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Abstract In this chapter we are concerned with robustness design in complex
communication networks. We define robustness as the ability of a network
to adapt to environmental variations such as traffic fluctuations, topology
modifications, and changes in the source of external traffic. We present a
network theory approach to the joint optimization of resources and routes in
a communication network to provide robust network operation. Our main
metrics are the well-known point-to-point resistance distance and network
criticality (total resistance distance) of a graph. We show that some of the
key performance metrics in a communication network, in particular average
network utilization, can be expressed as a weighted combination of point-to-
point resistance distances. A case of particular interest is when the external
demand is specified by a traffic matrix. We extend the notion of network crit-
icality to be a traffic-aware metric. Traffic-aware network criticality (TANC)
is then a weighted linear combination of point-to-point resistance distances
of the graph. For this reason in this chapter we focus on a weighted linear
sum of resistance distances (which is a convex function of link weights) as
the main metric and we discuss a variety of optimization problems to jointly
assign routes and flows in a network. We provide a complete mathemati-
cal analysis of the optimization problem for the case where the routing in
the network is already known (network planning), and we then extend the
analysis to the more general case involving the simultaneous optimization
of resources and flows (routes) in the network (traffic engineering). Further-
more, we briefly discuss the problems of finding the best set of demands
that can be matched to a given network topology. We discuss applications
of the proposed optimization methods to the design of virtual networks.
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Moreover, we show how our techniques can be used in the design of robust
power grids.

1 Centrality Measures

Centrality measures in graph theory quantify the structural importance or
prominence of nodes and links. Numerous centrality indices have been in-
troduced and studied in literature, but one can categorize these indices into
three major classes: reachability measures, vitality measures, and flow mea-
sures. In reachability indices a node is central if it reaches many other nodes,
or can be reached by many other nodes. All the centrality measures in this
category use some form of distance between two nodes. For instance, degree
centrality which is a well-known reachability index counts the number of
nodes that can be reached within distance 1.

Vitality measures are the second class of commonly used centrality index.
Given a real-valued function on a graph G, a vitality measure quantifies
the difference between the value of the function on G with the presence or
absence of a node or a link. For example, in a wireless mobile network, the
main goal is to keep connectivity among all the nodes via peripheral (or
relay) nodes. Algebraic connectivity (smallest non-zero eigenvalue of the
graph Laplacian matrix) is an appropriate choice for real-valued functions
on the graph of the mobile network. In this case the vitality of a node or link
denotes the change of this function (algebraic connectivity) if that node or
link was removed from the network.

Finally, we have flow centrality measures. Let γsd denote the amount of
flow entering at node s destined for node d. Flow indices quantify how much
of this flow traverses a specific node or link. In this chapter our focus is on
flow centralities, and in particular we are interested in different variations of
betweenness centrality as the most useful flow measure. We refer the reader
to [1] for a complete review of centrality measures.

2 Betweenness Centrality Measures

Freeman [2] introduced a very useful metric in graph theory referred to as
shortest-path betweenness centrality. For node k the shortest-path between-
ness centrality with respect to flows from source node s to destination node
d is defined as the proportion of instances of the shortest paths from node s
to d that traverse node k. This can be interpreted as the probability that node
k is involved in any communication between s and d with the assumption
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that all communication is along equiprobable shortest paths. The overall
shortest-path betweenness centrality of node k is the sum of the centralities
over all source-destination pairs. Link betweenness is defined similarly. The
concept of betweenness centrality is closely related to the principle of conser-
vation of flow in a communication network. According to this principle for
any intermediate node (or link) in a communication path, the incoming flow
is equal to the outgoing flow. When we count the proportion of instances
that a node is involved in a communication along shortest paths (or more
generally a path), we implicitly assume the conservation of flow.

A major drawback of the shortest-path betweenness is that in communica-
tions networks it is frequently desirable to take a path other than the shortest
path. To overcome this issue other betweenness centrality metrics have been
proposed. In [3] the authors introduce flow betweenness centrality. Suppose
that each link of the network is capable of transferring a unit flow of infor-
mation. The flow betweenness of a node k is defined as the proportion of
flow through node k when maximum flow is transmitted from source s to
destination d averaged over all s− d pairs. The maximum flow that can be
sent between two nodes is in general more than a unit flow since one can
use multiple paths to transmit information. The flow betweenness is in fact
a vitality measure because the amount of flow passing along node k can be
found in this way. Let fsd denote the maximum flow that can be transmitted
from source node s to destination d. Further, suppose we remove node k (and
its incident links) from the graph, and let f k

sd denote the maximum flow that
can be sent from s to d in the new graph. Then the flow traversing node k is:
fsd− f k

sd. In fact, the flow betweenness measures the betweenness centrality
of network nodes when maximum possible flows are fed into the network
(between every pair of nodes). While the flow betweenness considers paths
other than shortest paths, it suffers from some of the limitations in the defini-
tion of shortest path betweenness. In maximum flow problems we still have
one (or more) ideal path(s) mandating the communication (just like shortest
path), however in many practical situations flow does not take ideal paths
either shortest path, max-flow path, or any other type of ideal path.

Deterministic betweenness is a straightforward extension of shortest path
betweenness and is proposed in [4]. Deterministic betweenness of a node (or
link) k is the fraction of total paths between a source s and destination node d
traversing node (or link) k, averaged over all active traffic sources and sinks,
which we refer to as the community of interest. One can easily recognize
two main differences between deterministic betweenness and the original
shortest-path betweenness. First, in the former all the paths are involved,
whereas in the latter only shortest paths are considered. Second, in deter-
ministic betweenness only the active path set (paths within a community of
interest) is involved in definition of betweenness, whereas in original short-
est path betweenness, all possible node pairs are considered. Unfortunately
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the enumeration of paths does not lend itself to tractable analytic results.

In order to overcome these tractability problems Newman [5] proposed
random-walk betweenness which is a probabilistic approach to define and
analyze the betweenness of a node/link. We begin with a graph model.

An undirected graph G(V,E,W) consists of a finite node set V which
contains n nodes, together with a link set E ∈ V×V, and each link has an
associated non-negative weight wij. The weight of a node i is defined as
Wi =

∑
j wij. We can define a transition probability matrix P = [pij] of an ir-

recucible Markov random walk through the undirected graph which satisfies∑
j pi j = 1 ∀i ∈ V. In this work we consider a connected graph and use the

weighted random walk whose transition probability is defined as pij =
wij
Wi

.
Moreover, we define weighted graph Laplacian as L = D−W, where D is a
diagonal matrix whose main diagonal entries are: D(i, i) =Wi.

We are now ready to define random-walk betweenness. Consider the set
of trajectories that begin at node s and terminate when the walk first arrives
at node d, that is, destination node d is an absorbing node. The random-
walk betweenness bsk(d) of node k for the s− d trajectories is defined as the
number of times node k is visited in trajectories from s to d averaged over all
possible s−d trajectories and the total betweenness of node k is bk =

∑
s,d bsk(d).

Let Bd = [bsk(d)] be the n×n matrix of betweenness metrics of node k for
walks that begin at node s and end at node d. Note that the dth row of the
matrix is zero. It is shown in [5] that matrix Bd can be written as:

Bd = (I−Pd)−1Θd (1)

Θd = [θsk(d)] =
{

1 i f s = k ! d
0 otherwise

Matrix Pd is the same as P except that its dth row and dth column are zero
vectors.In this paper we are interested in a special type of random-walks
referred to as weight-based random-walk. The weight-based random-walk
is defined on a Markov chain with transition probability matrix P according
to the following rule:

psk(d) =
wsk∑

q∈A(s) wsq
(1−δ(s−d)) (2)

where A(s) is the set of adjacent nodes of s and wsk is the weight of link (s,
k) (if there is no link between node s and k, then wsk = 0), and δ(.) is the
Kronecker delta function (i.e. δ(x) = 1 if x = 0 and δ(x) = 0 otherwise). The
delta function in equation (2) is due to the fact that the destination node d is
an absorbing node, and any random-walk coming to this state, will be ab-
sorbed or equivalently pdk(d) = 0. Clearly, equation (2) defines a Markovian
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random-walk.

Finally, traffic-aware betweenness [6] is a natural extension to explicitly
account for the effect of traffic demands in the definition of betweenness
centrality index. Let Γ = [γs(d)] and γ denote the traffic matrix and the to-
tal external traffic (i.e. γ =

∑
s,dγs(d)) respectively. We define traffic-aware

betweenness (TAB) of node k as:

b′sk(d) = bsk(d)+
γs(d)
γ

bsk(d)

b′sk(d) = (1+
γs(d)
γ

)bsk(d) (3)

b′k =
∑

s,d

(1+
γs(d)
γ

)bsk(d) (4)

If traffic matrix is zero, then we have original topological betweenness as a
special case. This definition is quite general and applicable for all types of
betweenness. If we consider bsk(d) as the shortest-path betweenness of node
k for source-destination pair sd, then we will have traffic-aware shortest-path
betweenness, and so on.

2.1 Network Criticality and Resistance Distance

We now introduce network criticality, which is introduced in [7] to quantify
the robustness of a network. We start by defining node/link criticality.

Definition 1. Node criticality is defined as the random-walk betweenness of
a node normalized by its weight value. in other works node criticality is the
node random-walk betweenness divided by the node weight. Likewise, link
criticality is defined as the betweenness of the link over its weight.

Let ηk be the criticality of node k and ηi j be the criticality of link l = (i, j). It
is shown in [7] that ηi and ηi j can be obtained by the following expressions:
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bsk(d)
Wk

= l+dd− l+sd− l+dk+ l+sk (5)

τsd = l+ss+ l+dd−2l+sd or τsd = ut
sdL+usd (6)

τsd =
bsk(d)+ bdk(s)

Wk
(7)

ηk =
bk
Wk
=

1
2
τ , τ =

∑

s

∑

d

τsd (8)

ηi j =
bij

wij
= τ (9)

where L+ is the Moore-Penrose inverse of graph Laplacian matrix L [8],
n is the number of nodes, and uij = [0 ... 1 ... −1 ... 0]t (1 and −1 are in ith

and jth positions respectively). We define the average network criticality as
τ̄ = 1

n(n−1)τ.
Equations (5) to (9) show that node criticality (ηk) and link criticality (ηi j)

are independent of the node/link position and only depend on τ (or τ̄) which
is a global quantity of the network.

Definition 2. We refer to τsd as point-to-point network criticality and τ as net-
work criticality.

One can see that τ is a global quantity on the network graph. Equations
(8) and (9) show that node (link) betweenness consists of a local parameter
(weight) and a global metric (network criticality). τ can capture the effect of
topology through the betweenness values. The higher the betweenness of a
node/link, the higher the risk (criticality) in using the node/link. Furthermore,
one can define node/link capacity as the weight of a node/link, then the higher
the weight of a node/link, the lower the risk of using the node/link. Therefore
network criticality can quantify the risk of using a node/link in a network
which in turn indicates the degree of robustness of the network.

Network criticality can be interpreted as the total resistance of a corre-
sponding electrical network. Consider an electrical circuit with the same
graph as our original network graph, and with link resistances equal to the
reciprocal of link weights. It can be shown that the network criticality is
equal to the total resistance distance (effective resistance) [12] seen between
different pairs of nodes in the electrical circuit. A high network criticality is
an indication of high resistance in the equivalent electrical circuit, therefore,
in two networks with the same number of nodes, the one with lower net-
work criticality is better connected, hence better positioned to accommodate
network flows. Furthermore, network criticality quantifies the sensitivity of
a network to the environmental changes. It has been shown that network
criticality equals the average of link betweenness sensitivities, where link be-
tweenness sensitivity is defined as the partial derivative of link betweenness
with respect to the corresponding link weight [9]:
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τ =
1

m−1

∑

(i, j)∈E

∂bij

∂wij
(10)

Equation (10) states that minimization network criticality results in mini-
mization of the average sensitivity of link betweennesses with respect to the
changes in link weights (which in turn captures sensitivity to environmental
changes). Therefore, a control algorithm for minimum network criticality
balances the betweenness of the links in such a way to keep the average
sensitivity below a desired level. From another point of view, the lower the
network criticality, the better distributed is the traffic between all the links
of a network, and the better balanced the load of the traffic among all ac-
tive links. This implies better fairness in routing the traffic in the nodes of
the network. More detailed information on properties and interpretations of
network criticality can be found in [10, 11].

Another advantage of having low network criticality is the robustness
enhancement of the network. Suppose that a node is failing or becoming
inaccessible so that it is not able to route the traffic passing through it. If
we adapt the routing to minimize the criticality, the result is to adjust the
betweenness in such a way that traffic is re-routed to other nodes instead
of the impaired one and that the resulting flows provide higher robustness
against additional unpredictable deleterious situations.

It has been shown that τsd is a convex function of link weights and τ is a
strictly convex function of link weights [13].

Definition 3. In analogy to equation (8) we define traffic-aware node criti-
cality (TANOC) as the traffic-aware node betweenness normalized by node
weight (sum of the link weights incident to the node):

τ′sk(d) = 2
b′sk(d)
Wk
, where Wk =

∑

j

wkj

τ′k = 2
b′k
Wk

(11)

Furthermore, we define the traffic-aware network criticality (TANC) as the
average traffic-aware node criticality:

τ′ =
1
n

∑

k

τ′k (12)

3 Random-Walk Betweenness in Data Networks

Random-walk betweenness is closely related to packet network models. We
consider a packet switching network in which external packets arrive to
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packet switches according to independent arrival processes. Each packet
arrival has a specific destination and the packet is forwarded along the
network until it reaches said destination. We assume that packet switches
are interconnected by transmission lines that can be modeled as single-server
queues. Furthermore, we suppose that packet switches use a form of routing
where the proportion of packets at queue i forwarded to the next-hop queue
j is pij.

We calculate the total arrival/departure rate of the traffic to/from each
node. The total input rate of node k (internal plus external) is denoted by
xk. After receiving service at the ith node, the proportion of customers that
proceed to node k is pik. To find xk we need to solve the following set of linear
equations (see [14]):

xk = γk+
n∑

i=1

xipik (13)

where γk is the external arrival rate to node k. Note that equation (13) is
essentially the KCL (Kirchhoff’s Current Law). If we denote−→x = [x1,x2, ...,xn]
and −→γ = [γ1,γ2, ...,γn], then equation (13) becomes:

−→x = −→γ +−→x P (14)

Suppose we focus on traffic destined to node d, then node d is an absorbing
node, and we suppose that the arrival rate at node d is zero (since said
arrivals do not affect other nodes) and equation (14) can be written as:

−→xd = (−→γd+
−→xdPd)×Θd (15)

where −→xd and −→γd are the same as −→x and −→γ except for the dth element which is
0. Matrix Pd is also the same as P except that its dth row and dth column are
zero vectors. Equation (15) can be solved for −→xd.

−→xd =
−→γd×Θd× (I−Pd×Θd)−1 (16)

To find the relationship of betweenness Bd and the input arrival rate xk we
notice that pdk(d) = 0 which means that Pd =Θd×Pd. Thus:

Pd×Θd = Θd×Pd×Θd

Θd−Pd×Θd = Θd−Θd×Pd×Θd

(I−Pd)×Θd = Θd× (I−Pd×Θd)
Θd× (I−Pd×Θd)−1 = (I−Pd)−1×Θd

Using equation (1) we will have:

Θd× (I−Pd×Θd)−1 = Bd (17)
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We substitute equation (17) in (16) and obtain the relationship between the
node traffic and node betweenness.

−→xd =
−→γd×Bd (18)

If we denote the kth element of −→xd and −→γd by xk(d) and γk(d) respectively, we
have:

xk(d) =
∑

s
γs(d)bsk(d) (19)

Now we can find the total load at node k by adding the effect of all destina-
tions in equation (19).

xk =
∑

d

xk(d) =
∑

s,d

γs(d)bsk(d) (20)

It is constructive to establish the relationship of node betweenness and
node traffic in a more intuitive way. Consider the traffic generated by packets
that arrive at s and are destined for d. Each packet in this flow generates
bsk(d) arrivals on average at node k. Let γs(d) be the number of external
packets per second that arrive at node s with destination d. Over a large
number of such trials, say N, the average number of times node k is visited
will be approximately N× bsk(d). Suppose that it takes T seconds to have N
arrivals at node s, then the average number of visits per second to node k is
N×bsk(d)

T = γs(d)×bsk(d), since the average arrival rate at s for d is approximately
N
T .

We only consider external arrivals with destinations other that the origi-
nating node so γdd = 0. The total traffic xsk(d) generated by the s− d flow at
node k is then γs(d)×bsk(d), where s is not equal to d. Recalling that bsd(d) = 1,
we obtain:

xsk(d) =



γs(d)bsk(d) i f s ! d & d ! k
γs(d) i f s ! d & k = d

0 i f s = d

The total traffic into node k is obtained by summing over all s and d, with s
not equal to d

yk =
∑

s,d

xsk(d)

=
∑

s!k

γs(k)+
∑

s!d

∑

d!k

γs(d)bsk(d) (21)

The first sum on the right hand side of equation (21) is the total network
packet arrival rate destined for k, that is, the total flow absorbed at node k.
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The second term is the total traffic that flows across queue k, that is, the flow
through k that originates at nodes other than d and that are not destined for
k. This second term, the transit flow through queue k, accounts for the effect
of the network topology, so we let xk denote this flow:

xk =
∑

d!k

γk(d)bkk(d)+
∑

s!k

∑

d!k

γs(d)bsk(d) (22)

The first sum in equation (22) is the arrivals at k destined for d, including
revisits. The second sum is the total transit traffic through k that did not
originate locally. xk can be viewed as a measure of betweenness of queue k
that takes the different arrival rates into account.

Suppose that different queues have different total external arrival rates
but the fraction of external traffic destined for d does not depend on s, that
is,

γs(d) = γsad

where

ad ≥ 0,
∑

d

ad = 1

The total traffic through queue k is then

xk =
∑

d!k

γkadbkk(d)+
∑

s!k

γs[
∑

d!k

adbsk(d)]

= γk[
∑

d!k

adbkk(d)]+
∑

s!k

γs[
∑

d!k

adbsk(d)] (23)

The terms inside the square brackets in equation (24) can be viewed as be-
tweenness measures that have been weighted by the differential preferences
for destinations according to ad. These weighted betweenness measures are
in turn scaled according to the arrival rates at different queues.

In the case where arriving packets are equally likely to be destined to any
destination (other than the arriving node), we have ad =

1
n−1 , so

xk =
γk

n−1
[
∑

d!k

bkk(d)]+
∑

s!k

γs

n−1
[
∑

d!k

bsk(d)]

= γkb̄kk+
∑

s!k

γsb̄sk (24)

Finally suppose that the arrival rate at every node is equal, that is, γs =
γ
n ,

where γ is the total external packet arrival rate to the network then
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xk =
γ

n(n−1)
(
∑

d!k

bkk(d))+
γ

n(n−1)

∑

s!k

∑

d!k

bsk(d)

=
γ

n(n−1)
bk (25)

where we define bk as the random walk betweenness for node k:

bk =
∑

s

∑

d!k

bsk(d)

We have derived the following theorem.

Theorem 1. Consider a network with n nodes, and assume that the average traffic
rate on all of the nodes is γn =

γ
n where γ is the total external input traffic rate of the

network. Let xk be the total arrival rate of a node k and bk be the total betweenness
of this node, then:

xk =
γn

n−1
bk =

γ
n(n−1)

×bk

4 Network Utilization and Network Criticality

In this section we derive a general expression for the average network utiliza-
tion (and individual node utilization). Theorem 1 establishes a connection
between the load of a node and its betweenness when the average input rate
to all the nodes is uniform. In general, for a traffic matrix Γ = [γi( j)] the uti-
lization of a node can be expressed as a linear combination of point-to-point
network criticalities subject to considering weight-based random-walks as
defined in equation (2). To see this consider equation (19):

xk =
∑

s,d

γs(d)bsk(d)

=
1
2

∑

s,d

(γs(d)bsk(d)+γd(s)bdk(s))

=
1
2

∑

s,d

(γs(d)bsk(d)+γd(s)(Wkτsd− bsk(d)))

=
Wk
2

∑

s,d

γd(s)τsd+
1
2

∑

s,d

(γs(d)−γd(s))bsk(d) (26)

where we have used equation (7) to obtain equation (26). Now we write
bsk(d) in terms of different elements of matrixΩ = [τsd]. We have:
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τsd = l+ss+ l+dd−2l+sd
τdk = l+dd+ l+kk−2l+dk
τsk = l+ss+ l+kk−2l+sk

Therefore

τsd+τdk−τsk = 2(l+dd− l+sd− l+dk+ l+sk)

= 2
bsk(d)
Wk

bsk(d) =
Wk
2

(τsd+τdk−τsk) (27)

Using equation (27) in (26), we have

xk =
Wk
2

∑

s,d

γd(s)τsd+
Wk
4

∑

s,d

(γs(d)−γd(s))(τsd+τdk−τsk)

xk
Wk
=

1
4

∑

s,d

(γs(d)+γd(s))τsd+
1
4

∑

s,d

(γs(d)−γd(s))(τdk−τsk) (28)

Node utilization is defined as the load of a node normalized by its capacity
(or in a more general sense by its weight). We denote the utilization of node
k by Vk =

xk
Wk

and the average network utility by V̄ =
∑

k Vk
n . For the average

network utilization V̄ we have:

V̄ =
1
4

∑

s,d

(γs(d)+γd(s))τsd+
1

4n

∑

s,d

(γs(d)−γd(s))(τd∗ −τs∗) (29)

where τi∗ =
∑

k τik. Equation (29) can be simplified as:

V̄ =
∑

s,d

βsdτsd (30)

where βsd =
γsd+γds

4 +
γ∗s−γs∗

2n .
We can easily express the average network utilization V̄ in terms of net-

work criticality and traffic-aware network criticality. Since xk =
∑

sdγsdbsk(d),
from equation (4) we conclude that:

b′k = bk+
1
γ

xk

Vk =
xk
Wk
= γ

b′k− bk

Wk

Vk =
γ
2

(τ′k−τ)
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Finally:

V̄ =
1
n

n∑

k=1

Vk =
γ
2

(τ′ −τ) (31)

Proceeding as we did for V̄, one can see that:

τ′ =
∑

s,d

(1+
γsd+γds

2γ
+
γ∗s−γs∗

nγ
)τsd (32)

It will be easily verified that the coefficients of τsd in equation (32) (i.e.
1+ γsd+γds

2γ +
γ∗s−γs∗

nγ ) are always non-negative; therefore, TANC is a convex
function of link weights since τsd is always convex. Consequently, form
equation (31) one can see that the average network utilization is in most
general form the difference of two convex functions (or equivalently the
sum of a convex and a concave function). Minimizing the difference of two
convex functions can be converted to a convex maximization problem, which
can be numerically solved with methods like branch-and-bound [15].

We can find a subset of traffic matrices, for which the average network
utilization V̄ is pure convex. In fact the average network utilization is a
convex function of link weights if and only if in equation (30) we have
∀s,d βsd+βds ≥ 0 (note that τsd = τds), or:

γsd+γds ≥
1
n

(γs∗ −γ∗s+γd∗ −γ∗d) (33)

Equation (33) defines a subset of all possible traffic matrices for which the
average network utilization is convex. In the following, we assume that the
traffic matrices are within this subset.

This motivates the rest of this chapter. In order to minimize the average
network utilization (or to minimize the maximum of node utilization) we
have to effectively solve a convex optimization problem, which is investi-
gated in next section.

5 Minimizing Weighted Network Criticality

We first consider a general weighted version of network criticality (WNC)
defined as follows.

τα =
∑

i, j

αi jτi j, ∀i, j ∈N αi j+α ji ≥ 0 (34)
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Obviously, the average network utilization and individual node utilization
are special cases of WNC by appropriate selection of coefficients. To study
the minimization of WNC, we rewrite WNC in a matrix form as follows:

τα =
∑

i, j

αi jτi j

=
∑

i j

αi jut
i jL
+uij

=
∑

i j

αi jTr(uijut
i jL
+)

= Tr(UαL+) (35)

where Uα =
∑

i jαi jUij and Uij = uijut
i j.

It is easy to see that the sum of the rows in Uα is zero, and for αi j ≥ 0 it is
a symmetric and positive semidefinite matrix. One example of Uα for n = 3
(number of nodes) is given in the following:

Uα =




α′12+α
′
13 −α′12 −α′13

−α′12 α′12+α
′
23 −α′23

−α′13 −α′23 α′13+α
′
23




where α′i j = αi j+α ji.
We now consider minimization of WNC. First we show that the mini-

mization is viable. To this end we need the following lemma.

Lemma 1. The partial derivative of τα with respect to link weight wij is always
non-positive and can be obtained from the following equation.

∂τα
∂wij

= −
∥∥∥FαL+uij

∥∥∥2

where Fα is a matrix such that Uα = Ft
αFα. This decomposition is always possible

because Uα is a positive semidefinite matrix.

Proof. See Appendix 9.

Since WNC is a convex function and its derivative with respect to the weights
is always non-positive (according to lemma 1), the minimization of τα subject
to some convex constraint set is possible.

In formulating the optimization problem, we add a maximum budget
constraint to the problem. We assume that there is a cost zij to deploy each unit
of weight on link (i, j). We also assume that there is a maximum budget of C to
spend across all network links. This constraint means that

∑
(i, j)∈E wijzij ≤ C.

Now we can write our optimization problem as follows:
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Minimize τα
Subject to

∑
(i, j)∈E wijzij ≤ C ,C is f ixed (36)

wij ≥ 0 ∀(i, j) ∈ E

Assuming Γ = L+ J
n , and considering the fact that L =

∑
i, j wijuijut

i j (defini-

tion of Laplacian) and L+ = Γ−1− J
n [16], where J is a square n×n matrix with

all entries equal to 1, we can write the optimization problem (36) as:

Minimize Tr(UαL+) (37)

Subject to Γ =
∑

(i, j)∈E wijuijut
i j+

J
n

L+ = Γ−1− J
n∑

(i, j)∈E wijzij = C ,C is f ixed
wij ≥ 0 ∀(i, j) ∈ E

Note that Uα J = 0, consequently Tr(UαL+) = Tr(UαΓ−1).

Lemma 2. The condition of optimality for optimization problem (36) can be written
as:

min
(i, j)∈E

C
zij

∂τα
∂wij

+τα ≥ 0

Moreover:

w∗i j(C
∂τα
∂wij

+ zijτα) = 0 ∀(i, j) ∈ E (38)

where w∗i j denotes the optimal weight for link (i, j).

Proof. See Appendix 10.

Lemma 3. The dual of the optimization problem ( 37) is as follows:

maximize 1
C Tr2(UαX)

subject to 1√
zij

∥∥∥FαXuij
∥∥∥ ≤ 1 ∀(i, j) ∈ E

X
−→
1 = 0

X + 0

where X + 0 means that X is a positive semi-definite matrix. More precisely
X = 1√

λ
L+ where L+ is the Moore-Penrose inverse of Laplacian matrix, and

λ =max(i, j)∈E
1

zij

∥∥∥FαL+uij
∥∥∥2.
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Proof. See Appendix 11.

We are ready to to give an upper bound for the optimality gap in the
optimization problem. The following theorem summarizes the result.

Theorem 2. Consider the following optimization problem:

Minimize τα
Subject to

∑
(i, j)∈E zijwij = C ,C is f ixed

wij ≥ 0 ∀(i, j) ∈ E

For any sub-optimal solution of the convex optimization problem, the deviation from
optimal solution (optimality gap) has the upper bound of τα

Cmin(i, j)∈E
1

zi j
∂τα
∂wij

(Cmin(i, j)∈E
1

zij

∂τα
∂wij
+

τα).

Proof. We denote the duality gap (the difference between the objective func-
tion of the dual and primal optimization problem) by dgap. Using Lemma (3),
we have:

dgap = Tr(UαL+)− 1
C

Tr2(UαX)

= Tr(UαL+)− 1
C

1

max(i, j)∈E
1

zij

∥∥∥FαL+uij
∥∥∥2

Tr2(UαL+)

= Tr(UαL+)(1+
1
C

Tr(UαL+)

min(i, j)∈E− 1
zij

∥∥∥FαL+uij
∥∥∥2

) (39)

Now it is enough to simplify equation (39) using lemma 1.

dgap = τα(1+
1
C

τα

min(i, j)∈E
1

zij

∂τα
∂wij

)

=
τα

Cmin(i, j)∈E
1

zij

∂τα
∂wij

(C min
(i, j)∈E

1
zij

∂τα
∂wij

+τα) (40)

According to the duality theorem, this completes the proof of theorem 2.

Theorem 2 is in fact an extension for the results of [13] in which the total
resistance distance is considered as the main metric of interest. Those results
can be derived as special cases of lemma 3 and theorem 2.
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5.1 Network Planning Using An Interior Point Algorithm

Optimization problem (36) can be solved with various methods developed
for convex optimization problems. In this paper we use a modified version
of interior-point method which is developed in [13] based on the duality
gap obtained in theorem 2. In this method we use logarithmic barrier for the
non-negativity constraints wij ≥ 0 ∀(i, j) ∈ E:

Φ = −
∑

(i, j)∈E

logwij

In the interior-point method we minimize tτα+Φ, using Newton’s method
(t is a parameter), subject to

∑
(i, j)∈E zijwij = C. The sub-optimality in this case

would be at most m
t , where m is the number of links. On the other hand,

theorem 2 provides an upper bound for sub-optimality:

t̂ =
τα

Cmin(i, j)∈E
1

zij

∂τα
∂wij

(C min
(i, j)∈E

1
zij

∂τα
∂wij

+τα)

We can use this bound to update parameter t in each step of our interior-
point method, by taking t = m

t̂ . In each step, for a relative precision ε, the
Newton’s method finds change of ∆−→w for the vector of all weights (denoted
by −→w) by solving:

(t∇2τα+∇2Φ)∆−→w = −t∇τα+∇Φ

The next task is to find the Newton step length s by backtracking line search
[19], and then updating the weight vector by −→w = −→w + sδ−→w . The algorithm
exits when we have τα−τopt

α ≤ t̂ ≤ ετα. We can choose ε small enough to have
a desired precision.

We note that, in order to use this recursive method, we need to have the
gradient vector ∇τα and Hessian matrix ∇2τα. Lemma 1 provides the entries
of the gradient vector and using the lemma, it is easy to see that the entries
of Hessian matrix can be found from the following equation:

∂2τα
∂wpq∂wij

= 2ut
ijL
+upqut

pqL+UαL+uij ∀(i, j), (p,q) ∈ E

In matrix form this can be shown as:

∇2τα = (BtL+B) o (BtL+UαL+B)

where B is the incidence matrix of the graph, and o denotes Hadamard
(componentwise) product.
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6 Applications

This section considers applications of weighted network criticality. First,
we develop a semi-definite programming formulation for general weight
planning to minimize τα. We then develop optimization problems to jointly
optimize the resources (weights) and routes (link flows) in a communication
network. We will also discuss a joint optimization of demands, flows, and
resources in order to maximize a concave utility function of demands, while
keeping network criticality below a certain threshold. Finally, we discuss
robust optimization of network weights in order to protect the network
against k link failures.

6.1 Network Planning Using Semi-Definite Programming

Optimization problem (37) (and problem (36)) provides an approach for
robust network design via optimal allocation of network link weights to
minimize (traffic-aware) network criticality. Optimization problem (37) can
be converted to a semi-definite program (SDP) as stated in the following.

Minimize Tr(Y)
Subject to

∑
(i, j)∈E wijzij ≤ C ,C is f ixed (41)

wij ≥ 0 ∀(i, j) ∈ E


L+ J

n U
1
2
α

U
1
2
α Y


 + 0

where +means positive semi-definite.
Capacity allocation is an important case in which we define the weight of

a link to be its capacity. In this case optimization of network criticality results
in capacity planning. A quite general case of capacity planning problem is
when a routing mechanism is already designed for the network and it is
known that each link of the network is supposed to carry a known amount
of traffic demands. Suppose we know that our routing scheme is shortest
path and traffic matrix [γi j] is given for the network. Assume that we have
found the values of flows for each link to meet the given traffic matrix
via shortest-path routing and the result is flow λi j for link (i, j). Then by
applying the change of variable wij = cij +λi j to the optimization problem
(41), we will have the following convex optimization problem for optimal
capacity allocation.
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Minimize Tr(Y)
Subject to

∑
(i, j)∈E cijzi j = C′ ,C′ is f ixed (42)

cij ≥ 0 ∀(i, j) ∈ E


L+ J

n U
1
2
α

U
1
2
α Y


 + 0

where C′ = C−∑(i, j)∈E zijλi j. This has the same form of optimization problem
(41), and both are SDP representation of optimization problem (36) (with
wij → cij and C→ C′); therefore, all the results developed for optimization
problem (36) are applicable for the capacity assignment problem.

Solving this SDP problem is much faster and can be done with a variety
of existing packages (for example see [17, 18]) to solve SDP problems.

6.2 Joint Optimization of Routes and Resources

Optimization problem (36) can be extended to a more general case where
the weights of the network links (resources) and the link flows (routes) are
unknown. In this section we focus on capacity as the resource and assume
that the link weight equals the capacity (or available capacity depending on
the context) of the link. In order to account for flows, it is enough to add the
equations for the conservation of flow at each node (and for each entry of
the traffic matrix) to the constraints of the problem. For a specific node k and
entry γsd of the traffic matrix, the conservation of flow can be stated as:

∑

i∈A(k)

f (sd)
ik −

∑

j∈A(k)

f (sd)
kj = γsdδ(k− s)−γsdδ(k−d)

where A(k) denotes the set of neighbor nodes of node k, f (sd)
ik denotes the

flow of link (i,k) for traffic entry between source s and destination d, and
δ(x) is Kronecker delta function. Furthermore, the flow of each link should
not exceed the capacity of the link, therefore we will need the following
constraints for each link of the network:

fi j =
∑

sd f (sd)
i j ∀(i, j) ∈ E

fij ≤ wij ∀(i, j) ∈ E
fij ≥ 0 ∀(i, j) ∈ E

Now we can write the optimization for robust joint flow assignment and
resource allocation as follows.
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Minimize τα
Subject to

∑
(i, j)∈E wijzij ≤ C ,C is f ixed (43)

wij ≥ 0 ∀(i, j) ∈ E
∑

i∈A(k) f (sd)
ik −

∑
j∈A(k) f (sd)

kj = γsdδ(k− s)−γsdδ(k−d) ∀k ∈N, ∀γsd

fi j =
∑

sd f (sd)
i j ∀(i, j) ∈ E

fij ≤ wij ∀(i, j) ∈ E
fij ≥ 0 ∀(i, j) ∈ E

One efficient method to solve optimization problem (43) is dual decomposition
[19, 20] which can separate the network flow problem from resource alloca-
tion. We form a dual problem for (43) by introducing Lagrangian multiplier
matrixΛ for constraint set fi j ≤wij ∀(i, j) ∈E. The resulting partial Lagrangian
is L = τα−Tr(Λ(F−W)) where F = [ fi j] and W = [wij] are the matrices of link
flows and link weights respectively. The dual objective function is then:

d(Λ) = inf
W

(τα+Tr(ΛW))|∑(i, j)∈E wijzi j=C, wij≥0 ∀(i, j)∈E

+ inf
F

(−Tr(ΛF))|∑
i∈A(k) f (sd)

ik −
∑

j∈A(k) f (sd)
kj =γsdδ(k−s)−γsdδ(k−d) ∀k∈N, fi j=

∑
sd f (sd)

i j ∀(i, j)∈E

Note that two infimum functions in the dual objective are working on sepa-
rate variables (first infimum on weights, and second one on flows). The dual
function can be seen as the sum of the following two functions:

dW(Λ) = inf
W

(τα+Tr(ΛW))

∥∥∥∥∥∥

∑
(i, j)∈E wijzij = C, C is f ixed

wij ≥ 0 ∀(i, j) ∈ E (44)

dF(Λ) = sup
F

Tr(ΛF)

∥∥∥∥∥∥∥∥∥∥

∑
i∈A(k) f (sd)

ik −
∑

j∈A(k) f (sd)
kj = γsdδ(k− s)−γsdδ(k−d)
∀k ∈N,

fi j =
∑

sd f (sd)
i j ∀(i, j) ∈ E

(45)

The dual problem associated with the primal optimization problem (43) is:

Maximize d(Λ) = dW(Λ)+dF(Λ) (46)
Subject to Λ ≥ 0

where ≥ is a component-wise operator (i.e. Λ = [λi j] ≥ 0 means λi j ≥ 0 ∀i, j).
Optimization problem (46) is convex because the dual function is always
convex [19]. We assume that the Slater’s condition [19] is satisfied in opti-
mization problem (43) in order to guarantee that strong duality holds, i.e. the
solution of optimization problem (43) and its dual (46) are equal. Note that
in general this is not true when the primal objective function is not strictly
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convex. By assuming Slater’s condition we can solve optimization problem
(46) instead of the primal one.

To find the solution of dual optimization problem (46) we study dual
functions dW(Λ) and dF(Λ) separately, and then we add them together. Con-
sidering equation (44), dW(Λ) is the solution of the following optimization
problem:

Minimize τα+Tr(ΛW)
Subject to

∑
(i, j)∈E wijzij ≤ C ,C is f ixed (47)

wij ≥ 0 ∀(i, j) ∈ E

Optimization problem (47) can be viewed as the network planning subprob-
lem which will assign the optimal values of weights. We refer to this as
the resource (weight) allocation subproblem associated with problems (43)
and (46). Similarly, equation (45) implies that dF(Λ) can be found by solving
optimization problem (48) as follows:

Maximize Tr(ΛF)

Subject to fi j =
∑

sd f (sd)
i j ∀(i, j) ∈ E (48)

fi j ≥ 0 ∀(i, j) ∈ E
∑

i∈A(k) f (sd)
ik −

∑
j∈A(k) f (sd)

kj = γsdδ(k− s)−γsdδ(k−d) ∀k ∈N, ∀γsd

Problem (48) determines the optimum routing given the optimal values of
weights and we refer to it as flow assignment subproblem associated with
problems (43) and (46).

Entry λi j of matrix Λ can be interpreted as the price of allocating unit
weight to link (i, j) in the weight matrix. Therefore, the resource allocation
subproblem (47) tries to minimize weighted network criticality incremented
by total price of deploying a complete weight matrix, and the flow assign-
ment subproblem (48) will try to maximally utilize the allocated weights to
run the network flows.

A detailed discussion of numerical methods to solve optimization prob-
lem (46) is beyond the scope of our work in this chapter; however, we indicate
how we can iteratively solve optimization problem (46) in the following man-
ner. We start with an initial value for Λ, and then we find the optimal weight
and flow matrices using resource allocation and flow assignment subprob-
lems. Then we find an update for price matrix Λ using subgradient method.
Using the updated value ofΛwe reoptimize the weight and flow matrices by
solving optimization problems (47) and (48). This process continues until we
arrive at a stable price matrix. This procedure allows us to view the resource
allocation subproblem as an optimization working on physical layer, while
the flow assignment subproblem operates independently on a network layer
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and that provides optimal routing scheme for the problem. The connection
between these two layers is through price matrix Λ as illustrated in Fig. 1.

Fig. 1 Layered View of Resource Allocation and Flow Assignment Subproblems

Solution of optimization problem (43) is a symmetric set of link weights
representing total capacity of links and associated link flows. We can modify
the optimization problem to provide an asymmetric capacity assignment (i.e.
we change the undirected graph model to a directed one). We interpret link
weights as the available capacity and reformulate the optimization problem
accordingly. Let cij and wij denote the capacity and weight (available capac-
ity) of link (i, j) respectively. Optimization problem ((43) can be converted to
the following problem:

Minimize τα
Subject to

∑
(i, j)∈E cijzi j ≤ C ,C is f ixed (49)

∑
i∈A(k) f (sd)

ik −
∑

j∈A(k) f (sd)
kj = γsdδ(k− s)−γsdδ(k−d) ∀k ∈N, ∀γsd

fi j =
∑

sd f (sd)
i j ∀(i, j) ∈ E

fij = cij−wij ∀(i, j) ∈ E
fij ≥ 0 ∀(i, j) ∈ E

wij ≥ 0 ∀(i, j) ∈ E

Note that optimization problem (49) provides optimal solutions of weights
(available capacities), capacities, and flows for all the links. The weights will
be symmetric; however, the link capacities (cij’s) need not be symmetric. This
means that the optimization problem allocates capacities and flows in such
a way that the final residual bandwidth or available capacities of link (i, j)
and link ( j, i) are equal (i.e. wij = wji), while the total capacity of link (i, j) is
not necessarily equal to that of link ( j, i) (i.e. cij ! cji). The main difference
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between the solution of optimization problem (43) and (49) is in the way
they minimize τα. In the former, the link capacity is designed such that τα is
minimized before applying any flow to the network, while the latter deter-
mines flows and capacities in such a way that τα for the residual network is
minimized.

6.3 Joint Optimization of Demands, Flows, and Resources

We consider one more extension for the optimization problem which tries to
find the joint optimal assignment of external demands (traffic matrix) and
link flows when the weight assignment (capacity) is known. As in the pre-
vious case, we assume that the link weights represent the available capacity.
In this problem we optimize a concave utility function of traffic matrix (de-
noted by Ψ (Γ)) subject to the condition that the average network utilization
V̄ (see equation (31)) is less than a given maximum value. A well-known
example of concave utility functions is the logarithmic function. In this work
we are interested in a subset of all possible traffic matrices for which the
constraint for network utilization V̄ is convex; therefore, we add the set of
inequalities (33) as constraints to the optimization problem. Clearly, the flow
conservation and capacity constrains are also necessary. Summarizing all
above, we can write the following optimization problem to find the optimal
joint assignment of traffic demands and link flows.

Maximize Ψ (Γ)

Subject to fi j =
∑

sd f (sd)
i j ∀(i, j) ∈ E (50)

fi j = cij−wij ∀(i, j) ∈ E
fij ≥ 0 ∀(i, j) ∈ E

wij ≥ 0 ∀(i, j) ∈ E
∑

i∈A(k) f (sd)
ik −

∑
j∈A(k) f (sd)

kj = γsdδ(k− s)−γsdδ(k−d) ∀k ∈N, ∀γsd
∑

sd(γsd+γds
4 +

γ∗s−γs∗
2n )τsd ≤ a, a is f ixed

γsd+γds ≥ 1
n (γs∗ −γ∗s+γd∗ −γ∗d)

γi j ≥ 0 ∀i, j ∈N

where a is a known maximum acceptable value for average network
utilization.

Finally, we can jointly optimize resources (weights), traffic demands, and
routes. We assume that the goal is to maximize a concave function of traffic
demands subject to a maximum value for network criticality. Moreover, we
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assume a maximum budget for the total weights (given a cost for deploying
a unit of weight). Thus, considering the flow conservation and capacity
constraints we will have the following convex optimization problem for
joint optimization of weights, acceptable demands, and routes (flows).

Maximize Ψ (Γ)
Subject to

∑
i j zi jci j ≤ C (51)

τ ≤ b, b is f ixed
∑

i∈A(k) f (sd)
ik −

∑
j∈A(k) f (sd)

kj = γsdδ(k− s)−γsdδ(k−d) ∀k ∈N, ∀γsd

fi j =
∑

sd f (sd)
i j ∀(i, j) ∈ E

fij = cij−wij ∀(i, j) ∈ E
fij ≥ 0 ∀(i, j) ∈ E

wij ≥ 0 ∀(i, j) ∈ E
γi j ≥ 0 ∀i, j ∈N

The solution of optimization problem (51) plans network weights, gives
the optimal set of demands Γ = [γi j] (maximizing concave utility function
Ψ ) which can be accommodated by the network, and provides link flows
subject to the condition that the network criticality does not exceed a known
value b.

It is possible to find a layered approach for optimization problem (51). The
steps are similar to what we did for joint optimization of flows and resources
(see equations (46), (47), (48)). Here we construct a dual problem for (51)
by introducing Lagrangian multiplier matrix Λ for constraint set fi j = cij −
wij ∀(i, j) ∈ E. The resulting partial Lagrangian is L =Ψ (Γ)−Tr(Λ(F−C+W))
where F = [ fi j], C = [cij] and W = [wij] denote the matrices of link flows, link
capacities, and link weights respectively. The dual objective function is then
d(Λ) = dF,Γ(Λ)+dW(Λ)+dC(Λ), where:

dW(Λ) = sup
W
−Tr(ΛW)

∥∥∥∥∥
wij ≥ 0 ∀(i, j) ∈ E
τ ≤ b

dC(Λ) = sup
C

Tr(ΛC)

∥∥∥∥∥∥

∑
(i, j)∈E cijzi j = C, C is f ixed

cij ≥ 0 ∀(i, j) ∈ E

dF,Γ(Λ) = sup
F,Γ

(Ψ (Γ)−Tr(ΛF))

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∑
i∈A(k) f (sd)

ik −
∑

j∈A(k) f (sd)
kj = γsdδ(k− s)−γsdδ(k−d)
∀k ∈N,

fi j =
∑

sd f (sd)
i j ∀(i, j) ∈ E

fij ≥ 0 ∀(i, j) ∈ E
γi j ≥ 0 ∀i, j ∈N
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The dual problem associated with the primal optimization problem (51) is:

Minimize d(Λ) = dW(Λ)+dC(Λ)+dF,Γ(Λ) (52)
Subject to Λ ≥ 0

Since in general the primal objective function is not strictly concave, we
assume that Slater’s condition is satisfied in the optimization problem (51).
This guarantees that the strong duality holds for this problem and that the
solution of dual optimization problem (52) is equal to the solution of primal
problem (51).

As we discussed before, in order to solve dual problem (52) we can eval-
uate dW(Λ), dC(Λ), and dF,Γ(Λ). We note that dF,Γ(Λ) is the solution of the
following optimization problem:

Maximize Ψ (Γ)−Tr(ΛF)
Subject to fi j ≥ 0 ∀(i, j) ∈ E (53)

γi j ≥ 0 ∀i, j ∈N
∑

i∈A(k) f (sd)
ik −

∑
j∈A(k) f (sd)

kj = γsdδ(k− s)−γsdδ(k−d) ∀k ∈N, ∀γsd

Optimization problem (53) can be further divided into two optimization
problems separating the effect of demands and flows by introducing another
set of Lagrange multipliers. Similarly, dW(Λ) is the solution of optimization
problem (54).

Minimize Tr(ΛW)
Subject to τ ≤ b, b is f ixed (54)

wij ≥ 0 ∀(i, j) ∈ E

The solution of optimization problem (55) provides us with dc(Λ).

Maximize Tr(ΛC)
Subject to

∑
(i, j)∈E cijzi j = C, C is f ixed (55)

cij ≥ 0 ∀(i, j) ∈ E

If we interpretΛ as the price matrix, then optimization problem (53) tries to
maximize a utility function discounted by total price of assigning link flows.
Optimization problem (54) finds the minimum required weights (available
capacities) in order to guarantee that the network criticality of the residual
network is not more than a pre-specified value b. Optimization problem (55)
finds the best capacity assignment under price model mandated by matrix
Λ.
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In order to find the optimum solution of dual optimization problem (52),
we start from an initial guess for matrixΛ. Solution of optimization problems
(54) and (55) provide optimum values of weights and capacities at this stage,
then the difference between capacity and weight of each link is equal to
the flow of the link. Using optimization problem (53) we can then find best
possible demand set. Then a new approximation for Lagrangian matrix Λ
can be obtained using subgradient method and the iteration continues until
we arrive at the stable matrix Λ.

6.4 Robust Network Design: Protecting Against Multiple Link
Failures

The solution of optimization problem (36) provides a robust network design
method via optimal weight assignment; however, it does not necessarily
protect the network against multiple link failures. Link (node) failures can
be the result of unplanned random failures or due to targeted attacks. In this
section we extend optimization problem (36) to account for multiple link
failures.

Let D ∈ {0,1}m be a binary matrix representing the location of link failures,
i.e. dij = 0 for failed link (i, j) and dij = 1 for operational ones. We replace
the weight matrix W with DoW (o is the Hadamard operator) and redo the
optimization of WNC. Now if we want that the network to be robust to up
to k link failures (we refer to such a network as k-robust network), we need
to minimize the following objective function.

max∑
i, j di j=n−k

Tr(UαL+(DoW))

. where n is the total number of nodes in the network. Note that the above
function is convex because it is a point-wise maximum of a set of convex
functions. By minimizing this function we find a k-robust topology (along
with its optimal link weights). Therefore, a general optimization problem to
provide a k-robust network can be written as:

Minimize max∑i, j di j=n−k Tr(UαL+(DoW))

Subject to
∑

(i, j)∈E wijzij ≤ C ,C is f ixed (56)
wij ≥ 0 ∀(i, j) ∈ E

Interpreting weight as capacity, equation (56) can be extended to provide
simultaneous solution for k-robust flow assignment and weight allocation,
just by adding the flow conservation equations and link capacity constraints:



Title Suppressed Due to Excessive Length 27

Minimize max∑i, j di j=n−k Tr(UαL+(DoW))

Subject to
∑

(i, j)∈E wijzij ≤ C ,C is f ixed (57)
wij ≥ 0 ∀(i, j) ∈ E

∑
i∈A(k) f (sd)

ik −
∑

j∈A(k) f (sd)
kj = γsdδ(k− s)−γsdδ(k−d) ∀k ∈N, ∀γsd

fi j =
∑

sd f (sd)
i j ∀(i, j) ∈ E

fij ≥ 0 ∀(i, j) ∈ E
fij ≤ wij ∀(i, j) ∈ E

6.5 Case of Directed Networks

Most of the discussion in this section was based on the assumption that our
network is modeled with an undirected graph. We considered the case of
having asymmetric capacities and link flows by interpreting the link weight
as available capacity; however, even in this case the residual network has
symmetric link weights. The main reason for this assumption is that the
concept of resistance distance is only available on reversible Markov chains.
However, there is another nice interpretation for network criticality which
provides guidlines to extend the notion of network criticality to directed
graphs.

Suppose that there are costs associated with traversing links along a path
and consider the effect of network criticality on average cost incurred by a
message during its walk from source s to destination d. It is shown in [10] that
the average incurred cost is the product of network criticality and the total
cost of all link weights. Therefore, if we set a fixed maximum budget for the
cost of assigning weights to links, then the average travel cost is minimized
when network criticality is minimized.

While the analogy between resistance distance and random-walks does
not hold in directed graphs, we can still find the hitting times and commute
times for a directed graph, and the interpretation of average travel cost (or
equivalently average commute time) still holds. In fact we have shown that
the average travel time in a directed graph can be found using the exact
same analytical machinery [21], i.e. the trace of generalized inverse of the
combinatorial Laplacian matrix of a directed graph (L) which is defined
as L = Φ(I − P), where Φ is a diagonal matrix with main diagonal entry
i equal to the ith entry of stationary probability vector corresponding to
transition probability matrix P. We propose to use the average travel time as
the objective of our optimization problem in the case of directed graphs. In
this case the optimization problem is not necessarily convex (with regards
to the link weights).
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7 Case Study

In this section we consider some simple applications of the optimization
problems discussed in section 6. In particular we are interested in virtual
network design to assign robust resources and flows to different customers
of the network. Furthermore, we will apply the proposed optimization prob-
lems in designing robust power grids.

7.1 Virtual Network Assignment

In our first case study, we investigate the problem of assigning virtual net-
works to different customers of a communication network in order to meet
their contracted service levels. In this study we are interested in end-to-end
bandwidth requirements as the main service.

For illustrative purposes we consider a simple topology which is shown
in Fig. 2. This network is referred to as trap topology in networking litera-
ture. The trap topology is well-known in the context of survivable routing.
Suppose there is a demand from node 1 for node 6. The min-hop path from
node 1 to 6 is the straight line 1→ 3→ 4→ 6. It appears that this path is the
best choice to run the demand, but in survivable routing we need to assign
backup paths to each primary route. In trap network there is no link-disjoint
backup path for 1→ 3→ 4→ 6. Therefore it would be desirable to choose
path 1→ 2→ 4→ 6 (1→ 3→ 5→ 6) as the primary route for demands from 1
to 6. Then the link-disjoint backup path will be 1→ 3→ 5→ 6 (1→ 2→ 4→ 6).

Fig. 2 Trap Network with Given Traffic Matrix
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We assume each customer in the network is defined by a set of demands
identified by their source, destination and required bandwidth, i.e. each
demand σi is defined by a triple (si,di,bi), where si, di, bi denote source,
destination and required bandwidth of demand σi. In this study, we assume
two customers (CS1 and CS2) exist on trap network with the following
demands:

σ1 = (1,6,2)
σ2 = (2,5,2)
σ3 = (5,4,3)

CS1 = {σ1,σ2}
CS2 = {σ3}

From the above description, the requirements of customers can be sum-
marized in separate virtual networks assigned to each customer as shown
in Fig. 3.

Fig. 3 Desired Virtual Networks For CS1 and CS2

Our goal is to determine the optimal robust allocation of capacities and
flows for each customer so as to meet the requirements of all the customers.
We will use optimization problem (49) to find optimal capacity allocation
and flow assignment simultaneously. Optimization problem (49) permits
us to find asymmetric capacity assignment for the links; however, due to
the nature of network criticality, the residual capacity of links after flow
assignment is symmetric.

We suppose that the cost of deploying all the links (zij’s) are equal (and
assumed to be 1) and the total budget for capacity is 26 (it means that∑

i j zi jci j =
∑

i j ci j = 26). Solution of optimization problem (49) will result in
the capacity allocation of Fig. 4.

Now we need to find the exact graph embedding for virtual networks
of CS1 and CS2. For CS1, based on the solution of optimization problem
(49), the optimal flow assignment for the physical substrate (trap network)
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Fig. 4 Optimal Capacity Assignment For Trap Network

is shown in Fig. 5. From Fig. 5 we see that all the nodes of the substrate
network involve in providing connection (service) for CS1, however, 4 links
((3,1), (4,2), (5,3), (6,4)) do not contribute in building the virtual network. As
a matter of fact the virtual network can be viewed as a subset of link/node
resources dedicated to a customer.

Fig. 5 Optimal Resource Assignment for Virtual Network 1 (Customer 1) On Trap Physical
Topology
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The optimal flow assignment for CS2 is shown in Fig. 6. It can be seen that
for CS2 nodes 1 and 2 do not contribute in providing service and among all
the links only 4 links involve in guaranteeing service for CS2.

Fig. 6 Optimal Resource Assignment for Virtual Network 2 (Customer 2) On Trap Physical
Topology

Adding the flows of two customers, we can have the total flow of each
link in trap network as depicted in Fig. 7.

Fig. 7 Total Link Flow Assignment On Trap Network
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7.2 Design of Robust Power Grids

The concept of traffic-aware network criticality has a nice application in
smart power grids. Nowadays the idea of using renewable energy sources
has gained considerable attention. Many places with renewable energy (such
as places with high wind) are not within the reach of existing power grid
network and it is required to extend the existing power grid to the places
with renewable energy. Thus, we need to know how to design a robust power
network as an extension to the existing one. In addition to the robustness,
a power grid should be sparse enough, to avoid unnecessary power lines.
This problem is recently investigated and a method of sparsification is also
developed [22]. Here we use the method of [22] to generate and optimize our
power network and we use an alternative sparsification method to prune the
network.

It can be shown that in a DC-model approximation of a power grid, the
average power dissipation of the grid is proportional to Tr(AL+), where
A =< −→a −→a t > and −→a is the vector of link electrical currents (< . > denotes
time average) [22]. Clearly, the power dissipation has the general form of
weighted network criticality (or equivalently traffic-aware network critical-
ity if we interpret the power as network flow, and weights as line conduc-
tances); therefore, minimization of power dissipation in power grids results
in minimization of WNC. We address the optimization of a power grid net-
work with multiple random independent loads supplied by a generator. For
consumer nodes, we specify mean load āi < 0 and the variance σ2

i . At trans-
mission (relay) nodes, the average and variance of the load are zero. At the
generator we must have a0 = −

∑
i!0 ai. Therefore, matrix A =< −→a −→a t > can be

written as:


(
∑

i!0 āi)2+
∑

i!0σ
2
i −
−→
1 t(−→a −→a t+Σ)

−(−→a −→a t+Σ)
−→
1 −→a −→a t+Σ




We let āi = −1 and σ2
i =

1
4 for consumer nodes in our tests in this section. We

consider an n− by−n grid (n is an odd number) and we let the generator
node be the middle node of the grid and consumer nodes on the border
nodes (Fig. 8-(a)), or a middle node in one of the border lines of the grid and
consumers on the parallel border (Fig. 8-(b)).

First, we optimize the grid for power dissipation (i.e. we minimize
weighted network criticality Tr(AL+). The optimization problem is essen-
tially the same as problem (41) with appropriate values of αi j, so that Uα =A.
We solved problem (41) for the given values of Uα = A. The optimal net-
works are shown in Fig. 9-(a), (b), where the thickness of the lines represent
the link weights or line conductances (thicker line has higher conductance).
We discuss Fig. 9-(b), since it is more vulnerable and needs attention. Fig.
9-(b) shows that by optimizing traffic-aware network criticality, we prune
the original grid; however, this network does not provide protection against



Title Suppressed Due to Excessive Length 33

Fig. 8 Power grids with one Generator Node

possible link/node failures. We can use optimization problem (56) to find a
k-robust grid power topology. Fig. 10-(a) shows an example of a 1-robust
topology.

Fig. 9 Optimal Grid Topologies - Thickness of the lines represent the conductances

We provide one more extension that is particularly useful for the case
of power grids in which the network should be sparse enough while pre-
serving robustness. We would like to sparsify the robust topology of 10-(a).
Fortunately, there is an elegant study on the context of sparsification using
resistance distance. In [23] the problem of finding an sparse version of a net-
work so that the total network criticality of the original graph and its sparse
version are close enough. The authors have proposed an algorithm to find
such sparse networks. The algorithm works as follows. Suppose H is the
sparse version of graph G. Choose a random line (i, j) of the network G with
probability pij proportional to wijτi j, where τi j is the point-to-point network
criticality or the resistance distance seen between nodes i and j. Add (i, j) to H
with weight

wij
qpij

, where q is the number of independent samples (we should
sum up weights if a line is chosen more than once. We used this algorithm
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to simplify the optimal robust network of Fig. 10-(a), and the result is shown
in Fig. 10-(b).

Fig. 10 (a) Optimal Robust Grid Topology (Link Failure), (b) Optimal Robust Sparse Grid
topology

The network criticality of the sparse topology in Fig. 10-(b) is close to that
of the original topology (Fig. 10-(a)) and it is still 1-robust, but the structure
that number of active links (power lines) in the topology of Fig. 10-(b) is
much less than the original one.

8 Conclusion

In this chapter we developed a number of optimization problems for si-
multaneous optimization of resources and flows in a variety of network
types including communication networks and power grids. Our goal in the
optimization problems was to minimize a weighted linear combination of
resistance distances (point-to-point network criticalities) which is a convex
function of link weights.

In another development, we discussed the problem off finding the best
matched traffic matrix to a given network topology, along with optimal
routing strategy (flow assignment) associated with optimal demand. We
extended this idea and proposed an optimization problem to jointly optimize
demands, routes and resources. Moreover, we discussed the application of
network criticality in planning k-robust networks, where the topology is
potentially protected against up to k link failures.

We used the proposed optimization problems to design virtual networks
for different customers of a communication network. We also applied the
k-robust strategy to design robust power networks.

There are different avenues for further development of the proposed ideas
in this chapter. We can extend the optimization problems to the case where
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other QoS constraints, such as delay partitioning constraints, are also re-
quested. Our discussion in this work was mostly on undirected networks
(also we explained how we can have asymmetric capacities within the pro-
posed framework). One more extension is to develop similar optimization
problems for the general case of a directed graph.

Appendix

9 Proof of Lemma 1

Proof. We use proposition 3 to derive the result:

∂τα
∂wij

=
∂Tr(UαΓ−1)
∂wij

= −Tr(UαΓ−1 ∂Γ
∂wij
Γ−1)

= −Tr(UαΓ−1uijut
i jΓ
−1)

= −Tr(Ft
αFαΓ

−1uijut
i jΓ
−1)

= −Tr(FαL+uijut
i jL
+Ft
α)

= −Tr((FαL+uij)(FαL+uij)t)

= −Tr((FαL+uij)t(FαL+uij))

= −
∥∥∥FαL+uij

∥∥∥2

10 Proof of Lemma 2

Proof. We need the following lemma.

Lemma 4. For any weight matrix W of links of a graph: Vec(W)t∇τ+τ = 0, where
Vec(W) is a vector obtained by concatenating all the rows of matrix W to get a vector
of wij’s.

Proof. In [[13]] it has been shown that if we scale all the link weights with t,
the effective resistance τi j will scale with 1

t . Since τα is a linear combination
of point-to-point effective resistances, τα will also scale with 1

t :
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τα(tVec(W)) =
1
t
τα(Vec(W)) (58)

By taking the derivative of τwith respect to t, we have

Vec(W)t∇τα =
−1
t2 τα(W) (59)

It is enough to consider equation 59 at t = 1 to get Vec(W)t∇τα+τα = 0.

In general, one can apply the condition of optimality [24, 19] on optimiza-
tion problem (36) to get necessary condition for a weight vector to be optimal.
Let W∗ be the optimal weight matrix, and let Wt be another weight matrix
satisfying the constraints of optimization problem (36), then according to the
condition of optimality:

∇τα.(Vec(Wt)−Vec(W∗)) ≥ 0

Now, we choose Wt as follows:

Wt = [wuv] =



C
2zij

i f u = i & v = j
C

2zij
i f u = j & v = i

0 otherwise

Clearly, Wt satisfies the constraints of optimization problem (36), therefore,
using the condition of optimality and considering lemma 4 we have:

∇τα.(Vec(Wt)−Vec(W∗)) ≥ 0
∇τα.Vec(Wt)−∇τα.Vec(W∗) ≥ 0

C
zij

∂τα
∂wij

+τα ≥ 0 ∀(i, j) ∈ E

min
(i, j)∈E

C
zij

∂τα
∂wij

+τα ≥ 0 (60)

Now, to prove the second part of the theorem we write the constraint of the
optimization problem as an inner product of costs and weights.

(Vec(Z).Vec(W∗))τα = (
∑

(i, j)∈E

w∗i jzi j)τα = Cτα (61)

Combining lemma 4 and equation 61 one can see:
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C∇τα.Vec(W∗)+Vec(Z).Vec(W∗)τα = 0
Vec(W∗).(C∇τα+ταVec(Z)) = 0

w∗i j(C
∂τα
∂wij

+ταzij) = 0

This completes the proof of lemma 2.

11 Proof of Lemma 3

Proof. The Lagrangian of optimization problem is:

L(Γ,W,T,λ,ρ) = Tr(UαΓ−1)+Tr(TΓ)−Cλ

+
∑

(i, j)∈E

wij(−ut
ijTuij+λzij−ρi j)−

1
n
−→
1 tT
−→
1

To find the dual formulation, it is enough to take the infimum of the La-
grangian over Γ, W.

d(T,λ,ρ) = in fΓ,WL(Γ,W,T,λ,ρ) (62)

= in fΓTr(UαΓ−1+TΓ)+ in fW(

−
∑

(i, j)∈E

wij(−ut
ijTuij+λzij−ρi j)−

1
n
−→
1 tT
−→
1 −Cλ)

The second term in equation (62) is minimized if its derivative with respect
to all link weights is zero. The minimum of the first term is −∞ unless matrix
T is positive semi-definite. Therefore

d(T,λ,ρ) =



in fΓTr(UαΓ−1+TΓ)− 1
n
−→
1 tT
−→
1 −Cλ

i f −ut
ijTuij+λzij−ρi j = 0, ρi j ≥ 0 ∀(i, j) ∈ E

and T + 0
−∞ otherwise

(63)

where T = [ti j], and T + 0 means that matrix T is positive semi-definite.
Term in fΓTr(UαΓ−1 + TΓ) can also be obtained analytically using some

known facts from matrix algebra.

Proposition 3 For any non-singular square (n×n) matrix X and any n×n matrices
A and B, we have :
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d
dX

Tr(AX) = A

d
dX

Tr(AX−1B) = −X−1BAX−1

where in general the derivative d
dX f (X) of a scalar-valued differentiable function

f (X) of a matrix argument X ∈ Rp×q is the q×p matrix whose (i, j)th entry is ∂ f (X)
∂X( j,i)

[16].

Proof. See [16].

Using proposition 3 one can find in fΓ(UαTrΓ−1+TΓ) as follows.

d
dΓ

Tr(UαΓ−1+TΓ) =
d

dΓ
Tr(UαΓ−1)+

d
dΓ

Tr(TΓ) = 0

T = Γ−1UαΓ−1 (64)

Considering the fact that Uα and Γ−1 are symmetric matrices, after some
calculations we have:

in fΓTr(UαΓ−1+TΓ) = 2Tr(UαΓ−1) (65)

We also note that T
−→
1 = 0 (because Γ−1−→1 = (L++ J

n )
−→
1 =
−→
1 and Uα

−→
1 = 0). Now

we consider a change of variable as X = 1√
λ

L+, clearly X
−→
1 = 0. It is easier

to write the optimization problem based on new variable X. Applying this
change of variable, equation (65) we have:

2Tr(UαΓ−1) = 2
√
λTr(UαX) (66)

On the other hand:

T = Γ−1UαΓ−1

= λXUαX (67)

Finally, we observe from constraint part of equation (63) that:

1
zij

ut
i jTuij ≤ λ ∀(i, j) ∈ E

1
zij

ut
i jλXUαXuij ≤ λ ∀(i, j) ∈ E

1√zij

∥∥∥FαXuij
∥∥∥ ≤ 1 (68)
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where Fα is an m×n matrix (m and n are the number of links and nodes of the
graph respectively) such that Uα = Ft

αFα. This matrix decomposition always
exists, since Uα is a positive semidefinite matrix.

Now it is enough to simplify the dual objective function of equation (63)
(i.e. d(X,λ) = 2

√
λTr(UαX)−Cλ) using equation (66). In order to maximize

the dual function with respect to the dual variable λ, one should have:
d

dλd(X,λ)= 0. By applying this, and after some calculations, the dual objective
will be equal to 1

C Tr2(UαX), which is now only a function of dual variable X.
Therefore, considering equation (68), one can write the dual optimization

problem as:

maximize 1
C Tr2(UαX)

subject to 1√
zij

∥∥∥FαXuij
∥∥∥ ≤ 1 ∀(i, j) ∈ E

X
−→
1 = 0

X + 0

Finally, we observe that:

λ = max
(i, j)∈E

1
zij

ut
i jTuij

= max
(i, j)∈E

1
zij

ut
i jL
+UαL+uij

= max
(i, j)∈E

1
zij

∥∥∥FαL+uij
∥∥∥2 (69)

This completes the proof of lemma 3.
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