Unstructured Peer-to-Peer Session over IP using SIP

Khashayar Khavari, Chuen Liang, Ali Tizghadam, Farid Fadaie, Nadeem Abji, Ramy Farha, Alberto Leon-Garcia
Electrical and Computer Engineering Department
University of Toronto
Email: {khashayar.khavari, chuen.liang, ali.tizghadam, farid.fadaie, nadeem.abji, ramy.farha, alberto.leongarcia} @utoronto.ca

Abstract— Data and telephone service providers have started
considering migration to an IP based environment. This paper
presents an unstructured peer-to-peer approach to initiating and
maintaining sessions over IP using session initiation protocol
(SIP). The offered solution is completely modular and is compati-
ble with traditional server-client based approaches using SIP. The
peer-to-peer nature of our design allows it to be highly scalable
and self managing with low maintenance costs, making it an
attractive solution for service providers.

[. INTRODUCTION

SIP is a promising signaling protocol for the next gen-
eration network control plane. Current SIP implementations
are typically based on the client-server architecture which has
problems, such as limited scalability and the existence of a
single point of failure. To address such failures redundant
servers can be deployed at additional capital cost as well
as increased system maintenance. In this paper, we propose
a solution to these problems based on a peer-to-peer (P2P)
architecture. Because of their self organized and self managed
nature, P2P networks are low maintenance, highly efficient,
cost effective and rather reliable. This makes P2P a good
candidate for the underlying layer for signaling of IP-based
applications. Our main objective for the P2P SIP system is
that it be highly reliable and scalable. It has to achieve low
cost by being self-organized and self-managed. Security is
also an issue which has to be resolved but is not considered
in the work presented here. In addition, the system must be
compatible with the traditional client-server systems. Finally
we expect the system to be robust, which means small changes
in the system or the environment should not affect the system’s
performance.

The paper is organized as follows. In section II, we provide
an overview of SIP and P2P networks as well as state of the art.
Section III presents the details of the implementation as well
as the rationale for the underlying design decisions. Section IV
introduces a notion of stability that is used in this paper.
In Section V, we present the results of the tests performed
to support the validity of the approach. Finally Section VI
provides a summary of the work as well as a discussion of
future work.

II. BACKGROUND AND RELATED WORK
A. SIP and current implementations

SIP is an Internet Engineering Task Force (IETF) protocol
for initiating interactive user sessions that involve multimedia

1-4244-0198-4/06/$20.00 ©2006 IEEE

elements such as video, voice, chat, gaming, and virtual reality.
SIP is a flexible and extensible protocol that can resolve
traditional problems of mobility, presence and availability.

The IETF defines standard behavior for key SIP Server
elements such as registration, redirect and proxy servers. Users
who wish to participate in sessions initiated by SIP may first
register with a registration server. The server stores the unique
SIP address dedicated to that user (SIP ID). This registration
process helps in creation of a service called location service,
which allows users to find other users in the network and
initiate sessions with them through the help of proxy servers.
Each of these servers maintains session state information in a
standard manner leading to inter-operability. However SIP’s
RFC [1] emphasizes that the term server refers to logical
entities as opposed to physical ones. Nevertheless most of
current implementations use dedicated physical machines to
perform these tasks. Such designs result in high maintenance
cost, limited scalability of the network and have a single point
of failure. It is only recently that some work has been done
to virtualize the server tasks using other means such as P2P
networks [2], [3].

B. P2P systems

A ”peer-to-peer” (P2P) application relies on resources pro-
vided by participating peer computers [4]. Typically the peer
computers are interconnected with each other in order to
implement the application. In large P2P networks [5], all the
nodes are not necessarily connected to each other. Instead each
node has a group of neighbors that it is connected to directly
and uses these connections to reach the other nodes in the
network. Such a structure results in an overlay topology which
is usually built and maintained by a protocol executed by the
participating nodes. This is one of the features that makes P2P
systems cost effective, scalable and self organizing [6].

There are two basic approaches to P2P applications, namely
centralized and distributed. In centralized approaches such
as Napster [7], a server is used to maintain the location of
resources such as a file index. This approach cannot scale
well and because of its server-client nature, it has a single
point of failure and is vulnerable to denial of service attacks.
In contrast with the centralized approach, in decentralized
approaches every node acts like a server and a client at the
same time, so that the notion of a server is eliminated.

1) Structured vs unstructured: There are two main types of
decentralized systems, structured and unstructured. In struc-

441

Authorized licensed use limited to: The University of Toronto. Downloaded on December 9, 2009 at 02:03 from |IEEE Xplore. Restrictions apply.

tured systemss such as CAN [8], CHORD [9], PASTRY [10]
and TAPESTRY [11] the construction of the overlay is con-
trolled by a hash function and the location of each node in
the network is predictable. On the other hand in unstructured
systems such as KaZaA [12], [13] and Gnutella [14] although
there is some control on how to connect the peer nodes, the
placement of the nodes are rather random and unpredictable.

2) Pure vs hybrid: In a pure P2P system, all the nodes are
treated equally and there is no distinction between the nodes.
However in a hybrid system, nodes with desirable features,
such as greater resources, are part of a group called super-
peers while the rest of the nodes are categorized as ordinary
nodes. Hybrid designs help to increase the efficiency of the
overlay without compromising its decentralized nature. The
hierarchical nature of these architecture makes them a suitable
candidate to meet the reliability and efficiency requirements
of our design.

C. Skype and other peer to peer applications

Napster [7] is the first application which was based on
the P2P structure. Many subsequent file sharing applications
such as Gnutella [14], KaZaA [13] and BitTorrent [15] are
also based on a P2P structure. Collaborative web caching
systems, distributed data sharing and continual queries are
some applications in ongoing P2P projects.

Skype [16] is a free voice over IP application that demon-
strates how cost effective P2P systems can be. Skype uses
its own proprietary protocol to initiate and modify sessions,
instead of SIP. Since there are no published papers on the
details of how Skype works one can only speculate that the de-
signers were encouraged by their previous work, KaZaA [13],
and used a similar structure, i.e. a decentralized unstructured
architecture. Some insights into the operation of Skype are
provided in [16].

III. DESIGN ARCHITECTURE
A. Integration with SIP

In order to keep our approach compatible with other de-
signs supporting the SIP protocol, mainly the server-client
approaches, all SIP messages are encapsulated using extra
headers as they enter the overlay topology (Figure 1). If a
message needs to leave the overlay topology and enter another
network, the extra headers are removed and the original SIP
message is transferred to the new network. The benefit of this
approach is that unlike solutions proposed in [2], [3], [17] our
design is independent of the underlying signaling protocol.
This will also expand the potential of our approach to be used
with any P2P protocol and provide a stable resource sharing
and lookup system.

Each node in the P2P overlay topology plays the role of
the registration server for the SIP user agents connecting to it.
This allows the connection of multiple user agents to a single
node in the P2P overlay topology. Once the user agent contacts
a node for registration, the user’s SIP ID is stored at that node.
Further if the current node is an ordinary node, the registration
message is also passed to this node’s superpeer. This results

Neiwnrk .

e
- Data link

Pyl |

Fig. 1. Integration of SIP with P2P

in limiting the scope of searches to superpeers only. Once
user agents are registered in the overlay topology, initiating a
call from a user agent to another involves three steps. First
the INVITE message is encapsulated as it leaves the user
agent initiating the session and enters the P2P module. Then a
lookup for the destination user agent based on SIP user ID is
performed by searching at the overlay topology layer. Finally
the INVITE message is forwarded to the destination user
agent, through the node at which this user agent is registered
and after removing the P2P headers from the message. At each
stage of the signaling, necessary responses, such as ACK and
RINGING, are sent to the user agents by the nodes.

One can see that handling the SIP messages as explained
above is similar to the implementations based on server-client
approaches. The major difference is in the virtualizing of the
lookup through the use of location service [1], which performs
the search through the P2P overlay topology. This results in the
elimination of dedicated registration and proxy servers that are
usually part of the traditional server-client based approaches to
SIP. As is normally the case for SIP once the destination peer
is found and the session is established the data messages are
exchanged between the two peers directly with no involvement
of the overlay topology.

To improve the search performance every time a session is
initiated the node responsible for the user agent that initiated
the call caches the result of the search to speed up future calls.
When searching for a user this cache is consulted first. If there
is a previous result stored at this location, the node confirms
the validity by contacting the destination node as indicated by
the cache table. Upon success the search is completed. Only
in case of a failure a search through the overlay topology
is necessary. This approach helps to reduce the number of
searches required for frequent contact list members of a user.

B. P2P overlay topology

The P2P architecture used in this paper is based on a
gossiping protocol for constructing unstructured, hierarchical
superpeer overlay topologies proposed by Alberto Montre-
sor [18]. There are four different sets of neighbors maintained
at three different layers to achieve this overlay topology. At the
first layer, nodes are members of an underlying randomly con-
nected overlay topology and use their connections to transfer
information regarding their status to their neighbors. The next
two sets of neighbors include the set of all superpeers and the

442

Authorized licensed use limited to: The University of Toronto. Downloaded on December 9, 2009 at 02:03 from |IEEE Xplore. Restrictions apply.

set of superpeers that are not loaded to capacity with clients
(the underloaded set). Finally each superpeer maintains a list
of ordinary nodes for which it is currently responsible [18].
Throughout the rest of this paper we will use the term client
to refer to ordinary nodes.

The gossiping information transferred through the under-
lying topology is used by the neighbors to learn about other
nodes in the network and decide how to reorient themselves to
minimize the number of superpeers. This is achieved by each
superpeer trying to transfer as many of its clients as possible
to underloaded superpeers with higher capacity and available
room. Once a superpeer has transferred all its clients to other
nodes, it can itself be accepted as a client by underloaded
superpeers to approach the target topology that has minimum
number of superpeers.

1) Modifications to Montresor’s algorithm: The algorithm
proposed by Montresor in [18] was modified to achieve better
performance under highly dynamic conditions, where nodes
join and leave the network frequently and their capacity can
vary over time. The first modification involves the ability of a
superpeer to switch its role with one of its clients who has a
higher capacity (can handle more clients).

The original protocol by Montresor, only allows a client to
become a superpeer if the superpeer receiving clients during
a transfer has two properties. First, it does not have enough
capacity to accept the superpeer which is transferring its clients
as a client. Second it has a client with higher capacity than the
superpeer which is transferring its clients. In such a case the
client with greater capacity switches its place and role with
the superpeer which is transferring its clients.

Although at first this may seem sufficient to reach the target
topology, the following example (Figure 2) demonstrates that
the protocol as stated in [18] does not guarantee reaching
minimum number of superpeers. In this example nodes A
and B are superpeers while all the other nodes are ordinary
nodes. The numbers presented inside each node indicate their
capacity. At stage I, superpeer A learns about superpeer B
through gossiping and since it finds node B to have higher
capacity it tries to transfer as many of its clients to node B,
picking these clients randomly. After accepting as many clients
as it can, node B can no longer accept the remaining client of
A (stage II). At this point B analyzes its clients and cannot
find a node with higher capacity than itself in its clients list
and no further actions are taken. If the capacity of all nodes
remains constant there will be no more transactions and the
system remains with two superpeers.

However one can clearly see that if node A had checked its
own clients list before the transaction it could have switched
its role with the node whose capacity is 10 which is enough
to accept all the nodes in the network as clients and reach
the target topology. Figure 3, demonstrates the new behavior
of the protocol. The new protocol can overcome the problem
explained above and it guarantees reaching the target topology
(the topology with a minimum number of superpeers).

We introduce two additional modifications to improve per-
formance in the presence of failures. The second modification

Stage |

3.8
©HO ®
P8
AHHO

(19

Fig. 2. The protocol as presented by Montresor in [18] does not guarantee
reaching the target topology.

Stage Il

NODE A

Find client with
max capacity, C

NODE B

Pick a node from
Underloaded, B
Send Min{(Cy—L,),L,}
clients to B

Receive Clients

Switch A with C

Accept
Basa
client

Y

Find client with
max capacity, D

Switch A with C

Fig. 3. The modified switching protocol

to the Montresor algorithm allows the clients of a superpeer
that leaves the network unexpectedly, to attempt to join other
superpeers that they had learnt about through gossiping. A
final modification introduces a threshold value smaller than
the real capacity of a node for use in gossip messages. This
modification results in superpeers not being completely loaded,
which is a departure form the original goal of the protocol
by Montresor [18]. However, superpeers can now use this
remaining capacity to accept clients that lose their superpeers
in failures. This will reduce the number of clients that become
underloaded superpeers once they lose their superpeer. The
latter two modifications result in faster recovery from large
failures in the network and avoids explosion in number of the
underloaded superpeers. Experiments to test these modifica-
tions have been performed and the results are presented in
section V.

IV. STABILITY

The classic definition of stability states that a system is
stable if and only if any bounded input results in a bounded
output. In order to apply this definition to our system the inputs
and outputs should be clearly defined.

443

Authorized licensed use limited to: The University of Toronto. Downloaded on December 9, 2009 at 02:03 from |IEEE Xplore. Restrictions apply.

The P2P overlay network can be viewed as a black-box
which accepts vector

X = [TL, Cl, 02, veny Cn, C{, Cé, ceey C;L,
LTy, .., LT,,S,S'

as the input, where n is the number of nodes in the network,
C4...C,, are the capacities of the nodes, C1,...,C/, are the
advertised capacities in gossip messages and LT}...LT,, are
the lift-time of superpeers. S is the maximum number of
virtual links to and from a superpeer and S’ is the maximum
number of links to and from any node.

We define the output of the system, Y, to be the time which
it takes for any node in the topology to find any other node
in the network. If the network is connected the output is a
finite value implying that the network is stable. As a result
the system is considered to be unstable only if a search for a
node, that exists in the network, requires an infinite amount
of time to complete. Searching can be used by a node to find
underloaded superpeers in the network. If the system becomes
unstable and the topology becomes disconnected the number
of underloaded superpeers counted by this node will not be
correct since the corresponding search will not be completed
in a finite amount of time. As a result one can define stability
of the system based on the ability of the topology to find the
underloaded superpeers and to reach the target topology.

LTy,

V. EXPERIMENTAL RESULTS

A number of simulations have been performed to study
the behavior of this proposed overlay topology as a function
of its variables and to asses cost as a function of network
size [18]. We are mainly concerned with the performance of
this approach to initiate, manage and terminate sessions using
SIP in a real environment, so the system was implemented
and assessed experimentally. The algorithm was programmed
(using the C programming language) and the resulting program
was installed on a cluster of IBM blade servers each with
two 2.8GHz Xeon processors and 2GB of RAM. The final
testing environment consisted of 1000 nodes running the P2P-
SIP application, allowing any node to initiate sessions with any
other node. In the initial set of tests, Cisco 7960 IP phones
as well as Xten’s Xlite softphones were used to validate the
functionality of the encapsulation method used to transfer SIP
messages.

The next set of tests concentrated on the stability and
performance of the substrate P2P topology. In all of the
tests, when a node is added to the network, it is given the
address of one other node currently part of the topology
to connect to. The assignment is made by using a uniform
random variable at bootstrapping servers. In order to test the
worst case scenario, nodes are removed from the network
using ungraceful shutdown. In other words the node is simply
disconnected from the topology without informing any of its
neighbors about its removal. In all the tests, unless stated
otherwise, the number of neighbors at the underlying layer
is limited to 20, the number of neighboring superpeers for
each superpeer is set to 5 and the capacity of each node is

Effect of the number of nodes in the topology on the convergence delay
300 T T T T
I Target opology
[_195% recovery
[satisfactory state
250 1

200

Convergence time [s]
&
g
:

100

50

100 200 300 400 500 600
Number of nodes present in the network

Fig. 4. Effect of the number of nodes currently present in the topology on
the stabilization delay as nodes are added to the network. In each case 50%
of the network size was added to it.

5. These numbers were chosen to allow a network of limited
number of nodes grow large at the superpeer layer.

The tests are categorized into four groups. First we study the
behavior of the overlay topology as different number of nodes
are added and removed from it. Second, we measure how the
systems performance varies with its size. Third, we asses the
benefits of our modifications to the Montresor protocol. Finally
we study the search performance of the overlay topology as it
is the main functionality provided to the signaling layer. We
note that in our experiments the overlay topology is only used
as a control plane that provides a location service. All data
messages are transfered between the two end points without
the interference of the overlay topology.

Figure 4 shows the behavior of the topology as nodes are
added to networks to increase the size by 50%. In every case
the test starts with n € {100,200, 300, 400, 500, 600} nodes
already part of the topology. The network is then allowed to
evolve until it reaches the target topology (where the number
of superpeers is minimized). Next 50% of the current size of
the network is calculated and that many additional nodes are
added to the network and the time required for the topology
of 1.5n nodes to reach stabilization is measured. In each case
three different measurements were carried out. The first bar,
represents the time required for the topology to reach the target
topology with a minimum number of superpeers. The middle
bar, represents the time that was required until the removal
of 95% of the total number of underloaded superpeers caused
by addition of the new nodes. Finally the third bar indicates
the time needed for the number of underloaded superpeers to
be less than 5% of the total number of superpeers. Unless
specified otherwise, in the remainder of this paper we will use
the last criterion to define when a “satisfactory state” has been
reached.

It is clear from Figure 4, with the exception of the case
with 100 nodes in the initial network, the time to reach the
satisfactory state is almost independent of the size of the

444

Authorized licensed use limited to: The University of Toronto. Downloaded on December 9, 2009 at 02:03 from |IEEE Xplore. Restrictions apply.

Effect of the number of nodes added to the topology on the convergence delay
350 T T

T T T
I Target topology
[95% recovery

300l [___] Satisfactory state i

Convergence delay [s]

50 1

10 0 40 50 60 70 80 90 100
Percentage of nodes added to the network (nodes added / present nodes)

Fig. 5. Effect of the number of nodes added to the topology on the
stabilization delay

network. This agrees with the simulation results obtained by
Montresor [18] and demonstrates the ability of the network
to adjust itself to changes rapidly and independently of the
number of users participating in the overlay topology.

Figure 5 represents the behavior of the network as the
number of nodes added to the topology varies from 10% to
100% of the original size of the network (300 nodes). The
bars in the graph correspond to the same definitions given for
Figure 4. Again although the time required to reach the target
topology grows as the number of added nodes increases, the
time to reach the satisfactory state is bounded between 140 and
200 seconds, increasing slightly as the percentage of added
nodes increases.

The results in Figures 4 and 5 together indicate an interest-
ing feature of the Montresor algorithm. The addition of new
nodes causes a departure from the satisfactory state due to the
creation of underloaded superpeers. However the addition of
nodes also provides new opportunities for creation of loaded
superpeers, and this packing of superpeers proceeds largely in
parallel, so that the time to convergence to satisfactory state
basically remains constant.

In Figure 6 we analyze the effect of nodes leaving a 900
node network ungracefully. Since failure of each superpeer
may result in some of its clients having to become underloaded
superpeers, we expect to have a higher number of underloaded
superpeers in this case compared to the tests involving addition
of nodes to the network. This results in the pattern observed
in Figure 6, where the delay increases as the number of nodes
removed from the topology is increased past the 40% limit.
In such cases the probability of superpeer failures increases
resulting in more and more clients having to look for a new
location in the network. The system however, remains stable
(as defined in section IV), finds the underloaded superpeers
and reaches the target topology in a finite amount of time.

Figure 7 compares the original protocol with the case that
superpeers advertise a smaller capacity in gossiping messages
than their real capacity. As expected the maximum number

Effect of the number of nodes removed from the topology on the convergence delay
400 T T T T T
I Target topology
[95% recovery
3501 [__]Satisfactory state 1

300

Convergence time [s]
o o
8 3
S 2

o
S

100

50

40 N 70
Percentage of nodes removed from the network (nodes removed / nodes present)

Fig. 6. Effect of the number of nodes removed from the topology on the
stabilization delay.

The benefit of advertising a lower capacity than the real one

280 T T T T
Real capacity PR
— — — Advertised capcity - ~
260 A 4

240 - ///// \; - B

180 - /) 4

160 - , 4
/
’
/
120 ,/ 4

100 il

Maximum number of undeloaded nodes

80 I I I I I
10 20 30 40 50 60 70

Percentage of nodes removed form the network

Fig. 7.
node.

Benefit of advertising a lower capacity than the real capacity of a

of underloaded superpeers generated after node failures in the
topology is reduced by up to 12%.

We investigate the behavior of the topology as nodes are
added and removed based on a random distribution and
comment on the stability of the system. Prior simulations have
shown the behavior of the network when the capacity of nodes
changes based on a uniform and power law distributions [18].
Here we would like to show that the network remains stable
and reaches the target topology when nodes join and depart
according to an exponential distribution.

In Figure 8 we analyze the probability distribution of the
time to from when the topology reaches a satisfactory state
to the time of the latest insertion. The node interarrival time
is specified by an exponential random distribution with A =
0.15. The test was performed 20 times, each time adding 100
nodes to a network of size 300 nodes and the resulting points
are presented in Figure 8. The fitted curve suggests that the
distribution of the time between the last node join and the

445

Authorized licensed use limited to: The University of Toronto. Downloaded on December 9, 2009 at 02:03 from |IEEE Xplore. Restrictions apply.

The distribution of time to reach the satisfactory state
0.12F T T T T T T T T T

0.08 | 4

0.06 1

0.04

0.02

Probability distribution of reaching the satisfactory state

5 10 15 20 25 30 35 40 45
Time to reach the satisfactory state since the last insertion [s]

Fig. 8. The distribution for the time it takes for the system to stabilize since
last insertion of a node, if the delay between adding two nodes to the network
is an exponential random variable with A = 0.15

Distribution of completing a cycle
0.16 T T T T T T T

Probability of completing a cycle
) o o o o
o o o o o o
R) & = o =
|
.

=4
o
IS}

0 Hﬂﬂﬂﬂ e

50 100 150 200 250 300 350 400
Time required to complete a cycle [s]

Fig. 9. The distribution for the time it takes for the system to return to the
satisfactory state, after it was forced out of it by the addition of nodes. The
delay between adding two nodes to the network is an exponential random
variable with A = 0.15.

system reaching a satisfactory state is also exponential.

We measure the distribution between instants when the
topology reaches the satisfactory state when the network is
subjected to exponentially-distributed node interarrivals. Since
there appears to be a natural, network-size-independent time to
converge to the satisfactory state, we conjecture that as long
as the node arrival rate is bellow some threshold, then the
topology will converge to a satisfactory state in finite time.
Equivalently, the number of underloaded superpeers should
not tend to infinity bellow this threshold. Figure 9 shows that
for arrival rate 0.15 this is indeed the case. Figure 10 shows
the distribution of time to reach a satisfactory state when
A = 0.25. It is obvious that the number of the underloaded
nodes goes to infinity. Figure 10 shows that the time to achieve
satisfactory state increases without bound for arrival rates 0.25.

An additional set of experiments investigated the case where
the nodes are removed from the network with exponentially-

The distribution of time to reach the satisfactory state

0.45F T T T T T =

N |

g 04r

%

>

3 035}

8

2

g

© 03f

£

2

£ 025

[*]

@

[

S 02f

c

S

5

£ 015

%

2

>

= 01F

el

@

8

o

o 0.05F

0 —

2 4 6 8 10 12 14

Time to reach the satisfactory state since the last insertion [s]

Fig. 10. An example which shows if A\ = 0.25, the number of the

underloaded nodes grows exponentially.

distributed inter-removal times. Again as long as the node
removal rate is below a threshold (A = 0.12) the system
remains sable and returns to a satisfactory state in a finite
amount of time.

A final set of experiments considered the performance of
the overlay topology in terms of lookup delay. In these tests,
a randomly selected node in the topology searches for all the
other nodes in the network. The test was performed 5 times and
the results for the average lookup cost are presented in Figure
11. In order to keep the results independent of the physical
location of the nodes, instead of measuring the absolute time
taken by a search we count the number of hops traversed
by a query message. Since the search is performed at the
superpeer layer and since each superpeer connects to m (5
in this experiment) other random superpeers, one can expect
the lookup cost to increase as the m‘* root function of the
total number of superpeers. This notion is supported by the
fitted curve in Figure 11 which shows behavior according to
the 5'h root. One might also expect the search performance to
improve as the number of connections between the superpeers
increases. To test this conjecture the experiment was repeated
for networks of different connectivity degrees to produce
performance graphs of the type shown in Figure 11. A curve
was fitted to each performance to identify the degree root that
best fit the data. Figure 12 shows the resulting best degree
root from the fitting as a function of the connectivity degree.
It’s clear that the performance increase slows down as the
connectivity degree increases past a threshold value. This
behavior is the result of the randomness in the connections. In
other words the resulting topology is not guaranteed to expand
completely in all dimensions and the probability of loopback
connections increases as the degree of connectivity increases.

VI. CONCLUSION

This paper presents a new approach to implementing SIP
over P2P networks. To the best of our knowledge this is

446

Authorized licensed use limited to: The University of Toronto. Downloaded on December 9, 2009 at 02:03 from |IEEE Xplore. Restrictions apply.

Average lookup cost as a function of the network size
T T T T T T T T

@ w @ Fod

PO N T)
T
.
L

Number of hops traversed by a query message
©
S

.
100 200 300 400 600 700 800
Number of superpeers present in the topology

(71

(8]

Fig. 11. Average number of hops traversed by a search query approximated [9]
by a root function.
Lookup performance vs connectivity degree at the superpeer layer
ol : ‘ : : ‘ ‘ : ; 0
[10]
[11]
£ [12]
[13]
[14]
= 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 E—;O 1(;0
Number of between ivity degree)
[15]
Fig. 12. Performance improvement achieved by increasing connectivity
degree of the topology. [16]
. L. . [17]
the first time SIP is integrated with a fully unstructured P2P
network. The modifications we have added to the Montresor
algorithm provide significant performance improvement and [18]
enhance the robustness of the protocol. We have investigated
the stability and scalability of the proposed system and shown
that it has robust behavior in a wide range of scenarios.
In future work, it would be beneficial to provide a fully
distributed search algorithm to optimize the search time in
very large scale networks. In addition, the behavior of the
system and service delivery guarantees under high volume of
traffic (data, voice and SIP messaging) needs to be studied.
Support for bypassing firewalls and security issues are among
the other challenges that will be addressed.
REFERENCES
[1] J. Rosenberg and H. Schulzrinne and G. Camarillo and A. Johnston
and J. Peterson and R. Sparks and M. Handley and E. Schooler, “SIP:
Session Initiation Protocol.”” RFC 3261, Jun 2002.
[2] Kundan Singh and Henning Schulzrinne, “Peer-to-peer Internet Tele-
phony using SIP.” New York Metro Area Networking Workshop, Sep
2004.
447

D. Bryan and C. Jennings, “A P2P Approach to SIP Registration and
Resource Location.” IETF Draft (draft-bryan-sipping-p2p-01), Jul 2005.
Rudiger Schollmeier, “A definition of peer-to-peer networking for the
clasification of peer-to-peer architectures and applications,” in Pro-
ceedings of the Ist IEEE International Conference on Peer-to-Peer
Computing, Aug 2001.

Shelley Q. Zhuang and Ben Y. Zhao and Anthony D. Joseph and Randy
H. Katz and John D. Kubiatowicz, “Bayeux: An Architecture for Scal-
able and Fault-tolerant Wide-area Data Dissemination,” in Proceedings
of NOSSDAV, June 2001.

R. Schollmeier, “Why peer-to-peer (P2P) does scale: an analysis of
P2P traffic patterns,” in Proceedings of the Second IEE International
Conference, Sep 2002.

Lechner, U. and Schmid, B.F., “Communities-business models and
system architectures: the blueprint of MP3.com, Napster and Gnutella
revisited,” in Proceedings of the 34th IEEE Annual Hawaii International
Conference, Jan 2001.

Sylvia Ratnasamy and Mark Handley and Richard Karp and Scott
Shenker, “Application-Level Multicast Using Content-Addressable Net-
works,” Lecture Notes in Computer Science, vol. 2233, 2001.

Ton Stoica and Robert Morris and David Karger and M. Frans Kaashoek
and Hari Balakrishnan, “Chord: A scalable peer-to-peer lookup service
for internet applications,” in Proceedings of the 2001 conference on
applications, technologies, architectures, and protocols for computer
communications, pp. 149-160, ACM Press, 2001.

A.Rowstron and P.Druschel, “Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems,” Proceedings
of 18th IFIP/ACM International Conference on Distributed Systems
Platforms, pp. 329-350, Nov 2001.

B.Zhao and J.Kubiatowicz and A.Joseph, “Tapestry: An infrastructure
for fault-tolerant wide-area location and routing.” Berkeley: Com-
puter Science Department, University of California, Technical Report,
UCB/CSD-01-1141, 2001.

N. Leibowitz and M. Ripeanu and A. Wierzbicki, “Deconstructing the
Kazaa Network,” in Proceedings of the 3rd IEEE Workshop on Internet
Applications (WIAPP’03), Jun 2003.

Beverly Yang and H. Garcia-Molina, “Designing a super-peer network,”
in Proceedings of the 19th IEEE International Conference, pp. 49-60,
Mar 2003.

M. Ripeanu, “Peer-to-Peer Architecture Case Study: Gnutella Network,”
in Proceedings of the 1st IEEE International Conference on Peer-to-Peer
Computing, Aug 2001.

D. Hales and S. Patarin, “Computational Sociology for Systems “In
the Wild”: The Case of BitTorrent,” Distributed Systems Online, IEEE,
vol. 6, pp. 94-97, Jul 2005.

J. Lennox and H. Schulzrinne, “An Analysis of the Skype Peer-to-Peer
Internet Telephony Protocol.” Computer Science Department, University
of Columbia, Technical Report, cucs-039-04, Sep 2004.

David A. Bryan and Bruce B. Lowekamp, “SOSIMPLE: A SIP/SIMPLE
Based P2P VoIP and IM System.” College of William and Mary,
Computer Science Department, Technical Report, Nov 2005.

Alberto Montresor, “A Robust Protocol for Building Superpeer Overlay
Topologies,” in Proceedings of the 4th IEEE International Conference
on Peer-to-Peer Computing, pp. 202-209, August 2004.

Authorized licensed use limited to: The University of Toronto. Downloaded on December 9, 2009 at 02:03 from |IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: The University of Toronto. Downloaded on December 9, 2009 at 02:03 from |IEEE Xplore. Restrictions apply.

