
LSP and Back up Path Setup in MPLS Networks 
Based on Path Criticality Index 

Ali Tizghadam, Alberto Leon-Garcia 
Dept. of Electrical and Computer Engineering 

University of Toronto 
40 St. George St., Toronto, ON, M5S 2E4, Canada 
{ali.tizghadam, alberto.leongarcia}@utoronto.ca 

 
 

Abstract— This paper reports on a promising approach for 
solving problems found when Multi Protocol Label Switching 
(MPLS), soon to be a dominant protocol, is used in core network 
systems. Difficulty is found largely in LSP routing and traffic 
engineering approaches. While there are a number of online and 
offline proposals to establish the LSPs but no one is a complete 
solution considering all the aspects of routing plan from traffic 
engineering point of view. Our research takes a viewpoint 
inspired by the concept of “between-ness” from graph theory, 
from which we introduce notions of link and path criticality 
indexes. The basis of the work is finding the most critical paths 
which are mathematically defined based on the algebra of 
routing. We try to avoid running aggregated flows or 
commodities on the most critical paths for the short term, and 
plan increasing the bandwidth of the critical paths for future if 
possible.  This approach shows promise in simulations have run 
on benchmark networks available from research literature.  

Keywords- Flow Assignment; Graph Theory; MPLS; Quality of 
Service (QoS); Routing; Traffic Engineering 

I.  INTRODUCTION 
The infrastructure of the traditional service provider is 

undergoing a fundamental transition from a telephone-service-
focused circuit-switching architecture to a multi-service packet-
switching architecture based on Internet Protocol (IP) and 
enhancements that enable Quality of Service and traffic 
engineering. IP transport networks that can transfer packets 
according to differentiated levels of QoS, availability and price 
are a key element to generating revenue through a rich offering 
of services and applications.  

    In this shared infrastructure MPLS has a key role. In 
addition to providing a transparent intermediate layer to hide 
the complexity of the different data layer technologies from the 
higher layers, MPLS provides a flexible routing mechanism by 
assigning traffic flows to the end-to-end label switched paths 
(LSP).  MPLS can be used to engineer the traffic among 
different paths of the network by intelligent matching of the 
path capacities with flows to avoid network congestion. 

    An abundance of work has been done in the research 
community and industry to address the routing and flow 
assignment problem and traffic engineering issues in MPLS 

networks [1], [2], [3]. The main goal of the research reported in 
this paper is to look at the problem from another standpoint. 
Motivated by the definition of “between-ness” from graph 
theory [4], [5] we introduce the notion of link and path 
criticality indexes. The essence of the approach is to identify 
the most critical paths to avoid running the flows on these paths 
and try to set up LSPs and back up LSPs on less critical paths 
in the short-term as well as to plan to increase the bandwidth of 
the paths with high criticality index when possible. Our 
simulations on some benchmark networks discussed in the 
research literature show that the approach is promising. 

 The paper organized as follows. Section II reviews the 
state of the art in MPLS routing and flow assignment problems. 
We describe the issues with existing methods and the 
associated research challenges. In section III, we introduce the 
mathematics and notions of algebraic routing based on [6] that 
allow us, in section IV, propose our path-criticality index-based 
routing scheme. Section V provides an extension to compute 
maximally disjoint back up paths. Section VI provides 
validation for our proposal. We assess our proposed method on 
some benchmark networks and present encouraging results. 
Finally we conclude with a discussion of open issues and future 
work. 

II. CURRENT STATE OF THE ART 

The most popular algorithm used in the research 
community for routing LSPs is the shortest path routing (SP). 
In this method the path with the least total number of links 
between source and destination (or the one with minimum 
overall weight when the links are weighted) is chosen. If there 
is more than one shortest path between source and destination, 
the algorithm is flexible, and one can choose a shortest path at 
random. Typically, the LSP setup algorithm keeps information 
about the residual capacity of each link, and when a new 
request comes, only the links with enough residual capacity are 
considered by the shortest path algorithm. While the shortest 
path algorithm enjoys the benefit of simplicity, it can cause 
major problems to the network due to the lack of any load 
balancing mechanism. Some links might become saturated 
while some remain underutilized.  



    A variant of shortest path algorithm called widest 
shortest path (WSP) is introduced in [7]. The authors select the 
path with greater capacity in case where there is more than one 
shortest path between source and destination. WSP improves 
the performance of the shortest path algorithm but the 
possibility of having bottlenecks remains. Furthermore both SP 
and WSP do not impose any form of admission control. These 
algorithms always accept flows if a path with sufficient 
capacity exists and this may block a large number of future 
flows. We will shed more light on this problem when we 
describe the benchmark topology of Fig. 2. 

 Ref. [1] introduced the minimum interference routing 
algorithm (MIRA).  In contrast to the prior methods, MIRA 
considers the effect of source-destination pairs on the routing 
plan. A number (max-flow) is assigned to every source-
destination pair ),( DS , showing the maximum amount of 
traffic that can be sent from S to D  through the network. 
MIRA operates based on the notion that running traffic on 
some of the links may decrease the max-flow of ),( DS . This 
process is called “interference”. MIRA tries to find the links 
causing interference for a specific source-destination pair and 
avoid using them in the LSP construction phase. Indeed MIRA 
tries to build the paths in a way to minimize the interference. 
Introducing the notion of “interference” is significant, but some 
problems are still present with the algorithm introduced in [1]. 
MIRA concentrates on the effect of interference on just one 
source-destination pair, but there are situations where some 
links can cause bottleneck on a cluster of node pairs. Ref. [3] 
investigates three benchmark networks: parking-lot (Fig. 2), 
concentrator (Fig. 3) and distributor and shows that MIRA is 
unable to respond to the network flow requests correctly and 
causes blocking for a large number of incoming flows in these 
networks. Another issue with MIRA is its computational 
complexity in comparison to shortest path and widest shortest 
path algorithms. Finally MIRA is designed to provide 
bandwidth guaranteed paths. It does not account for any other 
QoS constraint in the network. 

 Profile-based routing (PBR) is another proposal for routing 
of bandwidth guaranteed flows in MPLS networks [3]. PBR 
assumes that the source-destination pair and the traffic-profile 
between them are known. According to PBR, a traffic profile is 
the aggregate bandwidth demand for a specific traffic class 
between a source-destination pair. PBR has two phases. In the 
offline phase a multicommodity flow assignment problem (an 
optimization problem) is solved with the goal of routing as 
much commodity as possible. Each profile is considered as a 
separate commodity. The result of this phase is used to assign 
the capacity of the links for each commodity. The online part 
will use these pre-allocated capacities to route the flows per 
class. In this phase PBR simply uses the shortest path algorithm 
and because of this the computational complexity of the online 
phase in PBR is less than MIRA and comparable with SP and 
WSP.  But PBR also has some problems. Like MIRA, PBR just 
cares about bandwidth and does not consider multi constraint 

QoS problem. Furthermore in [8] the authors introduce a 
network called “Rainbow Topology” and show that the 
performance of PBR in this network is much worse than MIRA 
and WSP. The main reason behind this is that PBR relies on the 
results of the offline part which is not always correct.  

III. ALGEBRA FOR ROUTING 
In this section we introduce some mathematical notions that 

are used in the rest of the paper. The methodology and notions 
that are being used in this section are mostly based on ref. [6]. 
We model a network as a directed graph ),( EVG . V is the set 
of nodes and E is the set of links or edges of the network. A 
walk in a network is a sequence of nodes 011... vvvv nn −  such 

that ),( 1−ii vv is a network link for ni ≤≤1  and a path is a 
walk where all nodes are distinct. The order of a walk is the 
number of links it contains. A path of order zero is called 
trivial. Given walks P and Q where the last node of P is the 
first node ofQ , we denote their concatenations by QoP . For 
the special case where uv  is a path with only two nodes, we 
say that Qouv is the extension of walk Q to node u , or that 

Qouv  is the extension of walk Q  to link ),( vu . An algebra 
for routing is defined as follows:  An algebra for routing is an 
ordered septet ),,,,,,( fLW ⊕!≤ φ comprising: 

• A set of weights W ; 

• A set of labels L ; 

• A set of signatures ! ; 

• A total order ≤  on W ; (the relation ba ! on W is 
defined such that ba ≤ and ba ≠ ) 

• A binary operation ⊕  that maps pairs with a label and a  
signature into a signature; 

• A function f that maps signatures into weights; 

• The special signature φ ; 

Every algebra for routing has at least these two following 
properties: 

• Absorption       For all Ll ∈ , φφ =⊕l ; 

• Maximality       For all }{φ−!∈a , )()( φfaf !  

  An algebra for routing is finite if ! is finite, in which 
case the set of labels and weights can also be finite. The links 
of a network are assigned labels from the set L , with 

)(lL denoting the label of link l . The walks of the network are 
assigned signatures from the set! , with )(Ps denoting the 



signature of the walk P . The signature of walk P is obtained 
from the labels of its constituent links through composition 
with operation ⊕ . The special signature φ  is reserved for 
unusable walks, which are those that cannot be used for packet 
transport. Any walk with signature different from φ  is said to 
be usable. The mapping f from signatures to the totally 
ordered set of weights W results in an assignment of weights 
to walks with the weight of walk P being given by ))(( Psf . 
This establishes a ranking among walks (in our case paths). 
The lower the weight of a walk, according to the order ≤ , the 
“better.” The “maximality” property implies that any usable 
walk is “better” than an unusable one. 

  An optimal path from u to d is a usable path from u to 
d of minimum weight, that is, whose weight is less than or 
equal, according to the order ≤ , to that of any walk from u to 
d . In other words the optimal path is “better” or “as good as” 
any walk from u to d . We will use the routing algebra in the 
next section to develop the idea of less criticality based routing. 

 

IV. PATH CRITICALITY INDEX BASED ROUTING (PCIBR) 
    The routing and flow allocation problem in core networks 
can be formulated as an optimization problem [9], [1].  In this 
paper our goal is to find a robust routing plan for the core 
network that allows the network service provider to manage 
the assignment of flows to the paths primarily at the edge of 
the core network. By robustness we mean resiliency against 
failures, predicted changes in traffic demands and source-
destination pairs.  To achieve the goal first we need to identify 
the important factors affecting the routing plan and flow 
assignment. One can summarize these factors as: 

1. Network topology and connectivity. 
2. source-destination pairs. 
3. Capacity of the links. 
4. Traffic Matrix. 

    In order to have a robust routing plan we need to recognize 
the effect of link and node topology on network connectivity. 
Connectivity is a well studied subject in graph theory [4], [5], 
[10] allowing us to define some useful metrics to measure the 
sensitivity of the network to node or link failures.  Capacity of 
a network is another key issue in flow assignment problem. 
Clearly the paths with more capacity are desired since the low 
capacity paths are prone to congestion. Hence an intelligent 
routing plan should avoid routing the flows onto the low 
capacity paths and should request for capacity increases for 
those paths if possible. Finally traffic demand directly affects 
the routing plan. The traffic demand profile or source-
destination pairs  may change from time to time (e.g. week-
day traffic profile). Traffic changes might be predictable and 
periodical or chaotic. We assume in this paper that the demand 
matrix is stochastic but well-behaved and do not consider the 
case of catastrophes.  

We now introduce two metrics to estimate the effect of the 
aforementioned characteristics: link criticality index (LCI) and 
path criticality index (PCI) which are built based on the theory 
of graphs [4], [5] and the algebra for routing. We will 
subsequently propose our routing algorithm based on PCI.     

 A. Link Criticality Index 
Freeman [4] introduced a useful measure in graph theory 

called “between-ness centrality.” Suppose that we are 
measuring the centrality of node k.  The between-ness 
centrality is defined as the share of times a node i  needs a 
node k  in order to reach a node j via the shortest path. 

Specifically, if ijg  is the number of geodesic paths (shortest 

paths) from i to j , and ikjg  is the number of these geodesics 

that pass through node k , then the between-ness centrality of 

node k is given by:          kji
g
g

ji ij

ikj ≠≠!
,

 

We can modify the definition of between-ness centrality to 
introduce a useful measure for criticality of links in a network. 
Suppose sdp  is the number of paths between source-

destination pair ),( ds and sldp is the number of paths between 

),( ds containing the specific link l . Inspired by the definition 
of between-ness one can quantify the effect of network 
topology and source-destination pairs by dividing 

sd

sld

p
p over all 

source-destination pairs. This gives an indication of how 
critical the link l is in the network topology. This criticality of 
link l  is then: 

!=
ds sd

sld
top p

p
lLCI

,
)(                       (1-a) 

The effect of link capacity and average demand for the 
source-destination ),( ds  (provided by the traffic matrix) is 
accounted for in the residual bandwidth of the link.  The 
residual bandwidth of link l  is the capacity available after 
considering the flows already traversing the link, and is 
denoted by lc . Obviously the link criticality has an inverse 
relation with available bandwidth, and so we can account for 
residual bandwidth by multiplying equation (1-a) by 1/ lc .  

The ability of a link to handle a given offered volume of 
data flow or a given level of QoS also has to be reflected in the 
link criticality.  For example, suppose a new request offers flow 

lγ to the link.  Let the indicator function )(xI  and the 
modified link criticality be: 

001)( otherwisexifxI "=                     (1-b) 
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In general, we can consider the effect of QoS constraints (if 
any) by defining link criticality index (LCI) as: 

           )(1)( 0
,

lw
cp

plLCI
lds sd

sld ××=!                (1)  

The indicator function can be incorporated in )(0 lw . The 

term )(0 lw  is the overall QoS weight of the link that is used in 
cases where we want to investigate multi-constraint routing 
(which is the subject of our next step of research and out of the 
scope of this paper). One can clearly see the effect of topology 
and connectivity )(

sd

sld

p
p  as well as capacity and traffic matrix 

)( lc  in the definition of LCI . 

With reference to Algebraic Routing, we can say that the 
labels are given by the Link Criticality Indexes defined here. 

B. Path Criticality Index (PCI) 
We are now ready to define the path criticality index (PCI). 

In this section we assume that there are no constraints involved 
other that bandwidth, so 1)(0 =lw  assuming the link capacity 
is more than the demand. First we define the signature on each 
path by having the labels be defined to be )(lLCI for every 
link. We define the binary operation ⊕  as the regular sum (+) 
of two real numbers. By a recursive operation of ⊕  over the 
constituent links of the path we can conclude that the signature 
of a path between a source-destination pair ),( ds consisting of 
the links ),...,,( 21 nlll  is given as follows. Considering 

nllll ,....,,, 321  as the constituent links of the path P  we build 

recursive paths iP  by starting from 11 lP =  and then the other 
paths by concatenation of the links: 

nPiforPslLPsoPlP iiiiii ==⊕=#= −− ,...,2,1)()()( 11

Recursive application of this formula will result in:  
nn LLLlLPs ⊕⊕⊕⊕= −121 ....)()(  

By replacing )()( ii lLCIlL = and we have that the 

signature of the path P is:  

  !!
==

==
n

i
i

n

i
i lLCIlLPs

11
)()()(                             (1-1)     

Now we define the function f in the algebraic routing plan 
that maps the signatures to the path weights by the following 
formula ( P  is the order of path P assuming P is non-trivial): 

P
PsPsfdsPCI )())((),( ==                (2) 

This function satisfies the conditions required for f  to be a 
mapping function in our algebraic routing to map signatures to 
weights. Considering the definition of )(Ps in (1-1) and 
substituting the result of signature )(Ps  in (2) one can see that 

),( dsPCI is the average of )( ilLCI  of the constituent links of 
the path P :      

n

lLCI

P
PsdsPCI

n

i
n!

=== 1

)(
)(),(             (2-1) 

Where nP =  is the order of path n.                           

More generally, the path criticality index is a function of 
link criticality indexes 1l to nl :  

))(),...,(),((),( 21 nlLCIlLCIlLCIfdsPCI =  (3) 

    The function has to meet the requirements of the algebra for 
routing defined in section III. Finding the best form for f is 
one of our ongoing research topics, but the average function 
(2) which is introduced here works well for all of the 
benchmark networks that we have examined. 

C. Path Criticality Index Based Routing Algorithm (PCIBR) 
    The basic idea of our routing algorithm is to accommodate 
new requests for connections along LSPs that have a low PCI.  
This requires that we find the link criticality indexes. To do 
this, we need to obtain all possible label switched paths for 
each source-destination pair. This is not feasible since the 
number of paths grows rapidly with the number of network 
nodes and links.   Although the shortest path is not necessarily 
the path with the lowest PCI, one can expect that the path or 
paths with lowest PCI are among the k-shortest paths of the 
network. Hence we use the k-shortest path method proposed 
by Eppstein with a modification to avoid loops [11].  
    Our algorithm begins with a predefined value of k , but the 
value may be increased during the course of running the 
routing algorithm if the desired number of paths to route the 
traffic cannot be found. We use thresholds 1tr (the default 

value is infinity in case the threshold is not defined) and 2tr  
(the default value is zero in case the threshold is not defined) 
for PCI. The first threshold defines the lower confidence 
boundary for the path criticality index. All the paths with path 
criticality index less than 1tr are considered eligible to route 
traffic. On the other hand all the paths with the criticality 
index larger than 2tr are considered too risky and may be 
identified to the (offline) core network management system for 
increased capacity assignment. The paths with criticality index 



in between the thresholds will share traffic based on their 
criticality index as long as they remain within the boundaries. 
    We note that when a path accepts traffic, the residual 
capacity of its links will decrease for the duration of the traffic 
flow. This means that the criticality index of this path must be 
increased. In other words a constant monitoring of the PCI for 
all the paths is necessary and in fact it is the main building 
block of our algorithm. 

 
PCIBR: 
     Input: A network or more formally a graph ),( ELG , a set of 
capacities (residual capacities if we are not in the initial stage), a set of 
source-destination pairs ),( ds , and traffic matrix D for these source-
destination pairs. 
     Output:  A set of LSPs between all source-destination pairs meeting 
the demand requirements according to the traffic matrix. 
 
Algorithm: (By default we are in idle state) 

1. Go to the initial state, Select k , 1tr  and 2tr  (use default values of 

1tr  and 2tr  if we are not concerned about the thresholds). 
2. Compute the k-shortest paths for all source-destination pairs to 
meet the demand requirements and measure their PCI . 
3. If a path with 

1trPCI ≤ exists, choose that path to route the 
demand (in case there are more than one path meeting the threshold 
requirements then choose the one with lowest PCI). 
a. Adjust residual capacities 
b. Adjust path criticality indexes accordingly 
4. If there are paths with 

2trPCI ≥ send a message to the core 
management system requesting additional bandwidth for these paths. 
5. If there is no path satisfying the condition of step 3 then increase 
k by one and go to step 2. 
6. In the (very rare) case that no path with criticality index less than 

1tr can be found (this happens when k keeps increasing but no 

satisfactory path results) then use the paths with 21 trPCItr ≤≤  in a 
round robin or random fashion. 

 
The most time-consuming part of the algorithm is the k-
shortest path calculation. According to [11] the complexity of 
the proposed k-shortest path algorithm is )log( knnmO ++  
where, m is the number of links and n is the number of the 
nodes. The algorithm is polynomial time and as a result 
PCIBR is also a polynomial time algorithm if we set a 
maximum value for k  such as maxk . The complexity of the 
other parts of the algorithm (without k-shortest path) is 

)( 2NO . The problem in this case is that we might not get the 

desired path from the algorithm by maxk iteration. On the other 
hand if we do not place any upper bound for k then we can 
find a desired path (if one exists) but not necessarily in 
polynomial time. This comes from the fact that the problem 
we are trying to solve by nature is an NP-Complete one [12]. 
In MIRA the time complexity without considering the max-
flow algorithm is also )( 2NO . But if we compare the time 
complexity of the Tarjan max-flow method [12] that is being 
used in MIRA ( ))log(( nmnO ×× where n and m are node and 

link dimensions) with the Eppstein k-shortest path method 
[11] used in our algorithm ( )log( knnmO +×+  ) we notice 
that the complexity of the k-shortest path algorithm is less than 
max-flow one. 
  

V. BACK UP PATH 
    To set up the back up path for primary LSP, a greedy 
algorithm is to select the second least critical path as the back 
up path, however in many cases there are totally disjoint paths 
with higher path criticality but more suitable candidate for 
being the back up path. This simple example is clearly 
demonstrating the idea: 

 
Figure 1 

 
    In Fig. 1 the primary path from S0 to D0 is P1with PCI=1. 
A greedy algorithm will choose P2 as the back up path since 
its path criticality is less than P3, but P1 and P2 are sharing 
link L while P3 is totally link-disjoint with P1, therefore P3 is 
a better choice for being back up path of P1. Hence the best 
approach to find the back up path is to first examine the sub-
graph obtained by removing all the constituent links of path P1 
and run PCIBR to obtain the least critical path from S0 to D0 
if any, otherwise the next phase is to obtain the second least 
critical path from original graph.   
 

VI. EXPERIMENTAL RESULTS (PROOF OF CONCEPT) 
    The PCIBR algorithm has been implemented with C++ and 
tested for many network configurations. Among these we have 
chosen three benchmark networks to show that Path Criticality 
Index Routing is an effective method to find the best LSP 
routing plan for networks that have been found difficult to 
handle by previous proposals. We have also applied our 
algorithm on the network used in [1] to show its effectiveness 
in more realistic networks. 
 

A. Parking-Lot Topology 
    The parking-lot network topology, shown in Fig. 2, is an 
interesting example. If one unit of bandwidth is requested to 
be sent from 0S to 0D , all the previous routing approaches 
such as SP, WSP and MIRA will choose the straight path and 

S0 D0
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P3
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P2

L 

PCI(P1) = 1 
PCI(P2) = 3 
PCI(P3) = 6 



run the flow resulting in the blocking of demands of one unit 
come from any other source such as iS to the destination 

iD [3].   A wiser decision is to block the first request from 0S  

to 0D  so the network will be able to route the other n source-
destination pair requests.  
 

 
Figure 2. Parking Lot Network 

To investigate the behavior of our PCIBR algorithm we 
suppose n = 3 and we have just four source-destinations. In 
Table 1 we summarized the results of calculating the path 
criticality index based on the formulas (1) and (2).  

Path Path Criticality Index (PCI) 
S0 –> D0 1.490909 
S1 –> D1 1.272727 
S2 –> D2 1.272727 
S3 –> D3 1.272727 

Table 1. Parking Lot Network n=3  

In this experiment we assumed that the commodities could 
be sent just from sources to destinations with the same index. 
One can see that the criticality index of path )0,0( DS is more 
than the others. So by defining appropriate thresholds the 
proposed algorithm can be made to block the request from 0S . 

In more general case where different combinations of 
source-destination pairs are possible and the number of nodes 
is much more than 3, our experiment results show that the 
criticality of the path 00 DS →  is much higher than the 
other combinations. In Table 1.1 the results of our experiment 
with n=10 is reflected and clearly shows that 00 DS →  is 
the most critical path. . 

Path Path Criticality Index (PCI) 
S0-D0 27.590902 
S1-D1 11.333333 
S2-D2 14.090907 
S3-D3 15.909087 
S4-D4 17.121209 
S5-D5 17.727271 
S6-D6 17.727271 
S7-D7 17.121209 
S8-D8 15.909087 
S9-D9 14.090907 

S10-D10 11.333333 
 Table 1.1 Parking Lot Network with different S-D combinations n=10  

In general case of the parking-lot topology with n  nodes 
the same approach can be followed and again the proposed 
routing plan will choose the straight path 00 DS → as the 
most critical one. 

B. Concentrator Topology 
    In the concentrator topology, shown in Fig. 3, MIRA, SP 
and WSP all will have trouble with a request for transporting a 
flow of n units from 0S  to D . They will all choose the shortest 
path (S0-C-D) which will then leave only one unit of 
bandwidth for link C-D. In other words only one more request 
(with 1 unit of bandwidth) can be concurrently handled. 

 
Figure. 3. Concentrator Network 

 
Table 2 shows the result of our tests on the concentrator 
topology. The path (S0-C-D) (or the path with two links from 

0S to D ) has PCI much more than the one with three links. 
So the PCIBR algorithm will choose the longer path (the path 
with three links) to save the bandwidth of link C-D for other 
source-destination pairs. 

In general case of the Concentrator network with n nodes 
the same approach can be followed and again the proposed 
routing will choose the path DS →0 (with three links) as the 
least critical one. 

Path Path Criticality Index (PCI) 
S0 –> D (3links) 0.166667 
S0 –> D (2links) 0.520833 

S1 –> D 0.937500 
S2 –> D 0.937500 
S3 –> D 0.937500 

Table 2. Concentrator Network n=3 
 

C. Rainbow Topology 
Fig. 4 shows the Rainbow network. Ref. [8] uses this topology 
to show the shortcomings of profile-based routing (PBR). The 
authors in [8] show that the performance of PBR in Rainbow 
network is much worse than MIRA, WSP and SP. They also 
show that PBR will be blocked after accepting 2 units of 
bandwidth for )1,1( DS and 2 units for )2,2( DS . 
    We conducted our experiment in two phases to show the 
details of the PCIBR algorithm. In first two columns of Table 
3, the PCI for different paths between source-destination pair 

)1,1( DS is shown. One can observe that the longest path is 
the less critical one; hence routing will allocate two units of 
bandwidth. 

1 
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n n 

n 
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C 

S0 

S1 

Sn 

D



 
 Figure 4. Rainbow Network 

 
    In the second step, the source-destination pair 

)2,2( DS will ask for routing of two units of bandwidth. At 
this time the residual capacities have changed and the new 
PCIs have to be calculated. 
    The results are in columns 3 and 4 of Table 3. Again the 
longest path is still the less critical one and the best candidate 
for routing the requested flow.  

Table 3. Rainbow Network. Two phases of flow assignment 
 

D. Simulation Results for KL-Topology 
    We ran a set of simulations on the network of Ref. [1] that 
we refer to as the KL-topology (Fig. 5-a). We assume the 
bandwidth of the thin links is 1200 units and that the thick 
links have 4800 units of bandwidth. In order to compare the 
results with [1] we implemented exactly the same simulations 
as in [1]. 
    In the first experiment the requests for bandwidth (which is 
our main QoS measure in these simulations) arrive with 
Poisson distribution and stay for ever (no departures). In our 
tests the bandwidth requests for LSP setups are taken to be 
uniformly distributed between 1 and 3 units.   
In Fig. 5-b we show the number of rejected calls for the KL-
topology and we compare the performance to that of shortest 
path, widest shortest path and PCI (with initial value 

1=k and possible subsequent increments based on PCIBR). 
We measured the number of blocked requests for LSP setup 
from 1S  to 1D . As one can see after about 1200 trials the SP 
algorithm starts to experience blocking while the PCI-based 
algorithm can adapt itself and still accept bandwidth requests  

          
Figure 5. Network Topology from [1] (5-a) KL Network 

 
without significant blockage. We observed that the PCIBR 
begins increasing the value k when the knee in the curve is 
reached. 

 

 
(5-b) Static case, blockage 

 
    In a second example we assessed the path acceptance level 
of the algorithms. At first we ran 5000 attempted LSP setups 
and counted the number of unsuccessful attempts. We 
conducted 20 trials and in each one counted the number of 
rejected paths (out of 5000). The results for three algorithms 
SP, WSP and our PCIBR are compared in Fig. 5-c. We note 
that the results for PCIBR are very close to those of MIRA in 
[1].  Thus PCIBR shows the same effectiveness as MIRA 
while maintaining good performance on benchmark networks 
where MIRA shows major blocking. 

 

 
(5-c) Static, Path acceptance 

 
     In the last experiment we examined the behavior of the 
algorithms in the presence of dynamic traffic. Fig. 5-d shows 
the proportion of the LSP requests rejected in 20 experiments 
for the following scenario. LSP requests arrive between each 
source-destination point according to a Poisson process with 
an average rate λ , and the holding times are exponentially 

Path  (PCI) Path  (PCI) 
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(4links) 0.425000 

S1 –> D1 
(3links) 0.433333 S2 –> D2 
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(2links)  0.450000 

S1 

S2 

D1 

D2 

2 

2 

1 

1 
1 

1 1 

1 

1 

1 1 

1 

4 

4 4 4 

4

SP 
WSP 
PCI 



distributed with mean µ
1 . We assume 150=µ

λ  in our 

experiments. In this scenario, we scale down the bandwidth of 
each link in the KL-network with the ratio of 10 to have 
bandwidths of 120 and 480 units for thin and thick links 
respectively. Next we generate about 1,000,000 requests for 
path setup and measure the rejection ratio for each one of the 
algorithms. The results are shown in Fig. 5-d and again the 
results are very close to MIRA.   

 

 
(5-d) Dynamic 

 

VII. CONCLUDING REMARKS 
    In this paper we have proposed a new approach for path 
setup and routing of flows in MPLS networks. The most 
important problem with the existing approaches is that each 
one of them solves a part of the overall problem but fails with 
other parts. We have tried to consider different aspects of the 
network (i.e. topology, capacity, and demand) and quantified 
these aspects using measures inspired by the mathematics of 
graphs. The essence of our work is based on determine a path 
criticality index for each path showing how critical that path is 
to the changes in the topology and traffic demand of a network. 
Our algorithm identifies the least critical paths for allocation 
of new traffic flow requests.  
    The results from applying the proposed algorithm to 
networks that are difficult to handle by existing approaches are 
very encouraging.  These results confirm the validity of the 
notion of path criticality.  The simulation results show that 
PCIBR matches the performance of MIRA in typical networks.   
We also showed that the complexity of PCIBR relative to 
MIRA shows improvement. 
    However there are many issues that remain to be 
investigated in the new approach.  We need to investigate 
more on the effect of the threshold parameters. As we have 
seen in equation (3) the PCI is a function of link criticality 
indexes and in our first algorithm we used “average function” 
to obtain PCI but more elaboration is necessary.  We need to 
add QoS constraints to the network and assess the behavior of 
our approach at the presence of different QoS constraints and 
modify it to accommodate all the situations if necessary. 
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