk in a network is a sequence of nodes 011... vvvv nn − such

that),(1−ii vv is a network link for ni ≤≤1 and a path is a
walk where all nodes are distinct. The order of a walk is the
number of links it contains. A path of order zero is called
trivial. Given walks P and Q where the last node of P is the
first node ofQ , we denote their concatenations by QoP . For
the special case where uv is a path with only two nodes, we
say that Qouv is the extension of walk Q to node u , or that

Qouv is the extension of walk Q to link),(vu . An algebra
for routing is defined as follows: An algebra for routing is an
ordered septet),,,,,,(fLW ⊕!≤ φ comprising:

• A set of weights W ;

• A set of labels L ;

• A set of signatures ! ;

• A total order ≤ on W ; (the relation ba ! on W is
defined such that ba ≤ and ba ≠)

• A binary operation ⊕ that maps pairs with a label and a
signature into a signature;

• A function f that maps signatures into weights;

• The special signature φ ;

Every algebra for routing has at least these two following
properties:

• Absorption For all Ll ∈ , φφ =⊕l ;

• Maximality For all }{φ−!∈a ,)()(φfaf !

 An algebra for routing is finite if ! is finite, in which
case the set of labels and weights can also be finite. The links
of a network are assigned labels from the set L , with

)(lL denoting the label of link l . The walks of the network are
assigned signatures from the set! , with)(Ps denoting the

signature of the walk P . The signature of walk P is obtained
from the labels of its constituent links through composition
with operation ⊕ . The special signature φ is reserved for
unusable walks, which are those that cannot be used for packet
transport. Any walk with signature different from φ is said to
be usable. The mapping f from signatures to the totally
ordered set of weights W results in an assignment of weights
to walks with the weight of walk P being given by))((Psf .
This establishes a ranking among walks (in our case paths).
The lower the weight of a walk, according to the order ≤ , the
“better.” The “maximality” property implies that any usable
walk is “better” than an unusable one.

 An optimal path from u to d is a usable path from u to
d of minimum weight, that is, whose weight is less than or
equal, according to the order ≤ , to that of any walk from u to
d . In other words the optimal path is “better” or “as good as”
any walk from u to d . We will use the routing algebra in the
next section to develop the idea of less criticality based routing.

IV. PATH CRITICALITY INDEX BASED ROUTING (PCIBR)
 The routing and flow allocation problem in core networks
can be formulated as an optimization problem [9], [1]. In this
paper our goal is to find a robust routing plan for the core
network that allows the network service provider to manage
the assignment of flows to the paths primarily at the edge of
the core network. By robustness we mean resiliency against
failures, predicted changes in traffic demands and source-
destination pairs. To achieve the goal first we need to identify
the important factors affecting the routing plan and flow
assignment. One can summarize these factors as:

1. Network topology and connectivity.
2. source-destination pairs.
3. Capacity of the links.
4. Traffic Matrix.

 In order to have a robust routing plan we need to recognize
the effect of link and node topology on network connectivity.
Connectivity is a well studied subject in graph theory [4], [5],
[10] allowing us to define some useful metrics to measure the
sensitivity of the network to node or link failures. Capacity of
a network is another key issue in flow assignment problem.
Clearly the paths with more capacity are desired since the low
capacity paths are prone to congestion. Hence an intelligent
routing plan should avoid routing the flows onto the low
capacity paths and should request for capacity increases for
those paths if possible. Finally traffic demand directly affects
the routing plan. The traffic demand profile or source-
destination pairs may change from time to time (e.g. week-
day traffic profile). Traffic changes might be predictable and
periodical or chaotic. We assume in this paper that the demand
matrix is stochastic but well-behaved and do not consider the
case of catastrophes.

We now introduce two metrics to estimate the effect of the
aforementioned characteristics: link criticality index (LCI) and
path criticality index (PCI) which are built based on the theory
of graphs [4], [5] and the algebra for routing. We will
subsequently propose our routing algorithm based on PCI.

 A. Link Criticality Index
Freeman [4] introduced a useful measure in graph theory

called “between-ness centrality.” Suppose that we are
measuring the centrality of node k. The between-ness
centrality is defined as the share of times a node i needs a
node k in order to reach a node j via the shortest path.

Specifically, if ijg is the number of geodesic paths (shortest

paths) from i to j , and ikjg is the number of these geodesics

that pass through node k , then the between-ness centrality of

node k is given by: kji
g
g

ji ij

ikj ≠≠!
,

We can modify the definition of between-ness centrality to
introduce a useful measure for criticality of links in a network.
Suppose sdp is the number of paths between source-

destination pair),(ds and sldp is the number of paths between

),(ds containing the specific link l . Inspired by the definition
of between-ness one can quantify the effect of network
topology and source-destination pairs by dividing

sd

sld

p
p over all

source-destination pairs. This gives an indication of how
critical the link l is in the network topology. This criticality of
link l is then:

!=
ds sd

sld
top p

p
lLCI

,
)((1-a)

The effect of link capacity and average demand for the
source-destination),(ds (provided by the traffic matrix) is
accounted for in the residual bandwidth of the link. The
residual bandwidth of link l is the capacity available after
considering the flows already traversing the link, and is
denoted by lc . Obviously the link criticality has an inverse
relation with available bandwidth, and so we can account for
residual bandwidth by multiplying equation (1-a) by 1/ lc .

The ability of a link to handle a given offered volume of
data flow or a given level of QoS also has to be reflected in the
link criticality. For example, suppose a new request offers flow

lγ to the link. Let the indicator function)(xI and the
modified link criticality be:

001)(otherwisexifxI "= (1-b)

)(
11)(

lll
trc cIc

lLCI
γ−

×= (1-c)

In general, we can consider the effect of QoS constraints (if
any) by defining link criticality index (LCI) as:

)(1)(0
,

lw
cp

plLCI
lds sd

sld ××=! (1)

The indicator function can be incorporated in)(0 lw . The

term)(0 lw is the overall QoS weight of the link that is used in
cases where we want to investigate multi-constraint routing
(which is the subject of our next step of research and out of the
scope of this paper). One can clearly see the effect of topology
and connectivity)(

sd

sld

p
p as well as capacity and traffic matrix

)(lc in the definition of LCI .

With reference to Algebraic Routing, we can say that the
labels are given by the Link Criticality Indexes defined here.

B. Path Criticality Index (PCI)
We are now ready to define the path criticality index (PCI).

In this section we assume that there are no constraints involved
other that bandwidth, so 1)(0 =lw assuming the link capacity
is more than the demand. First we define the signature on each
path by having the labels be defined to be)(lLCI for every
link. We define the binary operation ⊕ as the regular sum (+)
of two real numbers. By a recursive operation of ⊕ over the
constituent links of the path we can conclude that the signature
of a path between a source-destination pair),(ds consisting of
the links),...,,(21 nlll is given as follows. Considering

nllll ,....,,, 321 as the constituent links of the path P we build

recursive paths iP by starting from 11 lP = and then the other
paths by concatenation of the links:

nPiforPslLPsoPlP iiiiii ==⊕=#= −− ,...,2,1)()()(11

Recursive application of this formula will result in:
nn LLLlLPs ⊕⊕⊕⊕= −121)()(

By replacing)()(ii lLCIlL = and we have that the

signature of the path P is:

 !!
==

==
n

i
i

n

i
i lLCIlLPs

11
)()()((1-1)

Now we define the function f in the algebraic routing plan
that maps the signatures to the path weights by the following
formula (P is the order of path P assuming P is non-trivial):

P
PsPsfdsPCI)())((),(== (2)

This function satisfies the conditions required for f to be a
mapping function in our algebraic routing to map signatures to
weights. Considering the definition of)(Ps in (1-1) and
substituting the result of signature)(Ps in (2) one can see that

),(dsPCI is the average of)(ilLCI of the constituent links of
the path P :

n

lLCI

P
PsdsPCI

n

i
n!

=== 1

)(
)(),((2-1)

Where nP = is the order of path n.

More generally, the path criticality index is a function of
link criticality indexes 1l to nl :

))(),...,(),((),(21 nlLCIlLCIlLCIfdsPCI = (3)

 The function has to meet the requirements of the algebra for
routing defined in section III. Finding the best form for f is
one of our ongoing research topics, but the average function
(2) which is introduced here works well for all of the
benchmark networks that we have examined.

C. Path Criticality Index Based Routing Algorithm (PCIBR)
 The basic idea of our routing algorithm is to accommodate
new requests for connections along LSPs that have a low PCI.
This requires that we find the link criticality indexes. To do
this, we need to obtain all possible label switched paths for
each source-destination pair. This is not feasible since the
number of paths grows rapidly with the number of network
nodes and links. Although the shortest path is not necessarily
the path with the lowest PCI, one can expect that the path or
paths with lowest PCI are among the k-shortest paths of the
network. Hence we use the k-shortest path method proposed
by Eppstein with a modification to avoid loops [11].
 Our algorithm begins with a predefined value of k , but the
value may be increased during the course of running the
routing algorithm if the desired number of paths to route the
traffic cannot be found. We use thresholds 1tr (the default

value is infinity in case the threshold is not defined) and 2tr
(the default value is zero in case the threshold is not defined)
for PCI. The first threshold defines the lower confidence
boundary for the path criticality index. All the paths with path
criticality index less than 1tr are considered eligible to route
traffic. On the other hand all the paths with the criticality
index larger than 2tr are considered too risky and may be
identified to the (offline) core network management system for
increased capacity assignment. The paths with criticality index

in between the thresholds will share traffic based on their
criticality index as long as they remain within the boundaries.
 We note that when a path accepts traffic, the residual
capacity of its links will decrease for the duration of the traffic
flow. This means that the criticality index of this path must be
increased. In other words a constant monitoring of the PCI for
all the paths is necessary and in fact it is the main building
block of our algorithm.

PCIBR:
 Input: A network or more formally a graph),(ELG , a set of
capacities (residual capacities if we are not in the initial stage), a set of
source-destination pairs),(ds , and traffic matrix D for these source-
destination pairs.
 Output: A set of LSPs between all source-destination pairs meeting
the demand requirements according to the traffic matrix.

Algorithm: (By default we are in idle state)

1. Go to the initial state, Select k , 1tr and 2tr (use default values of

1tr and 2tr if we are not concerned about the thresholds).
2. Compute the k-shortest paths for all source-destination pairs to
meet the demand requirements and measure their PCI .
3. If a path with

1trPCI ≤ exists, choose that path to route the
demand (in case there are more than one path meeting the threshold
requirements then choose the one with lowest PCI).
a. Adjust residual capacities
b. Adjust path criticality indexes accordingly
4. If there are paths with

2trPCI ≥ send a message to the core
management system requesting additional bandwidth for these paths.
5. If there is no path satisfying the condition of step 3 then increase
k by one and go to step 2.
6. In the (very rare) case that no path with criticality index less than

1tr can be found (this happens when k keeps increasing but no

satisfactory path results) then use the paths with 21 trPCItr ≤≤ in a
round robin or random fashion.

The most time-consuming part of the algorithm is the k-
shortest path calculation. According to [11] the complexity of
the proposed k-shortest path algorithm is)log(knnmO ++
where, m is the number of links and n is the number of the
nodes. The algorithm is polynomial time and as a result
PCIBR is also a polynomial time algorithm if we set a
maximum value for k such as maxk . The complexity of the
other parts of the algorithm (without k-shortest path) is

)(2NO . The problem in this case is that we might not get the

desired path from the algorithm by maxk iteration. On the other
hand if we do not place any upper bound for k then we can
find a desired path (if one exists) but not necessarily in
polynomial time. This comes from the fact that the problem
we are trying to solve by nature is an NP-Complete one [12].
In MIRA the time complexity without considering the max-
flow algorithm is also)(2NO . But if we compare the time
complexity of the Tarjan max-flow method [12] that is being
used in MIRA ())log((nmnO ×× where n and m are node and

link dimensions) with the Eppstein k-shortest path method
[11] used in our algorithm ()log(knnmO +×+) we notice
that the complexity of the k-shortest path algorithm is less than
max-flow one.

V. BACK UP PATH
 To set up the back up path for primary LSP, a greedy
algorithm is to select the second least critical path as the back
up path, however in many cases there are totally disjoint paths
with higher path criticality but more suitable candidate for
being the back up path. This simple example is clearly
demonstrating the idea:

Figure 1

 In Fig. 1 the primary path from S0 to D0 is P1with PCI=1.
A greedy algorithm will choose P2 as the back up path since
its path criticality is less than P3, but P1 and P2 are sharing
link L while P3 is totally link-disjoint with P1, therefore P3 is
a better choice for being back up path of P1. Hence the best
approach to find the back up path is to first examine the sub-
graph obtained by removing all the constituent links of path P1
and run PCIBR to obtain the least critical path from S0 to D0
if any, otherwise the next phase is to obtain the second least
critical path from original graph.

VI. EXPERIMENTAL RESULTS (PROOF OF CONCEPT)
 The PCIBR algorithm has been implemented with C++ and
tested for many network configurations. Among these we have
chosen three benchmark networks to show that Path Criticality
Index Routing is an effective method to find the best LSP
routing plan for networks that have been found difficult to
handle by previous proposals. We have also applied our
algorithm on the network used in [1] to show its effectiveness
in more realistic networks.

A. Parking-Lot Topology
 The parking-lot network topology, shown in Fig. 2, is an
interesting example. If one unit of bandwidth is requested to
be sent from 0S to 0D , all the previous routing approaches
such as SP, WSP and MIRA will choose the straight path and

S0 D0

A

B

P3

P1

P2

L

PCI(P1) = 1
PCI(P2) = 3
PCI(P3) = 6

run the flow resulting in the blocking of demands of one unit
come from any other source such as iS to the destination

iD [3]. A wiser decision is to block the first request from 0S

to 0D so the network will be able to route the other n source-
destination pair requests.

Figure 2. Parking Lot Network

To investigate the behavior of our PCIBR algorithm we
suppose n = 3 and we have just four source-destinations. In
Table 1 we summarized the results of calculating the path
criticality index based on the formulas (1) and (2).

Path Path Criticality Index (PCI)
S0 –> D0 1.490909
S1 –> D1 1.272727
S2 –> D2 1.272727
S3 –> D3 1.272727

Table 1. Parking Lot Network n=3

In this experiment we assumed that the commodities could
be sent just from sources to destinations with the same index.
One can see that the criticality index of path)0,0(DS is more
than the others. So by defining appropriate thresholds the
proposed algorithm can be made to block the request from 0S .

In more general case where different combinations of
source-destination pairs are possible and the number of nodes
is much more than 3, our experiment results show that the
criticality of the path 00 DS → is much higher than the
other combinations. In Table 1.1 the results of our experiment
with n=10 is reflected and clearly shows that 00 DS → is
the most critical path. .

Path Path Criticality Index (PCI)
S0-D0 27.590902
S1-D1 11.333333
S2-D2 14.090907
S3-D3 15.909087
S4-D4 17.121209
S5-D5 17.727271
S6-D6 17.727271
S7-D7 17.121209
S8-D8 15.909087
S9-D9 14.090907

S10-D10 11.333333
 Table 1.1 Parking Lot Network with different S-D combinations n=10

In general case of the parking-lot topology with n nodes
the same approach can be followed and again the proposed
routing plan will choose the straight path 00 DS → as the
most critical one.

B. Concentrator Topology
 In the concentrator topology, shown in Fig. 3, MIRA, SP
and WSP all will have trouble with a request for transporting a
flow of n units from 0S to D . They will all choose the shortest
path (S0-C-D) which will then leave only one unit of
bandwidth for link C-D. In other words only one more request
(with 1 unit of bandwidth) can be concurrently handled.

Figure. 3. Concentrator Network

Table 2 shows the result of our tests on the concentrator
topology. The path (S0-C-D) (or the path with two links from

0S to D) has PCI much more than the one with three links.
So the PCIBR algorithm will choose the longer path (the path
with three links) to save the bandwidth of link C-D for other
source-destination pairs.

In general case of the Concentrator network with n nodes
the same approach can be followed and again the proposed
routing will choose the path DS →0 (with three links) as the
least critical one.

Path Path Criticality Index (PCI)
S0 –> D (3links) 0.166667
S0 –> D (2links) 0.520833

S1 –> D 0.937500
S2 –> D 0.937500
S3 –> D 0.937500

Table 2. Concentrator Network n=3

C. Rainbow Topology
Fig. 4 shows the Rainbow network. Ref. [8] uses this topology
to show the shortcomings of profile-based routing (PBR). The
authors in [8] show that the performance of PBR in Rainbow
network is much worse than MIRA, WSP and SP. They also
show that PBR will be blocked after accepting 2 units of
bandwidth for)1,1(DS and 2 units for)2,2(DS .
 We conducted our experiment in two phases to show the
details of the PCIBR algorithm. In first two columns of Table
3, the PCI for different paths between source-destination pair

)1,1(DS is shown. One can observe that the longest path is
the less critical one; hence routing will allocate two units of
bandwidth.

1

1

n

n n

n

n+1

C

S0

S1

Sn

D

 Figure 4. Rainbow Network

 In the second step, the source-destination pair

)2,2(DS will ask for routing of two units of bandwidth. At
this time the residual capacities have changed and the new
PCIs have to be calculated.
 The results are in columns 3 and 4 of Table 3. Again the
longest path is still the less critical one and the best candidate
for routing the requested flow.

Table 3. Rainbow Network. Two phases of flow assignment

D. Simulation Results for KL-Topology
 We ran a set of simulations on the network of Ref. [1] that
we refer to as the KL-topology (Fig. 5-a). We assume the
bandwidth of the thin links is 1200 units and that the thick
links have 4800 units of bandwidth. In order to compare the
results with [1] we implemented exactly the same simulations
as in [1].
 In the first experiment the requests for bandwidth (which is
our main QoS measure in these simulations) arrive with
Poisson distribution and stay for ever (no departures). In our
tests the bandwidth requests for LSP setups are taken to be
uniformly distributed between 1 and 3 units.
In Fig. 5-b we show the number of rejected calls for the KL-
topology and we compare the performance to that of shortest
path, widest shortest path and PCI (with initial value

1=k and possible subsequent increments based on PCIBR).
We measured the number of blocked requests for LSP setup
from 1S to 1D . As one can see after about 1200 trials the SP
algorithm starts to experience blocking while the PCI-based
algorithm can adapt itself and still accept bandwidth requests

Figure 5. Network Topology from [1] (5-a) KL Network

without significant blockage. We observed that the PCIBR
begins increasing the value k when the knee in the curve is
reached.

(5-b) Static case, blockage

 In a second example we assessed the path acceptance level
of the algorithms. At first we ran 5000 attempted LSP setups
and counted the number of unsuccessful attempts. We
conducted 20 trials and in each one counted the number of
rejected paths (out of 5000). The results for three algorithms
SP, WSP and our PCIBR are compared in Fig. 5-c. We note
that the results for PCIBR are very close to those of MIRA in
[1]. Thus PCIBR shows the same effectiveness as MIRA
while maintaining good performance on benchmark networks
where MIRA shows major blocking.

(5-c) Static, Path acceptance

 In the last experiment we examined the behavior of the
algorithms in the presence of dynamic traffic. Fig. 5-d shows
the proportion of the LSP requests rejected in 20 experiments
for the following scenario. LSP requests arrive between each
source-destination point according to a Poisson process with
an average rate λ , and the holding times are exponentially

Path (PCI) Path (PCI)
S1 –> D1
(6links) 0.166667 S2 –> D2

(6links) 0.250000

S1 –> D1
(5links) 0.420000 S2 –> D2

(5links) 0.420000

S1 –> D1
(4links) 0.425000 S2 –> D2

(4links) 0.425000

S1 –> D1
(3links) 0.433333 S2 –> D2

(3links) 0.433333

S1 –> D1
(2links) 0.450000 S2 –> D2

(2links) 0.450000

S1

S2

D1

D2

2

2

1

1
1

1 1

1

1

1 1

1

4

4 4 4

4

SP
WSP
PCI

distributed with mean µ
1 . We assume 150=µ

λ in our

experiments. In this scenario, we scale down the bandwidth of
each link in the KL-network with the ratio of 10 to have
bandwidths of 120 and 480 units for thin and thick links
respectively. Next we generate about 1,000,000 requests for
path setup and measure the rejection ratio for each one of the
algorithms. The results are shown in Fig. 5-d and again the
results are very close to MIRA.

(5-d) Dynamic

VII. CONCLUDING REMARKS
 In this paper we have proposed a new approach for path
setup and routing of flows in MPLS networks. The most
important problem with the existing approaches is that each
one of them solves a part of the overall problem but fails with
other parts. We have tried to consider different aspects of the
network (i.e. topology, capacity, and demand) and quantified
these aspects using measures inspired by the mathematics of
graphs. The essence of our work is based on determine a path
criticality index for each path showing how critical that path is
to the changes in the topology and traffic demand of a network.
Our algorithm identifies the least critical paths for allocation
of new traffic flow requests.
 The results from applying the proposed algorithm to
networks that are difficult to handle by existing approaches are
very encouraging. These results confirm the validity of the
notion of path criticality. The simulation results show that
PCIBR matches the performance of MIRA in typical networks.
We also showed that the complexity of PCIBR relative to
MIRA shows improvement.
 However there are many issues that remain to be
investigated in the new approach. We need to investigate
more on the effect of the threshold parameters. As we have
seen in equation (3) the PCI is a function of link criticality
indexes and in our first algorithm we used “average function”
to obtain PCI but more elaboration is necessary. We need to
add QoS constraints to the network and assess the behavior of
our approach at the presence of different QoS constraints and
modify it to accommodate all the situations if necessary.

REFERENCES
[1] K. Kar, M. Kodialam, and T. V. Lakshman, “Minimum Interference

Routing of Bandwidth Guaranteed Tunnels with MPLS Traffic
Engineering Applications,” IEEE Journal on Selected Areas in
Communications, Vol. 18, No. 12, Dec. 2000, pp. 2566-2579.

[2] D. O. Awduche, L. Berger, D. Gan, T. Li, G. Swallow, and V.
Srinivasan, “Extensions to RSVP for LSP tunnels,” Internet Draft draf-
ietf-mpls-rsvp-lsp-tunnel-04.txt, Sep. 1999.

[3] S. Suri, M. Waldvogel, and P. R. Warkhede, “Profile-Based Routing: A
New Framework for MPLS Traffic Engineering,” In Quality of Future
Internet Services, Lecture Notes in Computer Science 2156, Springle
Verlag, Sep. 2001.

[4] L. C. Freeman, “Centrality in Networks: I. Conceptual Clarification,”
Social Netwoks, No. 1, 1978/79 ,pp. 215-239.

[5] S. P. Borgatti, “Centrality and Network Flow,” Social Networks, Vol.
27, No. 1, 2005, pp. 55-71.

[6] J. L. Sobrino, “An Algebraic Theory of Dynamic Network Routing,” in
IEEE/ACM Transactions on Networks, Vol. 13, No. 5, October 2005,
pp. 1160-1173

[7] R. Guerin, A. Orda, and D. Williams, ”QoS routing mechanisms and
OSPF extensions,” In Proceedings of 2nd Global Internet
Miniconference, Nov. 1997.

[8] S. Yilmaz, I Matta, “On the Scalability-Performance Tradeoffs in MPLS
and IP Routing,” Proceedings of SPIE ITCOM May 2002.

[9] T. Ott, T. Bogovic, T. Carpenter, K. R. Krishnan, and D. Shallcross,
“Algorithms for Flow Allocation for Multi Protocol Label Switching,”
MPLS International Conference, Oct. 2000.

[10] A. H. Dekker, B. D. Colbert, “Network Robustness and Graph
Topology,” In Proceedings of 27th Australasian Computer Science
Conference, Vol. 26, Jan 2004, pp. 359-368.

[11] D. Eppstein, “Finding the k Shortest Paths,” Society for Industrial and
Applied Mathematics (SIAM) Journal of Computing, Vol. 28, No. 2,
1998, pp. 652-673.

[12] R. K. Ahuja, T. L. Magnanti, J. B. Orlin “Network Flows:
Theory, Algorithms, and Applications”, Prentice Hall, 1993.

.

SP
WSP
PCI

