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ABSTRACT
Graph theory provides a powerful set of metrics and concep-
tual ideas to model and investigate the behavior of communi-
cation networks. Most graph-theoretical frameworks in the
networking literature are based on undirected graph models,
where a symmetric link weight is assigned to each link of the
network. However, many communication networks must ac-
count for directionality of communication links. This paper
reports on an effort to extend some of the existing results of
symmetric graphs to asymmetric ones. In particular we are
interested in the behavior of random-walk based algorithms
in directed graphs and we find the average travel time of
a random-walk as a function of an asymmetric Laplacian
matrix, which is in turn a function of link weights.

1. INTRODUCTION
Consider a wireless network which consists of a set of nodes
with known transmit powers. The Shannon capacity of each
wireless link depends on the value of node transmit power,
node distances, and the interference among different nodes.
Depending on the arrangement of the nodes, the capacity of
a link (i, j) may be different from the capacity of link (j, i),
therefore, we cannot model the behavior of such networks
with undirected graphs.

This paper tries to shed light on such asymmetric networks.
We are particularly concerned with the behavior of random-
walk models on directed graphs. Generally speaking, the
theory of random walks is not limited to undirected graphs,
yet most of the existing literature on properties of random
walks have concentrated on reversible Markov chains which
are inherently associated with an undirected symmetric graph
model. In a random walk, we are usually interested in find-
ing the probability of hitting a specific subset of graph nodes
for the first time. The probability that a random walker first
reaches a destination point exactly equals the solution to the
Dirichlet problem with boundary conditions at the locations
of the destination points on an undirected symmetric graph
[1]. It is also shown that one can construct a purely resis-

tive electrical network to solve the Dirichlet problem with
boundary conditions [1]. As a result, many definitions in
random walk theory and electric circuits are closely related.

Our interest in this paper is the average travel time between
arbitrary pairs of nodes s and d averaged over all possible
source-destination pairs. Suppose for each link l = (i, j)
there is a cost zl = z(i, j). After a random-walk starts from
source node s, at each step it traverses one link, incurs a cost,
and continues until it is absorbed at destination d. It has
been already shown that in an undirected graph with sym-
metric link weights the average cost of this journey between
any two random nodes is equal to 1

2
τ̂
∑

k(
∑

j wkjz(k, j)),
where τ̂ is the average network criticality or average resis-
tance distance of the graph and can be written in terms of
the components of the undirected Moore-Penrose Laplacian
matrix: τ̂ = 2

n−1
Tr(L+) [2]. In the present paper we de-

velop a mathematical framework to calculate the average
travel cost of a random-walk in a directed graph using a di-
rected Laplacian matrix. Our focus in this paper is on the
case of unit link costs (z(i, j) = 1 ∀(i, j) ∈ E). We will
discuss the general case in subsequent research reports.

2. MAIN RESULTS
We start by introducing the graph model. A directed graph
G(V,E,W ) consists of a finite node set V which contains n
nodes, a link set E ∈ V ×V , and a set of positive link weights
wij (matrix W ). The out-weight of a node i is defined as
W o

i =
∑

j,i−>j wij . We can define a transition probabil-

ity matrix P = [pij ] of an irrecucible Markov random walk
through the directed graph which satisfies

∑
j,i−>j pij =

1 ∀i ∈ V . We also assume the stationary distribution for
each node i is πi, where

∑
i πi = 1 (πi > 0 for connected

graphs). In this paper we consider a connected graph and
use the natural (weighted) random walk whose transition
probability is defined as pij =

wij

Wo
i

. We define the combina-

toric Laplacian of a graph as: L = Φ(I − P ) (inspired by
[3]), where Φ is a diagonal matrix with main diagonal equal
to the stationary probability vector of the graph (vector −→π ).

The average travel time equals the average of the commute
time between arbitrary source-destination pairs. Therefore,
we first find the commute time of a random-walk in terms of
its combinatoric Laplacian as defined above. Following [4]
we introduce the fundamental matrix Z of a Markov chain
by Z = (I − (P − JΦ))−1, where J is an square matrix
whose entries are all equal to 1. Let S denote the hit-
ting time matrix of the Markov chain, in [4] it is proved



that S = (Jdiag(Z) − Z)Φ−1. Let X = ZΦ−1 (in this pa-
per diag(Z) denotes a diagonal matrix whose main diagonal
components are equal to the main diagonal components of
Z), then considering the fact that Φ is a diagonal matrix we
conclude that S = Jdiag(X) − X, therefore, the commute
time matrix is equal to C = Jdiag(X)+diag(X)J−X−Xt,
where Xt denotes the transpose of X.

Lemma 2.1. The following statements are true for matri-
ces Z, X, L, and Φ.

JΦJ = J (1)

ZJ = J (2)

LJ = JL = 0 (3)

XΦJ = JΦX = J (4)

LXL = L, XLX = X − J (5)

L = X−1 − ΦJΦ (6)

Proof. All the above equations can be simply derived.
Here we show the proof of equations (3) and (6). For equa-
tion (3) we have:

LJ = Φ(I − P )J = Φ(J − PJ) = Φ(J − J) = 0

Let
−→
1 = (1, 1, ..., 1)t. To prove JL = 0, we consider one row

of the matrix product JL:

−→
1 tL =

−→
1 tΦ(I − P ) = −→π t(I − P ) = −→π t −−→π t = 0

For the last equation we can write:

X−1 = (ZΦ−1)−1 = Φ(I − P + JΦ)

= Φ− ΦP + ΦJΦ = L+ ΦJΦ

Equation (5) suggests that the Moore-Penrose inverse of
Laplacian is related to X. Lemma 2.2 explores this rela-
tionship.

Lemma 2.2. X and L+ are related according to the fol-
lowing equations:

X = (I − JΦ)L+(I − ΦJ) + J (7)

L+ = (I − J

n
)X(I − J

n
) (8)

Proof. We use the following fact to prove equation (7).

Fact 2.3. Suppose rank(A + B) = rank(A) + rank(B),
then:

(A+B)+ = (I − C+B)A+(I −BC+) + C+

where C = (I −AA+)B(I −A+A) (See [5]).

Let A = L and B = ΦJΦ. We use Fact 2.3 and equation (6)
to find an expression for X based on L+. Since A = L, it is
easy to see that I −AA+ = I −A+A = 1

n
J . Using equation

(1) we conclude C = 1
n2 J and C+ = J . Therefore

(L+ ΦJΦ)+ = (I − JΦJΦ)L+(I − ΦJΦJ) + J

X = (I − JΦ)L+(I − ΦJ) + J

where we have used equation (1) and the fact that L+ ΦJΦ
is invertible. We need the following fact to prove equation
(8).

Fact 2.4. Suppose matrix A is invertible and A + B is
singular, then:

(A+B)+ = (I +A−1B)+(A−1 +A−1BA−1)(I +BA−1)+

See [5] for proof.

Let A = X−1 and B = −ΦJΦ, then we can use Fact 2.4 to
expand equation (6):

L+ = (I −XΦJΦ)+(X −XΦJΦX)(I − ΦJΦX)+

= (I − JΦ)+(X − J)(I − ΦJ)+ (9)

We have used equation (4) to obtain (9). In order to find
the Moore-Penrose inverse of I − JΦ and I −ΦJ we use the
following fact.

Fact 2.5. Suppose matrix A is Hermitian and nonsingu-
lar, and Let x and y be column vectors.

(A+ xy∗)+ = (I − aa+)A−1(I − bb+)

where a = A−1x and b = A−1y, and y∗ denotes conjugate
transpose of vector y [5].

Now, we note that:

I − JΦ = I −−→1 −→π t = −(−I +
−→
1 −→π t) (10)

Let A = −I, x =
−→
1 , and y = −→π . Now we can use Fact 2.5

to simplify equation (10).

a = −I−→1 = −−→1 , a+ = − 1

n

−→
1 t

b = −I−→π = −−→π , b+ = − 1

||−→π ||2
−→π t

Therefore

(I − JΦ)+ = (I − J

n
)(I − 1

||−→π ||2
−→π−→π t) (11)

Similarly

(I − ΦJ)+ = (I − 1

||−→π ||2
−→π−→π t)(I − J

n
) (12)

Now we can employ equations (11), (12) in (9) to simplify
L+.

L+ = (I − J

n
)(I − 1

||−→π ||2
−→π−→π t)(X − J)×

(I − 1

||−→π ||2
−→π−→π t)(I − J

n
) (13)

On the other hand, using equation (4) and (1) and consid-
ering the fact that −→π−→π t = ΦJΦ one can see:

(I − 1

||−→π ||2
−→π−→π t)(X − J) = X − J − 1

||−→π ||2
ΦJΦX

+
1

||−→π ||2
ΦJΦJ

= X − J (14)



Similarly

(X − J)(I − 1

||−→π ||2
−→π−→π t) = X − J (15)

Finally, it is easy to verify that:

(I − J

n
)(X − J) = (I − J

n
)X (16)

Combining equations (13), (14), (15), (16) we get (8).

Lemma 2.6. Commute Matrix C is equal to: C = [cij ] =
Jdiag(L+) + diag(L+)J −L+− (L+)t, or equivalently cij =
l+ii + l+jj − l

+
ij − l

+
ji.

Proof. Equation (7) can be written as:

X = L+ + (1 + α)J − JΦL+ − L+ΦJ (17)

where α = −→π tL+−→π .

vec(diag(X)) = vec(diag(L+)) + (1 + α)
−→
1 −

−(L+)t−→π − L+−→π (18)

where vec(diag(X)) denotes a column vector whose entries
are equal to the diagonal entries of diag(X). We multi-

ply two sides of equation (18) from right by
−→
1 t. Note

that vec(diag(X)) ∗ −→1 t = diag(X)J , vec(diag(L+)) ∗ −→1 t =

diag(L+)J , and −→π ∗ −→1 t = ΦJ , thus:

diag(X)J = diag(L+)J + (1 + α)J − (L+)tΦJ − L+ΦJ

Similarly

Jdiag(X) = Jdiag(L+) + (1 + α)J − JΦ(L+)t − JΦL+

It is enough to use equation C = Jdiag(X) + diag(X)J −
X − Xt. By replacing the values of Jdiag(X), diag(X)J ,
X, and Xt in terms of L+ one can easily conclude C =
Jdiag(L+) + diag(L+)J − L+ − (L+)t.

Now we are ready to state the main result.

Theorem 2.7. The average random-walk travel time be-
tween every arbitrary pair of nodes in a directed graph is
equal to 2

n−1
Tr(L+), where L = Φ(I − P ) is the combina-

toric Laplacian of the directed graph.

Proof. First we note that L+J = JL+ = 0. This can be
easily seen using the fact that (I − J

n
)J = J(I − J

n
) (note

that JJ = nJ) and considering equation (8). Now we can
find the average travel time T by averaging over commute
times between all possible node pairs.

T =
1

n(n− 1)

∑
(i,j

cij =
1

n(n− 1)

−→
1 tC
−→
1

=
1

n(n− 1)
(
−→
1 t(Jdiag(L+)

−→
1 +
−→
1 tdiag(L+)J

−→
1 −

− −→
1 tL+−→1 −−→1 t(L+)t

−→
1 )

=
1

n(n− 1)
(nTr(L+) + nTr(L+)− 0− 0)

=
2

n− 1
Tr(L+) (19)

Equation (19) has the same form of average network criti-
cality (or resistance distance) [2], but here we use the com-
binatoric asymmetric Laplacian.

3. CONCLUSIONS AND ROAD MAP
We extended the existing mathematics to find attributes
of random-walk based algorithms in undirected graphs for
direction-aware asymmetric networks. We were specially in-
terested in the average travel time of a random-walk in a
directed graph and developed a machinery to find this quan-
tity using the trace of an asymmetric directed Laplacian.

Theorem 2.7 provides us with a clear relationship between
combinatoric Laplacian of directed graphs and the average
travel time of a random-walk. While equation (19) is simi-
lar to the equation for average resistance distance in undi-
rected graphs, the nature of the Laplacian in the directed
case is different. For a connected graph in undirected case
the Laplacian (and its generalized inverse) is a positive semi-
definite matrix and the trace of generalized inverse Laplacian
is a strictly convex and decreasing function of link weights.
Therefore, one can easily use a convex optimization problem
to find optimized link weights.

We plan to investigate similar properties of the asymmet-
ric combinatorial (and weighted) Laplacian. While L is

not necessarily positive semi-definite, but L1 = L++(L+)t

2
is positive semi-definite (since L1 is symmetric with non-
negative real eigenvalues [6]), therefore, Tr(L1) = Tr(L+)
is a convex function of L1 [5], but its convexity with respect
to link weights is not necessarily preserved because the en-
tries of L1 are fractional polynomial functions of link weights
(note that Φ(i, i) = Mi∑

k Mk
where Mi is the ith principal mi-

nor determinant of matrix I − P [7]). We intend to study
convexity properties of Tr(L1) and to develop appropriate
optimization problems and algorithms to minimize average
travel time in wireless interference-aware networks.
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