
A Graph Theoretical Approach to Traffic
Engineering and Network Control Problem

Ali Tizghadam
School of Electrical and Computer Engineering

University of Toronto, Canada
Email: ali.tizghadam@utoronto.ca

Alberto Leon-Garcia
School of Electrical and Computer Engineering

University of Toronto, Canada
Email: alberto.leongarcia@utoronto.ca

Abstract—This paper looks at the problem of traffic en-
gineering and network control from a new perspective. A
graph-theoretical metric, betweenness, in combination with a
network weight matrix is used to characterize the robustness
of a network. Theoretical results lead to a definition of
”criticality” for nodes and links. It is shown that this quantity
is a global network quantity and depends on the weight
matrix of the graph. Strict convexity of network criticality
is proved and an optimization problem is solved to mini-
mize the network criticality as a function of weight matrix
which in turn provides maximum robustness. Investigation
of the condition of optimality suggests directions to design
appropriate control laws and traffic engineering methods
to robustly assign traffic flows. The choice of the path for
routing the flow in these traffic engineering methods is in
the direction of preserving the robustness of the network
to the unforeseen changes in topology and traffic demands.
The proposed method is useful in situations like MPLS and
Ethernet networks where path assignment is required.

Index Terms—Robustness, Graph Theory, Betweenness,
Autonomic, Traffic Engineering, Markov Theory.

I. Introduction

From control-theoretical point of view, robustness is
the capability of a network to keep itself in stable mode
when changes take place in different parameters of the
network due to uncertainties. In order to fix our notions
of robustness we begin with our definition of robust-
ness. There are three major types of changes that may
affect the performance of the network: network topology,
community of interest (active source-destination pairs),
and traffic demand. Throughout this paper, we call
a ”network control strategy” or a ”traffic engineering
method” robust if its performance is not sensitive to
changes in topology, traffic or community of interest. We
aim to study the interaction between flow assignment
and network structure with the help of graph-theoretical
concepts.

In a previous work [1], we used a modified determin-
istic interpretation of ”betweenness centrality”, a metric
from graph theory which characterizes the topological
load of a node or link in a network graph. While the
results were encouraging, the analytical study of the
results was not feasible. In contrast, this paper uses
a probabilistic interpretation of betweenness to investi-
gate the problem of designing robust traffic engineering

methods. In this new direction we were able to investi-
gate the problem analytically using metrics from graph-
theory. We have discovered some useful aspects of the
robust network control and traffic engineering problem
in networks.

The rest of this paper is organized as follows. Section
II introduces the notion of criticality and investigates its
properties thoroughly. Section III is dedicated in solving
our convex optimization problem to minimize network
criticality as a function of weight matrix. In section IV a
traffic engineering method for robust routing and flow
assignment is proposed using the results of previous
sections. Section V provides some simulation results and
validation for the case of MPLS networks in section . The
paper is concluded in section VI.

II. Network Criticality
To model the robustness in a network, one needs

to consider the topology as well as the effect of load
on different nodes/links. In particular, the impact of a
new flow on existing ones needs to be modeled. This
motivates the use of betweenness metrics from graph
theory. We consider the probabilistic definition of the
node (link) betweenness as the main metric to quantify
the criticality of a node or link and we use the criticality
metric to model the degree of robustness of the network.

In [2] a probabilistic interpretation of the betweenness
is defined based on random walks in a graph. A random-
walk starts from a source node s, chooses one of the
neighbors at random with equal probabilities, and uses
the link between source s and that neighbor to get there.
The random walk continues wandering around until
reaches at a specified destination d, where it stops. The
betweenness bk of a node (link) k for source-destination
pair (s,d) is the expected number of times that a random
walk passes node k in its journey from source s to
destination d. The total betweenness of node k is the
sum of this quantity over all possible (s,d) pairs.

We use a generalized definition of random-walk be-
tweenness based on the weighted adjacency matrix of
a graph. To this end, we consider a network which is
shown by its graph G=(N,E,W), where N, E, and W
are the set of nodes, links, and weights of the graph

respectively. Each node has a certain probability to send
its data to the adjacent nodes. Let’s assume a random
walk at node s wants to go to node d as its final
destination. Destination node is an absorbing state for
this random walk and the walk is stopped in destination.
The probability of passing node k in next step is shown
by psk(d) and defined as:

psk(d) =
wsk∑

q∈A(s) wsq
(1 − δsd) (1)

where A(s) is the set of adjacent nodes of s and wsk is the
weight of link (s, k) (if there is no link between node
s and k, then wsk = 0), and δsd is the Kronecker delta
function (i.e. if s = d, then δsd = 1, otherwise δsd = 0).
The delta function in equation 1 is due to the fact that
the destination node d is an absorbing node, and any
random-walk coming to this state, will be absorbed or
equivalently pdk(d) = 0. Clearly, equation 1 defines a
Markovian system.
Now, we define the node criticality for a weighted
network simply as the random-walk betweenness of that
node over the weight of the node.

ηk =
bk

Wk
, Wk =

∑

j∈A(k)

wkj (2)

where ηk, bk, Wk are the criticality, betweenness, and
weight of node k (or weighted degree of the node)
respectively. Wk is equal to the sum of all link weights
incident to node k (weight of link (k,j) is shown by
wkj). Similarly, the link betweenness of link (i,j) (bij)is
defined as the expected number of times a random walk
traverses the link summed over all source-destination
pairs. The criticality of a link (i,j) (ηi j) is defined as the
betweenness of the link over its weight: ηi j =

bij

wij
.

We will use criticality of the nodes (and links) to assess
different networks based on their robustness to the
changes in traffic demand, topology, and community of
interest (source-destination pairs).

Observation 2.1: Equation 1 shows that if the weight
increases, the goodness of that link (probability of being
chosen) also increases. This means that for specific
definition of weight, the QoS parameters which are
in the direction of increasing the goodness (such as
available bandwidth) should be positively related to the
weight.

We assume that SLA (Service Level Agreement) pa-
rameters are already mapped to the weights with an ap-
propriate method. Some of these methods are discussed
in [3].

The betweenness of node (link) k for the source-
destination pair (s, d) is denoted by bsk(d) and defined as
the expected number of times that a random walk from s
to d traverses k. Note that the path from i to k could be of
length 0 to infinity. If we specify the probability values

psk(d) for destination d with matrix Pd, then for all k ! d,
the probability of entering node k at qth step for different
values of s and k can be obtained from corresponding
entries of the matrix Pd

q and in case of k = d it would be
0. In our calculations, we treat destination d as a fixed
point and write all matrices based on this assumption.
At the end we obtain general results for our metrics by
adding up the results for different destinations. In other
words, the matrix Pd can be viewed as routing matrix to
destination d when the random walk starts from node s.
One can write this relationship in matrix form as follows:

Bd =

{ ∑∞
q=0 Pq

d i f k ! d
0 otherwise

=

{
(I − Pd)−1 i f k ! d

0 otherwise
(3)

where Bd is the betweenness matrix for destination d. By
examining equation 3 one can easily see that the removal
of column and row d from betweenness and probability
matrices does not affect the other entries. We use M(i| j)
to denote a reduced matrix obtained by removing the
ith row and jth column of matrix M. Equation 3 can be
written as:

Bd(d|d) = (I − Pd(d|d))−1 (4)

Let W = [wij] be the weight matrix of the graph, D be
the diagonal matrix of weighted degrees or graph nodes,
and L be the Laplacian of the graph [4], [5]. We know
that:

L = D −W =
∑

(i, j)∈E

wijuijut
i j

D = diag(W1,W2, ...,Wn), Wi =
∑

k∈A(i)

wik

Pd(d|d) = D−1(d|d) ×W(d|d)

where uij = [0 ... 1 ... − 1 ... 0]t (1 and −1 are in ith and
jth position). The last equation is the direct result of
equation 1. Now we have:

I − Pd(d|d) = I −D−1(d|d) ×W(d|d) = D−1(d|d) × L(d|d) (5)

Replacing equation 5 in 4 results in:

Bd(d|d) = L−1(d|d) ×D(d|d) (6)

Note that graph G(N,E) is assumed to be connected
which means that the rank of graph Laplacian L is
(n − 1). As a result, the inverse of reduced Laplacian
L(d|d) exists and equation 6 has a unique solution.
Now we need to write equation 6 in terms of the
Laplacian of the original graph.

Lemma 2.2: For entries of the reduced inverse of the
Laplacian matrix, one can write:

(L−1(d|d))sk = l+sk − l+sd − l+dk + l+dd (7)

where l+sk shows the entry of row s and column k in
Moore-Penrose inverse of Laplacian matrix L.

Proof: See Appendix A.

Now, according to equation 6, we can obtain the
betweenness of the node k for source-destination pair
(s, d):

Bd(d|d) =L−1(d|d) ×D(d|d)

(Bd(d|d))sk =(l+sk − l+sd − l+dk + l+dd) ×Wk

bsk(d)
Wk

=l+sk − l+sd − l+dk + l+dd

To obtain the total betweenness of node k, we need to
consider the effect of all source-destination pairs.

bk

Wk
=

1
Wk

∑

s

∑

d

bsk(d) =
1

Wk

∑

s

∑

d

bsk(d) + bdk(s)
2

bk

Wk
=
∑

s

∑

d

l+dd − l+sd − l+ds + l+ss

2

bk

Wk
=

1
2

∑

s

∑

d

τsd =
1
2
τ where τ =

∑

s,d

τsd (8)

τsd = l+ss + l+dd − 2l+sd or τsd = ut
sdL+usd (9)

To get equation 9 we used the fact that Laplacian matrix
(and its Moore-Penrose inverse) is symmetric.
A similar result can be derived for a link of the graph
as well. For a link (i,j), one can find the betweenness of
a link based on the betweenness of its two end nodes.

Lemma 2.3: Betweenness of link l = (i, j) is equal to bij =
b(l) = τwij. Equivalently, the criticality of link (i,j) would
be ηi j = η(l) =

bij

wij
= τ.

Proof: See Appendix B

Observation 2.4: Equation 8 and lemma 2.3 show that
τ is independent of the node/link position. In fact τ is a
global quantity of the network. From now on we call τ
”network criticality”. These equations show that node
(link) criticality is a combination of a local parameter
(weight) and a global metric (network criticality).
This motivates the rest of our work in this paper.
We investigate network criticality as a network-wide
metric to capture and optimize network robustness.
Further, equation 9, and lemma 2.3 give exact formulas
to measure the generalized criticality of a node or a
link of a graph. This allows analytical study of network
robustness problem.

Before proceeding, we derive an alternative formula
for τ which will be used later.

Lemma 2.5: τ is equal to 2nTr(L+).
Proof:

τ =
∑

s,d

τsd =
∑

d

∑

s

l+ss +
∑

s

∑

d

l+dd − 2
∑

s

∑

d

l+sd

= n
∑

s

l+ss + n
∑

d

l+dd − 2 × 0 = 2n
∑

i

l+ii = 2nTr(L+)

Now we are ready to investigate the convexity of τ.

Theorem 2.6: τ is a strictly convex function of graph
weights. Further, τ is a non-increasing function of link
weights.

Proof: We note that function f (X) = Tr(X−1) is strictly
convex on X, if X is positive definite (see [6]). Therefore,
using equation L+ = (L + J

n)−1 − J
n [6], where J is an

n × n matrix with all elements equal to 1, we have
τ = 2nTr(L+) = 2nTr(L+ J

n)−1−2n is strictly convex on matrix
L + J

n (since L is positive semi-definite, L + J
n is always

positive definite).
It is also not difficult to show that ∂τ

∂wij
= −2n‖L+uij‖2,

which is always negative, therefore, τ is a monotone
decreasing function of link weights.

Theorem 2.6 has some direct consequences.

Observation 2.7: The problem of finding graph weights
to optimize network criticality is a convex optimization
problem and all the related literature can be used to solve
it.

Observation 2.8: Due to the fact that the τ is a strictly
convex function of the weights, an optimization problem
with some constraints has a unique solution. As τ is
a non-increasing function of weights, our optimization
problem would be to minimize network criticality where
some constraints are imposed on weight matrix.
The ultimate goal is to find a method to minimize
network criticality. Hence, we consider the minimization
of τ under some constraints. We set

∑
(i, j)∈E zijwij = C as

a reasonable constraint for our optimization problem,
where zij is the cost of having link i, j, and C can be
considered as the maximum fixed budget for total
network weight.

Theorem 2.9: Consider the following optimization
problem on graph G(N,E):

Minimize τ

Subject to
∑

(i, j)∈E zijwij = C ,C is f ixed (10)
wij ≥ 0

For the optimal weight set, W, the derivative of τ with
respect to any link weight wij is proportional to the τ
if the link weight is non-zero. More precisely, for the
optimal weight set W∗:

w∗i j(C
∂τ
∂wij

+ zijτ) = 0 (i, j) ∈ E (11)

Proof: See Appendix C.

Observation 2.10: Equation 11 provides a set of control
laws to guide the network to the direction of minimizing
criticality. In other words, differential equations obtained

in equation 11 give the dynamics of control agents in
a distributed (or centralized) network control system.
The controller design should be in the direction of
minimizing the changes in network criticality.

Next section discusses the convex optimization problem
10 in detail.

III. Convex Optimization Problem forNetwork
Criticality

In order to investigate the behavior of τ when the
optimality condition is not met, we need to explore the
properties of the optimization problem introduced in
theorem 2.9. Our approach is to find an upper bound for
the optimality gap (the difference between the optimal
and sub-optimal objective values of the optimization
problem). The goal is then to minimize this upper bound.
In order to establish the upper bound, we use the fact
that according to the duality theorem [7], any value
of the dual objective function is a lower bound for
the optimal value of the primal one. The duality gap,
which is the difference between the value of the primal
and dual objective functions, provides an upper bound
for the optimality gap of the optimization problem In
the optimal case the duality gap is zero because we
optimize a strictly convex function of the variables, but
in sub-optimal cases, it provides an upper bound for the
optimality gap. We try to find this upper bound and
use it as a metric to quantify the behavior of network
criticality. This section tries to provide some directions
towards this goal.

In order to investigate the behavior of τ when the
optimality condition is not met, we need to explore the
properties of the optimization problem introduced in
theorem 2.9. We start by finding the dual of the opti-
mization problem 10. Using lemma 2.5 and considering
well-known equation L+ = Γ−1 − J

n ([8]), where Γ = L + J
n ,

the optimization problem 10 can be written as:

Minimize 2nTr(Γ−1) − 2n

Subject to Γ =
∑

(i, j)∈E wijuijut
i j +

J
n∑

(i, j)∈E zijwij = C ,C is f ixed

wij ≥ 0 (12)

Now we write the lagrangian of the optimization prob-
lem 12.

L(Γ,W,T,λ,ρ) = 2nTr(Γ−1) + Tr(TΓ) − 2n − Cλ

−
∑

(i, j)∈E

wijTr(Tuijut
i j) +

∑

(i, j)∈E

wij(λzij − ρi j) −
1
n

∑

i, j∈N

tij

To find the dual formulation, it is enough to take the

infimum of the lagrangian over Γ, W.

d(T,λ,ρ) = in fΓ,WL(Γ,W,T,λ,ρ)

= in fΓTr(2nΓ−1 + TΓ) + in fW(−2n − Cλ

−
∑

(i, j)∈E

wij(−ut
ijTuij + λzij − ρi j) −

1
n

∑

i, j∈N

tij)

d(T,λ,ρ) =



in fΓTr(2nΓ−1 + TΓ) − 1
n

∑
(i, j)∈E tij − 2n − Cλ

i f − ut
ijTuij + λzij − ρi j = 0 and T ≥ 0

−∞ otherwise

where T = [tij] and Γ = [γi j], and T ≥ 0 means that matrix
T is positive semi-definite. We have also used equation
Tr(Tuijut

i j) = ut
ijTuij to simplify Lagrangian. The infimum

can also be obtained analytically.

−2nΓ−2 + T = 0 ⇒ T = 2nΓ−2 and Γ = (
T
2n

)−
1
2 (13)

hence, we will have

in fΓ(2nTrΓ−1 + TΓ) = Tr(2n(
T
2n

)
1
2 + T(

T
2n

)
−1
2) = 2Tr(2nT)

1
2 (14)

From equation 13 one can see that if L be the optimal
solution for Laplacian of the graph, then T = 2n(L + J

n)−2.

T = 2n(L +
J
n

)−2

T
−→
1 = 2n(L +

J
n

)−2−→1

where −→1 is an n× 1 column vector with all entries equal
to 1. Further, we we know that:

(L +
J
n

)
−→
1 = L

−→
1 +

1
n

J
−→
1 = 0 +

1
n
× n
−→
1 =
−→
1

or T
−→
1 = 2n

−→
1 (15)

Equation 15 is valid for optimal solution of the optimiza-
tion problem 13. Hence, we can use it as a constraint in
our optimization problem. We need one more step to
take before writing the dual optimization problem. We
can remove the dual variable set ρi j considering the fact
that ρi j ≥ 0. Using this inequality in the condition part of
the equation 13 results in

−ut
ijTuij + λzij − ρi j = 0 and ρi j ≥ 0

⇒ −ut
ijTuij + λzij ≥ 0

or
1
zij

ut
i jTuij ≤ λ

Hence, the dual optimization problem can written as
follows:

maximize 2Tr(2nT) 1
2 − 2n − Cλ − 1

n

−→
1 tT
−→
1 (16)

subject to 1
zij

ut
i jTuij ≤ λ (17)

T
−→
1 = 2n

−→
1 , T ≥ 0 (18)

Lemma 3.1: The optimization problem 16 can be con-
verted to the following equivalent one:

maximize 2nC−1(Tr(Q))2 (19)
subject to 1√zij

∥∥∥Qi −Qj

∥∥∥ ≤ 1

Q
−→
1 = 0, Q ≥ 0

where Q = (T−2J
λ) 1

2

Proof: See appendix D.

Finally, we extract the exact solution of the opti-
mization problem 19. According to equation 13 for the
optimal solution of the optimization problem, one can
write

T = 2nΓ−2 = 2n(L +
J
n

)−2 = 2n(L+ +
J
n

)2

= 2n(L+)2 + 2n × 1
n2 × n × J = 2n(L+)2 + 2J (20)

to obtain equation 20 we used the fact that L+ J = 0 and
J × J = nJ. Now we use equation 20 to obtain matrix Q
for the optimal case.

Q = (
T − 2J
λ

)
1
2 = (

2nL+2 + 2J − 2J
λ

)
1
2 = (

2n
λ

)
1
2 L+ (21)

On the other hand

λ = max
(i, j)∈E

(
1
zij

uijTut
ij) = max

(i, j)∈E
(

1
zij

uij2nΓ−2ut
ij)

= max
(i, j)∈E

(
2n
zij

uijL+
2ut

ij) = max
(i, j)∈E

(
2n
zij

∥∥∥L+uij

∥∥∥2
)

= 2n max
(i, j)∈E

1
zij

∥∥∥∥L+i − L+j
∥∥∥∥

2
(22)

Replacing equation 22 in 21 we get

Q = (
2n
λ

)
1
2 L+ = (2n)

1
2

1

(2n max(i, j)∈E
1
zij

∥∥∥∥L+i − L+j
∥∥∥∥

2
) 1

2

L+

=
1

max(i, j)∈E
1√zij

∥∥∥∥L+i − L+j
∥∥∥∥

L+ (23)

Equation 23 gives the matrix Q based on the Moore-
Penrose inverse of the graph Laplacian L+.

A. Main Result

Now we are ready to state the main result. Let τ∗
denote the optimal value of τ. According to the duality
theorem, the objective value of the dual problem is a
lower bound for the optimal objective value of the primal
optimization problem, thus:

τ∗ ≥ τdual or τ − τ∗ ≤ τ − τdual (24)

Inequality 24 shows that the duality gap τ−τdual provides
an upper bound for the optimality gap τ − τ∗. The
objective function of the dual problem 19 can be easily
obtained by applying equation 23 to equation 19.

τdual = 2nC−1Tr(Q)2|Q= 1

max(i, j)∈E
1√
zi j

∥∥∥∥∥L
+
i −L+j

∥∥∥∥∥
L+

= 2nC−1 1

max(i, j)∈E
1
zij

∥∥∥∥L+i − L+j
∥∥∥∥

2 (TrL+)2 (25)

The difference between the primal and dual problem can
be obtained as follows:

τ − τdual = 2nTrL+ − 2nC−1 1

max(i, j)∈E
1
zij

∥∥∥∥L+i − L+j
∥∥∥∥

2 (TrL+)2

= 2nTrL+ + (2n)2C−1 1

−2n max(i, j)∈E
1
zij

∥∥∥∥L+i − L+j
∥∥∥∥

2 (TrL+)2

= τ + C−1 τ2

min(i, j)∈E
1
zij

∂τ
∂wij

τ − τdual

τ
= 1 +

τ

C min(i, j)∈E
1
zij

∂τ
∂wij

(26)

We can summarize the result in the following theorem.

Theorem 3.2: Consider the following optimization
problem:

Minimize τ

Subject to
∑

(i, j)∈E zijwij = C ,C is f ixed (27)
wij ≥ 0

For any sub-optimal solution of this convex optimization
problem, the deviation from optimal solution (τ−τdual

τ) has
the upper bound of 1 + τ

C min(i, j)∈E
1

zi j
∂τ
∂wij

.

Theorem 3.2 can be used as the foundation for build-
ing centralized and distributed algorithms for flow as-
signment and routing problem. We will see one ap-
plication of theorem 3.2 designing centralized traffic
engineering algorithms in next section.

IV. Design of a Traffic EngineeringMethod
We now discuss how the analytical results extracted in

previous section can be used to design a robust routing
scheme that is able to cope with unpredicted changes
in traffic and topology. Theorem 3.2 shows the control
mechanism that needs to be implemented to maximize
the robustness. The evolution of the management state
should be in the direction of minimizing the upper
bound of theorem 3.2. We define the cost of link l = (i, j)
as follows.

cost(l) = cost(i, j) = 1 +
τ

C
zij

∂τ
∂wij

(28)

Now we can apply the Dijkstra’s algorithm to find the
shortest path between every two nodes. This is the
main idea of our traffic engineering algorithm, which
is detailed in the following section.

A. Random Walk Path Criticality Routing (RW-PCR)
The idea of RW-PCR is simple. We label each and ev-

ery link of the graph with its cost according to equation
28 and use Dijkstra’s algorithm to obtain the shortest
path(s) from a source s to a destination d using the
assigned cost for the links. Bear in mind that this cost is
not the same as wij. In fact the cost has the role of Link

Fig. 1. Flowchart of RW-PCR Algorithm

Criticality Index (LCI) in our heuristic Path Criticality
Routing (PCR) algorithm described in [1].

Definition 4.1: We call 1 + τ
C

zij
∂τ
∂wij

as Random-Walk Link
Criticality Index (LCIRW).

Definition 4.2: We define the maximum of the LCIRW

of the links in a path as Random-Walk Path Criticality
Index (PCIRW).

When a demand for source-destination pair s − d ar-
rives, the shortest path obtained in this way would
be considered as a candidate to be assigned to the
demand. A simple call-admission control is applied here
by considering a threshold tr for the criticality of the
path. If the PCIRW is more than this threshold, then the
flow would be considered too risky for the network and
be rejected (blocked), otherwise the path is used as the
route and the demand flow is assigned to this path.
The available bandwidth of all the links on this path is
updated and the LCIRW’s are also modified accordingly.
In case of having more than one shortest path, the path
with least PCIRW will be chosen. A simple flowchart of
RW-PCR algorithm is shown in Fig. 1.

1) Time Complexity of RW-PCR Argorithm: To estimate
the time complexity of the algorithm, we note that the
running time to get the Moore-Penrose inverse is O(mn 1

2)
[6], where m and n are the number of links and nodes
in the graph respectively. The main part of the RW-PCR
can be obtained in O(nlog(n)) as it is just a shortest path
algorithm with link costs. Therefore, the complexity of
the algorithm would be O(mn 3

2 log(n)).

V. Evaluation

In order to investigate the effectiveness of our RW-PCR
algorithm, we conduct a set of experiments on the net-
work of Fig. 2. We apply RW-PCR to create LSPs (Label
Switch Path) assuming that MPLS is used in the network
to create the paths. In our simulations we assumed
zij = 0 ∀(i, j) ∈ E. In the first experiment the requests for
LSPs arrive at random and stay forever (no departures).
In our tests the bandwidth requests for paths (LSPs) are
taken to be uniformly distributed between 1 to 3 units. In
Fig. 3 we show the percentage of rejected calls for this

Fig. 2. Test Network to Evaluate RW-PCR Algorithm

Fig. 3. Static Case- Result of Applying PCR, RW-PCR, SP, and WSP
to the Network under Test

case and compare the performance to that of original
deterministic PCR ([1]), shortest path (SP), and widest
shortest path (WSP). The test is performed 20 times and
each time with 2000 path requests. We measured the
number of blocked requests. Fig. 3 shows that RW-PCR
algorithm has the best performance and the performance
of PCR and RW-PCR algorithms are much better than
WSP and SP.

In another experiment we examined the behavior of
the algorithms in the presence of dynamic traffic. Path
requests arrive between each source-destination point
(which is chosen at random) according to a Poisson
process with an average rate λ, and the holding times are
exponentially distributed with mean µ and λ

µ = 1800. The
bandwidth of input demands are taken to be uniformly
distributed between 1 to 3 units and 7000 demands are
generated in each experiment. Fig. 4 shows the per-
centage of the path requests rejected in 20 experiments
(blocking probability).

From Fig. 4, one can see that the number of blocks
in RW-PCR is less than other algorithms. PCR has the
second best performance and WSP and SP are in next
positions. The main reason for the success of RW-PCR is
the fact that RW-PCR finds the path that has minimum

Fig. 4. Dynamic Case- Result of Applying PCR,RW-PCR, SP, and WSP
to the Network under Test

effect on network criticality (or betweenness sensitivity).

VI. Conclusion
In this paper we analyzed the robustness of a network

to unexpected changes in different parameters based on
facts from graph theory. Network criticality is introduced
as the main metric to quantify robustness. This metric is
investigated in deep, and it is shown that it captures
some global properties of a network including the effect
of topology and load. we introduced a strictly convex op-
timization problem based on the properties of network
criticality and proposed a control law to engineer the
traffic of the network towards keeping the criticality as
low as possible which in turn guarantees robustness.
We believe that the provided framework opens different
venues for further research in traffic engineering as well
as network design problem. Our results can be used
to design different distributed control mechanisms (for
example in multi-agent control networks), or distributed
mechanisms for traffic engineering in core networks
where robustness is required. The proposed optimization
problem can be also used in network planning where the
capacity assignment or topology design is the goal.

Appendix A
Proof of Lemma 2.2

We use small English letters to show column vectors
and small Greek letters to show row vectors. We also use
subscript to show the order of a vector. For example zn−1

is a n−1×1 column vector and υn−1 is a 1×n−1 row vector.
Without loss of generality, we rename the nodes so that
the removed node becomes the last node of the graph
(node n). Now, in order to write L−1(n|n) in terms of L, we
use the Moore-Penrose generalized inverse matrix of L
([6]). The Moore-Penrose inverse of L(n|n) and the L−1(n|n)
are equal since L(n|n) is an (n−1)× (n−1) matrix with rank
n− 1. In other words, L(n|n) is full-rank and its inverse is
the same as its Moore-Penrose inverse. To obtain L from
L(n|n), we first add a column to L(n|n) to get:

Q = [L(n|n) zn−1]

The column-vector zn−1 has to be chosen in a way to
make the sum of every row of the matrix Q equal to
zero. We use the following formula from [6] which is a
recursive formula to obtain the Moore-Penrose inverse of
a matrix when a column is added to the original matrix.
Let A ∈ Fp×q be a p× q matrix and b ∈ Fp be a p× 1 column
vector.
(
A bp

)+
=

(
A+(I − bpζp)

ζp

)
, ζp = {(bp−AA+bp)+ i f bp!AA+bp

b∗p (AA∗)+
1+b∗p (AA∗)+bp

bp=AA+bp

. (29)

where ζp is a 1 × p row vector and ∗ means conjugate
transpose. To satisfy the requirement of Laplacian matrix
we need to have

[L(n|n) zn−1]
−→
1 n = 0 (30)

From 30 one can easily see that:

L(n|n)
−→
1 n−1 + zn−1 = 0⇒ zn−1 = −L(n|n)

−→
1 n−1 (31)

Now from 29 by replacing A = L(n|n) and using 31, one
can see:

Q+ =
(
L(n|n) zn−1

)+

=

(
L+(n|n) − L+(n|n)zn−1ζn−1

ζn−1

)

=



L+(n|n) + L+(n|n)L(n|n)

−→
1 n−1ζn−1

ζn−1




=

(
L(n|n)+

0

)
+
−→
1 nζn−1 (32)

Equation 32 asserts that:

q+sk = (L+(n|n))sk + (ζn−1)k i f s ! n

q+nk = 0 + (ζn−1)k i f s = n

Subtracting these two equations show that:

⇒ (L+(n|n))sk = q+sk − q+nk (33)

With the same approach , we add the nth row to Q to

obtain the n×n Laplacian matrix L: L =
[

Q
d

]
With similar

reasoning and using equation 29 one can obtain:

⇒ q+sk = l+sk − l+sn (34)

Using equations 33, 34 we can find our desired result.

(L+(n|n))sk = l+sk − l+sn − l+nk + l+nn (35)

but L+(n|n) = L−1(n|n), so:

(L−1(n|n))sk = l+sk − l+sn − l+nk + l+nn

Appendix B
Proof of Lemma 2.3

bij =
wij∑
k wik

bi +
wji∑
k wkj

bj

=
wij

Wi

1
2
τWi +

wji

Wj

1
2
τWj

=
1
2

(wij + wji)τ = wijτ or
bij

wij
= τ

Appendix C
Proof of Theorem 2.9

In order to proceed we need the following fact:
Lemma C.1: For any weight matrix W on the graph:

∇τ.Vec(W) + τ = 0, where Vec(W) is a vector obtained by
appending all the rows of matrix W to get a vector of
wij’s.

Proof: In lemma 2.3 we scale all the link weights with
parameter t.

τ(tVec(W)) =
1
t
τ(Vec(W)) (36)

By taking the derivative of τ with respect to t, we have

Vec(W)t∇τ = −1
t2 τ(W) (37)

It is enough to consider equation 37 at t = 1 to obtain
Vec(W)t∇τ + τ = 0.

Now, to conclude the proof of theorem 2.9 we notice that
for optimal weight matrix W∗ we can write

(Vec(Z).Vec(W∗))τ = (
∑

(i, j)∈E

w∗i jzi j)τ = Cτ (38)

Combining lemma C.1 and equation 38 one can see

C∇τ.Vec(W∗) + Vec(Z).Vec(W∗)τ = 0

Vec(W∗).(C∇τ + τVec(Z)) = 0

w∗i j(C
∂τ
∂wij

+ τzij) = 0

Appendix D
Proof of Lemma 3.1

We apply the change of variable Q = (T−2J
λ) 1

2 to equation
18:

T = λQ2 + 2J

T
−→
1 = λQ2−→1 + 2J

−→
1

2n
−→
1 = λQ2−→1 + 2n

−→
1

λQ2−→1 = 0

Q
−→
1 = 0 (bear in mind Q ≥ 0 since T ≥ 0)

Now we apply the variable change to the dual function.

(2nT)
1
2 = (2n)

1
2 (λQ2 + 2J)

1
2 = (2n)

1
2 (λQ2 + (

2
n

)J2)
1
2

= (2n)
1
2 (λ

1
2 Q + (

2
n

)
1
2 J) = (2nλ)

1
2 Q + 2J

⇒ Tr((2nT)
1
2) = (2nλ)

1
2 Tr(Q) + 2Tr(J)

= (2nλ)
1
2 Tr(Q) + 2n (39)

Now we apply the equation 39 to the dual function 16.

d(T,λ) = 2Tr(2nT)
1
2 − 2n − Cλ − 1

n
−→
1 tT
−→
1

= 2(2nλ)
1
2 Tr(Q) + 4n − 2n − Cλ

− 1
n
λ
−→
1 tQ2−→1 − 1

n
× 2
−→
1 t−→1 −→1 t−→1

= 2(2nλ)
1
2 Tr(Q) + 4n − 2n − Cλ − 0 − 2n

= 2(2nλ)
1
2 Tr(Q) − Cλ

The first constraint of the dual problem 16 (constraint
17)can be written in terms of new variable Q as follows:

1
zij

ut
i jTuij ≤ λ

1
zij

(λut
ijQ

2uij + ut
ij Juij) ≤ λ

1
zij

(λ(ut
ijQ

t)(Quij) + 0) ≤ λ

1
zij
λ(Quij)t(Quij) ≤ λ

1
zij

∥∥∥Quij

∥∥∥2 ≤ 1

1√zij

∥∥∥Qi −Qj

∥∥∥ ≤ 1

where Qi shows the ith column of matrix Q. To obtain
this inequality we used the facts that Q is symmetric
and Juij = 0. Our dual optimization problem now can be
written as:

maximize 2(2nλ) 1
2 Tr(Q) − Cλ

subject to 1√zij

∥∥∥Qi −Qj

∥∥∥ ≤ 1

Q
−→
1 = 0, Q ≥ 0

The maximization over λ in this optimization problem
can be done analytically.

d(Q,λ) = 2(2nλ)
1
2 Tr(Q) − Cλ

∂d
∂λ
= 0 ⇒ 2 × (2n)

1
2 × 1

2
λ−

1
2 Tr(Q) − C = 0

λ = 2nk−2(Tr(Q))2

d(Q) = 2(2n)
1
2 × (2n)

1
2 C−1(Tr(Q))2 − C × 2nC−2(Tr(Q))2

= 2nC−1(Tr(Q))2 (40)

Using equation 40, the final form of our dual optimiza-
tion problem would be

maximize 2nC−1(Tr(Q))2

subject to 1√zij

∥∥∥Qi −Qj

∥∥∥ ≤ 1

Q
−→
1 = 0, Q ≥ 0

References
[1] A. Tizghadam and A. Leon-Garcia. A Robust Routing Plan to

Optimize Throughput in Core Networks. ITC20, Elsvier, pages 117–
128, 2007.

[2] M. Newman. A Measure of Betweenness Centrality Based on
Random Walks. arXiv cond-mat/0309045., 2003.

[3] P. Van Mieghem and F. A. Kuipers. Concepts of Exact QoS Routing
Algorithms. IEEE/ACM TRANSACTIONS ON NETWORKING,
12(5):851–864, October 2004.

[4] Michael William Newman. The Laplacian Spectrum of Graphs. PhD
thesis, Department of Mathematics, University of Manitoba, July
2000.

[5] Fan R. K. Chung. Spectral Graph Theory. CBMS Regional Conference
Series On Mathematics, No. 92. American Mathematical society,
1997.

[6] Dennis S. Bernstein. Matrix Mathematics. Prinston University Press,
2005.

[7] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis and
Optimization. Athena Scientific, April 2003.

[8] C. R. Rao and S. K. Mitra. Generalized Inverse of Matrices and its
Applications. John Weily and Sons Inc., 1971.

